Data Sheet No. PD60261 IRS2109/IRS21094(S)PbF HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt Product Summary VOFFSET immune • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • 3.3 V, 5 V, and 15 V input logic compatible • Cross-conduction prevention logic • Matched propagation delay for both channels • High-side output in phase with IN input • Logic and power ground +/- 5 V offset. • Internal 540 ns deadtime, and programmable IO+/VOUT ton/off (typ.) Deadtime up to 5 µs with one external RDT resistor (IRS21094) • Lower di/dt gate driver for better noise immunity • Shutdown input turns off both channels. • RoHS compliant 600 V max. 120 mA / 250 mA 10 V - 20 V 750 ns & 200 ns 540 ns (programmable up to 5 µs for IRS21094) Packages Description The IRS2109/IRS21094 are high voltage, high speed power MOSFET and IGBT drivers with dependent high- and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the highside configuration which operates up to 600 V. Typical Connection 8 Lead SOIC 14 Lead SOIC 14 Lead PDIP 8 Lead PDIP IRS21094 IRS2109 (Refer to Lead Assignments for correct configuration). These diagrams show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com T 1 IRS2109/IRS21094(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. VB High-side floating absolute voltage -0.3 625 VS High-side floating supply offset voltage VB - 25 VB + 0.3 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side and logic fixed supply voltage -0.3 25 VLO Low-side output voltage -0.3 VCC + 0.3 DT Programmable deadtime pin voltage (IRS21094 only) VSS - 0.3 VCC + 0.3 VIN Logic input voltage (IN & SD) VSS - 0.3 VCC + 0.3 VSS Logic ground (IRS21094/IRS21894 only) VCC - 25 VCC + 0.3 dVS/dt Allowable offset supply voltage transient PD Package power dissipation @ TA £ +25 °C — 50 (8 Lead PDIP) — 1.0 (8 Lead SOIC) — 0.625 (14 lead PDIP) — 1.6 — 1.0 (8 Lead PDIP) — 125 (8 Lead SOIC) — 200 (14 lead PDIP) — 75 (14 lead SOIC) (14 lead SOIC) RthJA Thermal resistance, junction to ambient — 120 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 www.irf.com Units V V/ns W °C/W °C 2 IRS2109/IRS21094(S)PbF Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset rating are tested with all supplies biased at a 15 V differential. Symbol Min. Max. VB High-side floating supply absolute voltage Definition VS + 10 VS + 20 VS High-side floating supply offset voltage (Note 1) 600 VHO High-side floating output voltage VS VB VCC Low-side and logic fixed supply voltage 10 20 VLO Low-side output voltage 0 VCC VIN Logic input voltage (IN & SD) VSS VCC DT Programmable deadtime pin voltage (IRS21094 only) VSS VCC VSS Logic ground (IRS21094 only) -5 5 Ambient temperature -40 125 TA Units V °C Note 1: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, C L = 1000 pF, TA = 25 °C, DT = VSS unless otherwise specified. Symbol Definition ton Turn-on propagation delay toff tsd Turn-off propagation delay MT Shutdown propagation delay Delay matching, HS & LS turn-on/off Min. Typ. — 750 — — Max. Units Test Conditions 950 VS = 0 V 200 280 VS = 0 V or 600 V 2 00 280 — 0 70 tr Turn-on rise time — 100 220 tf Turn-off fall time — 35 80 400 540 680 5 6 DT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & HO turn-off to LO turn-on (DTHO-LO ) MDT