ETC IR2301S

Data Sheet No. PD60201-A
IR2301(S)
HIGH AND LOW SIDE DRIVER
Features
Packages
• Floating channel designed for bootstrap operation
•
•
•
•
•
•
•
Fully operational to +600V
Tolerant to negative transient voltage dV/dt immune
Gate drive supply range from 5 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Matched propagation delay for both channels
Logic and power ground +/- 5V offset.
Lower di/dt gate driver for better noise immunity
Outputs in phase with inputs
8 Lead PDIP
8 Lead SOIC
Description
The IR2301(S) are high voltage, high speed
power MOSFET and IGBT drivers with independent high and low side referenced output
channels. Proprietary HVIC and latch immune
CMOS technologies enable ruggedized monolithic construction. The logic input is compatible
with standard CMOS or LSTTL output, down
to 3.3V logic. The output drivers feature a high
pulse current buffer stage designed for minimum driver cross-conduction. The floating
channel can be used to drive an N-channel
power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
2106/2301//2108//2109/2302/2304 Feature Comparison
Part
2106/2301
21064
2108
21084
2109/2302
21094
2304
Input
logic
Crossconduction
prevention
logic
Dead-Time
HIN/LIN
no
none
HIN/LIN
yes
IN/SD
yes
HIN/LIN
yes
Ground Pins
Programmable 0.54~5 µs
COM
VSS/COM
COM
VSS/COM
COM
VSS/COM
Internal 100ns
COM
Internal 540ns
Programmable 0.54~5 µs
Internal 540ns
Typical Connection
up to 600V
(Refer to Lead
Assignments for
correct pin configuration). This/
T h e s e
diagram(s)
show electrical
connections
only. Please refer to our Application Notes
and DesignTips
for proper circuit
board layout.
VCC
VCC
VB
HIN
HIN
HO
LIN
LIN
VS
COM
LO
TO
LOAD
IR2301
www.irf.com
1
IR2301 (S)
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
VB
High side floating absolute voltage
VS
Min.
Max.
-0.3
625
Units
High side floating supply offset voltage
VB - 25
VB + 0.3
VHO
High side floating output voltage
VS - 0.3
VB + 0.3
VCC
Low side and logic fixed supply voltage
-0.3
25
VLO
Low side output voltage
-0.3
VCC + 0.3
VIN
Logic input voltage
COM - 0.3
VCC + 0.3
dVS/dt
PD
RthJA
Allowable offset supply voltage transient
Package power dissipation @ TA ≤ +25°C
Thermal resistance, junction to ambient
—
50
(8 lead PDIP)
—
1.0
(8 lead SOIC)
—
0.625
(8 lead PDIP)
—
125
(8 lead SOIC)
—
200
TJ
Junction temperature
—
150
TS
Storage temperature
-50
150
TL
Lead temperature (soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
Definition
Min.
Max.
VB
High side floating supply absolute voltage
VS + 5
VS + 20
VS
High side floating supply offset voltage
Note 1
600
VS
VB
5
20
VHO
High side floating output voltage
VCC
Low side and logic fixed supply voltage
VLO
Low side output voltage
VIN
Logic input voltage
TA
Ambient temperature
0
VCC
COM
VCC
-40
125
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2301 (S)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF, TA = 25°C.
Symbol
Definition
Min.
Typ.
Max. Units Test Conditions
ton
toff
Turn-on propagation delay
—
220
300
VS = 0V
Turn-off propagation delay
—
200
280
VS = 0V or 600V
MT
Delay matching, HS & LS turn-on/off
—
0
50
tr
Turn-on rise time
—
130
220
VS = 0V
tf
Turn-off fall time
—
50
80
VS = 0V
nsec
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, and TA = 25°C unless otherwise specified. The VIL, VIH and IIN parameters are referenced to
COM and are applicable to the respective input leads. The VO, IO and Ron parameters are referenced to COM and are
applicable to the respective output leads: HO and LO.
