INTEGRATED CIRCUITS DATA SHEET SAA7111A Enhanced Video Input Processor (EVIP) Product specification Supersedes data of 1997 May 26 File under Integrated Circuits, IC22 1998 May 15 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) CONTENTS 1 FEATURES 2 APPLICATIONS 3 GENERAL DESCRIPTION 4 QUICK REFERENCE DATA 5 ORDERING INFORMATION 6 BLOCK DIAGRAM 7 PINNING 8 FUNCTIONAL DESCRIPTION 8.1 8.2 8.2.1 8.2.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 8.10 8.11 8.12 8.13 8.13.1 Analog input processing Analog control circuits Clamping Gain control Chrominance processing Luminance processing RGB matrix VBI-data bypass VPO-bus (digital outputs) Reference signals HREF, VREF and CREF Synchronization Clock generation circuit Power-on reset and CE input RTCO output The Line-21 text slicer Suggestions for I2C-bus interface of the display software reading line-21 data 9 BOUNDARY-SCAN TEST 9.1 9.2 Initialization of boundary-scan circuit Device identification codes 10 GAIN CHARTS 11 LIMITING VALUES 12 CHARACTERISTICS 13 TIMING DIAGRAMS 14 CLOCK SYSTEM 14.1 14.2 Clock generation circuit Power-on control 15 OUTPUT FORMATS 16 APPLICATION INFORMATION 16.1 Layout hints 17 I2C-BUS DESCRIPTION 17.1 17.2 I2C-bus format I2C-bus detail 1998 May 15 2 SAA7111A 17.2.1 17.2.2 17.2.3 17.2.4 17.2.5 17.2.6 17.2.7 17.2.8 17.2.9 17.2.10 17.2.11 17.2.12 17.2.13 17.2.14 17.2.15 17.2.16 17.2.17 17.2.18 17.2.19 17.2.20 17.2.21 17.2.22 17.2.23 17.2.24 17.2.25 Subaddress 00 Subaddress 02 Subaddress 03 Subaddress 04 Subaddress 05 Subaddress 06 Subaddress 07 Subaddress 08 Subaddress 09 Subaddress 0A Subaddress 0B Subaddress 0C Subaddress 0D Subaddress 0E Subaddress 10 Subaddress 11 Subaddress 12 Subaddress 13 Subaddress 15 Subaddress 16 Subaddress 17 Subaddress 1A (read-only register) Subaddress 1B (read-only register) Subaddress 1C (read-only register) Subaddress 1F (read-only register) 18 FILTER CURVES 18.1 18.2 18.3 18.4 Anti-alias filter curve TUF-block filter curve Luminance filter curves Chrominance filter curves 19 I2C-BUS START SET-UP 20 PACKAGE OUTLINES 21 SOLDERING 21.1 21.2 21.3 21.4 Introduction Reflow soldering Wave soldering Repairing soldered joints 22 DEFINITIONS 23 LIFE SUPPORT APPLICATIONS 24 PURCHASE OF PHILIPS I2C COMPONENTS Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 1 SAA7111A FEATURES • Four analog inputs, internal analog source selectors, e.g. 4 × CVBS or 2 × Y/C or (1 × Y/C and 2 × CVBS) • Two analog preprocessing channels • Fully programmable static gain for the main channels or automatic gain control for the selected CVBS or Y/C channel • Odd/even field identification by a non interlace CVBS input signal • Switchable white peak control • Two built-in analog anti-aliasing filters • Fix level for RGB output format during horizontal blanking • Two 8-bit video CMOS analog-to-digital converters • 720 active samples per line on the YUV bus • On-chip clock generator • One user programmable general purpose switch on an output pin • Line-locked system clock frequencies • Built-in line-21 text slicer • Digital PLL for horizontal-sync processing and clock generation • Requires only one crystal (24.576 MHz) for all standards • A 27 MHz Vertical Blanking Interval (VBI) data bypass programmable by I2C-bus for INTERCAST applications • Horizontal and vertical sync detection • Power-on control • Automatic detection of 50 and 60 Hz field frequency, and automatic switching between PAL and NTSC standards • Two via I2C-bus switchable outputs for the digitized CVBS or Y/C input signals AD1 (7 to 0) and AD2 (7 to 0) • Chip enable function (reset for the clock generator and power save mode up from chip version 3) • Luminance and chrominance signal processing for PAL BGHI, PAL N, PAL M, NTSC M, NTSC N, NTSC 4.43, NTSC-Japan and SECAM • Compatible with memory-based features (line-locked clock) • User programmable luminance peaking or aperture correction • Boundary scan test circuit complies with the ‘IEEE Std. 1149.1 − 1990’ (ID-Code = 0 F111 02 B) • Cross-colour reduction for NTSC by chrominance comb filtering • I2C-bus controlled (full read-back ability by an external controller) • PAL delay line for correcting PAL phase errors • Real time status information output (RTCO) • Low power (<0.5 W), low voltage (3.3 V), small package (LQFP64) • Brightness Contrast Saturation (BCS) control on-chip • 5 V tolerant digital I/O ports. • The YUV (CCIR-601) bus supports a data rate of: – 864 × fH = 13.5 MHz for 625 line sources 2 – 858 × fH = 13.5 MHz for 525 line sources. • Desktop/Notebook (PCMCIA) video APPLICATIONS • Multimedia • Data output streams for 16, 12 or 8-bit width with the following formats: • Digital television – YUV 4 : 1 : 1 (12-bit) • Image processing – YUV 4 : 2 : 2 (16-bit) • Video phone – YUV 4 : 2 : 2 (CCIR-656) (8-bit) • Intercast. – RGB (5, 6, and 5) (16-bit) with dither – RGB (8, 8, and 8) (24-bit) with special application. 1998 May 15 3 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 3 The pure 3.3 V CMOS circuit SAA7111A, analog front-end and digital video decoder, is a highly integrated circuit for desktop video applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the colour of PAL, SECAM and NTSC signals into CCIR-601 compatible colour component values. The SAA7111A accepts as analog inputs CVBS or S-video (Y/C) from TV or VTR sources. The circuit is I2C-bus controlled. The SAA7111A then supports several text features as Line 21 data slicing and a high-speed VBI data bypass for Intercast. GENERAL DESCRIPTION The Enhanced Video Input Processor (EVIP) is a combination of a two-channel analog preprocessing circuit including source selection, anti-aliasing filter and ADC, an automatic clamp and gain control, a Clock Generation Circuit (CGC), a digital multi-standard decoder (PAL BGHI, PAL M, PAL N, NTSC M, NTSC-Japan NTSC N and SECAM), a brightness/contrast/saturation control circuit, a colour space matrix (see Fig.1) and a 27 MHz VBI-data bypass. 4 SAA7111A QUICK REFERENCE DATA SYMBOL PARAMETER MIN. TYP. MAX. UNIT VDDD digital supply voltage 3.0 3.3 3.6 V VDDA analog supply voltage 3.1 3.3 3.5 V Tamb operating ambient temperature 0 25 70 °C PA+D analog and digital power − 0.5 − W 5 ORDERING INFORMATION TYPE NUMBER PACKAGE NAME DESCRIPTION VERSION SAA7111AHZ LQFP64 plastic low profile quad flat package; 64 leads; body 10 × 10 × 1.4 mm SOT314-2 SAA7111AH QFP64 plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 × 14 × 2.7 mm SOT393-1 1998 May 15 4 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 6 SAA7111A BLOCK DIAGRAM handbook, full pagewidth VBI DATA BYPASS UPSAMPLING FILTER BYPASS AOUT 14 AI11 AI12 12 AI21 8 AI22 6 ANALOG PROCESSING AND ANALOG-TODIGITAL CONVERSION 10 AD2 n.c. VSSS CHROMINANCE CIRCUIT AND BRIGHTNESS C/CVBS CONTRAST SATURATION CONTROL UV 52 Y 31 AD1 FEI HREF 13 ANALOG PROCESSING CONTROL Y 10 I2C-BUS CONTROL 53 I2C-BUS INTERFACE LUMINANCE CIRCUIT 61 62 Y/CVBS 63 Y V SSA1-2 V DDA1-2 VPO (0 : 15) 64 CON n.c. 34 to 39 42 to 51 YUV-to-RGB CONVERSION AND OUTPUT FORMATTER GPSW IICSA SDA SCL 9,5 SAA7111A 11,7 CLOCKS TDI TCK 3 TMS 4 58 TRST TDO 54 TEST CONTROL BLOCK FOR BOUNDARY SCAN TEST AND SCAN TEST 59 2 57,41,33,25,18 56,40,32,26,19 SYNCHRONIZATION CIRCUIT LFCO 30 27 17 29 28 60 55 CLOCK GENERATION CIRCUIT 21 POWER-ON CONTROL 20 23 15 16 22 24 MGG061 V DDD1-5 VSSD1-5 VS HS VREF RTS0 RTS1 RTCO Fig.1 Block diagram. 1998 May 15 5 V DDA0 V SSA0 CE XTAL XTALI LLC2 CREF LLC RES Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 7 SAA7111A PINNING PIN SYMBOL I/O/P DESCRIPTION (L)QFP64 n.c. 1 − Do not connect. TDO 2 O Test data output for boundary scan test; note 1. TDI 3 I Test data input for boundary scan test; note 1. TMS 4 I Test mode select input for boundary scan test or scan test; note 1. VSSA2 5 P Ground for analog supply voltage channel 2. AI22 6 I Analog input 22. VDDA2 7 P Positive supply voltage for analog channel 2 (+3.3 V). AI21 8 I Analog input 21. VSSA1 9 P Ground for analog supply voltage channel 1. AI12 10 I Analog input 12. VDDA1 11 P Positive supply voltage for analog channel 1 (+3.3 V). AI11 12 I Analog input 11. VSSS 13 P Substrate ground connection. AOUT 14 O Analog test output; for testing the analog input channels. VDDA0 15 P Positive supply voltage for internal Clock Generator Circuit (CGC) (+3.3 V). VSSA0 16 P Ground for internal CGC. VREF 17 O Vertical reference output signal (I2C-bit COMPO = 0) or inverse composite blanking signal (I2C-bit COMPO = 1) (enabled via I2C-bus bit OEHV). VDDD5 18 P Digital supply voltage 5 (+3.3 V). VSSD5 19 P Ground for digital supply voltage 5. LLC 20 O Line-locked system clock output (27 MHz). LLC2 21 O Line-locked clock 1⁄2 output (13.5 MHz). CREF 22 O Clock reference output: this is a clock qualifier signal distributed by the internal CGC for a data rate of LLC2. Using CREF all interfaces on the VPO bus are able to generate a bus timing with identical phase. If CCIR 656 format is selected (OFTS0 = 1 and OFTS1 = 1) an inverse composite blanking signal (pixel qualifier) is provided on this pin. RES 23 O Reset output (active LOW); sets the device into a defined state. All data outputs are in high impedance state. The I2C-bus is reset (waiting for start condition). CE 24 I Chip enable; connection to ground forces a reset, up from version 3 power save function additionally available. VDDD4 25 P Digital supply voltage input 4 (+3.3 V). VSSD4 26 P Ground for digital supply voltage input 4. HS 27 O Horizontal sync output signal (programmable); the positions of the positive and negative slopes are programmable in 8 LLC increments over a complete line (equals 64 µs) via I2C-bus bytes HSB and HSS. Fine position adjustment in 2 LLC increments can be performed via I2C-bus bits HDEL1 and HDEL0. RTS1 28 O Two functions output; controlled by I2C-bus bit RTSE1. RTSE1 = 0: PAL line identifier (LOW = PAL line); indicates the inverted and non-inverted R − Y component for PAL signals. RTSE1 = 1: H-PLL locked indicator; a high state indicates that the internal horizontal PLL has locked. 1998 May 15 6 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A PIN SYMBOL I/O/P DESCRIPTION (L)QFP64 RTS0 29 O Two functions output; controlled by I2C-bus bit RTSE0. RTSE0 = 0: odd/even field identification (HIGH = odd field). RTSE0 = 1: vertical locked indicator; a HIGH state indicates that the internal Vertical Noise Limiter (VNL) has locked. VS 30 O Vertical sync signal (enabled via I2C-bus bit OEHV); this signal indicates the vertical sync with respect to the YUV output. The HIGH period of this signal is approximately six lines if the VNL function is active. The positive slope contains the phase information for a deflection controller. HREF 31 O Horizontal reference output signal (enabled via I2C-bus bit OEHV); this signal is used to indicate data on the digital YUV bus. The positive slope marks the beginning of a new active line. The HIGH period of HREF is 720 Y samples long. HREF can be used to synchronize data multiplexer/demultiplexer. HREF is also present during the vertical blanking interval. VSSD3 32 P Ground for digital supply voltage input 3. VDDD3 VPO (15 to 10) VSSD2 33 P Digital supply voltage 3 (+3.3 V). 