PHILIPS 74HC595D

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
• The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines
74HC/HCT595
8-bit serial-in/serial or parallel-out
shift register with output latches;
3-state
Product specification
Supersedes data of September 1993
File under Integrated Circuits, IC06
1998 Jun 04
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
FEATURES
DESCRIPTION
• 8-bit serial input
The 74HC/HCT595 are high-speed Si-gate CMOS devices
and are pin compatible with low power Schottky TTL
(LSTTL). They are specified in compliance with JEDEC
standard no. 7A.
• 8-bit serial or parallel output
• Storage register with 3-state outputs
• Shift register with direct clear
The “595” is an 8-stage serial shift register with a storage
register and 3-state outputs. The shift register and storage
register have separate clocks.
• 100 MHz (typ) shift out frequency
• Output capability:
– parallel outputs; bus driver
Data is shifted on the positive-going transitions of the
SHCP input. The data in each register is transferred to the
storage register on a positive-going transition of the STCP
input. If both clocks are connected together, the shift
register will always be one clock pulse ahead of the
storage register.
– serial output; standard
• ICC category: MSI.
APPLICATIONS
• Serial-to-parallel data conversion
The shift register has a serial input (DS) and a serial
standard output (Q7’) for cascading. It is also provided with
asynchronous reset (active LOW) for all 8 shift register
stages. The storage register has 8 parallel 3-state bus
driver outputs. Data in the storage register appears at the
output whenever the output enable input (OE) is LOW.
• Remote control holding register.
QUICK REFERENCE DATA
GND = 0 V; Tamb = 25 °C; tr = tf = 6 ns.
TYP.
SYMBOL PARAMETER
tPHL/tPLH
CONDITIONS
propagation delay
UNIT
HC
HCT
16
21
CL = 15 pF; VCC = 5 V
SHCP to Q7’
ns
STCP to Qn
17
20
ns
MR to Q7’
14
19
ns
fmax
maximum clock frequency SHCP, STCP
100
57
MHz
CI
input capacitance
3.5
3.5
pF
CPD
power dissipation capacitance per package
115
130
pF
notes 1 and 2
Notes
1. CPD is used to determine the dynamic power dissipation (PD in µW):
PD = CPD × VCC2 × fi + ∑ (CL × VCC2 × fo) where:
fi = input frequency in MHz
fo = output frequency in MHz
∑(CL × VCC2 × fo) = sum of outputs
CL = output load capacitance in pF
VCC = supply voltage in V
2. For HC the condition is VI = GND to VCC; for HCT the condition is VI = GND to VCC − 1.5 V.
1998 Jun 04
2
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
DESCRIPTION
VERSION
74HC595N
DIP16
plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1
74HC595D
SO16
plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
74HC595DB
SSOP16
plastic shrink small outline package; 16 leads; body width 5.3 mm
SOT338-1
74HC595PW
TSSOP16
plastic thin shrink small outline package; 16 leads; body width 4.4 mm
SOT403-1
74HCT595N
DIP16
plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1
74HCT595D
SO16
plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
PINNING
SYMBOL
PIN
Q0 to Q7
DESCRIPTION
15, 1 to 7
GND
8
parallel data output
ground (0 V)
Q7’
9
serial data output
MR
10
master reset (active LOW)
SHCP
11
shift register clock input
STCP
12
storage register clock input
OE
13
output enable (active LOW)
DS
14
serial data input
VCC
16
positive supply voltage
handbook, halfpage
11
handbook, halfpage
Q1 1
16 VCC
Q2 2
15 Q0
Q3 3
14 DS
Q4 4
SHCP STCP
Q7'
Q0
Q1
13 OE
Q2
595
Q5 5
12 STCP
Q6 6
11 SHCP
Q7 7
10 MR
GND 8
9
12
14
Q3
DS
Q4
Q5
Q6
Q7'
Q7
MLA001
MR
10
9
15
1
2
3
4
5
6
7
OE
13
MLA002
Fig.1 Pin configuration.