Symbol
Definition
Min. Typ. Max. Units Test Conditions
VIH
Logic “1” input voltage
2.9
—
—
VIL
Logic “0” input voltage
—
—
0.8
VCC = 10V to 20V
VOH
High level output voltage, VBIAS - VO
—
0.8
1.4
VOL
Low level output voltage, VO
—
0.3
0.6
IO = 20 mA
ILK
Offset supply leakage current
—
—
50
VB = VS = 600V
IQBS
Quiescent VBS supply current
20
60
100
IQCC
50
120
190
IIN+
Quiescent VCC supply current
Logic “1” input bias current
—
5
20
VIN = 5V
IIN-
Logic “0” input bias current
—
—
2
VIN = 0V
VCCUV+
VCC and VBS supply undervoltage positive
3.3
4.1
5
VBSUV+
going threshold
VCCUV-
VCC and VBS supply undervoltage negative
3
3.8
4.7
VBSUV-
negative going threshold
VCCUVH
Hysteresis
0.1
0.3
—
IO+
Output high short circuit pulsed current
120
200
—
IO-
Output low short circuit pulsed current
250
350
—
V
VCC = 10V to 20V
IO = 20 mA
VIN = 0V or 5V
µA
VIN = 0V or 5V
V
VBSUVH
www.irf.com
mA
VO = 0V,
PW ≤ 10 µs
VO = 15V,
PW ≤ 10 µs
3
IR2301 (S)
Functional Block Diagrams
VB
UV
DETECT
HO
R
VSS/COM
LEVEL
SHIFT
HIN
HV
LEVEL
SHIFTER
R
PULSE
FILTER
Q
S
VS
PULSE
GENERATOR
VCC
UV
DETECT
VSS/COM
LEVEL
SHIFT
LIN
DELAY
LO
COM
Lead Definitions
Symbol Description
HIN
Logic input for high side gate driver output (HO), in phase
LIN
Logic input for low side gate driver output (LO), in phase
VB
High side floating supply
HO
High side gate drive output
VS
High side floating supply return
VCC
Low side and logic fixed supply
LO
Low side gate drive output
COM
Low side return
4
www.irf.com
IR2301 (S)
Lead Assignments
1
VCC
VB
8
1
VCC
VB
8
2
HIN
HO
7
2
HIN
HO
7
LIN
VS
6
LIN
VS
6
COM
LO
5
COM
LO
5
3
4
3
4
8 Lead PDIP
8 Lead SOIC
IR2301
IR2301S
50%
50%
HIN
LIN
HIN
LIN
ton
toff
tr
90%
HO
LO
HO
LO
Figure 1. Input/Output Timing Diagram
HIN
LIN
10%
tf
90%
10%
Figure 2. Switching Time Waveform Definitions
50%
50%
LO
HO
10%
MT
MT
90%
LO
HO
Figure 3. Delay Matching Waveform Definitions
www.irf.com
5
IR2301 (S)
800
Turn-on Propagation Delay (ns)
Turn-on Propagation Delay (ns)
500
400
300
M ax.
200
Typ.
100
0
-50
700
M ax.
600
500
400
Typ.
300
200
100
-25
0
25
50
75
100
125
5
10
o
Supply Voltage (V)
Figure 4A. Turn-on Propagation Delay
vs. Temperature
Figure 4B. Turn-on Propagation Delay
vs. Supply Voltage
700
Turn-off Propagation Delay (ns)
Turn-off Propagation Delay (ns)
500
400
300
M ax.
200
Typ.
0
-50
600
M ax.
500
400
300
Typ.
200
100
-25
0
25
50
75
100
o
Temperature ( C)
Figure 5A. Turn-off Propagation Delay
vs. Temperature
6
20
Temperature ( C)
600
100
15
125
5
10
15
20
Supply Voltage (V)
Figure 5B. Turn-off Propagation Delay
vs. Supply Voltage
www.irf.com
IR2301 (S)
700
500
Turn-on Rise Time (ns)
Turn-on Rise Time (ns)
600
400
300
200
M ax.
100
400
300
Typ.
200
100
Typ.
0
-50
M ax.
500
0
-25
0
25
50
75
100
125
5
10
o
Temperature ( C)
20
Supply Voltage (V)
Figure 6A. Turn-on Rise Time
vs. Temperature
Figure 6B. Turn-on Rise Time
vs. Supply Voltage
200
200
Turn-off Fall Time (ns)
Turn-off Fall Time (ns)
15
150
100
M ax.
50
150
M ax.
100
Typ.
50
Typ.
0
-50
0
-25
0
25
50
75
o
Temperature ( C)
Figure 7A. Turn-off Fall Time
vs. Temperature
www.irf.com
100
125
5
10
15
20
Supply Voltage (V)
Figure 7B. Turn-off Fall Time
vs. Supply Voltage
7
6
6
5
5
Logic "1" Input Voltage (V)
Logic "1" Input Voltage (V)
IR2301 (S)
4
M ax.