34 to 39 O Digital VPO-bus (Video Port Out) signal; higher bits of the 16-bit VPO-bus or the 16-bit RGB-bus output signal. The output data rate, the format and multiplexing scheme of the VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the six MSBs of the digitized input signal are connected to these outputs, configured by the I2C-bus ‘MODE’ bits (see Figs 33 to 40): LUMA → VPO15 to VPO8, CHROMA → VPO7 to VPO0. 40 P Ground for digital supply voltage input 2. VDDD2 41 P Digital supply voltage 2 (+3.3 V). VPO (9 to 0) 42 to 51 O Digital VPO-bus output signal; lower bits of the 16-bit YUV-bus or the 16-bit RGB-bus output signal. The output data rate, the format and multiplexing schema of the VPO-bus are controlled via I2C-bus bits OFTS0 and OFTS1. If I2C-bus bit VIPB = 1 the digitized input signal are connected to these outputs, configured by the I2C-bus ‘MODE’ bits (see Figs 33 to 40): LUMA → VPO15 to VPO8, CHROMA → VPO7 to VPO0. FEI 52 I Fast enable input signal (active LOW); this signal is used to control fast switching on the digital YUV-bus. A HIGH at this input forces the IC to set its Y and UV outputs to the high impedance state. GPSW 53 O General purpose switch output; the state of this signal is set via I2C-bus control and the levels are TTL compatible. XTAL 54 O Second terminal of crystal oscillator; not connected if external clock signal is used. XTALI 55 I Input terminal for 24.576 MHz crystal oscillator or connection of external oscillator with CMOS compatible square wave clock signal. VSSD1 56 P Ground for digital supply voltage input 1. VDDD1 57 P Digital supply voltage input 1 (+3.3 V). TRST 58 I Test reset input not (active LOW), for boundary scan test; notes 1, 2 and 3. TCK 59 I Test clock for boundary scan test; note 1. RTCO 60 O Real time control output: contains information about actual system clock frequency, subcarrier frequency and phase and PAL sequence. 1998 May 15 7 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A PIN SYMBOL I/O/P DESCRIPTION (L)QFP64 I2C-bus slave address select; 0 = 48H for write, 49H for read 1 = 4AH for write, 4BH for read. IICSA 61 I SDA 62 I/O Serial data input/output (I2C-bus). SCL 63 I/O Serial clock input/output (I2C-bus). n.c. 64 − Not connect. Notes 1. In accordance with the ‘IEEE1149.1’ standard the pads TCK, TDI, TMS and TRST are input pads with an internal pull-up transistor and TDO a 3-state output pad. 2. This pin provides easy initialization of BST circuit. TRST can be used to force the TAP (Test Access Port) controller to the Test-Logic-Reset state (normal operation) at once. 3. For board design without boundary scan implementation (pin compatibility with the SAA7110) connect the TRST pin to ground. 1998 May 15 8 Philips Semiconductors Product specification n.c. SCL SDA IICSA RTCO TCK TRST VDDD1 VSSD1 XTALI XTAL GPSW FEI VPO0 VPO1 VPO2 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 SAA7111A 64 Enhanced Video Input Processor (EVIP) handbook, full pagewidth n.c. 1 48 VPO3 TDO 2 47 VPO4 TDI 3 46 VPO5 TMS 4 45 VPO6 VSSA2 5 44 VPO7 AI22 6 43 VPO8 VDDA2 7 42 VPO9 AI21 8 VSSA1 41 VDDD2 SAA7111A Fig.2 Pin configuration (LQFP64/QFP64). 1998 May 15 9 VSSD3 32 HREF 31 33 VDDD3 VS 30 34 VPO15 VSSA0 16 RTS0 29 VDDA0 15 RTS1 28 35 VPO14 HS 27 AOUT 14 VSSD4 26 36 VPO13 VDDD4 25 VSSS 13 CE 24 37 VPO12 RES 23 AI11 12 CREF 22 38 VPO11 LLC2 21 VDDA1 11 LLC 20 39 VPO10 VSSD5 19 AI12 10 VDDD5 18 40 VSSD2 VREF 17 9 MGG060 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 8 The AGC (automatic gain control for luminance) is used to amplify a CVBS or Y signal to the required signal amplitude, matched to the ADCs input voltage range. The AGC active time is the sync bottom of the video signal. FUNCTIONAL DESCRIPTION 8.1 Analog input processing The SAA7111A offers four analog signal inputs, two analog main channels with source switch, clamp circuit, analog amplifier, anti-alias filter and video CMOS ADC (see Fig.5). 8.2 Analog control circuits handbook, halfpage The anti-alias filters are adapted to the line-locked clock frequency via a filter control circuit. During the vertical blanking time, gain and clamping control are frozen. 8.2.1 0 dB (1 V(p-p) 27/47 Ω) −7.5 dB The clamp control circuit controls the correct clamping of the analog input signals. The coupling capacitor is also used to store and filter the clamping voltage. An internal digital clamp comparator generates the information with respect to clamp-up or clamp-down. The clamping levels for the two ADC channels are fixed for luminance (60) and chrominance (128). Clamping time in normal use is set with the HCL pulse at the back porch of the video signal. 8.3 CLAMP HCL MGL065 minimum Chrominance processing • AGC (Automatic Gain Control for chrominance PAL and NTSC) Analog line with clamp (HCL) and gain range (HSY). • Chrominance amplitude matching (different gain factors for R − Y and B − Y to achieve CCIR-601 levels Cr and Cb for all standards) GAIN CONTROL • Chrominance saturation control Signal (white) peak control limits the gain at signal overshoots. The flow charts (see Figs 13 and 14) show more details of the AGC. The influence of supply voltage variation within the specified range is automatically eliminated by clamp and automatic gain control. • Luminance contrast and brightness • Limiting YUV to the values 1 (min.) and 254 (max.) to fulfil CCIR-601 requirements. The gain control circuit receives (via the I2C-bus) the static gain levels for the two analog amplifiers or controls one of these amplifiers automatically via a built-in automatic gain control (AGC) as part of the Analog Input Control (AICO). 1998 May 15 0 dB The colour difference signals are fed to the Brightness/Contrast/Saturation block (BCS), which includes the following five functions: 1 8.2.2 range tbf The 8-bit chrominance signal is fed to the multiplication inputs of a quadrature demodulator, where two subcarrier signals from the local oscillator DTO1 are applied (0 and 90° phase relationship to the demodulator axis). The frequency is dependent on the present colour standard. The output signals of the multipliers are low-pass filtered (four programmable characteristics) to achieve the desired bandwidth for the colour difference signals (PAL and NTSC) or the 0 and 90° FM-signals (SECAM). 60 HSY maximum Fig.4 Automatic gain range. TV line analog line blanking GAIN controlled ADC input level MGG063 255 Fig.3 analog input level +4.5 dB CLAMPING handbook, halfpage SAA7111A 10 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) The SECAM-processing contains the following blocks: SAA7111A The high frequency components of the luminance signal can be peaked (control for sharpness improvement via I2C-bus) in two band-pass filters with selectable transfer characteristic. This signal is then added to the original (unpeaked) signal. A switchable amplifier achieves common DC amplification, because the DC gains are different in both chrominance trap modes. The improved luminance signal is fed to the BCS control located in the chrominance processing block (see Fig.7). • Baseband ‘bell’ filters to reconstruct the amplitude and phase equalized 0 and 90° FM-signals • Phase demodulator and differentiator (FM-demodulation) • De-emphasis filter to compensate the pre-emphasised input signal, including frequency offset compensation (DB or DR white carrier values are subtracted from the signal, controlled by the SECAM-switch signal). 8.5 The burst processing block provides the feedback loop of the chroma PLL and contains; RGB matrix Y, Cr and Cb data are converted after interpolation into RGB data in accordance with CCIR-601 recommendations. The realized matrix equations consider the digital quantization: • Burst gate accumulator • Colour identification and killer • Comparison nominal/actual burst amplitude (PAL/NTSC standards only) R = Y + 1.371 Cr G = Y − 0.336 Cb − 0.698 Cr • Loop filter chrominance gain control (PAL/NTSC standards only) B = Y + 1.732 Cb. • Loop filter chrominance PLL (only active for PAL/NTSC standards) After dithering (noise shaping) the RGB data is fed to the output interface within the VPO-bus output formatter. • PAL/SECAM sequence detection, H/2-switch generation 8.6 • Increment generation for DTO1 with divider to generate stable subcarrier for non-standard signals. For a 27 MHz VBI-data bypass the offset binary CVBS signal is upsampled behind the ADCs. Upsampling of the CVBS signal from 13.5 to 27 MHz is possible, because the ADCs deliver high performance at 13.5 MHz sample clock. Suppressing of the back folded CVBS frequency components after upsampling is achieved by an interpolation filter (see Fig.42). The chrominance comb filter block eliminates crosstalk between the chrominance channels in accordance with the PAL standard requirements. For NTSC colour standards the chrominance comb filter can be used to eliminate crosstalk from luminance to chrominance (cross-colour) for vertical structures. The comb filter can be switched off if desired. The embedded line delay is also used for SECAM recombination (cross-over switches). The TUF block on the digital top level performs the upsampling and interpolation for the bypassed CVBS signal (see Fig.6). For bypass details see Figs 8 to 10. The resulting signals are fed to the variable Y-delay compensation, RGB matrix, dithering circuit and output interface, which contains the VPO output formatter and the output control logic (see Fig.6). 8.4 8.7 VPO-bus (digital outputs) The 16-bit VPO-bus transfers digital data from the output interfaces to a feature box or a field memory, a digital colour space converter (SAA7192 DCSC), a video enhancement and digital-to-analog processor (SAA7165 VEDA2) or a colour graphics board (Targa-format) as a graphical user interface. Luminance processing The 8-bit luminance signal, a digital CVBS format or a luminance format (S-VHS, HI8), is fed through a switchable prefilter. High frequency components are emphasized to compensate for loss. The following chrominance trap filter (f0 = 4.43 or 3.58 MHz centre frequency selectable) eliminates most of the colour carrier signal, therefore, it must be bypassed for S-video (S-VHS and HI8) signals. 1998 May 15 VBI-data bypass 11 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) • VREF: The VREF output delivers a vertical reference signal or an inverse composite blank signal controlled via the I2C-bus [subaddress 11, inverse composite blank (COMPO)]. Furthermore four different modes of vertical reference signals are selectable via the I2C-bus [subaddress 13, vertical reference output control (VCTR1 and VCTR0)]. The description of VREF timing and position is illustrated in Figs 15, 16, 24 and 25. The output data formats are controlled via the I2C-bus bits OFTS0, OFTS1 and RGB888. Timing for the data stream formats, YUV (4 : 1 : 1) (12-bit), YUV (4 : 2 : 2) (16-bit), RGB (5, 6 and 5) (16-bit) and RGB (8, 8 and 8) (24-bit) with an LLC2 data rate, is achieved by marking each second positive rising edge of the clock LLC in conjunction with CREF (clock reference) (except RGB (8, 8 and 8), see special application in Fig.32). The higher output signals VPO15 to VPO8 in the YUV format perform the digital luminance signal. The lower output signals VPO7 to VPO0 in the YUV format are the bits of the multiplexed colour difference signals (B − Y) and (R − Y). The arrangement of the RGB (5, 6 and 5) and RGB (8, 8 and 8) data stream bits on the VPO-bus is given in Table 6. • CREF: The CREF output delivers a clock/pixel qualifier signal for external interfaces to synchronize to the VPO-bus data stream. Four different modes for the clock qualifier signal are selectable via the I2C-bus [subaddress 13, clock reference output control (CCTR1 and CCTR0)]. The description of CREF timing and position is illustrated in Figs 16, 18, 20 and 21. The data stream format YUV 4 : 2 : 2 (the 8 higher output signals VPO15 to VPO8) in LLC data rate fulfils the CCIR-656 standard with its own timing reference code at the start and end of each video data block. 