www.irf.com Deadtime matching = DTLO - HO - DTHO-LO 4 — 0 60 — 0 600 ns VS = 0 V RDT= 0 Ω µs ns R DT = 200 kΩ (IR21094) RDT= 0 Ω RDT = 200 kΩ (IR21094) 3 IRS2109/IRS21094(S)PbF Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V, VSS = COM, DT= VSS and TA = 25 °C unless otherwise specified. The VIL, VIH, and IIN parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO, and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition VIH Logic “1” input voltage for HO & logic “0” for LO VIL Min. Typ. Max. Units Test Conditions 2.5 — — Logic “0” input voltage for HO & logic “1” for LO — — 0.8 VSD,TH+ SD input positive going threshold 2.5 — — VSD,TH- SD input negative going threshold — — 0.8 VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current 20 75 130 IQCC Quiescent VCC supply current 0.4 1.0 1.6 IIN+ Logic “1” input bias current — 5 20 IIN- Logic “0” input bias current — — 2 8.0 8.9 9.8 7.4 8.2 9.0 Hysteresis 0.3 0.7 — IO+ Output high short circuit pulsed current 120 290 — IO- Output low short circuit pulsed current 250 600 — VCCUV+ VBSUV+ VCCUVVBSUVVCCUVH VBSUVH www.irf.com VCC and VBS supply undervoltage positive going threshold VCC and VBS supply undervoltage negative going threshold VCC = 10 V to 20 V V IO = 2 mA µA mA VB = VS = 600 V VIN = 0 V or 5 V VIN = 0 V or 5 V RDT = 0 Ω IN = 5 V, SD = 0 V µA IN = 0 V, SD = 5 V V mA VO = 0 V, PW ≤ 10 µs VO = 15 V,PW ≤ 10 µs 4 IRS2109/IRS21094(S)PbF Functional Block Diagrams VB IRS2109 UV DETECT HO R VSS/COM LEVEL SHIFT IN HV LEVEL SHIFTER Q R PULSE FILTER S VS PULSE GENERATOR VCC DEADTIME UV DETECT +5V VSS/COM LEVEL SHIFT SD LO DELAY COM VB IRS21094 UV DETECT HO R VSS/CO M LEVEL SHIFT IN HV LEVEL SHIFTER R PULSE FILTER S VS PULSE GENERATOR VCC DEAD TIM E DT UV DETECT +5V SD Q VSS/CO M LEVEL SHIFT DELAY LO CO M VSS www.irf.com 5 IRS2109/IRS21094(S)PbF Lead Definitions Symbol Description IN Logic input for high-side and low-side gate driver outputs (HO and LO), in phase with HO (referenced to COM for IRS2109 and VSS for IRS21094) Logic input for shutdown (referenced to COM for IRS2109 and VSS for IRS21094) SD DT Programmable deadtime lead, referenced to VSS. (IRS21094 only) VSS Logic ground (IRS21094 only) VB High-side floating supply HO High-side gate drive output VS High-side floating supply return VCC Low-side and logic fixed supply LO Low-side gate drive output COM Low-side return Lead Assignments VCC 1 8 1 VCC VB 8 2 IN HO 7 2 IN HO 7 3 SD VS 6 3 SD VS 6 COM LO COM LO 5 4 1 5 4 8 Lead PDIP 8 Lead SOIC IRS2109PbF IRS2109SPbF 14 VCC 1 14 VCC IN VB 13 12 11 IN VB 13 3 SD HO 12 3 SD HO 4 DT VS 11 4 DT VS 5 VSS 10 5 VSS 10 6 COM 9 6 COM 9 LO 8 7 LO 8 2 7 www.irf.com VB 2 14 Lead PDIP 14 Lead SOIC IRS21094PbF IRS21094SPbF 6 IRS2109/IRS21094(S)PbF IN(LO) IN 50% 50% SD IN(HO) ton toff tr 90% HO LO HO LO Figure 1. Input/Output Timing Diagram tf 90% 10% 10% Figure 2. Switching Time Waveform Definitions 50% 50% IN SD 50% 90% HO tsd HO LO LO 90% DT LO-HO 10% DT HO-LO 90% 10% MDT= Figure 3. Shutdown Waveform Definitions DT LO-HO - DT HO-LO Figure 4. Deadtime Waveform Definitions IN (LO) 50% 50% IN (HO) LO HO 10% MT MT 90% LO HO Figure 5. Delay Matching Waveform Definitions www.irf.com 7 IRS2109/IRS21094(S)PbF 1300 Turn-On Propagation Delay (ns) Turn-On Propagation Delay (ns) 1300 1100 900 M ax Typ. 700 500 -50 1100 M ax. 900 Typ. 700 500 -25 0 25 50 75 100 125 10 12 Figure 6A. Turn-On Propagation Delay vs. Temperature 16 18 20 Figure 6B. Turn-On Propagation Delay vs. Supply Voltage 500 Turn-Off Propagation Delay (ns) 500 Turn-Off Propagation Delay (ns) 14 VBIAS Supply Voltage (V) Temperature (oC) 400 300 M ax. 200 Typ. 100 400 M ax. 300 Typ. 200 100 0 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 7A. Turn-Off Propagation Delay vs. Temperature www.irf.com 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 7B. Turn-Off Propagation Delay vs. Supply Volta ge 8 IRS2109/IRS21094(S)PbF 500 SD Propagation Delay (ns) SD Propagation Delay (ns) 500 400 300 M ax. 200 Typ. 100 400 M ax. 300 Typ. 200 100 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature ( C) Figure 8A. SD Propagation Delay vs. Temperature 16 18 20 Figure 8B. SD Propagation Delay vs. Supply Voltage 50 0 Turn-On (ns) T urn-O n Rise R is e TTime im e (ns ) 5 00 T urn-O n RRise is e TTime im e (ns(ns) ) Turn-On 14 V BIAS Supply Voltage (V) o 4 00 3 00 2 00 Max. 1 00 Typ. 0 40 0 30 0 Max. 20 0 Typ. 10 0 0 -5 0 -2 5 0 25 50 75 1 00 Temperature(oC) Figure 9A. Turn-On Rise Time vs. Temperature www.irf.com 1 25 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Turn-On Rise Time vs. Supply Volta ge 9 IRS2109/IRS21094(S)PbF 200 T u rn -O ffTime F allT(ns) im e Turn-Off Fall Turn-Off Fall Time (ns) 2 00 1 50 1 00 Max. 50 Typ. 0 150 100 Max. 50 Typ. 0 -5 0 -2 5 0 25 50 75 1 00 1 25 10 12 Temperature(oC) 18 20 Figure 10B. Turn-Off Fall Time vs. Supply Voltage 1000 1000 800 800 Deadtime (ns) Deadtime (ns) 16 Input Voltage (V) Figure 10A. Turn-Off Fall Time vs. Temperature M ax. 600 Typ. 400 14 M in. 600 M ax. Typ. M in. 400 200 200 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 11A. Deadtime vs. Temperature www.irf.com 10 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 11B. Deadtime vs. Supply Voltage 10 IRS2109/IRS21094(S)PbF 5 7 Input Voltage (V) 6 Deadtime ( s) Deadtime (µs) M ax. 5 Typ. 4 M in. 3 2 4 3 Min. 2 1 1 -50 0 0 50 100 150 200 -25 0 R (kΩ) RDT DT (KΩ) 3 Min. 2 1 16 18 VBIAS Supply Voltage (V) Figure 12B. Logic “1” Input Voltage vs. Supply Voltage www.irf.com 20 Logic "0" Input Bias Current (µA) Input Voltage (V) 4 14 75 100 125 Figure 12A. Logic “1” Input Voltage vs. Temperature 5 12 50 Temperature (oC) Figure 11C. Deadtime vs. R DT (IR21094 only) 10 25 6 5 Max 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 13A. Logic "0" Input Bias Current vs. Temperature 11 5 6 5 SD Input threshold (+) (V) Logic "0" Input Bias Current (µA) IRS2109/IRS21094(S)PbF Max 4 3 2 1 0 10 12 14 16 18 20 4 3 Max. 2 1 0 -50 -25 Supply Voltage (V) 25 50 75 100 125 o Temperature ( C) Figure 13B. Logic "0" Input Bias Current Figure 14A. SD Input Positive Going Threshold (+) vs. Temperature vs. Voltage 5 5 SD Negative Going Threshold (V) SD Input threshold (+) (V) 0 4 3 Max. 2 1 0 10 12 14 16 18 20 VCC Supply Voltage (V) Figure 14B. SD Input Positive Going Threshold (+) vs. Supply Voltage www.irf.com 4 3 2 M in. 1 0 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 15A. SD Negative Going Threshold vs. Temperature 12 IRS2109/IRS21094(S)PbF High Level Output Voltage (V) SD Negative Going Threshold (V) 5 4 