1998 Jun 04
Fig.2 Logic symbol.
3
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
handbook, halfpage 13
EN3
OE
STCP
MR
SHCP
DS
74HC/HCT595
12
10
C2
R
SRG8
11
14
C1/
1D
2D
3
15
1
2
3
4
5
6
7
9
Q0
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q7'
MSA698
Fig.3 IEC logic symbol.
handbook, full pagewidth
14
DS
11
SHCP
10
MR
12 STCP
13
OE
8-STAGE SHIFT REGISTER
Q7 '
9
Q0
15
Q1
1
8-BIT STORAGE REGISTER
3-STATE OUTPUTS
Q2
2
Q3
3
Q4
4
Q5
5
Q6
6
Q7
7
MLA003
Fig.4 Functional diagram.
1998 Jun 04
4
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
handbook, full pagewidth
DS
STAGE 0
D
74HC/HCT595
STAGES 1 TO 6
Q
D
STAGE 7
Q
D
FF0
Q7'
Q
FF7
CP
CP
R
R
SHCP
MR
D
Q
D
Q
LATCH
LATCH
CP
CP
STCP
OE
Q0
Q1 Q2 Q3 Q4 Q5 Q6
Fig.5 Logic diagram.
1998 Jun 04
5
Q7
MLA010
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
FUNCTION TABLE
INPUTS
OUTPUTS
FUNCTON
SHCP
STCP
OE
MR
DS
Q7’
QN
X
X
L
L
X
L
NC
X
↑
L
L
X
L
L
empty shift register loaded into storage register
X
X
H
L
X
L
Z
shift register clear. Parallel outputs in high-impedance
OFF-state
↑
X
L
H
H
Q6’
NC
logic high level shifted into shift register stage 0. Contents
of all shift register stages shifted through, e.g. previous
state of stage 6 (internal Q6’) appears on the serial output
(Q7’)
X
↑
L
H
X
NC
Qn’
contents of shift register stages (internal Qn’) are
transferred to the storage register and parallel output
stages
↑
↑
L
H
X
Q6’
Qn’
contents of shift register shifted through. Previous
contents of the shift register is transferred to the storage
register and the parallel output stages.
a LOW level on MR only affects the shift registers
Notes
1. H = HIGH voltage level; L = LOW voltage level
↑ = LOW-to-HIGH transition; ↓ = HIGH-to-LOW transition
Z = high-impedance OFF-state; NC = no change
X = don’t care.
1998 Jun 04
6
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
handbook,
SHfull
CPpagewidth
DS
STCP
MR
OE
Q0
high-impedance OFF-state
Q1
Q6
Q7
Q 7'
MLA005 - 1
Fig.6 Timing diagram.
1998 Jun 04
7
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
DC CHARACTERISTICS FOR 74HC
For the DC characteristics see chapter “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: parallel outputs, bus driver, serial output, standard ICC category: MSI.