8.9 Fast enable is achieved by setting input FEI to LOW. The signal is used to control fast switching on the digital VPO-bus. HIGH on this pin forces the VPO outputs to a high-impedance state (see Figs 18 and 19). The I2C-bus bit OEYC has to be set HIGH to use this function. The digitized PAL, SECAM or NTSC signals AD1 (7 to 0) and AD2 (7 to 0) are connected directly to the VPO-bus via I2C-bus bit VIPB = 1 and MODE = 4, 5, 6 or 7. AD1 (7 to 0) → VPO (15 to 8) and AD2 (7 to 0) → VPO (7 to 0). The selection of the analog input channels is controlled via I2C-bus subaddress 02 MODE select. 8.10 Clock generation circuit The internal CGC generates all clock signals required for the video input processor. The internal signal LFCO is a digital-to-analog converted signal provided by the horizontal PLL. It is the multiple of the line frequency 429 6.75MHz = ---------- × f H 432 The upsampled 8-bit offset binary CVBS signal (VBI-data bypass) is multiplexed under control of the I2C-bus to the digital VPO-bus (see Fig.8). Reference signals HREF, VREF and CREF • HREF: The positive slope of the HREF output signal indicates the beginning of a new active video line. The high period is 720 luminance samples long and is also present during the vertical blanking. The description of timing and position from HREF is illustrated in Figs 15, 16, 21 and 23. 1998 May 15 Synchronization The prefiltered luminance signal is fed to the synchronization stage. Its bandwidth is reduced to 1 MHz in a low-pass filter. The sync pulses are sliced and fed to the phase detectors where they are compared with the sub-divided clock frequency. The resulting output signal is applied to the loop filter to accumulate all phase deviations. Internal signals (e. g. HCL and HSY) are generated in accordance with analog front-end requirements. The output signals HS, VS, and PLIN are locked to the timing reference, guaranteed between the input signal and the HREF signal, as further improvements to the circuit may change the total processing delay. It is therefore not recommended to use them for applications which require absolute timing accuracy on the input signals. The loop filter signal drives an oscillator to generate the line frequency control signal LFCO (see Fig.7). A pixel in the format tables is the time required to transfer a full set of samples. If 16-bit 4 : 2 : 2 format is selected two luminance samples are transmitted in comparison to one (B − Y) and one (R − Y) sample within a pixel. The time frames are controlled by the HREF signal. 8.8 SAA7111A Internally the LFCO signal is multiplied by a factor of 2 or 4 in the PLL circuit (including phase detector, loop filtering, VCO and frequency divider) to obtain the LLC and LLC2 output clock signals. The rectangular output clocks have a 50% duty factor (see Fig.26). 12 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 8.11 Power-on reset and CE input 8.13.1 A missing clock, insufficient digital or analog VDDA0 supply voltages (below 2.7 V) will initiate the reset sequence; all outputs are forced to 3-state. The indicator output RES is LOW for approximately 128LLC after the internal reset and can be applied to reset other circuits of the digital TV system. 1. Synchronous reading once per frame (or once per field); It can use either the rising edge (Line-21 Field 1) or both edges (Line-21 Field 1 or 2) of the ODD signal (pin RTSO) to initiate an I2C-bus read transfer of the three registers 1A, 1B and 1C. 2. Asynchronous reading; It can poll either the F1RDY bit (Line-21 Field 1) or both F1RDY/F2RDY bits (Line-21 Field 1 or 2). After valid data has been read the corresponding F*RDY bit is set to LOW until new data has arrived. The polling frequency has to be slightly higher than the frame or field frequency, respectively. RTCO output The real time control and status output signal contains serial information about the actual system clock (increment of the HPLL), subcarrier frequency [increment and phase (via reset) of the FSC-PLL] and PAL sequence bit. The signal can be used for various applications in external circuits, e.g. in a digital encoder to achieve clean encoding (see Fig.20). 8.13 The Line-21 text slicer The text slicer block detects and acquires Line-21 Closed Captioning data from a 525-line CVBS signal. Extended data services on Line-21 Field 2 are also supported. If valid data is detected the two data bytes are stored in two I2C-bus registers. A parity check is also performed and the result is stored in the MSB of the corresponding byte. A third I2C-bus register is provided for data valid and data ready flags. The two bits F1VAL and F2VAL indicate that the input signal carries valid Closed Captioning data in the corresponding fields. The data ready bits F1RDY and F2RDY have to be evaluated if asynchronous I2C-bus reading is used. 1998 May 15 SUGGESTIONS FOR I2C-BUS INTERFACE OF THE DISPLAY SOFTWARE READING LINE-21 DATA There are two methods by which the software can acquire the data: It is possible to force a reset by pulling the chip enable (CE) to ground. After the rising edge of CE and sufficient power supply voltage, the outputs LLC, LLC2, CREF, RTCO, RTS0, RTS1, GPSW and SDA return from 3-state to active, while HREF, VREF, HS and VS remain in 3-state and have to be activated via I2C-bus programming (see Table 5). 8.12 SAA7111A 13 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... AI22 AI21 VDDA1 VDDA2 AI12 AI11 5 AOSL (1 : 0) 6 8 SOURCE SWITCH CLAMP CIRCUIT ANALOG AMPLIFIER DAC9 ANTI-ALIAS FILTER BYPASS SWITCH ADC2 11 FUSE (1 : 0) 7 10 12 CLAMP CIRCUIT SOURCE SWITCH ANALOG AMPLIFIER DAC9 ANTI-ALIAS FILTER BYPASS SWITCH ADC1 14 FUSE (1 : 0) MODE CONTROL HCL GLIMB HSY GLIMT WIPA SLTCA ANALOG CONTROL VSSS GAIN CONTROL 13 ANTI-ALIAS CONTROL CROSS CHR 8 8 MULTIPLEXER Fig.5 Analog input processing. AD2BYP AD1BYP Product specification LUM VBLNK SVREF SAA7111A MGC655 VERTICAL BLANKING CONTROL VBSL HOLDG GAFIX WPOFF GUDL0-GUDL2 GAI20-GAI28 GAI10-GAI18 HLNRS UPTCV handbook, full pagewidth MODE 0 MODE 1 MODE 2 CLAMP CONTROL AOUT Philips Semiconductors VSSA1 VSSA2 9 14 Enhanced Video Input Processor (EVIP) 1998 May 15 n.c. TEST SELECTOR AND BUFFER 64 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... AD1BYP SECAM PROCESSING 1 sequential UV signals TRST TCK TDI TMS TDO VDDD1-5 RES 58 59 3 4 QUADRATURE DEMODULATOR TEST CONTROL BLOCK LOW-PASS CHBW0 CHBW1 2 SUBCARRIER GENERATION 57,41,33, 25,18 23 POWER-ON CONTROL HUEC PHASE DEMODULATOR SUBCARRIER INCREMENT GENERATION AND DIVIDER AMPLITUDE DETECTOR BURST GATE ACCUMULATOR LOOP FILTER LEVEL ADJUSTMENT, BRIGHTNESS, CONTRAST, AND SATURATION CONTROL GAIN CONTROL AND Y-DELAY COMPENSATION 15 CE CLOCKS CSTD 1 CSTD 0 INCS V SSD1-5 FCTC CODE BRIG CONT SATN 52 Y RGB MATRIX interpolation dithering DIT UV COMB FILTERS SECAM RECOMBINATION fH/2 switch signal VBI DATA BYPASS TUF OUTPUT FORMATTER AND INTERFACE 42 to 51 34 to 39 CBR DCCF 56,40,32,26,19 RGB 31 GPSW OFTS0 RTSE1 OFTS1 RGB888 RTSE0 VIPB OEYC VLOF OEHV COLO FECO COMPO VRLN VSTA (8 : 0) VSTO (8 : 0) 60 FEI VPO (9 : 0) VPO (15 : 10) HREF Philips Semiconductors n.c. AD2BYP CHR Enhanced Video Input Processor (EVIP) gewidth 1998 May 15 LUM RTCO MGG062 LUM Y Product specification SAA7111A Fig.6 Chrominance circuit. This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... PREF WEIGHTING AND ADDING STAGE VARIABLE BAND-PASS FILTER CHROMINANCE TRAP PREFILTER BYPS VBLB BPSS0 BPSS1 PREF APER0 APER1 VBLB MATCHING AMPLIFIER PREFILTER SYNC CLOCK CIRCUIT CLOCKS VBLB LINE 21 TEXT SLICER SYNC SLICER 16 BYTE1 BYTE2 STATUS SYNCHRONIZATION CIRCUIT 2 I C BUS CONTROL 53 2 I C-BUS INTERFACE 61 63 FIDT VERTICAL PROCESSOR 62 30 29 17 AUFD HSB HSS FSEL VTRC PHASE DETECTOR COARSE DAC6 HLCK STTC VTRC LOOP FILTER 2 COUNTER 27 HPLL VTRC EXFIL 22 20 21 CREF LLC LLC2 CLOCK GENERATION CIRCUIT 15 16 24 VDDA0 VSSA0 CE INCS DISCRETE TIME OSCILLATOR 2 CRYSTAL CLOCK GENERATOR 55 54 XTALI XTAL 28 MGC654 IICSA SCL SDA VS RTS0 VREF HS RTS1 Product specification Fig.7 Luminance and sync processing. SAA7111A handbook, full pagewidth GPSW VNOI0 VNOI1 VTRC PHASE DETECTOR FINE LINE-LOCKED CLOCK GENERATOR Philips Semiconductors LUMINANCE CIRCUIT Enhanced Video Input Processor (EVIP) 1998 May 15 Y LUM Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A handbook, full pagewidth TBP7 to 0 (CVBS) 0 Y or YUV 0 AD1BYP MUX CVBS UP 1 (LUMA see Fig. 37) MUX BYP UP VPO15 to 8 REGISTER 1 SWHI VBP0 VBP4 BCHI1 to 0 I2C-bus BCHI1 BCHI0 SWHI 0 0 1 0 1 0 1 0 VBP0 1 1 VBP4 0 UV or YUV 0 AD2BYP MUX CVBS UP 1 VIPB I2C-bus (CHROMA see Fig. 37) MUX BYP UP VPO7 to 0 REGISTER 1 SWLO VBP0 VBP4 BCLO1 to 0 I2C-bus BCLO1 BCLO0 SWLO 0 0 1 0 1 0 1 0 VBP0 1 1 VBP4 REG 4 × REG VBP4 V_GATE (programmable) EN HREFINT CLOCK 0 CLOCK 0 VBP0 MGG064 HREFINT = internal horizontal reference. TBP = upsampled CVBS input data (27 MHz). AD1BYP/AD2BYP = digitized CVBS input data and Y/C input data (13.5 MHz). VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay). Fig.8 Multiplexing of the CVBS signal to the VPO-bus. 1998 May 15 17 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth SAA7111A REG VREF CCIR 656 EN CLOCK 0 HREFINT VBP0 VBP4 REG VREFINT V V C C T T R R 1 0 VREFOUT REG 0 0 VREFINT 0 1 VREF CCIR 656 1 0 VBP0 1 1 VBP4 HREF CLK0 0 EN REG HREFINT CLOCK 0 VREF MUX VCTR1 to 0 1 CLOCK 0 COMPO VREF_CCIR 656 = vertical reference signal referring to the field interval definitions of CCIR656. HREFINT = internal horizontal reference signal. VREFINT = internal vertical reference signal. VBP0 = programmable vertical reference signal. VBP4 = delayed programmable vertical reference signal (4LLC clocks delay). Fig.9 VREF output signal generation. handbook, full pagewidth CREFINT selected VREF CCTR1 to 0 C C C C T T R R 1 0 CREFOUT REG 0 0 CREFINT 0 1 0 if VREF = 0 1 0 1 if VREF = 0 1 1 1 (always HIGH) CREF CLOCK 0 MGG066 CREFINT = internal clock qualifier signal. Fig.10 CREF output signal generation. 