3 2 M in. 1 0 10 12 14 16 18 20 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0.0 -50 -25 V CC Supply Voltage (V) Low Level Output Voltage (V) High Level Output Voltage (V) 0.4 Max. 0.2 0.1 Typ. 0.0 12 14 16 18 VBIAS Supply Voltage (V) Figure 16B. High Level Output Voltage vs. Supply Volta ge www.irf.com 50 75 100 125 Figure 16A. High Level Output Voltage vs. Temperature 0.5 10 25 Temperature (oC) Figure 15B. SD Negative Going Threshold vs. Supply Volta ge 0.3 0 20 0.5 0.4 0.3 0.2 0.1 Max. Typ. 0.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. Low Level Output Voltage vs. Temperature 13 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0 10 12 14 16 18 20 Offset OffsetSupply SupplyLeakage LeakageCurrent Current(µA) ( A) Low Level Output Voltage (V) IRS2109/IRS21094(S)PbF 500 400 300 200 100 M ax. 0 -50 -25 25 50 75 100 125 o VBIAS Supply Voltage (V) Temperature ( C) Figure 17B. Low Level Output Voltage vs. Supply Voltage Figure 18A. Offset Supply Leakage Current vs. Temperature 500 400 V BS S u p p ly C u rre n t ( A ) V BS Supply Current (µA) OOffset ffs e t SSupply u p p ly LLeakage e a ka g e CCurrent u rre n t ( (µA) A) 0 400 300 200 100 M ax. 300 200 M ax. 100 Typ. M in. 0 0 0 100 200 300 400 500 600 VB Boost Voltage (V) Figure 18B. Offset Supply Leakage Current vs. Boost Voltage www.irf.com -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 19A. VBS Supply Current vs. Temperature 14 IRS2109/IRS21094(S)PbF 3.0 2.5 VCC Supply Current (mA) VBS Supply Current (µA) 400 300 200 M ax. 100 Typ. 2.0 M ax. 1.5 Typ. 1.0 M in. 0.5 M in. 0 0.0 10 12 14 16 18 20 -50 -25 Figure 19B. VBS Supply Current vs. Supply Voltage 25 50 75 100 125 Figure 20A. V CC Supply Current vs. Temperature 3.0 60 Logic "1" Input Current (µA ) V CC Supply Current (mA) 0 Temperature (oC) VBS Supply Voltage (V) 2.5 2.0 1.5 M ax. 1.0 Typ. 0.5 M in. 50 40 30 20 10 M ax. Typ. 0.0 0 10 12 14 16 18 V CC Supply Voltage (V) Figure 20B. VCC Supply Current vs. VCC Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 Temperature ( oC) Figure 21A. Logic “1” Input Current vs. Temperature 15 IRS2109/IRS21094(S)PbF 5 Logic 0” "0"Input Input Current Current (µA) ( A) Logic “1” "1" Input Input Current ((µA) A) Logic 60 50 40 30 M ax. 20 10 Typ. 4 3 M ax. 2 0 1 0 10 12 14 16 18 20 -50 -25 0 V CC Supply Voltage (V) 50 75 100 125 o Temperature ( C) Figure 21B. Logic “1” Input Current vs. Supply Voltage Figure 22A. Logic “0” Input Current vs. Temperature 12 V CC UVLO Threshold (+) (V) 5 Logic A) Logic"0" 0” Input Current Current ((µA) 25 4 3 M ax. 2 1 11 10 M ax. 9 Typ. M in. 8 7 0 10 12 14 16 18 V CC Supply Voltage (V) Figure 22B. Logic “0” Input Currentt vs. Supply Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 23. VCC Undervoltage Threshold (+) vs. Temperature 16 IRS2109/IRS21094(S)PbF 12 V BS UVLO Threshold (+) (V) V CC UVLO Threshold (-) (V) 11 10 M ax. 9 Typ. 8 M in. 7 6 11 M ax. 10 Typ. 9 M in. 8 7 -50 -25 0 25 50 75 100 125 -50 -25 0 Temperature ( oC) Figure 24. V CC Undervoltage Threshold (-) vs. Temperature 50 75 100 125 Figure 25. VBS Undervoltage Threshold (+) vs. Temperature 500 Output Source Current (mA) 11 V BS UVLO Threshold (-) (V) 25 Temperature ( oC) 10 M ax. 9 Typ. 8 M in. 7 400 Typ. 300 200 Min. 100 0 6 