Data Sheet No. PD60201-A IR2301(S) HIGH AND LOW SIDE DRIVER Features Packages • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 5 to 20V Undervoltage lockout for both channels 3.3V, 5V and 15V input logic compatible Matched propagation delay for both channels Logic and power ground +/- 5V offset. Lower di/dt gate driver for better noise immunity Outputs in phase with inputs 8 Lead PDIP 8 Lead SOIC Description The IR2301(S) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. 2106/2301//2108//2109/2302/2304 Feature Comparison Part 2106/2301 21064 2108 21084 2109/2302 21094 2304 Input logic Crossconduction prevention logic Dead-Time HIN/LIN no none HIN/LIN yes IN/SD yes HIN/LIN yes Ground Pins Programmable 0.54~5 µs COM VSS/COM COM VSS/COM COM VSS/COM Internal 100ns COM Internal 540ns Programmable 0.54~5 µs Internal 540ns Typical Connection up to 600V (Refer to Lead Assignments for correct pin configuration). This/ T h e s e diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD IR2301 www.irf.com 1 IR2301 (S) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition VB High side floating absolute voltage VS Min. Max. -0.3 625 Units High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VIN Logic input voltage COM - 0.3 VCC + 0.3 dVS/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient — 50 (8 lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -50 150 TL Lead temperature (soldering, 10 seconds) — 300 V V/ns W °C/W °C Recommended Operating Conditions The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Definition Min. Max. VB High side floating supply absolute voltage VS + 5 VS + 20 VS High side floating supply offset voltage Note 1 600 VS VB 5 20 VHO High side floating output voltage VCC Low side and logic fixed supply voltage VLO Low side output voltage VIN Logic input voltage TA Ambient temperature 0 VCC COM VCC -40 125 Units V °C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2301 (S) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C. Symbol Definition Min. Typ. Max. Units Test Conditions ton toff Turn-on propagation delay — 220 300 VS = 0V Turn-off propagation delay — 200 280 VS = 0V or 600V MT Delay matching, HS & LS turn-on/off — 0 50 tr Turn-on rise time — 130 220 VS = 0V tf Turn-off fall time — 50 80 VS = 0V nsec Static Electrical Characteristics VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to COM and are applicable to the respective input leads. The VO, IO and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 2.9 — — VIL Logic “0” input voltage — — 0.8 VCC = 10V to 20V VOH High level output voltage, VBIAS - VO — 0.8 1.4 VOL Low level output voltage, VO — 0.3 0.6 IO = 20 mA ILK Offset supply leakage current — — 50 VB = VS = 600V IQBS Quiescent VBS supply current 20 60 100 IQCC 50 120 190 IIN+ Quiescent VCC supply current Logic “1” input bias current — 5 20 VIN = 5V IIN- Logic “0” input bias current — — 2 VIN = 0V VCCUV+ VCC and VBS supply undervoltage positive 3.3 4.1 5 VBSUV+ going threshold VCCUV- VCC and VBS supply undervoltage negative 3 3.8 4.7 VBSUV- negative going threshold VCCUVH Hysteresis 0.1 0.3 — IO+ Output high short circuit pulsed current 120 200 — IO- Output low short circuit pulsed current 250 350 — V VCC = 10V to 20V IO = 20 mA VIN = 0V or 5V µA VIN = 0V or 5V V VBSUVH www.irf.com mA VO = 0V, PW ≤ 10 µs VO = 15V, PW ≤ 10 µs 3 IR2301 (S) Functional Block Diagrams VB UV DETECT HO R VSS/COM LEVEL SHIFT HIN HV LEVEL SHIFTER R PULSE FILTER Q S VS PULSE GENERATOR VCC UV DETECT VSS/COM LEVEL SHIFT LIN DELAY LO COM Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase LIN Logic input for low side gate driver output (LO), in phase VB High side floating supply HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return 4 www.irf.com IR2301 (S) Lead Assignments 1 VCC VB 8 1 VCC VB 8 2 HIN HO 7 2 HIN HO 7 LIN VS 6 LIN VS 6 COM LO 5 COM LO 5 3 4 3 4 8 Lead PDIP 8 Lead SOIC IR2301 IR2301S 50% 50% HIN LIN HIN LIN ton toff tr 90% HO LO HO LO Figure 1. Input/Output Timing Diagram HIN LIN 10% tf 90% 10% Figure 2. Switching Time Waveform Definitions 50% 50% LO HO 10% MT MT 90% LO HO Figure 3. Delay Matching Waveform Definitions www.irf.com 5 IR2301 (S) 800 Turn-on Propagation Delay (ns) Turn-on Propagation Delay (ns) 500 400 300 M ax. 200 Typ. 100 0 -50 700 M ax. 600 500 400 Typ. 300 200 100 -25 0 25 50 75 100 125 5 10 o Supply Voltage (V) Figure 4A. Turn-on Propagation Delay vs. Temperature Figure 4B. Turn-on Propagation Delay vs. Supply Voltage 700 Turn-off Propagation Delay (ns) Turn-off Propagation Delay (ns) 500 400 300 M ax. 200 Typ. 0 -50 600 M ax. 500 400 300 Typ. 200 100 -25 0 25 50 75 100 o Temperature ( C) Figure 5A. Turn-off Propagation Delay vs. Temperature 6 20 Temperature ( C) 600 100 15 125 5 10 15 20 Supply Voltage (V) Figure 5B. Turn-off Propagation Delay vs. Supply Voltage www.irf.com IR2301 (S) 700 500 Turn-on Rise Time (ns) Turn-on Rise Time (ns) 600 400 300 200 M ax. 100 400 300 Typ. 200 100 Typ. 0 -50 M ax. 500 0 -25 0 25 50 75 100 125 5 10 o Temperature ( C) 20 Supply Voltage (V) Figure 6A. Turn-on Rise Time vs. Temperature Figure 6B. Turn-on Rise Time vs. Supply Voltage 200 200 Turn-off Fall Time (ns) Turn-off Fall Time (ns) 15 150 100 M ax. 50 150 M ax. 100 Typ. 50 Typ. 0 -50 0 -25 0 25 50 75 o Temperature ( C) Figure 7A. Turn-off Fall Time vs. Temperature www.irf.com 100 125 5 10 15 20 Supply Voltage (V) Figure 7B. Turn-off Fall Time vs. Supply Voltage 7 6 6 5 5 Logic "1" Input Voltage (V) Logic "1" Input Voltage (V) IR2301 (S) 4 M ax. 3 2 1 0 -50 4 M ax. 3 2 1 0 -25 0 25 50 75 100 125 5 o Temperature ( C) 5 5 Logic "0" Input Voltage (V) Logic "0" Input Voltage (V) 6 4 3 2 M in. 4 3 2 M in. 1 0 -25 0 25 50 75 100 Temperature (oC) Figure 9A. Logic “0” Input Voltage vs. Temperature 8 20 Figure 8B. Logic “1” Input Voltage vs. Supply Voltage 6 0 -50 15 Supply Voltage (V) Figure 8A. Logic “1” Input Voltage vs. Temperature 1 10 125 5 10 15 20 Supply Voltage (V) Figure 9B. Logic “0” Input Voltage vs. Supply Voltage www.irf.com IR2301 (S) 6 High Level Output Voltage (V) High Level Output Voltage (V) 4 3 2 M ax. 1 5 M ax. 4 3 2 Typ. 1 Typ. 0 0 -50 -25 0 25 50 75 100 5 125 10 Figure 10B. High Level Output Voltage vs. Supply Voltage 2.0 Low Level Output Voltage (V) 2.0 Low Level Output Voltage (V) 20 Supply Voltage (V) Temperature (oC) Figure 10A. High Level Output Voltage vs. Temperature 1.5 1.0 0.5 15 M ax. 1.5 M ax. 1.0 0.5 Typ. Typ. 0.0 -50 0.0 -25 0 25 50 75 100 o Temperature ( C) Figure 11A. Low Level Output Voltage vs. Temperature www.irf.com 125 5 10 15 20 Supply Voltage (V) Figure 11B. Low Level Output Voltage vs. Supply Voltage 9 500 500 Offset Supply Leakage Current ( A) Offset Supply Leakage Current ( A) IR2301 (S) 400 300 200 100 M ax. 0 -50 -25 0 25 50 75 100 125 400 300 200 100 M ax. 0 100 200 Temperature (oC) Figure 12A. Offset Supply Leakage Current vs. Temperature 500 600 200 Quiescent VBS Supply Current ( A) Quiescent V BS Supply Current ( A) 400 Figure 12B. Offset Supply Leakage Current vs. Supply Voltage 200 150 100 M ax. Typ. 50 M in. 0 -50 150 100 M ax. 50 Typ. M in. 0 -25 0 25 50 75 100 Temperature (oC) Figure 13A. Quiescent VBS Supply Current vs. Temperature 10 300 Offset Supply Voltage (V) 125 5 10 15 20 VBS Supply Voltage (V) Figure 13B. Quiescent VBS Supply Current vs. Supply Voltage www.irf.com IR2301 (S) 400 Quiescent VCC Supply Current ( A) Quiescent VCC Supply Current ( A) 400 