AC CHARACTERISTICS FOR 74HC
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
Tamb (°C)
+25
SYMBOL PARAMETER
min
tPHL/tPLH
tPHL/tPLH
tPHL
tPZH/tPZL
tPHZ/tPLZ
tW
tW
tW
tsu
tsu
1998 Jun 04
typ
max
TEST CONDITION
−40 to +85
−40 to +125
min
min
max
max
propagation delay
SHCP to Q7’
−
52
160
−
200
−
240
−
19
32
−
40
−
48
−
15
27
−
34
−
41
propagation delay
STCP to Qn
−
55
175
−
220
−
265
−
20
35
−
44
−
53
UNIT V
CC
WAVEFORMS
(V)
ns
2.0
4.5
6.0
ns
2.0
−
16
30
−
37
−
45
−
47
175
−
220
−
265
−
17
35
−
44
−
53
−
14
30
−
37
−
45
3-state output
enable time
OE to Qn
−
47
150
−
190
−
225
−
17
30
−
38
−
45
4.5
−
14
26
−
33
−
38
6.0
3-state output
disable time
OE to Qn
−
41
150
−
190
−
225
−
15
30
−
38
−
45
4.5
−
12
26
−
33
−
38
6.0
storage clock
pulse width HIGH
or LOW
master reset
pulse width LOW
set-up time DS to
SHCP
set-up time SHCP
to STCP
6.0
ns
2.0
Fig.10
4.5
6.0
ns
ns
2.0
2.0
75
17
−
95
−
110
−
15
6
−
19
−
22
−
4.5
13
5
−
16
−
19
−
6.0
ns
2.0
75
11
−
95
−
110
−
15
4
−
19
−
22
−
4.5
13
3
−
16
−
19
−
6.0
ns
2.0
75
17
−
95
−
110
−
15
6.0
−
19
−
22
−
4.5
13
5.0
−
16
−
19
−
6.0
ns
2.0
50
11
−
65
−
75
−
10
4.0
−
13
−
15
−
4.5
9.0
3.0
−
11
−
13
−
6.0
75
22
−
95
−
110
−
ns
ns
2.0
2.0
15
8
−
19
−
22
−
4.5
13
7
−
16
−
19
−
6.0
8
Fig.8
4.5
propagation delay
MR to Q7’
shift clock pulse
width HIGH or
LOW
Fig.7
Fig.11
Fig.11
Fig.7
Fig.8
Fig.10
Fig.9
Fig.8
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
Tamb (°C)
+25
SYMBOL PARAMETER
min
th
trem
fmax
1998 Jun 04
hold time DS to
SHCP
removal time MR
to SHCP
maximum clock
pulse frequency
SHCP or STCP
3
typ
−6
max
−
TEST CONDITION
−40 to +85
−40 to +125
min
min
3
max
−
3
max
−
UNIT V
CC
WAVEFORMS
(V)
ns
2.0
3
−2
−
3
−
3
−
4.5
3
−2
−
3
−
3
−
6.0
50
−19
−
65
−
75
−
ns
2.0
10
−7
−
13
−
15
−
4.5
9
−6
−
11
−
13
−
6.0
9
30
−
4.8
−
4
−
30
91
−
24
−
20
−
4.5
35
108
−
28
−
24
−
6.0
9
MHz
2.0
Fig.9
Fig.10
Figs 7 and 8
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
DC CHARACTERISTICS FOR 74HCT
For the DC characteristics see chapter “74HC/HCT/HCU/HCMOS Logic Family Specifications”.
Output capability: parallel outputs, bus driver; serial output, standard ICC category: MSI.
Note to HCT types
The value of additional quiescent supply current (∆ICC) for a unit load of 1 is given in the family specifications.
To determine ∆ICC per input, multiply this value by the unit load coefficient shown in the table below.
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
INPUT
UNIT LOAD COEFFICIENT
0.25
DS
1998 Jun 04
MR
1.50
SHCP
1.50
STCP
1.50
OE
1.50
10
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
AC CHARACTERISTICS FOR 74HCT
GND = 0 V; tr = tf = 6 ns; CL = 50 pF.