1998 May 15 18 MGG065 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 9 BOUNDARY-SCAN TEST 9.2 Device identification codes A Device Identification Register (DIR) is specified in ‘IEEE Std. 1149.1-1990 - IEEE Standard Test Access Port and Boundary-Scan Architecture’ (IEEE Std. 1149.1b-1994). It is a 32-bit register which contains fields for the specification of the IC manufacturer, the IC part number and the IC version number. Its biggest advantage is the possibility to check for the correct ICs mounted after production and determination of the version number of ICs during field service. The SAA7111A has built in logic and 5 dedicated pins to support boundary-scan testing which allows board testing without special hardware (nails). The SAA7111A follows the ‘IEEE Std. 1149.1 - Standard Test Access Port and Boundary-Scan Architecture’ set by the Joint Test Action Group (JTAG) chaired by Philips. The 5 special pins are Test Mode Select (TMS), Test Clock (TCK), Test Reset (TRST), Test Data Input (TDI) and Test Data Output (TDO). When the IDCODE instruction is loaded into the BST instruction register, the identification register will be connected between TDI and TDO of the IC. The identification register will load a component specific code during the CAPTURE_DATA_REGISTER state of the TAP controller and this code can subsequently be shifted out. At board level this code can be used to verify component manufacturer, type and version number. The device identification register contains 32-bits, numbered 31 to 0, where bit 31 is the Most Significant Bit (MSB) (nearest to TDI) and bit 0 is the Least Significant Bit (LSB) (nearest to TDO); see Fig.11. The BST functions BYPASS, EXTEST, INTEST, SAMPLE, CLAMP and IDCODE are all supported (see Table 1). Details about the JTAG BST-TEST can be found in the specification “EEE Std. 1149.1”. A file containing the detailed Boundary-Scan Description Language (BSDL) description of the SAA7111A is available on request. 9.1 SAA7111A Initialization of boundary-scan circuit The Test Access Port (TAP) controller of an IC should be in the reset state (TEST_LOGIC_RESET) when the IC is in functional mode. This reset state also forces the instruction register into a functional instruction such as IDCODE or BYPASS. To solve the power-up reset, the standard specifies that the TAP controller will be forced asynchronously to the TEST_LOGIC_RESET state by setting the TRST pin LOW. Table 1 BST instructions supported by the SAA7111A INSTRUCTION DESCRIPTION BYPASS This mandatory instruction provides a minimum length serial path (1 bit) between TDI and TDO when no test operation of the component is required. EXTEST This mandatory instruction allows testing of off-chip circuitry and board level interconnections. SAMPLE This mandatory instruction can be used to take a sample of the inputs during normal operation of the component. It can also be used to preload data values into the latched outputs of the boundary-scan register. CLAMP This optional instruction is useful for testing when not all ICs have BST. This instruction addresses the bypass register while the boundary-scan register is in external test mode. IDCODE This optional instruction will provide information on the components manufacturer, part number and version number. INTEST This optional instruction allows testing of the internal logic (no support for customers available). USER1 This private instruction allows testing by the manufacturer (no support for customers available). 1998 May 15 19 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A MSB handbook, full pagewidth 31 TDI LSB 28 27 12 11 1 0010 1111000100010001 00000010101 4-bit version code 16-bit part number 11-bit manufacturer indentification Fig.11 32 bits of identification code. 1998 May 15 20 0 1 TDO MGL111 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 10 GAIN CHARTS MGC648 handbook, halfpage factor dB = 20 x log 10 gain = dB 5.5 ( 512 768 − i ( 7.5 3.5 i > 256 bit [8] = 1 1.5 bit [8] = 0 i < 256 −0.5 factor dB = 20 x log 10 gain = ( 257 + i 512 ( −2.5 −4.5 0 256 512 gain value (i) Fig.12 Amplifier curve. handbook, full pagewidth ANALOG INPUT ADC 1 NO BLANKING ACTIVE VBLK 0 <- CLAMP 1 1 + CLAMP CLL HCL 0 1 0 0 − CLAMP GAIN -> NO CLAMP + GAIN SBOT HSY 1 − GAIN 0 1 fast − GAIN WIPE 0 slow + GAIN MGC647 WIPE = white peak level (254); SBOT = sync bottom level (1); CLL = clamp level [60 Y (128 C)]; HSY = horizontal sync pulse; HCL = horizontal clamp pulse. Fig.13 Clamp and gain flow. 1998 May 15 21 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth SAA7111A ANALOG INPUT gain AMPLIFIER 9 DAC ANTI-ALIAS FILTER ADC 8 1 NO ACTION VBLK 1 LUMA/CHROMA DECODER 0 HOLDG 0 1 0 X 1 0 0 <4 >254 1 1 1 1 0 <1 +1/F STOP >248 >254 0 X=1 X=0 1 0 HSY 0 +1/L −1/LLC2 +1/LLC2 +/− 0 −1/LLC2 GAIN ACCUMULATOR (18 BITS) ACTUAL GAIN VALUE 9-BIT (AGV) [−6/+6 dB] 1 0 X 1 0 HSY 1 AGV Y UPDATE 0 FGV GAIN VALUE 9-BIT MGC652 X = system variable; Y = IAGV − FGVI > GUDL; VBLK = vertical blanking pulse; HSY = horizontal sync pulse; AGV = actual gain value; FGV = frozen gain value. Fig.14 Gain flow chart. 1998 May 15 22 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 11 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134); all ground pins connected together and all supply pins connected together. SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VDDD digital supply voltage −0.5 +4.6 V VDDA analog supply voltage −0.5 +4.6 V Vi(A) input voltage at analog inputs −0.5 VDDA + 0.5 (4.6 max.) V Vo(A) output voltage at analog output −0.5 VDDA + 0.5 V Vi(D) input voltage at digital inputs and outputs outputs in 3-state −0.5 +5.5 V Vo(D) output voltage at digital outputs outputs active −0.5 VDDD + 0.5 V ∆VSS voltage difference between VSSAall and VSSall − 100 mV Tstg storage temperature −65 +150 °C Tamb operating ambient temperature 0 70 °C Tamb(bias) operating ambient temperature under bias −10 +80 °C Vesd electrostatic discharge all pins −2000 +2000 V note 1 Note 1. Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ resistor. 12 CHARACTERISTICS VDDD = 3.0 to 3.6 V; VDDA = 3.1 to 3.5 V; Tamb = 25 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies VDDD digital supply voltage 3.0 3.3 3.6 V IDDD digital supply current − 63 70 mA PD digital power − 0.21 − W VDDA analog supply voltage 3.1 3.3 3.5 V IDDA analog supply current − 52 − mA PA analog power − 0.17 − W PA+D analog and digital power − 0.38 − W Ppd analog and digital power in CE connected to ground power-down mode (since version 3) − 0.02 − W Iclamp clamping current VI = 0.9 V DC − ±3.5 − µA Vi(p-p) input voltage (peak-to-peak value) for normal video levels 0.3 [1 V (p-p)]; −3 dB termination 27/47 Ω and AC coupling required; coupling capacitor = 22 nF 0.7 1.2 V |Zi| input impedance clamping current off 200 − − kΩ Ci input capacitance − − 10 pF AOSL = [1:0] = 00b; AOUT not connected Analog part 1998 May 15 23 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SYMBOL αcs PARAMETER channel crosstalk SAA7111A CONDITIONS MIN. TYP. MAX. UNIT fi = 5 MHz − − −50 dB at −3 dB − 7 − MHz Analog-to-digital converters B bandwidth φdiff differential phase (amplifier plus anti-alias filter = bypass) − 2 − deg Gdiff differential gain (amplifier plus anti-alias filter = bypass) − 2 − % fclkADC ADC clock frequency 12.8 − 14.3 MHz DLE DC differential linearity error − 0.7 − LSB ILE DC integral linearity error − 1 − LSB VIL(SCL,SDA) LOW level input voltage pins SDA and SCL −0.5 − +0.3VDDD V VIH HIGH level input voltage pins SDA and SCL 0.7VDDD − VDDD + 0.5 V VIL(xtal) LOW level CMOS input voltage pin XTALI −0.3 − +0.8 V VIH(xtal) HIGH level CMOS input voltage pin XTALI 2.0 − VDDD + 0.3 V VILn LOW level input voltage all other inputs −0.3 − +0.8 V VIHn HIGH level input voltage all other inputs 2.0 − 5.5 V − − 1 µA − − 8 pF − − 5 pF Digital inputs ILI input leakage current Ci input capacitance Ci(n) input capacitance all other inputs outputs at 3-state Digital outputs VOL(SCL,SDA) LOW level output voltage pins SDA and SCL SDA/SCL at 3 mA (6 mA) sink current − − 0.4 (0.6) V VOL LOW level output voltage VDDD = max; IOL = 2 mA 0 − 0.4 V VOH HIGH level output voltage VDDD = min, IOH = −2 mA 2.4 − VDDD + 0.5 V VOL(clk) LOW level output voltage for clocks −0.5 − +0.6 V VOH(clk) HIGH level output voltage for clocks 2.4 − VDDD + 0.5 V ILO output leakage current − − 10 µA at 3-state mode FEI input timing tSU;DAT input data set-up time 13 − − ns tHD;DAT input data hold time 3 − − ns 1998 May 15 24 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SYMBOL PARAMETER SAA7111A CONDITIONS MIN. TYP. MAX. UNIT Data and control output timing; note 1 CL output load capacitance 15 − 40 pF tOHD;DAT output hold time CL = 15 pF 4 − − ns tPD propagation delay CL = 25 pF − − 20 ns tPDZ propagation delay to 3-state − − 20 ns 15 − 40 pF LLC 35 − 39 ns LLC2 70 − 78 ns CL = 25 pF 40 − 60 % Clock output timing (LLC and LLC2); note 2 CL(LLC) output load capacitance Tcy cycle time δLLC duty factors for tLLCH/tLLC and tLLC2H/tLLC2 tr rise time LLC, LLC2 − − 5 ns tf fall time LLC, LLC2 − − 5 ns td delay time LLC output to LLC2 output at 1.5 V; LLC/LLC2 = 25 pF −4 − +8 ns Data qualifier output timing (CREF) tOHD;CREF output hold time CL = 15 pF 4 − − ns tPD;CREF propagation delay from positive edge of LLC CL = 25 pF − − 20 ns 40 − 60 % 50 Hz field − 15625 − Hz 60 Hz field − 15734 − Hz − − 5.7 % PAL BGHI − 4433619 − Hz NTSC M; NTSC-Japan − 3579545 − Hz PAL M − 3575612 − Hz PAL N − 3582056 − Hz ±400 − − Hz − 24.576 − MHz − − ±50 10−6 Clock input timing (XTALI) δXTALI duty factor for tXTALIH/tXTALI nominal frequency Horizontal PLL fHn ∆fH/fHn nominal line frequency permissible static deviation Subcarrier PLL fSCn ∆fSC nominal subcarrier frequency lock-in range Crystal oscillator fn nominal frequency ∆f/fn permissible nominal frequency deviation 1998 May 15 3rd harmonic; note 3 25 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SYMBOL PARAMETER SAA7111A CONDITIONS MIN. TYP. MAX. UNIT Crystal oscillator fn nominal frequency − 24.576 − MHz ∆f/fn permissible nominal frequency deviation − − ±50 10−6 ∆Tf/fn permissible nominal frequency deviation with temperature − − ±20 10−6 3rd harmonic; note 3 CRYSTAL SPECIFICATION (X1) Tamb(X1) operating ambient temperature 0 − 70 °C CL load capacitance 8 − − pF Rs series resonance resistor − 40 80 Ω C1 motional capacitance − 1.5 ±20% − fF C0 parallel capacitance − 3.5 ±20% − pF Notes 1. The levels must be measured with load circuits; 1.2 kΩ at 3 V (TTL load); CL = 50 pF. 2. The effects of rise and fall times are included in the calculation of tOHD;DAT, tPD and tPDZ. Timings and levels refer to drawings and conditions illustrated in Figs 15 and 16. 3. Order number: Philips 4322 143 05291. Table 2 Processing delay FUNCTION TYPICAL ANALOG DELAY AI22 → ADCIN (AOUT) (ns) Without amplifier or anti-alias filter 15 With amplifier, without anti-alias filter 25 With amplifier and anti-alias filter 75 DIGITAL DELAY ADCIN → VPO (LLC CLOCKS) [YDEL(2 to 0) = 000]; note 1 179 Note 1. Digital processing delay (LLC CLOCKS) for VBI data is defined in Fig.23 ‘Horizontal timing diagram’. 1998 May 15 26 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 13 TIMING DIAGRAMS tLLC handbook, full pagewidth tLLCL 2.6 V 1.5 V 0.6 V CLOCK OUTPUT LLC t tr f t LLCH tPD tOHD;DAT 2.4 V 0.6 V OUTPUTS VPO, HREF, VREF, VS, HS MGC658 An explanation of the output formats is given in Table 6. Fig.15 Clock/data timing (8-bit CCIR-656 format of the VPO-bus). tLLC tLLC handbook, full pagewidth tLLCL 2.6 V 1.5 V 0.6 V CLOCK OUTPUT LLC tf tLLCH tr t tPD PD 2.4 V 0.6 V OUTPUT CREF tOHD;CREF tOHD;CREF tdLLC2 tdLLC2 2.6 V 1.5 V 0.6 V CLOCK OUTPUT LLC2 tPD tOHD;DAT 2.4 V 0.6 V OUTPUTS VPO, HREF, VREF, VS, HS MGC659 An explanation of the output formats is given in Table 6. The FEI timing of the VPO-bus is illustrated in Figs 18 and 19. Fig.16 Clock/data timing (12 and 16-bit CCIR-601 format of the VPO-bus). 