3
2
1
0
-50
4
M ax.
3
2
1
0
-25
0
25
50
75
100
125
5
o
Temperature ( C)
5
5
Logic "0" Input Voltage (V)
Logic "0" Input Voltage (V)
6
4
3
2
M in.
4
3
2
M in.
1
0
-25
0
25
50
75
100
Temperature (oC)
Figure 9A. Logic “0” Input Voltage
vs. Temperature
8
20
Figure 8B. Logic “1” Input Voltage
vs. Supply Voltage
6
0
-50
15
Supply Voltage (V)
Figure 8A. Logic “1” Input Voltage
vs. Temperature
1
10
125
5
10
15
20
Supply Voltage (V)
Figure 9B. Logic “0” Input Voltage
vs. Supply Voltage
www.irf.com
IR2301 (S)
6
High Level Output Voltage (V)
High Level Output Voltage (V)
4
3
2
M ax.
1
5
M ax.
4
3
2
Typ.
1
Typ.
0
0
-50
-25
0
25
50
75
100
5
125
10
Figure 10B. High Level Output Voltage
vs. Supply Voltage
2.0
Low Level Output Voltage (V)
2.0
Low Level Output Voltage (V)
20
Supply Voltage (V)
Temperature (oC)
Figure 10A. High Level Output Voltage
vs. Temperature
1.5
1.0
0.5
15
M ax.
1.5
M ax.
1.0
0.5
Typ.
Typ.
0.0
-50
0.0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 11A. Low Level Output Voltage
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 11B. Low Level Output Voltage
vs. Supply Voltage
9
500
500
Offset Supply Leakage Current ( A)
Offset Supply Leakage Current ( A)
IR2301 (S)
400
300
200
100
M ax.
0
-50
-25
0
25
50
75
100
125
400
300
200
100
M ax.
0
100
200
Temperature (oC)
Figure 12A. Offset Supply Leakage Current
vs. Temperature
500
600
200
Quiescent VBS Supply Current ( A)
Quiescent V BS Supply Current ( A)
400
Figure 12B. Offset Supply Leakage Current
vs. Supply Voltage
200
150
100
M ax.
Typ.
50
M in.
0
-50
150
100
M ax.
50
Typ.
M in.
0
-25
0
25
50
75
100
Temperature (oC)
Figure 13A. Quiescent VBS Supply Current
vs. Temperature
10
300
Offset Supply Voltage (V)
125
5
10
15
20
VBS Supply Voltage (V)
Figure 13B. Quiescent VBS Supply Current
vs. Supply Voltage
www.irf.com
IR2301 (S)
400
Quiescent VCC Supply Current ( A)
Quiescent VCC Supply Current ( A)
400
300
M ax.
200
Typ.
100
M in.
0
-50
-25
0
25
50
75
100
Typ.
M in.
5
10
15
Temperature (oC)
VCC Supply Voltage (V)
Figure 14A. Quiescent VCC Supply Current
vs. Temperature
Figure 14B. Quiescent VCC Supply Current
vs. VCC Supply Voltage
20
50
Logic "1" Input Bias Current ( A)
Logic "1" Input Bias Current ( A)
M ax.
100
125
50
40
30
20
M ax.
Typ.
0
-50
200
0
60
10
300
40
30
M ax.
20
10
Typ.
0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 15A. Logic “1” Input Bias Current
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 15B. Logic “1” Input Bias Current
vs. Supply Voltage
11
IR2301 (S)
5
Logic "0" Input Bias Current ( A)
Logic "0" Input Bias Current ( A)
5
4
3
M ax.
2
1
0
-50
4
3
M ax.
2
1
0
-25
0
25
50
75
100
125
5
10
Figure 16A. Logic “0” Input Bias Current
vs. Temperature
Figure 16B. Logic “0” Input Bias Currentt
vs. Supply Voltage
M ax.
5
Typ.
4
M in.
3
-25
0
25
50
75
100
125
Temperature ( C)
Figure 17. VCC and VBS Undervoltage Threshold (+)
vs. Temperature
V CC and VBS Undervoltage Threshold (-) (V)
V CC and VBS Undervoltage Threshold (+) (V)
6
o
12
20
Supply Voltage (V)
C)
2
-50
15
Temperature (o
6
5
M ax.
Typ.
4
M in.