Tamb (°C)
+25
SYMBOL PARAMETER
min
typ
−40 to +85
max
min
max
TEST CONDITION
−40 to +125 UNIT V
CC
WAVEFORMS
(V)
min max
tPHL/ tPLH
propagation delay
SHCP to Q7’
−
25
42
−
53
−
63
ns
4.5
Fig.7
tPHL/ tPLH
propagation delay
STCP to Qn
−
24
40
−
50
−
60
ns
4.5
Fig.8
tPHL
propagation delay
MR to Q7’
−
23
40
−
50
−
60
ns
4.5
Fig.10
tPZH/ tPZL
3-state output enable
time OE to Qn
−
21
35
−
44
−
53
ns
4.5
Fig.11
tPHZ/ tPLZ
3-state output disable
time OE to Qn
−
18
30
−
38
−
45
ns
4.5
Fig.11
tW
shift clock pulse
width HIGH or LOW
16
6
−
20
−
24
−
ns
4.5
Fig.7
tW
storage clock pulse width
HIGH or LOW
16
5
−
20
−
24
−
ns
4.5
Fig.8
tW
master reset
pulse width LOW
20
8
−
25
−
30
−
ns
4.5
Fig.10
tsu
set-up time DS to
SHSP
16
5
−
20
−
24
−
ns
4.5
Fig.9
tsu
set-up time SHCP
to STCP
16
8
−
20
−
24
−
ns
4.5
Fig.8
th
hold time DS to SHCP
3
−2
−
3
−
3
−
ns
4.5
Fig.9
trem
removal time MR
to SHCP
10
−7
−
13
−
15
−
ns
4.5
Fig.10
fmax
maximum clock
pulse frequency
SHCP or STCP
30
52
−
24
−
20
−
MHz
4.5
Figs 7 and 8
1998 Jun 04
11
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
AC WAVEFORMS
1/fmax
handbook, full pagewidth
SHCP INPUT
VM(1)
tW
tPLH
tPHL
90%
VM(1)
Q7' OUTPUT
10%
tTLH
tTHL
MSA699
(1) HC: VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.7
Waveforms showing the clock (SHCP) to output (Q7’) propagation delays, the shift clock pulse width and
maximum shift clock frequency.
handbook, full pagewidth
SHCP INPUT
VM(1)
1/fmax
tsu
STCP INPUT
VM(1)
tW
tPLH
Qn OUTPUT
tPHL
VM(1)
MSA700
(1) HC: VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.8
Waveforms showing the storage clock (STCP) to output (Qn) propagation delays, the storage clock pulse
width and the shift clock to storage clock set-up time.
1998 Jun 04
12
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
handbook, full pagewidth
SHCP INPUT
VM(1)
tsu
tsu
th
th
VM(1)
DS INPUT
VM(1)
Q7' OUTPUT
MLB196
(1) HC: VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.9 Waveforms showing the data set-up and hold times for the DS input.
handbook, full pagewidth
MR INPUT
VM(1)
tW
trem
VM(1)
SHCP INPUT
tPHL
VM(1)
Q7' OUTPUT
MLB197
(1) HC: VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.10 Waveforms showing the master reset (MR) pulse width, the master reset to output (Q7’) propagation delay
and the master reset to shift clock (SHCP) removal time.
1998 Jun 04
13
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
tr
handbook, full pagewidth
tf
90%
VM(1)
OE INPUT
10%
tPLZ
Qn OUTPUT
LOW-to-OFF
OFF-to-LOW
tPZL
VM(1)
10%
tPHZ
tPZH
90%
Qn OUTPUT
HIGH-to-OFF
OFF-to-HIGH
VM(1)
outputs
enabled
outputs
disabled
outputs
enabled
MSA697
(1) HC: VM = 50%; VI = GND to VCC
HCT: VM = 1.3 V; VI = GND to 3 V.
Fig.11 Waveforms showing the 3-state enable and disable times for input OE.
1998 Jun 04
14
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
PACKAGE OUTLINES
DIP16: plastic dual in-line package; 16 leads (300 mil); long body
SOT38-1
ME
seating plane
D
A2
A
A1
L
c
e
Z
b1
w M
(e 1)
b
MH
9
16
pin 1 index
E
1
8
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
min.
A2
max.
b
b1
c
D (1)
E (1)
e
e1
L
ME
MH
w
Z (1)
max.