1998 May 15 27 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A tLLC handbook, full pagewidth tLLC tLLCL 2.4 V 1.5 V 0.6 V CLOCK OUTPUT LLC ,,,, ,,,,, ,,,,, ,,,, ,,,,, ,,,,, ,,,, ,,,,, ,,,,, tf tr tLLCH tPD;CREF OUTPUT CREF tOHD;CREF 2.4 V 1.5 V 0.6 V tOHD;CREF tPD;CREF RGB (8, 8, 8) data VPO15 to VPO8 RGB (8, 8, 8) data VPO7 to VPO0 tOHD;CREF 2.4 V 1.5 V 0.6 V R(7 : 3) G(7 : 5) ,,, ,,, ,, ,, tOHD;DAT R(2 : 0) G(1 : 0) B(2 : 0) ,,, ,,, tOHD;DAT G(4 : 2) B(7 : 3) tPD An explanation of the output formats is given in Table 6. Fig.17 Clock/data timing for RGB (8, 8 and 8) output format. handbook, full pagewidth LLC CREF HREF tSU;DAT tHD;DAT FEI tPDZ tOHD;DAT t PD VPO MGC656 to 3-state from 3-state I2C-bus bit FECO = 1. Fig.18 FEI timing diagram (FEI sampling at CREF = HIGH) for OFTS = 0, 1 or 2). 1998 May 15 28 2.4 V 1.5 V 0.6 V MBH227 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth SAA7111A LLC CREF HREF tSU;DAT tHD;DAT FEI tPDZ tOHD;DAT tPD VPO MGC657 from 3-state to 3-state Timing is compatible with SAA7110; I2C-bus bit FECO = 0. Fig.19 FEI timing diagram (FEI sampling at CREF = LOW) for OFTS = 0, 1 or 2). transmitted once per line handbook, full pagewidth INCRHPLL HIGH 16 128 BIT NO.: TIME SLOT: 15 0 1 INCRFSCPLL 45 2 0 RESERVED RESERVED SEQUENCE LOW DTO RESET(1) RESERVED 50 Hz fields: 235 60 Hz fields: 232 3 1 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 63 67 68 16 19 MGC649 (1) Set to zero for one transmission, if a phase reset of the fsc − DTO is applied via I2C-bus bit CDTO. RTCO sequence is generated in LLC/4. The HPLL increment represents the actual LFCO frequency (fLFCO × 4 = fLLC); 16 LSB from 20, upper four bits are fixed to 0100b. INCR HPLL × f XTAL f LFCO = -----------------------------------------------word length DTO2 2 Where: fXTAL = 24.576 MHz, word length DTO2 = 20 bits. The fsc increment represents the actual subcarrier frequency (related to the actual clock); 23 LSB from 24, MSB is 0b. INCR FSCPLL × f XTAL INCR HPLL f sc = ------------------------------------------------------ × --------------------------word length DTO1 19 2 2 Where: word length DTO1 = 24 bits. Fig.20 Real time control output. 1998 May 15 29 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth SAA7111A LLC CREF LLC2 START OF ACTIVE LINE HREF Yn 0 1 2 3 4 UVn U0 V0 U2 V2 U4 END OF ACTIVE LINE HREF Yn 715 716 717 718 719 UVn V714 U716 V716 U718 V718 MGC646 Fig.21 HREF timing diagram. handbook, full pagewidth LLC tSU tHD FEI tOHD VPO tPDZ ,,, ,,, tPD Fig.22 FEI timing in CCIR 656 mode [OFTS (1 : 0) = 3]. 1998 May 15 30 MBH766 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth SAA7111A burst CVBS 26 × 1/LLC burst VBI 179 × 1/LLC Y - output processing delay CVBS->VPO(2) 0 sync clipped HREF (50 Hz) 12 × 2/LLC 144 × 2/LLC 720 × 2/LLC 43 × 2/LLC 27 × 2/LLC RTS1 (PLIN)(1) 4/LLC HS HS (50 Hz) 108 programming range (step size: 8/LLC) −107 0 HREF (60 Hz) 23 × 2/LLC 16 × 2/LLC 138 × 2/LLC 720 × 2/LLC HS (60 Hz) HS (60 Hz) programming range (step size: 8/LLC) 107 0 MGD701 (1) PLIN is switched to output RTS1 via I2C-bus bit RTSE1 = 0. (2) See Table 2. (3) HDEL (1 : 0) = 0 0, YDEL (2 : 0) = 0 0 0. Fig.23 Horizontal timing diagram. 1998 May 15 −106 31 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 622 handbook, full pagewidth 623 624 625 1 2 3 SAA7111A 4 5 6 7 8 22 23 input CVBS HREF VREF VRLN = 1(2) VREF VRLN = 0(2) 535 x 2/LLC VS RTS0 (ODD)(1) (a) 1st field 310 311 312 313 314 315 316 317 318 319 320 335 336 337 input CVBS HREF VREF VRLN = 1(2) VREF VRLN = 0(2) 77 x 2/LLC VS RTS0 (ODD)(1) MGG069 (b) 2nd field (1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Additional VREF positions can be achieved via I2C-bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0. Fig.24 Vertical timing diagram for 50 Hz [nominal input signal VNL in normal mode (VNOI = 00b)]. 1998 May 15 32 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth 523 (1) 522 (525) 524 (2) 525 (3) 1 (4) 2 (5) 3 (6) SAA7111A 4 (7) 5 (8) 6 (9) 7 (10) 8 (11) 17 (20) 18 (21) 19 (22) (2) input CVBS HREF VRLN = 1(3) VREF VRLN = 0(3) VREF 520 x 2/LLC VS RTS0 (ODD)(1) (a) 1st field 259 (262) 260 (263) 261 (264) 262 (265) 263 (266) 264 (267) 265 (268) 266 (269) 267 (270) 268 (271) 269 (272) 270 (273) 271 (274) 280 (283) 281 (284) (2) input CVBS HREF VRLN = 1(3) VREF VRLN = 0(3) VREF 81 x 2/LLC VS RTS0 (ODD)(1) (b) 2nd field MGG070 (1) ODD is switched to output RTS0 via I2C-bus bit RTSE0 = 0. (2) Line numbers in parenthesis refer to CCIR line counting. (3) Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9). The luminance peaking and the chrominance trap are bypassed during VREF = 0 if I2C-bus bit VBLB is set to logic 1. The chrominance delay line (chrominance-comb filter for NTSC, phase error correcting for PAL) is disabled during VREF = 0. Fig.25 Vertical timing diagram for 60 Hz [nominal input signal VNL in normal mode (VNOI = 00b)]. 1998 May 15 282 (285) 33 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) Table 3 Digital output control SAA7111A 14 CLOCK SYSTEM VPO 15 to 8 14.1 VPO 7 to 0 Clock generation circuit OEYC FEI TCLO(1) 0 0 0 Z 1 0 0 active 0 1 0 Z 1 1 0 Z 0 0 1 Z Z 1 0 1 active Z 0 1 1 Z Z CLOCK FREQUENCY (MHz) 1 1 1 Z Z XTAL 24.576 Note LLC 27 1. Only active in 656-format (OFTS = 3). LLC2 13.5 LLC4 6.75 LLC8 3.375 handbook, full pagewidth LFCO BAND PASS FC = LLC/4 ZERO CROSS DETECTION The internal CGC generates the system clocks LLC, LLC2 and the clock reference signal CREF. The internally generated LFCO (triangular waveform) is multiplied by 4 via the analog PLL (including phase detector, loop filter, VCO and frequency divider). The rectangular output signals have a 50% duty factor. Table 4 PHASE DETECTION Clock frequencies LOOP FILTER OSCILLATOR LLC DIVIDER 1/2 DIVIDER 1/2 LLC2 DELAY CREF MGC632 Fig.26 Block diagram of clock generation circuit. 1998 May 15 34 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 14.2 SAA7111A Power-on control Power-on reset is activated at power-on, chip enable, PLL clock generation failure and if the supply voltage falls below 2.7 V. The RES signal can be applied to reset other circuits of the digital picture processing system. handbook, full pagewidth POC VDDA POC VDDD ANALOG DIGITAL POC LOGIC POC DELAY CLOCK PLL LLC RES CE CLK0 CE XTAL LLCINT RESINT LLC RES some ms 20 to 200 µs PLL-delay 896 LCC digital delay <1 ms CE = chip enable input; XTAL = crystal oscillator output; LLCINT = internal system clock; RESINT = internal reset; LLC = line-locked clock output; RES = reset output (active LOW). Fig.27 Power-on control circuit. 1998 May 15 35 128 LCC MGC633 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) Table 5 SAA7111A Power-on control sequence INTERNAL POWER-ON CONTROL SEQUENCE PIN OUTPUT STATUS FUNCTION Directly after power-on asynchronous reset VPO15 to VPO0, RTCO, RTS0, RTS1, direct switching to high impedance for GPSW, HREF, VREF, HS, VS, LLC, 20 to 200 ms LLC2 and CREF are in high-impedance state Synchronous reset sequence LLC, LLC2, CREF, RTCO, RTS0, internal reset sequence RTS1, GPSW and SDA become active; VPO15 to VPO0, HREF, VREF, HS and VS are held in high-impedance state Status after power-on control sequence VPO15 to VPO0, HREF, VREF, HS and after power-on (reset sequence) a VS are held in high-impedance state complete I2C-bus transmission is required 15 OUTPUT FORMATS Table 6 Output formats of the VPO bus (note 1) BUS SIGNAL VPO15 VPO14 VPO13 VPO12 VPO11 VPO10 VPO9 VPO8 VPO7 VPO6 VPO5 VPO4 VPO3 VPO2 VPO1 VPO0 Pixel order Y Pixel order UV Data rates I2C-bus control signals 1998 May 15 422 (16-BIT)(2) 411 (12-BIT) Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 V07 V06 X X X X 0 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 U05 U04 V05 V04 X X X X 1 Y27 Y26 Y25 Y24 Y23 Y22 Y21 Y20 U03 U02 V03 V02 X X X X 2 Y37 Y36 Y35 Y34 Y33 Y32 Y31 Y30 U01 U00 V01 V00 X X X X 3 Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 U07 U06 U05 U04 U03 U02 U01 U00 0 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 V07 V06 V05 V04 V03 V02 V01 V00 1 CCIR-656 (8-BIT)(3) U07 U06 U05 U04 U03 U02 U01 U00 X X X X X X X X Y07 Y06 Y05 Y04 Y03 Y02 Y01 Y00 X X X X X X X X V07 V06 V05 V04 V03 V02 V01 V00 X X X X X X X X 0 Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 X X X X X X X X 1 RGB (16-BIT)(4) R4 R3 R2 R1 R0 G5 G4 G3 G2 G1 G0 B4 B3 B2 B1 B0 − RGB (24-BIT)(4) R7 R6 R5 R4 R3 G7 G6 G5 G4 G3 G2 B7 B6 B5 B4 B3 note 5 R7 R6 R5 R4 R3 G7 G6 G5 R2 R1 R0 G1 G0 B2 B1 B0 note 6 0 0 0 − − LLC2 OFTS0 = 0 OFTS1 = 1 RGB888 = X LLC2 OFTS0 = 1 OFTS1 = 0 RGB888 = X LLC OFTS0 = 1 OFTS1 = 1 RGB888 = X LLC2 OFTS0 = 0 OFTS1 = 0 RGB888 = 0 − OFTS0 = 0 OFTS1 = 0 RGB888 = 1 36 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A Notes to Table 5 1. VPO bus allows connection to 5 V video data bus systems. 2. Values in accordance with CCIR 601. 3. Before and after the video data, video timing codes are inserted in accordance with CCIR 656. a) VPO15 to VPO8 = VPO7 to VPO0 = CCIR 656 data if I2C-bus bit TCLO = 0 b) VPO15 to VPO8 = CCIR 656 data, VPO7 to VPO0 = 3-state if I2C-bus bit TCLO = 1. 4. During HREF = LOW RGB levels are set to 16 (10 hex). RGB 16-bit is achieved by dropping the LSBs of the 8-bit signals (after dithering if desired). 5. CREF = 0 (see Fig.17). 6. CREF = 1 (see Fig.17). +255 handbook, full pagewidth +235 white +128 LUMINANCE 100% +255 +240 blue 100% +255 +240 red 100% +212 blue 75% +212 red 75% +128 colourless +128 colourless U-COMPONENT +16 black V-COMPONENT +44 yellow 75% +44 cyan 75% +16 yellow 100% +16 cyan 100% 0 0 0 MGC634 a. Y output range. b. U output range (Cb). c. V output range (Cr). CCIR Rec. 602 digital levels. Equations for modification to the YUV levels via BCS control I2C-bus bytes BRIG, CONT and SATN. Luminance: CONT Y OUT = Int ------------------ × ( Y – 128 ) + BRIG 71 Chrominance: SATN UV OUT = Int ----------------- × ( Cr, Cb – 128 ) + 128 64 It should be noted that the resulting levels are limited to 1 to 254 in accordance with CCIR-601/656 standard. Fig.28 VPO output signal range with default BCS settings. 1998 May 15 37 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth +255 SAA7111A +255 +209 white +199 LUMINANCE +71 +60 white LUMINANCE black black shoulder +60 black shoulder = black SYNC SYNC 1 1 sync bottom sync bottom MGD700 a. b. For sources containing 7.5 IRE black level offset (e.g. NTSC−M). For sources not containing black level offset. VBI data levels are not dependent on BCS settings. Fig.29 VBI data bypass output range. handbook, full pagewidth quartz (3rd harmonic) 24.576 MHz XTAL XTAL 54 C= 10 pF 54 SAA7111A XTALI SAA7111A XTALI 55 55 MGG072 L = 10 µH ± 20% C= 10 pF a. C= 1 nF b. With quartz crystal. Order number: Philips 4322 143 05291. Fig.30 Oscillator application. 1998 May 15 38 With external clock. Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 16 APPLICATION INFORMATION VDD VDDA C15 100 nF C14 C9 C13 100 nF BST 11 15 59 2 3 58 57 41 33 25 35 22 nF 36 VSSA 47 Ω 37 R9 C3 38 27 Ω R3 22 nF AI21 8 VDDD 42 44 C2 45 10 22 nF 46 47 VSSA 47 Ω R7 AI11 27 Ω R1 VSSA 47 Ω 39 43 VSSA 47 Ω R8 AI12 27 Ω R2 48 C1 49 12 SAA7111A 50 22 nF 51 R5 31 24 1 kΩ SCL 63 SDA 62 52 FEI R6 1 kΩ VSS XTAL 54 Q1(24.576 MHz) XTALI 10 µH VSS 19 61 VSS VSS n.c. Fig.31 Application diagram. 