300 M ax. 200 Typ. 100 M in. 0 -50 -25 0 25 50 75 100 Typ. M in. 5 10 15 Temperature (oC) VCC Supply Voltage (V) Figure 14A. Quiescent VCC Supply Current vs. Temperature Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage 20 50 Logic "1" Input Bias Current ( A) Logic "1" Input Bias Current ( A) M ax. 100 125 50 40 30 20 M ax. Typ. 0 -50 200 0 60 10 300 40 30 M ax. 20 10 Typ. 0 -25 0 25 50 75 100 o Temperature ( C) Figure 15A. Logic “1” Input Bias Current vs. Temperature www.irf.com 125 5 10 15 20 Supply Voltage (V) Figure 15B. Logic “1” Input Bias Current vs. Supply Voltage 11 IR2301 (S) 5 Logic "0" Input Bias Current ( A) Logic "0" Input Bias Current ( A) 5 4 3 M ax. 2 1 0 -50 4 3 M ax. 2 1 0 -25 0 25 50 75 100 125 5 10 Figure 16A. Logic “0” Input Bias Current vs. Temperature Figure 16B. Logic “0” Input Bias Currentt vs. Supply Voltage M ax. 5 Typ. 4 M in. 3 -25 0 25 50 75 100 125 Temperature ( C) Figure 17. VCC and VBS Undervoltage Threshold (+) vs. Temperature V CC and VBS Undervoltage Threshold (-) (V) V CC and VBS Undervoltage Threshold (+) (V) 6 o 12 20 Supply Voltage (V) C) 2 -50 15 Temperature (o 6 5 M ax. Typ. 4 M in. 3 2 -50 -25 0 25 50 75 100 125 o Temperature ( C) Figure 18. VCC and VBS Undervoltage Threshold (-) vs. Temperature www.irf.com IR2301 (S) 400 Output Source Current (mA) Output Source Current (mA) 400 300 Typ. 200 M in. 100 300 200 100 Typ. M in. 0 0 -50 -25 0 25 50 75 100 5 125 10 20 Supply Voltage (V) Temperature (oC) Figure 19A. Output Source Current vs. Temperature Figure 19B. Output Source Current vs. Supply Voltage 600 600 500 500 Output Sink Current (mA) Output Sink Current (mA) 15 Typ. 400 300 M in. 200 100 400 300 200 Typ. 100 M in. 0 -50 0 -25 0 25 50 75 100 o Temperature ( C) Figure 20A. Output Sink Current vs. Temperature www.irf.com 125 5 10 15 20 Supply Voltage (V) Figure 20B. Output Sink Current vs. Supply Voltage 13 IR2301 (S) 140 Typ. -2 Junction Temperature (oC) Maximum VS Negative Offset (V) 0 -4 -6 -8 -10 120 100 80 210V 60 140V 70V 40 0V 20 -12 5 10 15 1 20 VBS Floating Supply Voltage (V) 140 140 120 120 100 80 210V 140V 60 70V 0V 40 20 100 210V 80 140V 60 70V 0V 40 20 1 10 100 Frequency (KHz) 1000 Figure 23. R2301 vs Frequency (IRFBC30) Ω, VCC = 15V Rgate = 22Ω 14 1000 Figure 22. R2301 vs Frequency (IRFBC20) Ω, VCC = 15V Rgate = 33Ω Junction Temperature (oC) Junction Temperature (oC) Figure 21. Maximum VS Negative Offset vs. VBS Floating Supply Voltage 10 100 Frequency (KHz) 1 10 100 Frequency (KHz) 1000 Figure 24. R2301 vs Frequency (IRFBC40) Ω, VCC = 15V Rgate = 15Ω www.irf.com IR2301 (S) 140 120 210V 100 140V 70V 80 0V 60 40 Junction Temperature (oC) Junction Temperature (oC) 140 20 100 80 210V 140V 60 70V 0V 40 20 1 10 100 Frequency (KHz) 1000 1 Figure 25. R2301 vs Frequency (IRFPE50) Ω, VCC = 15V Rgate = 10Ω 140 140 120 120 100 210V 80 140V 60 70V 0V 40 20 10 100 Frequency (KHz) 1000 Figure 26. IR2301S vs Frequency (IRFBC20) Ω, VCC = 15V Rgate = 33Ω Junction Temperature (oC) Junction Temperature (oC) 120 210V 100 140V 80 70V 0V 60 40 20 1 10 100 Frequency (KHz) 1000 Figure 27. IR2301S vs Frequency (IRFBC30) Ω, VCC = 15V Rgate = 22Ω www.irf.com 1 10 100 Frequency (KHz) 1000 Figure 28. IR2301 vs Frequency (IRFBC40) Ω, VCC = 15V Rgate = 15Ω 15 IR2301 (S) 210V 140V 140 Junction Temperature (oC) 70V 120 0V 100 80 60 40 20 1 10 100 Frequency (KHz) 1000 Figure 29. IR2301S vs Frequency (IRFPE50) Ω, VCC = 15V Rgate = 10Ω 16 www.irf.com IR2301 (S) Case Outlines 01-6014 01-3003 01 (MS-001AB) 8 Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8 Lead SOIC 5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006]. 6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 1/15/2003 www.irf.com 17