3
2
-50
-25
0
25
50
75
100
125
o
Temperature ( C)
Figure 18. VCC and VBS Undervoltage Threshold (-)
vs. Temperature
www.irf.com
IR2301 (S)
400
Output Source Current (mA)
Output Source Current (mA)
400
300
Typ.
200
M in.
100
300
200
100
Typ.
M in.
0
0
-50
-25
0
25
50
75
100
5
125
10
20
Supply Voltage (V)
Temperature (oC)
Figure 19A. Output Source Current
vs. Temperature
Figure 19B. Output Source Current
vs. Supply Voltage
600
600
500
500
Output Sink Current (mA)
Output Sink Current (mA)
15
Typ.
400
300
M in.
200
100
400
300
200
Typ.
100
M in.
0
-50
0
-25
0
25
50
75
100
o
Temperature ( C)
Figure 20A. Output Sink Current
vs. Temperature
www.irf.com
125
5
10
15
20
Supply Voltage (V)
Figure 20B. Output Sink Current
vs. Supply Voltage
13
IR2301 (S)
140
Typ.
-2
Junction Temperature (oC)
Maximum VS Negative Offset (V)
0
-4
-6
-8
-10
120
100
80
210V
60
140V
70V
40
0V
20
-12
5
10
15
1
20
VBS Floating Supply Voltage (V)
140
140
120
120
100
80
210V
140V
60
70V
0V
40
20
100
210V
80
140V
60
70V
0V
40
20
1
10
100
Frequency (KHz)
1000
Figure 23. R2301 vs Frequency (IRFBC30)
Ω, VCC = 15V
Rgate = 22Ω
14
1000
Figure 22. R2301 vs Frequency (IRFBC20)
Ω, VCC = 15V
Rgate = 33Ω
Junction Temperature (oC)
Junction Temperature (oC)
Figure 21. Maximum VS Negative Offset
vs. VBS Floating Supply Voltage
10
100
Frequency (KHz)
1
10
100
Frequency (KHz)
1000
Figure 24. R2301 vs Frequency (IRFBC40)
Ω, VCC = 15V
Rgate = 15Ω
www.irf.com
IR2301 (S)
140
120
210V
100
140V
70V
80
0V
60
40
Junction Temperature (oC)
Junction Temperature (oC)
140
20
100
80
210V
140V
60
70V
0V
40
20
1
10
100
Frequency (KHz)
1000
1
Figure 25. R2301 vs Frequency (IRFPE50)
Ω, VCC = 15V
Rgate = 10Ω
140
140
120
120
100
210V
80
140V
60
70V
0V
40
20
10
100
Frequency (KHz)
1000
Figure 26. IR2301S vs Frequency (IRFBC20)
Ω, VCC = 15V
Rgate = 33Ω
Junction Temperature (oC)
Junction Temperature (oC)
120
210V
100
140V
80
70V
0V
60
40
20
1
10
100
Frequency (KHz)
1000
Figure 27. IR2301S vs Frequency (IRFBC30)
Ω, VCC = 15V
Rgate = 22Ω
www.irf.com
1
10
100
Frequency (KHz)
1000
Figure 28. IR2301 vs Frequency (IRFBC40)
Ω, VCC = 15V
Rgate = 15Ω
15
IR2301 (S)
210V 140V
140
Junction Temperature (oC)
70V
120
0V
100
80
60
40
20
1
10
100
Frequency (KHz)
1000
Figure 29. IR2301S vs Frequency (IRFPE50)
Ω, VCC = 15V
Rgate = 10Ω
16
www.irf.com
IR2301 (S)
Case Outlines
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
D
DIM
B
5
A
FOOTPRINT
8
6
7
6
5
H
E
1
6X
2
3
0.25 [.010]
4
e
A
6.46 [.255]
3X 1.27 [.050]
e1
0.25 [.010]
A1
MIN
.0532
.0688
1.35
1.75
A1 .0040
.0098
0.10
0.25
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
.1574
3.80
4.00
E
.1497
e
.050 BASIC
e1
MAX
1.27 BASIC
.025 BASIC
0.635 BASIC
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
A
C
8X b
8X 1.78 [.070]
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
y
0.10 [.004]
8X L
8X c
7
C A B
NOTES:
1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA.
8 Lead SOIC
5 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXC EED 0.15 [.006].
6 DIMENSION DOES NOT INC LUDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT TO EXC EED 0.25 [.010].
7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO
A SUBSTRATE.
01-6027
01-0021 11 (MS-012AA)
1/15/2003
www.irf.com
17