39 14 13 12 11 10 9 8 VPO(15 : 0) 7 6 5 4 3 2 1 0 HREF 17 VREF 27 HS 30 VS 60 RTCO 28 RTS1 29 RTS0 53 GPSW 14 AOUT 20 LLC 21 LLC2 22 CREF 23 RES 1 n.c. VSSA 1998 May 15 64 15 IICSA 32 26 VSS5 56 40 VSS4 13 VSS3 5 VSS2 9 VSS1 10 pF 10 pF 16 VSSS 1 nF C18 VSSA2 C17 VSSA1 C16 VSSA0 L1 55 VSS 100 nF 18 34 6 27 Ω R4 C11 100 nF VDD5 TRST TCK TDO TDI TMS 4 7 n.c. C4 R10 AI22 n.c. VDDA2 VDDA1 VDDA0 100 nF VSSA 100 nF C12 VSS n.c. VDD4 100 nF C7 VDD3 100 nF VDD2 C8 VDD1 handbook, full pagewidth MGG071 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook, full pagewidth 34 35 36 VPO (15 : 8) 37 38 39 42 43 VPO (15 : 11) 15 R (7 : 3) 3 14 13 G (7 : 5) VPO (10 : 8) 12 3 11 VPO (7 : 5) 10 G (4 : 2) 3 9 8 VSS VDD OEN 44 45 46 VPO (7 : 0) 47 48 49 50 51 SAA7111A 7 6 5 D7 O7 D6 O6 O5 D5 4 D4 3 e.g. O4 D3 74HCT574 O3 2 1 0 D2 O2 D1 O1 VDD R (2 : 0) 3 8 2 8 3 8 G (1 : 0) B (2 : 0) R (7 : 0) G (7 : 0) B (7 : 0) 00 D0 VSS CLK VSS SAA7111A VPO (4 : 0) B (7 : 3) 5 31 HREF 17 VREF 27 HS 30 VS 60 RTCO 28 RTS1 29 RTS0 53 GPSW 14 AOUT 20 LLC 21 32 CREF 23 RES e.g. 74HCT240 LLC2 LLC2N MGG073 I2C-bus control bits: OFTS(1 : 0) = 00 (subaddress 10H, bits D7 and D6). RGB888 = 1 (subaddress 12H, bit D3). Fig.32 Application diagram for RGB 24-bit output format. 16.1 Place the coupling (clamp) capacitors close to the analog input pins. Place the termination resistors close to the coupling capacitors. Care should be exercised concerning the hidden layout capacitors around the crystal application. To avoid reflection effects use serial resistors in the clock, sync and data lines. Layout hints Use separate ground planes for analog and digital ground. Connect these planes at one point directly under the device, by using a zero Ω resistor. Use separate supply lines for analog and digital supply. Place the supply decoupling capacitors close to the supply pins. 1998 May 15 40 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17 I2C-BUS DESCRIPTION 17.1 I2C-bus format Table 7 S Write procedure SLAVE ADDRESS W Table 8 ACK-s SUBADDRESS ACK-s DATA (N BYTES) P Read procedure (combined format) S SLAVE ADDRESS W ACK-s SUBADDRESS Sr SLAVE ADDRESS R ACK-s DATA (N BYTES) Table 9 ACK-s ACK-s ACK-m P Description of I2C-bus format CODE DESCRIPTION S START condition Sr repeated START condition Slave address W 0100 1000b (IICSA = LOW) or 0100 1010b (IICSA = HIGH) Slave address R 0100 1001b (IICSA = LOW) or 0100 1011b (IICSA = HIGH) ACK-s acknowledge generated by the slave ACK-m acknowledge generated by the master Subaddress subaddress byte; see Table 10 Data data byte; see Table 10; note 1 P STOP condition X = LSB slave address read/write control bit; X = 0, order to write (the circuit is slave receiver); X = 1, order to read (the circuit is slave transmitter) Slave address read = 49H or 4BH; note 2 write = 48H or 4AH IICSA = 0 or 1 Subaddresses 00H chip version read and write; note 3 01H reserved − 02h to 05H front-end part read and write 06H to 13H decoder part read and write 14H reserved − 15H to 17H decoder part read and write 18H to 19H reserved − 1AH to 1CH Line-21 text slicer part read only 1DH to 1EH reserved − 1FH status byte read only Notes 1. If more than one byte DATA is transmitted then the auto-increment of the subaddress is performed. 2. During slave transmitter mode the SCL-LOW period may be extended by pulling SCL to LOW (in accordance with the I2C-bus specification). 3. The I2C-bus subaddress 00 has to be initialized with 0 before being read. 1998 May 15 41 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A Table 10 I2C-bus receiver/transmitter overview READ WRITE IICSA 49H 4BH 48H 4AH 0 1 SLAVE ADDRESS REGISTER FUNCTION SUBADDR D7 D6 D5 D4 D3 D2 D1 D0 00 ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00 Reserved 01 (1) (1) (1) (1) (1) (1) (1) (1) Analog input contr 1 02 FUSE1 FUSE0 GUDL2 GUDL1 GUDL0 MODE2 MODE1 MODE0 Analog input contr 2 03 (1) HLNRS VBSL WPOFF HOLDG GAFIX GAI28 GAI18 Analog input contr 3 04 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10 Analog input contr 4 05 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20 Horizontal sync start 06 HSB7 HSB6 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0 Horizontal sync stop 07 HSS7 HSS6 HSS5 HSS4 HSS3 HSS2 HSS1 HSS0 Chip version Sync control 08 AUFD FSEL EXFIL (1) VTRC HPLL VNOI1 VNOI0 Luminance control 09 BYPS PREF BPSS1 BPSS0 VBLB UPTCV APER1 APER0 Luminance brightness 0A BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0 Luminance contrast 0B CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0 Chroma saturation 0C SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0 Chroma Hue control 0D HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0 Chroma control 0E CDTO CSTD2 CSTD1 CSTD0 DCCF FCTC CHBW1 CHBW0 Reserved 0F (1) (1) (1) (1) (1) (1) (1) (1) Format/delay control 10 OFTS1 OFTS0 HDEL1 HDEL0 VRLN YDEL2 YDEL1 YDEL0 Output control 1 11 GPSW CM99 FECO COMPO OEYC OEHV VIPB COLO Output control 2 12 RTSE1 RTSE0 TCLO CBR RGB888 DIT AOSL1 AOSL0 Output control 3 13 VCTR1 VCTR0 CCTR1 CCTR0 BCHI1 BCHI0 BCLO1 BCLO0 Reserved 14 (1) (1) (1) (1) (1) (1) (1) (1) V_GATE1_START 15 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTA0 V_GATE1_STOP 16 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0 V_GATE1_MSB 17 (1) (1) (1) (1) (1) (1) VSTO8 VSTA8 18-19 (1) (1) (1) (1) (1) (1) (1) (1) Text slicer status 1A (1) (1) (1) (1) F2VAL F2RDY F1VAL F1RDY Decoded bytes of the text slicer 1B P1 BYTE16 BYTE15 BYTE14 BYTE13 BYTE12 BYTE11 BYTE10 BYTE26 BYTE25 BYTE24 Reserved Reserved Status byte 1C P2 BYTE23 BYTE22 BYTE21 BYTE20 1D-1E (1) (1) (1) (1) (1) (1) (1) (1) 1F STTC HLCK FIDT GLIMT GLIMB WIPA SLTCA CODE Note 1. All unused control bits must be programmed with logic 0. 1998 May 15 42 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 17.2 SAA7111A I2C-bus detail The I2C-bus receiver slave address is 48H/49H. Subaddresses 0F, 14, 18, 19, 1D and 1E are reserved; subaddress 01 is reserved for chip version. 17.2.1 SUBADDRESS 00 Table 11 Chip version SA00; note 1 LOGIC LEVELS FUNCTION Chip version ID07 ID06 ID05 ID04 ID03 ID02 ID01 ID00 V1 0 0 0 1 X X X X V2 0 0 1 0 X X X X Note 1. X = reserved. 17.2.2 SUBADDRESS 02 Table 12 Analog control 1 SA02; note 1 CONTROL BITS D2 TO D0 FUNCTION(2) MODE 2 MODE 1 MODE 0 Mode 0 : CVBS (automatic gain) 0 0 0 Mode 1 : CVBS (automatic gain) 0 0 1 Mode 2 : CVBS (automatic gain) 0 1 0 Mode 3 : CVBS (automatic gain) 0 1 1 Mode 4 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 0 Mode 5 : Y (automatic gain) + C (gain channel 2 fixed to GAI2 level) 1 0 1 Mode 6 : Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 0 Mode 7 : Y (automatic gain) + C (gain channel 2 adapted to Y gain) 1 1 1 Notes 1. Mode select (see Figs 33 to 40). 2. For modes 0 to 3 use BYPS(SA09,D7) = 0 (chrominance trap active), for modes 4 to 7 use BYPS = 1 (chrominance trap bypassed). Table 13 Analog control 1 SA 02, D5 to D3 (see Fig.14) CONTROL BITS D5 TO D3 DECIMAL VALUE UPDATE HYSTERESIS FOR 9-BIT GAIN GUDL 2 GUDL 1 GUDL 0 0.... off 0 0 0 ....7 ±7 LSB 1 1 1 1998 May 15 43 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A Table 14 Analog control CONTROL BITS D7 AND D6 ANALOG FUNCTION SELECT FUSE Amplifier plus anti-alias filter bypassed FUSE 1 FUSE 0 0 0 0 1 Amplifier active 1 0 Amplifier plus anti-alias filter active 1 1 handbook,AI22 halfpage AI21 AI12 AI11 AD2 AD1 handbook,AI22 halfpage CHROMA AI21 LUMA AI12 AI11 AD2 AD1 handbook,AI22 halfpage AI21 AI12 AI11 AD2 AD1 Fig.34 Mode 1; CVBS (automatic gain). handbook,AI22 halfpage CHROMA AI21 LUMA AI12 AI11 AD2 AD1 MGC639 AI21 AI12 AI11 AD2 AD1 LUMA Fig.36 Mode 3; CVBS (automatic gain). handbook,AI22 halfpage CHROMA AI21 LUMA AI12 AI11 MGC641 AD2 AD1 CHROMA LUMA MGC642 Fig.37 Mode 4 Y (automatic gain) + C (gain channel 2 fixed to GAI2 level). 1998 May 15 CHROMA MGC640 Fig.35 Mode 2; CVBS (automatic gain). handbook,AI22 halfpage LUMA MGC638 MGC637 Fig.33 Mode 0; CVBS (automatic gain). CHROMA Fig.38 Mode 5 Y (automatic gain) + C (gain channel 2 fixed to GAI2 level). 44 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) handbook,AI22 halfpage AD2 AI21 AI12 AI11 AD1 SAA7111A handbook,AI22 halfpage CHROMA AI21 LUMA AI12 AI11 AD2 AD1 MGC643 LUMA MGC644 Fig.39 Mode 6 Y (automatic gain) + C (gain channel 2 adapted to Y gain). 17.2.3 CHROMA Fig.40 Mode 7 Y (automatic gain) + C (gain channel 2 adapted to Y gain). SUBADDRESS 03 Table 15 Analog control 2 (AICO2) SA03 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT GAI18 see Table 16 D0 GAI28 see Table 17 D1 Automatic gain controlled by MODE 1 and MODE 0 GAFIX 0 D2 Gain control is user programmable via GAI1 + GAI2 GAFIX 1 D2 AGC active HOLDG 0 D3 AGC integration hold (freeze) HOLDG 1 D3 White peak control active WPOFF 0 D4 White peak off WPOFF 1 D4 Long vertical blanking VBSL 0 D5 Short vertical blanking VBSL 1 D5 Normal clamping by HL not HLNRS 0 D6 Reference select by HL not HLNRS 1 D6 Static gain control channel 1 (GAI18) (see SA04) Sign bit of gain control Static gain control channel 2 (GAI28) (see SA05) Sign bit of gain control Gain control fix (GAFIX) Automatic gain control integration (HOLDG) White peak off (WPOFF) Vertical blanking select (VBSL) HL not reference select (HLNRS) 1998 May 15 45 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 17.2.4 SAA7111A SUBADDRESS 04 Table 16 Gain control analog (AIC03); static gain control channel 1 GAI1 SA 04, D7 to D0 DECIMAL VALUE GAIN (dB) SIGN BIT CONTROL BITS D7 TO D0 GAI18 GAI17 GAI16 GAI15 GAI14 GAI13 GAI12 GAI11 GAI10 0.... −5.98 0 0 0 0 0 0 0 0 0 ....255 0 0 1 1 1 1 1 1 1 1 256.... 0 1 0 0 0 0 0 0 0 0 ....511 5.98 1 1 1 1 1 1 1 1 1 17.2.5 SUBADDRESS 05 Table 17 Gain control analog (AIC04); static gain control channel 2 GAI2 SA 05, D7 to D0 DECIMAL VALUE GAIN (dB) SIGN BIT (SA 03, D1) CONTROL BITS D7 to D0 GAI28 GAI27 GAI26 GAI25 GAI24 GAI23 GAI22 GAI21 GAI20 0.... −5.98 0 0 0 0 0 0 0 0 0 ....255 0 0 1 1 1 1 1 1 1 1 256.... 0 1 0 0 0 0 0 0 0 0 ....511 5.98 1 1 1 1 1 1 1 1 1 17.2.6 SUBADDRESS 06 Table 18 Horizontal sync begin SA 06, D7 to D0 DELAY TIME (STEP SIZE = 8/LLC) CONTROL BITS D7 to D0 HSB7 HSB6 −128...−108 HSB5 HSB4 HSB3 HSB2 HSB1 HSB0 forbidden (outside available central counter range) −107... 1 0 0 1 0 1 0 1 ...108 (50Hz) 0 1 1 0 1 1 0 0 ...107 (60Hz) 0 1 1 0 1 0 1 1 109...127 (50Hz) 108...127 (60Hz) 1998 May 15 forbidden (outside available central counter range) 46 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 17.2.7 SAA7111A SUBADDRESS 07 Table 19 Horizontal sync stop SA 07, D7 to D0 CONTROL BITS D7 to D0 DELAY TIME (STEP SIZE = 8/LLC) HSS7 HSS6 −128...−108 HSS4 HSS3 HSS2 HSS1 HSS0 forbidden (outside available central counter range) −107... 