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 26. V BS Undervoltage Threshold (-) vs. Temperature www.irf.com -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 27A. Output Source Current vs. Temperature 17 IRS2109/IRS21094(S)PbF 1000 Output Sink (µA) Output SinkCurrent Current (m Α) Output Source Source Current (µA) Output Current (m Α) 500 400 300 200 Typ. 100 800 600 400 Min. 200 Min. 0 -50 0 10 12 14 16 18 20 -25 0 25 50 75 100 VBIAS Supply Voltage (V) Temperature (oC) Figure 27B. Output Source Current vs. Supply Voltage Figure 28A. Output Sink Current vs. Temperature 125 0 V S Offset Supply Voltage (V) 1000 Output Current (m Α) Output Sink Sink Current (µA) Typ. 800 600 400 Typ. 200 Min. 0 -2 Typ. -4 -6 -8 -10 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 28B. Output Sink Currentt vs. Supply Voltage www.irf.com 20 10 12 14 16 18 20 V BS Flouting Supply Voltage (V) Figure 29. Maximum V S Negative Offset vs. Supply Voltage 18 140 140 120 120 100 140 V 80 70 V 60 0 V Temperature (oC) Temperature (oC) IRS2109/IRS21094(S)PbF 40 100 140 V 80 70 V 60 0 V 40 20 20 1 10 100 1 1000 Figure 30. IRS2109 vs Frequency (IRFBC20) Rgate = 33 Ω, VCC = 15 V 1000 Figure 31. IRS2109 vs Frequency (IRFBC30) Rgate = 22 Ω, VCC = 15 V 140 140 120 120 140 V 80 70 V 60 0V 40 Temperature (oC) Temperature ( oC) 100 Frequency (kHz) Frequency (kHz) 100 10 140 V 70 V 0V 100 80 60 40 20 20 1 10 100 1000 Frequency (kHz) Figure 32. IRS2109 vs Frequency (IRFBC40) Rgate = 15 Ω, VCC = 15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 33. IRS2109 vs Frequency (IRFPE50) Rgate = 10 Ω, VCC = 15 V 19 140 140 120 120 100 80 60 140 V Temperature (oC) Temperature (oC) IRS2109/IRS21094(S)PbF 100 80 140 V 60 70 V 70 V 0 V 40 40 0 V 20 20 1 10 100 1 1000 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 35. IRS21094 vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V Figure 34. IRS21094 vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 140 120 120 140 V 100 140 V 80 70 V 0 V 60 Temperature (oC) Temperature (oC) 70 V 100 80 60 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 36. IRS21094 vs. Frequency (IRFBC40), Rgate=15 Ω , VCC=15 V www.irf.com 0 V 1 10 100 1000 Frequency (kHz) Figure 37. IRS21094 vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 20 IRS2109/IRS21094(S)PbF 140 140 120 120 100 80 140 V 70 V 60 0 V Temperature (oC) Temperature (oC) 140 V 40 100 70 V 0 V 80 60 40 20 20 1 10 100 1000 1 10 Frequency (kHz) Figure 39. IRS2109S vs. Frequency (IRFBC30), Rgate=22 Ω , V CC=15 V 140 V 70 V 140 V 70 V 0 V 140 120 0 V 100 80 60 Tempreture (oC) 120 Temperature (oC) 1000 Frequency (kHz) Figure 38. IRS2109S vs. Frequency (IRFBC20), Rgate=33 Ω , V CC=15 V 140 100 100 80 60 40 40 20 20 1 10 100 1000 Frequency (kHz) Figure 40. IRS2109S vs. Frequency (IRFBC40), Rgate=15 Ω , V CC=15 V www.irf.com 1 10 100 1000 Frequency (kHz) Figure 41. IRS2109S vs. Frequency (IRFPE50), Rgate=10 Ω , V CC=15 V 21 140 140 120 120 100 80 60 140 V 70 V 0V 40 Temperature (oC) Temperature (oC) IRS2109/IRS21094(S)PbF 80 140 V 70 V 60 0V 40 20 20 1 10 100 1 1000 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 42. IRS21094S vs. Frequency (IRFBC20), Rgate=33 Ω, Vcc=15 V Figure 43. IRS21094S vs. Frequency (IRFBC30), Rgate=22 Ω, Vcc=15 V 140 