mm
4.7
0.51
3.7
1.40
1.14
0.53
0.38
0.32
0.23
21.8
21.4
6.48
6.20
2.54
7.62
3.9
3.4
8.25
7.80
9.5
8.3
0.254
2.2
inches
0.19
0.020
0.15
0.055
0.045
0.021
0.015
0.013
0.009
0.86
0.84
0.26
0.24
0.10
0.30
0.15
0.13
0.32
0.31
0.37
0.33
0.01
0.087
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT38-1
050G09
MO-001AE
1998 Jun 04
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
92-10-02
95-01-19
15
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
SO16: plastic small outline package; 16 leads; body width 3.9 mm
SOT109-1
D
E
A
X
c
y
HE
v M A
Z
16
9
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
1
L
8
e
0
detail X
w M
bp
2.5
5 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
1.75
0.25
0.10
1.45
1.25
0.25
0.49
0.36
0.25
0.19
10.0
9.8
4.0
3.8
1.27
6.2
5.8
1.05
1.0
0.4
0.7
0.6
0.25
0.25
0.1
0.7
0.3
0.01
0.019 0.0100 0.39
0.014 0.0075 0.38
0.16
0.15
0.244
0.050
0.041
0.228
0.039
0.016
0.028
0.020
inches
0.010 0.057
0.069
0.004 0.049
0.01
0.01
0.028
0.004
0.012
θ
Note
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT109-1
076E07S
MS-012AC
1998 Jun 04
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
95-01-23
97-05-22
16
o
8
0o
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm
D
SOT338-1
E
A
X
c
y
HE
v M A
Z
9
16
Q
A2
A
(A 3)
A1
pin 1 index
θ
Lp
L
8
1
detail X
w M
bp
e
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (1)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
2.0
0.21
0.05
1.80
1.65
0.25
0.38
0.25
0.20
0.09
6.4
6.0
5.4
5.2
0.65
7.9
7.6
1.25
1.03
0.63
0.9
0.7
0.2
0.13
0.1
1.00
0.55
8
0o
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT338-1
1998 Jun 04
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
94-01-14
95-02-04
MO-150AC
17
o
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm
SOT403-1
E
D
A
X
c
y
HE
v M A
Z
9
16
Q
(A 3)
A2
A
A1
pin 1 index
θ
Lp
L
1
8
detail X
w M
bp
e
0
2.5
5 mm
scale
DIMENSIONS (mm are the original dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (2)
e
HE
L
Lp
Q
v
w
y
Z (1)
θ
mm
1.10
0.15
0.05
0.95
0.80
0.25
0.30
0.19
0.2
0.1
5.1
4.9
4.5
4.3
0.65
6.6
6.2
1.0
0.75
0.50
0.4
0.3
0.2
0.13
0.1
0.40
0.06
8
0o
Notes
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
SOT403-1
1998 Jun 04
REFERENCES
IEC
JEDEC
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
94-07-12
95-04-04
MO-153
18
o
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
74HC/HCT595
SOLDERING
SO, SSOP and TSSOP
Introduction
REFLOW SOLDERING
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
Reflow soldering techniques are suitable for all SO, SSOP
and TSSOP packages.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method.
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(order code 9398 652 90011).
Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
DIP
SOLDERING BY DIPPING OR BY WAVE
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed
5 seconds.
WAVE SOLDERING
Wave soldering can be used for all SO packages. Wave
soldering is not recommended for SSOP and TSSOP
packages, because of the likelihood of solder bridging due
to closely-spaced leads and the possibility of incomplete
solder penetration in multi-lead devices.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
If wave soldering is used - and cannot be avoided for
SSOP and TSSOP packages - the following conditions
must be observed:
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
REPAIRING SOLDERED JOINTS
Apply a low voltage soldering iron (less than 24 V) to the
lead(s) of the package, below the seating plane or not
more than 2 mm above it. If the temperature of the
soldering iron bit is less than 300 °C it may remain in
contact for up to 10 seconds. If the bit temperature is
between 300 and 400 °C, contact may be up to 5 seconds.
1998 Jun 04
• The longitudinal axis of the package footprint must be
parallel to the solder flow and must incorporate solder
thieves at the downstream end.
19
Philips Semiconductors
Product specification
8-bit serial-in/serial or parallel-out shift
register with output latches; 3-state
Even with these conditions:
74HC/HCT595
REPAIRING SOLDERED JOINTS
• Only consider wave soldering SSOP packages that
have a body width of 4.4 mm, that is
SSOP16 (SOT369-1) or SSOP20 (SOT266-1).
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
• Do not consider wave soldering TSSOP packages
with 48 leads or more, that is TSSOP48 (SOT362-1)
and TSSOP56 (SOT364-1).
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
1998 Jun 04
20