1 0 0 1 0 1 0 1 ...108 (50Hz) 0 1 1 0 1 1 0 0 ...107 (60Hz) 0 1 1 0 1 0 1 1 109...127 (50Hz) forbidden (outside available central counter range) 108...127 (60Hz) 17.2.8 HSS5 SUBADDRESS 08 Table 20 Sync control SA 08, D7 to D5, D3 to D0 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT VNOI1 0 D1 VNOI0 0 D0 VNOI1 0 D1 VNOI0 1 D0 VNOI1 1 D1 VNOI0 0 D0 VNOI1 1 D1 VNOI0 1 D0 PLL closed HPLL 0 D2 PLL open, horizontal frequency fixed HPLL 1 D2 TV mode (recommended for poor quality TV signals only) VTRC 0 D3 VTR mode (recommended as default setting) VTRC 1 D3 Word width of the loop filter (LF2) amplification = 16-bit EXFIL 0 D5 Word width of the loop filter (LF2) amplification = 14-bit EXFIL 1 D5 50 Hz, 625 lines FSEL 0 D6 60 Hz, 525 lines FSEL 1 D6 Field state directly controlled via FSEL AUFD 0 D7 Automatic field detection AUFD 1 D7 Vertical noise reduction (VNOI) Normal mode Searching mode Free running mode Vertical noise reduction bypassed Horizontal PLL (HPLL) TV/VTR mode select (VTRC) Extended loop filter (EXFIL) Field selection (FSEL) Automatic field detection (AUFD) 1998 May 15 47 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 17.2.9 SAA7111A SUBADDRESS 09 Table 21 Luminance control SA 09, D7 to D0 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT Aperture factor (APER) Aperture factor = 0 Aperture factor = 0.25 Aperture factor = 0.5 Aperture factor = 1.0 APER1 0 D1 APER0 0 D0 APER1 0 D1 APER0 1 D0 APER1 1 D1 APER0 0 D0 APER1 1 D1 APER0 1 D0 Horizontal update (once per line) UPTCV 0 D2 Vertical update (once per field) UPTCV 1 D2 Active luminance processing VBLB 0 D3 Luminance bypass during vertical blanking VBLB 1 D3 Update time interval for AGC value (UPTCV) Vertical blanking luminance bypass (VBLB) Aperture band pass (centre frequency) (BPSS) Centre frequency = 4.1 MHz Centre frequency = 3.8 MHz; note 1 Centre frequency = 2.6 MHz; note 1 BPSS1 0 D5 BPSS0 0 D4 BPSS1 0 D5 BPSS0 1 D4 BPSS1 1 D5 BPSS0 0 D4 BPSS1 1 D5 BPSS0 1 D4 Bypassed PREF 0 D6 Active PREF 1 D6 Chrominance trap active; default for CVBS mode BYPS 0 D7 Chrominance trap bypassed; default for S-Video mode BYPS 1 D7 Centre frequency = 2.9 MHz; note 1 Prefilter active (PREF) Chrominance trap bypass (BYPS) Note 1. Not to be used with bypassed chrominance trap. 1998 May 15 48 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.10 SUBADDRESS 0A Table 22 Luminance brightness control BRIG7 to BRIG0 SA 0A CONTROL BITS D7 to D0 OFFSET BRIG7 BRIG6 BRIG5 BRIG4 BRIG3 BRIG2 BRIG1 BRIG0 255 (bright) 1 1 1 1 1 1 1 1 128 (CCIR level) 1 0 0 0 0 0 0 0 0 (dark) 0 0 0 0 0 0 0 0 17.2.11 SUBADDRESS 0B Table 23 Luminance contrast control CONT7 to CONT0 SA 0B CONTROL BITS D7 to D0 GAIN CONT7 CONT6 CONT5 CONT4 CONT3 CONT2 CONT1 CONT0 1.999 (maximum) 0 1 1 1 1 1 1 1 1.109 (CCIR level) 0 1 0 0 0 1 1 1 1.0 0 1 0 0 0 0 0 0 0 (luminance off) 0 0 0 0 0 0 0 0 −1 (inverse luminance) 1 1 0 0 0 0 0 0 −2 (inverse luminance) 1 0 0 0 0 0 0 0 17.2.12 SUBADDRESS 0C Table 24 Chrominance saturation control SATN7 to SATN0 SA 0C CONTROL BITS D7 to D0 GAIN SATN7 SATN6 SATN5 SATN4 SATN3 SATN2 SATN1 SATN0 1.999 (maximum) 0 1 1 1 1 1 1 1 1.0 (CCIR level) 0 1 0 0 0 0 0 0 0 (colour off) 0 0 0 0 0 0 0 0 −1 (inverse chrominance) 1 1 0 0 0 0 0 0 −2 (inverse chrominance) 1 0 0 0 0 0 0 0 17.2.13 SUBADDRESS 0D Table 25 Chrominance hue control HUEC7 to HUEC0 SA 0D CONTROL BITS D7 to D0 HUE PHASE (DEG) HUEC7 HUEC6 HUEC5 HUEC4 HUEC3 HUEC2 HUEC1 HUEC0 +178.6.... 0 1 1 1 1 1 1 1 ....0.... 0 0 0 0 0 0 0 0 ....−180 1 0 0 0 0 0 0 0 1998 May 15 49 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.14 SUBADDRESS 0E Table 26 Chrominance control SA 0E FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT CHBW1 CHBW0 CHBW1 CHBW0 CHBW1 CHBW0 CHBW1 CHBW0 0 0 0 1 1 0 1 1 D1 D0 D1 D0 D1 D0 D1 D0 FCTC FCTC 0 1 D2 D2 DCCF DCCF 0 1 D3 D3 Chroma bandwidth (CHBW0 and CHBW1) Small bandwidth (≈ 620 kHz) Nominal bandwidth (≈ 800 kHz) Medium bandwidth (≈ 920 kHz) Wide bandwidth (≈ 1000 kHz) Fast colour time constant (FCTC) Nominal time constant Fast time constant Disable chrominance comb filter (DCCF) Chrominance comb filter on (during VREF = 1) (see Figs 24 and 25) Chrominance comb filter off Colour standard (CSTD0 to CSTD2); logic levels 100, 110 and 111 are reserved, do not use Colour standard control automatic switching between PAL BGHI and NTSC M (NTSC-Japan with special level adjustment; luminance brightness subaddress 0A = 95H, luminance contrast subaddress 0BH = 48H) Colour standard control automatic switching between NTSC 4.43 (50 Hz) and PAL 4.43 (60 Hz) Colour standard control automatic switching between PAL N and NTSC 4.43 (60 Hz) Colour standard control automatic switching between NTSC N and PAL M Colour standard control automatic switching between SECAM and PAL 4.43 (60 Hz) CSTD2 CSTD1 CSTD0 0 0 0 D6 D5 D4 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 CSTD2 CSTD1 CSTD0 0 0 1 0 1 0 0 1 1 1 0 1 D6 D5 D4 D6 D5 D4 D6 D5 D4 D6 D5 D4 CDTO CDTO 0 1 D7 D7 Clear DTO (CDTO) Disabled Every time CDTO is set, the internal subcarrier DTO phase is reset to 0° and the RTCO output generates a logic 0 at time slot 68 (see RTCO description Fig.20). So an identical subcarrier phase can be generated by an external device (e.g. an encoder). 1998 May 15 50 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.15 SUBADDRESS 10 Table 27 Format/delay control SA 10 CONTROL BITS D2 to D0 LUMINANCE DELAY COMPENSATION (STEPS IN 2/LLC) YDEL2 YDEL1 YDEL0 −4... 1 0 0 ...0... 0 0 0 ...3 0 1 1 Table 28 VREF pulse position and length VRLN SA 10 (D3) VREF at 60 Hz 525 LINES(1) VREF at 50 Hz 625 LINES(1) VRLN Length Line number 0 1 0 1 240 242 286 288 first last first last first last first last Field 1(2) 19 (22) 258 (261) 18 (21) 259 (262) 24 309 23 310 Field 2(2) 282 (285) 521 (524) 281 (284) 522 (525) 337 622 336 623 Notes 1. Additional VREF positions can be achieved via I2C-bus bits VCTR1 and VCTR0 (see Fig.9). 2. The numbers given in parenthesis refer to CCIR line counting. Table 29 Fine position of HS HDEL0 and HDEL1 SA 10 CONTROL BITS D5 and D4 FINE POSITION OF HS WITH A STEP SIZE OF 2/LLC HDEL1 HDEL0 0 0 0 1 0 1 2 1 0 3 1 1 Table 30 Output format selection OFTS0 and OFTS1 SA 10 CONTROL BITS D7 and D6 FORMATS OFTS1 OFTS0 RGB (5, 6 and 5), RGB (8, 8 and 8) (dependent on control bit RGB888); see Table 32 0 0 YUV 422 16 bits 0 1 YUV 411 12 bits 1 0 YUV CCIR-656 8 bits 1 1 1998 May 15 51 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.16 SUBADDRESS 11 Table 31 Output control 1 SA 11 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT Colour on (COLO) Automatic colour killer COLO 0 D0 Colour forced on COLO 1 D0 DMSD data to YUV output VIPB 0 D1 ADC data to YUV output; dependent on mode settings VIPB 1 D1 HS, HREF, VREF and VS high-impedance inputs OEHV 0 D2 Outputs HS, HREF, VREF and VS active OEHV 1 D2 VPO-bus high-impedance inputs OEYC 0 D3 Output VPO-bus active OEYC 1 D3 VREF is vertical reference COMPO 0 D4 VREF is inverse composite blank COMPO 1 D4 FEI sampling at CREF = LOW (SAA7110 compatible); (see Fig.19) FECO 0 D5 FEI sampling at CREF = HIGH FECO 1 D5 Decoder VIP bypassed (VIPB) Output enable horizontal/vertical sync (OEHV) Output enable YUV data (OEYC) Inverse composite blank (COMPO) FEI control (FECO) Compatibility to SAA7199 (CM99) Default value CM99 0 D6 To be set if SAA7199 (digital encoder) is used for re-encoding in conjunction with RTCO CM99 1 D6 General purpose switch (GPSW) Switches directly pin 64 GPSW 1998 May 15 52 GPSW 0 D7 GPSW 1 D7 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.17 SUBADDRESS 12 Table 32 Output control 2 SA 12, D7 to D6, D4 to D0 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT Analog test select (AOSL) AOUT connected to internal test point 1 AOUT connected to input AD1 AOUT connected to input AD2 AOUT connected to internal test point 2 AOSL1 0 D1 AOSL0 0 D0 AOSL1 0 D1 AOSL0 1 D0 AOSL1 1 D1 AOSL0 0 D0 AOSL1 1 D1 AOSL0 1 D0 Dithering off DIT 0 D2 Dithering on DIT 1 D2 RGB (5, 6 and 5) RGB888 0 D3 RGB (8, 8 and 8) RGB888 1 D3 Dithering (noise shaping) control (DIT) RGB output format selection (RGB888) Chrominance interpolation filter function (CBR) Cubic interpolation (default) CBR 0 D4 Linear interpolation (lower bandwidth) CBR 1 D4 VPO7 to VPO0 depends on OEYC, FEI only (default) (see Figs 18, 19 and 22) TCLO 0 D5 VPO7 to VPO0 in 3-state [and OFTS (1 : 0) = 3] (see Tables 3 and 6) TCLO 1 D5 ODD switched to output pin 40 RTSE0 0 D6 VL switched to output pin 40 RTSE0 1 D6 3-state control VPO7 to VPO0 (TCLO) Real time outputs mode select (RTSE0) Real time outputs mode select (RTSE1) PLIN switched to output pin 39 RTSE1 0 D7 HL switched to output pin 39 RTSE1 1 D7 1998 May 15 53 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.18 SUBADDRESS 13 Table 33 Output control 3 SA 13 FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT BCLO1 0 D1 BCLO0 0 D0 BCLO1 0 D1 BCLO0 1 D0 BCLO1 1 D1 BCLO0 0 D0 Bypass control LOW for VPO7 to VPO0 No bypass Permanent bypass Bypass controlled by V_GATE Bypass controlled by delayed V_GATE BCLO1 1 D1 BCLO0 1 D0 BCHI1 0 D3 BCHI0 0 D2 BCHI1 0 D3 BCHI0 1 D2 Bypass control HIGH for VPO15 to VPO8 No bypass Permanent bypass Bypass controlled by V_GATE Bypass controlled by delayed V_GATE BCHI1 1 D3 BCHI0 0 D2 BCHI1 1 D3 BCHI0 1 D2 CCTR1 0 D5 CCTR0 0 D4 CCTR1 0 D5 CCTR0 1 D4 CCTR1 1 D5 CCTR0 0 D4 CCTR1 1 D5 CCTR0 1 D4 VCTR1 0 D7 VCTR0 0 D6 VCTR1 0 D7 VCTR0 1 D6 Clock Reference Output Control CREF is independent of VREF CREF is LOW if VREF = 0 CREF is HIGH if VREF = 0 CREF always = 1 Vertical Reference Output Control (VREF) Internal VREF VREF_CCIR Programmable V_GATE Delayed programmable V_GATE 1998 May 15 54 VCTR1 1 D7 VCTR0 0 D6 VCTR1 1 D7 VCTR0 1 D6 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... FIELD 50 Hz 60 Hz FRAME LINE(2) COUNTING 1st 1 2nd 314 1st 2 2nd 315 1st 312 2nd 625 1st 1 (4) 2nd 264 (267) 1st 2 (5) 55 2nd 265 (268) 1st 262 (265) 2nd 525 (3) DECIMA L VALUE MSB (SA 17, D0) CONTROL BITS D7 to D0 VSTA8 VSTA7 VSTA6 VSTA5 VSTA4 VSTA3 VSTA2 VSTA1 VSTA0 312 1 0 0 1 1 1 0 0 0 0.... 0 0 0 0 0 0 0 0 0 ....310 1 0 0 1 1 0 1 1 1 262 1 0 0 0 0 0 1 1 0 0.... 0 0 0 0 0 0 0 0 0 ....260 1 0 0 0 0 0 1 0 1 Philips Semiconductors Table 34 Start of decoded data on VPO-port SA 15; note 1 Enhanced Video Input Processor (EVIP) 1998 May 15 17.2.19 SUBADDRESS 15 Notes 1. Start of decoded data on VPO-port (end of bypassed region; start of VREF if selected by VCTR1 and VCTR0; see Figs 8 and 10). 2. Line numbers in brackets refer to CCIR line counting. Product specification SAA7111A This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... FIELD 50 Hz 60 Hz MSB DECIMAL (SA 17, D0) VALUE VSTO8 FRAME LINE(2) COUNTING 1st 1 2nd 314 1st 2 2nd 315 1st 312 2nd 625 1st 1 (4) 2nd 264 (267) 1st 2 (5) 56 2nd 265 (268) 1st 262 (265) 2nd 525 (3) CONTROL BITS D7 to D0 VSTO7 VSTO6 VSTO5 VSTO4 VSTO3 VSTO2 VSTO1 VSTO0 312 1 0 0 1 1 1 0 0 0 0.... 0 0 0 0 0 0 0 0 0 ....310 1 0 0 1 1 0 1 1 1 262 1 0 0 0 0 0 1 1 0 0.... 0 0 0 0 0 0 0 0 0 ....260 1 0 0 0 0 0 1 0 1 Philips Semiconductors TABLE 35 STOP OF DECODED DATA ON VPO-PORT SA 16; NOTE 1 Enhanced Video Input Processor (EVIP) 1998 May 15 17.2.20 SUBADDRESS 16 NOTES 1. STOP OF DECODED DATA ON VPO-PORT (BEGIN OF BYPASSED REGION; STOP OF VREF IF SELECTED BY VCTR1 AND VCTR0; SEE FIGS 8 AND 10). 2. LINE NUMBERS IN BRACKETS REFER TO CCIR LINE COUNTING. 