140 120 120 100 140 V 70 V 80 0 V 60 Temperature (oC) Temperature (oC) 100 140 V 70 V 0 V 100 80 60 40 40 20 20 1 1 10 100 1000 10 100 1000 Frequency (kHz) Frequency (kHz) Figure 44. IRS21094S vs. Frequency (IRFBC40), Rgate=15 Ω, Vcc=15 V www.irf.com Figure 45. IRS21094S vs. Frequency (IRFPE50), Rgate=10 Ω, Vcc=15 V 22 IRS2109/IRS21094(S)PbF Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 2 3 0.25 [.010] 4 A 6.46 [.255] MIN .0532 .0688 1.35 1.75 A1 .0040 e 3X 1.27 [.050] e1 .0098 0.10 0.25 .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 0.25 [.010] A1 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INC HES]. 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC www.irf.com .025 BASIC 1.27 BASIC K x 45° A C 8X b 8X 1.78 [.070] MAX b e1 6X MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENG TH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 23 IRS2109/IRS21094(S)PbF 14 Lead PDIP 14 Lead SOIC (narrow body) www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6019 01-3063 00 (MS-012AB) 24 IRS2109/IRS21094(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OTE : CO NTROLLING D IMENSION IN M M E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 7 .9 0 8 .1 0 0 . 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0 . 15 3 0 .1 6 1 C 1 1 .7 0 1 2.30 0 .4 6 0 .4 8 4 D 5 .4 5 5 .5 5 0 . 21 4 0 .2 1 8 E 6 .3 0 6 .5 0 0 . 24 8 0 .2 5 5 F 5 .1 0 5 .3 0 0 . 20 0 0 .2 0 8 G 1 .5 0 n/ a 0 . 05 9 n/ a H 1 .5 0 1 .6 0 0 . 05 9 0 .0 6 2 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 3 2 9. 6 0 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1.45 0 . 82 4 0 .8 4 4 C 1 2 .8 0 1 3.20 0 . 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0 . 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3 . 85 8 4 .0 1 5 F n /a 1 8.40 n /a 0 .7 2 4 G 1 4 .5 0 1 7.10 0 . 57 0 0 .6 7 3 H 1 2 .4 0 1 4.40 0 . 48 8 0 .5 6 6 www.irf.com 25 IRS2109/IRS21094(S)PbF Tape & Reel 14-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OTE : CO NTROLLING D IMENSION IN M M E G C A R R I E R T A P E D IM E N S I O N F O R 1 4 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 7 .9 0 8 .1 0 0 . 31 1 0 .3 1 8 B 3 .9 0 4 .1 0 0 . 15 3 0 .1 6 1 C 1 5 .7 0 1 6.30 0 . 61 8 0 .6 4 1 D 7 .4 0 7 .6 0 0 . 29 1 0 .2 9 9 E 6 .4 0 6 .6 0 0 . 25 2 0 .2 6 0 F 9 .4 0 9 .6 0 0 . 37 0 0 .3 7 8 G 1 .5 0 n/ a 0 . 05 9 n/ a H 1 .5 0 1 .6 0 0 . 05 9 0 .0 6 2 F D C B A E G H R E E L D IM E N S I O N S F O R 1 4 S O IC N M etr ic Im p e r i a l Cod e M in M ax M in M ax A 3 2 9. 6 0 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1.45 0 . 82 4 0 .8 4 4 C 1 2 .8 0 1 3.20 0 . 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0 . 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3 . 85 8 4 .0 1 5 F n /a 2 2.40 n /a 0 .8 8 1 G 1 8 .5 0 2 1.10 0 . 72 8 0 .8 3 0 H 1 6 .4 0 1 8.40 0 . 64 5 0 .7 2 4 www.irf.com 26 IRS2109/IRS21094(S)PbF LEADFREE PART MARKING INFORMATION IRxxxxxx S Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2109PbF 8-Lead SOIC IRS2109SPbF 8-Lead SOIC Tape & Reel IRS2109STRPbF 14-Lead PDIP IRS21094PbF 14-Lead SOIC IRS21094SPbF 14-Lead SOIC Tape & Reel IRS21094STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 Data and specifications subject to change without notice. 12/4/2006 www.irf.com 27