17.2.21 SUBADDRESS 17 Table 36 Sign bits of the VBI-data stream control FUNCTION BIT NAME LOGIC LEVEL CONTROL BIT VSTA8 see Table 34 D0 VSTO8 see Table 35 D1 VBI-data stream start (VSTA8); see SA 15 Sign bit VBI-data stream start Product specification Sign bit VBI-data stream stop SAA7111A VBI-data stream stop (VSTO8); see SA 16 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 17.2.22 SUBADDRESS 1A (READ-ONLY REGISTER) Table 37 Line-21 text slicer status SA 1A, D3 to D0 I2C-BUS STATUS BIT NAME FUNCTION STATUS BIT F1RDY new data on field 1 has been acquired (for asynchronous reading); active HIGH D0 F1VAL line-21 of field 1 carries valid data; active HIGH D1 F2RDY new data on field 2 has been acquired (for asynchronous reading); active HIGH D2 F2VAL line-21 of field 2 carries valid data; active HIGH D3 17.2.23 SUBADDRESS 1B (READ-ONLY REGISTER) Table 38 First decoded data byte of the text slicer SA 1B I2C-BUS TEXT DATA BITS BYTE1 (6 to 0) P1 FUNCTION data bit 6 to 0 of first data byte DATA BITS D6 to D0 parity error flag bit; bit goes HIGH when a parity error has occurred D7 17.2.24 SUBADDRESS 1C (READ-ONLY REGISTER) Table 39 Second decoded data byte of the text slicer SA 1C I2C-BUS TEXT DATA BITS BYTE2 (6 to 0) P2 FUNCTION data bit 6 to 0 of second data byte DATA BITS D6 to D0 parity error flag bit; bit goes HIGH when a parity error has occurred D7 17.2.25 SUBADDRESS 1F (READ-ONLY REGISTER) Table 40 Status byte SA 1F I2C-BUS STATUS BIT NAME FUNCTION STATUS BIT CODE colour signal in accordance with selected standard has been detected; active HIGH SLTCA slow time constant active in WIPA-mode; active HIGH D1 white peak loop is activated; active HIGH D2 gain value for active luminance channel is limited [min (bottom)]; active HIGH D3 WIPA GLIMB D0 GLIMT gain value for active luminance channel is limited [max (top)]; active HIGH D4 FIDT identification bit for detected field frequency; LOW = 50 Hz, HIGH = 60 Hz D5 HLCK status bit for locked horizontal frequency; LOW = locked, HIGH = unlocked D6 STTC status bit for horizontal phase loop; LOW = TV time-constant, HIGH = VTR time-constant D7 1998 May 15 57 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 18 FILTER CURVES 18.1 Anti-alias filter curve MGD138 6 handbook, full pagewidth V (dB) 0 −6 −12 −18 −24 −30 −36 −42 0 2 4 6 8 10 12 f (MHz) 14 Fig.41 Anti-alias filter. 18.2 TUF-block filter curve MGG067 6 V full pagewidth handbook, (dB) 0 −6 −12 −18 −24 −30 −36 −42 −48 −54 0 2 4 6 8 10 Fig.42 Interpolation filter for the upsampled CVBS-signal. 1998 May 15 58 12 f (MHz) 14 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 18.3 SAA7111A Luminance filter curves MGD139 18 handbook, full pagewidth VY (dB) (1) (2) (4) (3) 6 −6 (1) (2) (4) (3) −18 −30 0 2 4 6 (1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H. fY (MHz) 8 Fig.43 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture bandpass centre frequencies. MGD140 18 handbook, full pagewidth VY (dB) 6 (1) (2) (3) (4) −6 (4) (3) (2) (1) −18 −30 0 2 4 6 fY (MHz) 8 (1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H. Fig.44 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter on, different aperture factors. 1998 May 15 59 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A MGD141 18 handbook, full pagewidth VY (dB) 6 (1) (2) (4) (3) −6 (1) (2) (4) (3) −18 −30 0 2 4 6 fY (MHz) 8 (1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H. Fig.45 Luminance control SA 09H, 4.43 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre frequencies. MGD142 18 handbook, full pagewidth VY (dB) (1) (2) (3) (4) 6 −6 −18 −30 0 2 4 6 fY (MHz) (1) = C0H; (2) = C1H; (3) = C2H; (4) = C3H. Fig.46 Luminance control SA 09H, Y/C mode, prefilter on, different aperture factors. 1998 May 15 60 8 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A MGD143 18 handbook, full pagewidth VY (dB) 6 (1) (2) (3) (4) −6 −18 −30 0 2 4 6 fY (MHz) 8 (1) = 80H; (2) = 81H; (3) = 82H; (4) = 83H. Fig.47 Luminance control SA 09H, Y/C mode, prefilter off, different aperture factors. MGD144 18 handbook, full pagewidth VY (dB) (1) (2) (4) (3) 6 (1) (2) (4) (3) −6 −18 −30 0 2 4 6 8 f Y (MHz) (1) = 43H; (2) = 53H; (3) = 63H; (4) = 73H. Fig.48 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture band-pass centre frequencies. 1998 May 15 61 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A MGD145 18 handbook, full pagewidth VY (dB) 6 (1) (2) (3) (4) (4) (3) (2) (1) −6 −18 −30 0 2 4 6 fY (MHz) 8 (1) = 40H; (2) = 41H; (3) = 42H; (4) = 43H. Fig.49 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter on, different aperture factors. MGD146 18 handbook, full pagewidth VY (dB) 6 (1) (2) (4) (3) −6 (1) (2) (4) (3) −18 −30 0 2 4 6 8 f Y (MHz) (1) = 03H; (2) = 13H; (3) = 23H; (4) = 33H. Fig.50 Luminance control SA 09H, 3.58 MHz Trap/CVBS mode, prefilter off, different aperture band-pass centre frequencies. 1998 May 15 62 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) 18.4 SAA7111A Chrominance filter curves MGD147 6 handbook, V full pagewidth (dB) 0 −6 (1) (2) (3) (4) −12 −18 −24 −30 (4) (1) (3) (2) −36 −42 −48 −54 0 0.54 1.08 1.62 2,16 f(MHz) (1) Transfer characteristics of the chrominance low-pass dependent on CHBW[1 : 0] settings. CHBW [1 : 0] = 00; (2) CHBW [1 : 0] = 01; (3) CHBW [1 : 0] = 10; (4) CHBW [1 : 0] = 11. Fig.51 Chrominance filter. 19 I2C-BUS START SET-UP • The given values force the following behaviour of the SAA7111A: – The analog input AI11 expects a signal in CVBS format; analog anti-alias filter active – Automatic field detection – YUV 4 : 2 : 2 16-bit output format enabled – Outputs HS, HREF, VREF and VS active – Contrast, brightness and saturation control in accordance with CCIR standards – Chrominance processing with nominal bandwidth (800 kHz). 1998 May 15 63 2.7 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A Table 41 I2C-bus start set-up values SUB (HEX) 00 01 02 NAME(1) FUNCTION chip version reserved analog input control 1 ID07 to ID00; see Table 9 VALUES (BIN) 7 6 5 4 3 2 (HEX) 1 read only 0 0 0 0 0 0 0 0 0 0 0 0 0 FUSE1 and FUSE0, GUDL2 to GUDL0, 1 1 0 0 MODE2 to MODE0 03 analog input control 2 X, HLNRS, VBSL, WPOFF, HOLDG, 0 0 1 0 0 0 1 1 GAFIX, GAI28 and GAI18 04 analog input control 3 GAI17 to GAI10 0 0 0 0 0 0 0 0 05 analog input control 4 GAI27 to GAI20 0 0 0 0 0 0 0 0 06 horizontal sync start HSB7 to HSB0 1 1 1 0 1 0 1 1 07 horizontal sync stop HSS7 to HSS0 1 1 1 0 0 0 0 0 08 sync control AUFD, FSEL, EXFIL, X, VTRC, HPLL, 1 0 0 0 1 0 0 0 VNOI1 and VNOI0 09 luminance control BYPS, PREF, BPSS1 and BPSS0, VBLB, 0 0 0 0 0 0 0 1 UPTCV, APER1 and APER0 0A luminance brightness BRIG7 to BRIG0 1 0 0 0 0 0 0 0 0B luminance contrast CONT7 to CONT0 0 1 0 0 0 1 1 1 0C chrominance saturation SATN7 to SATN0 0 1 0 0 0 0 0 0 0D chroma hue control HUEC7 to HUEC0 0 0 0 0 0 0 0 0 0E chrominance control CDTO, CSTD2 to CSTD0, DCCF, FCTC, 0 0 0 0 0 0 0 1 CHBW1 and CHBW0 0F reserved 0 0 0 0 0 0 0 0 10 format/delay control OFTS1 and OFTS0, HDEL1 and HDEL0, 0 1 0 0 0 0 0 0 VRLN, YDEL2 to YDEL0 11 output control 1 GPSW, CM99, FECO, COMPO, OEYC, 0 0 0 1 1 1 0 0 OEHV, VIPB, and COLO 12 output control 2 RTSE1 and RTSE0, TCLO, CBR, 0 0 0 0 0 0 0 1 RGB888 DIT, AOSL1 and AOSL0 13 output control 3 CCTR1 and CCTR0, BCHI1 and BCHI0, 0 0 0 0 0 0 0 0 BCLO1 and BCLO0, VCTR1 and VCTR0 14 reserved 0 0 0 0 0 0 0 0 15 VBI-data stream start VSTA7 to VSTA0 0 0 0 0 0 0 0 0 16 VBI-data stream stop VSTO7 to VSTO0 0 0 0 0 0 0 0 0 17 MSBs for VBI control X, X, X, X, X, X, VSTO8, and VSTA8 0 0 0 0 0 0 0 0 18-19 reserved 0 0 0 0 0 0 0 0 1A text slicer status 0, 0, 0, 0, F2VAL, F2RDY, read only register F1VAL, and F1RDY 1B decoded bytes of the P1, BYTE1 (6 to 0) text slicer 1C P2, BYTE2 (6 to 0) 1D-1E reserved 0 0 0 0 0 0 0 0 1F status byte STTC, HLCK, FIDT, GLIMT, GLIMB, read only register WIPA, SLTCA and CODE Note 1. All X values must be set to LOW. 1998 May 15 64 START 00 C0 33 00 00 EB E0 88 01 80 47 40 00 01 00 40 1C 00 00 00 00 00 00 00 00 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 20 PACKAGE OUTLINES LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm SOT314-2 c y X A 48 33 49 32 ZE e E HE A A2 (A 3) A1 wM θ bp pin 1 index 64 Lp L 17 detail X 16 1 ZD e v M A wM bp D B HD v M B 0 2.5 5 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 1.60 0.20 0.05 1.45 1.35 0.25 0.27 0.17 0.18 0.12 10.1 9.9 10.1 9.9 0.5 HD HE 12.15 12.15 11.85 11.85 L Lp v w y 1.0 0.75 0.45 0.2 0.12 0.1 Z D (1) Z E (1) θ 1.45 1.05 7 0o 1.45 1.05 o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION REFERENCES IEC JEDEC EIAJ ISSUE DATE 95-12-19 97-08-01 SOT314-2 1998 May 15 EUROPEAN PROJECTION 65 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A QFP64: plastic quad flat package; 64 leads (lead length 1.6 mm); body 14 x 14 x 2.7 mm SOT393-1 c y X A 48 33 49 32 ZE e E HE A A2 (A 3) A1 θ wM Lp bp pin 1 index L 17 64 detail X 16 1 w M bp e v M A ZD D B HD v M B 0 5 10 mm scale DIMENSIONS (mm are the original dimensions) UNIT A max. A1 A2 A3 bp c D (1) E (1) e mm 3.00 0.25 0.10 2.75 2.55 0.25 0.45 0.30 0.23 0.13 14.1 13.9 14.1 13.9 0.8 HD HE L 17.45 17.45 1.60 16.95 16.95 Lp v w y 1.03 0.73 0.16 0.16 0.10 Z D (1) Z E (1) 1.2 0.8 1.2 0.8 θ o 7 0o Note 1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. OUTLINE VERSION SOT393-1 1998 May 15 REFERENCES IEC JEDEC EIAJ EUROPEAN PROJECTION ISSUE DATE 96-05-21 97-08-04 MS-022 66 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) If wave soldering cannot be avoided, for LQFP and QFP packages with a pitch (e) larger than 0.5 mm, the following conditions must be observed: 21 SOLDERING 21.1 Introduction • A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used. There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used. • The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners. During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured. This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our “IC Package Databook” (order code 9398 652 90011). 21.2 Reflow soldering Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C. Reflow soldering techniques are suitable for all LQFP and QFP packages. The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our “Quality Reference Handbook” (order code 9397 750 00192). A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 21.4 Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 50 and 300 seconds depending on heating method. Typical reflow peak temperatures range from 215 to 250 °C. Wave soldering Wave soldering is not recommended for LQFP and QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices. CAUTION Wave soldering is NOT applicable for all LQFP and QFP packages with a pitch (e) equal or less than 0.5 mm. 1998 May 15 Repairing soldered joints Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C. Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. 21.3 SAA7111A 67 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) SAA7111A 22 DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. 23 LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. 24 PURCHASE OF PHILIPS I2C COMPONENTS Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011. 1998 May 15 68 Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) NOTES 1998 May 15 69 SAA7111A Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) NOTES 1998 May 15 70 SAA7111A Philips Semiconductors Product specification Enhanced Video Input Processor (EVIP) NOTES 1998 May 15 71 SAA7111A Philips Semiconductors – a worldwide company Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010, Fax. +43 160 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 0044 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615800, Fax. +358 9 61580920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, Tel. +30 1 4894 339/239, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966 Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080 Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381 Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341 Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382 Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263 Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 625 344, Fax.+381 11 635 777 For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 Internet: http://www.semiconductors.philips.com © Philips Electronics N.V. 1998 SCA60 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 655102/1200/04/pp72 Date of release: 1998 May 15 Document order number: 9397 750 03118