GS832018/32/36AGT-xxxV 333 MHz–150 MHz 1.8 V or 2.5 V VDD 1.8 V or 2.5 V I/O 2M x 18, 1M x 32, 1M x 36 36Mb Sync Burst SRAMs 100-Pin TQFP Commercial Temp Industrial Temp Features • FT pin for user-configurable flow through or pipeline operation • Single Cycle Deselect (SCD) operation • 1.8 V or 2.5 V core power supply • 1.8 V or 2.5 V I/O supply • LBO pin for Linear or Interleaved Burst mode • Internal input resistors on mode pins allow floating mode pins • Default to Interleaved Pipeline mode • Byte Write (BW) and/or Global Write (GW) operation • Internal self-timed write cycle • Automatic power-down for portable applications • RoHS-compliant 100-lead TQFP package available Functional Description Applications The GS832018/32/36AGT-xxxV is a 37,748,736-bit high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support. Controls Addresses, data I/Os, chip enables (E1, E2, E3), address burst control inputs (ADSP, ADSC, ADV), and write control inputs (Bx, BW, GW) are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (G) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either ADSP or ADSC inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by ADV. The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (LBO) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance. Flow Through/Pipeline Reads The function of the Data Output register can be controlled by the user via the FT mode pin (Pin 14). Holding the FT mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding FT high places the RAM in Pipeline mode, activating the risingedge-triggered Data Output Register. Byte Write and Global Write Byte write operation is performed by using Byte Write enable (BW) input combined with one or more individual byte write signals (Bx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the Byte Write control inputs. Sleep Mode Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode. Core and Interface Voltages The GS832018/32/36AGT-xxxV operates on a 1.8 V power supply. All input are 1.8 V compatible. Separate output power (VDDQ) pins are used to decouple output noise from the internal circuits and are 1.8 V compatible. Parameter Synopsis Pipeline 3-1-1-1 Flow Through 2-1-1-1 Rev: 1.03 8/2013 tKQ tCycle Curr (x18) Curr (x32/x36) tKQ tCycle Curr (x18) Curr (x32/x36) -333 2.5 3.3 -250 2.5 4.0 -200 3.0 5.0 -150 3.8 6.7 Unit ns ns 365 425 290 345 250 290 215 240 mA mA 4.5 4.5 270 315 5.5 5.5 245 280 6.5 6.5 210 250 7.5 7.5 200 230 ns ns mA mA 1/22 © 2011, GSI Technology GS832018/32/36AGT-xxxV A A E1 E2 NC NC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS832018AGT-xxxV 100-Pin TQFP Pinout NC NC NC VDDQ A NC NC VDDQ VSS NC DQPA DQA DQA VSS VDDQ DQA DQA VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA NC NC VSS VDDQ NC NC NC LBO A A A A A1 A0 NC A VSS VDD A A A A A A A A A VSS NC NC DQB DQB VSS VDDQ DQB DQB FT VDD NC VSS DQB DQB VDDQ VSS DQB DQB DQPB NC VSS VDDQ NC NC NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 2M x 18 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03 8/2013 2/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV A A E1 E2 BD BC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS832032AGT-xxxV 100-Pin TQFP Pinout NC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC NC DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA NC LBO A A A A A1 A0 NC A VSS VDD A A A A A A A A A FT VDD NC VSS DQD DQD VDDQ VSS DQD3 DQD DQD DQD VSS VDDQ DQD DQD NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 1M x 32 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03 8/2013 3/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV A A E1 E2 BD BC BB BA E3 VDD VSS CK GW BW G ADSC ADSP ADV A A GS832036AGT-xxxV 100-Pin TQFP Pinout DQPC DQC DQC VDDQ VSS DQC DQC DQC DQC VSS VDDQ DQC DQC DQPB DQB DQB VDDQ VSS DQB DQB DQB DQB VSS VDDQ DQB DQB VSS NC VDD ZZ DQA DQA VDDQ VSS DQA DQA DQA DQA VSS VDDQ DQA DQA DQPA LBO A A A A A1 A0 NC A VSS VDD A A A A A A A A A FT VDD NC VSS DQD DQD VDDQ VSS DQD3 DQD DQD DQD VSS VDDQ DQD DQD DQPD 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 1M x 36 10 71 Top View 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Note: Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating. Rev: 1.03 8/2013 4/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV TQFP Pin Description Symbol Type Description A 0, A 1 I Address field LSBs and Address Counter preset Inputs A I Address Inputs DQA DQB DQC DQD I/O Data Input and Output pins BW I Byte Write—Writes all enabled bytes; active low BA , BB I Byte Write Enable for DQA, DQB Data I/Os; active low BC , BD I Byte Write Enable for DQC, DQD Data I/Os; active low CK I Clock Input Signal; active high GW I Global Write Enable—Writes all bytes; active low E 1, E 3 I Chip Enable; active low E2 I Chip Enable; active high G I Output Enable; active low ADV I Burst address counter advance enable; active low ADSP, ADSC I Address Strobe (Processor, Cache Controller); active low ZZ I Sleep Mode control; active high FT I Flow Through or Pipeline mode; active low LBO I Linear Burst Order mode; active low VDD I Core power supply VSS I I/O and Core Ground VDDQ I Output driver power supply NC Rev: 1.03 8/2013 No Connect 5/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV GS832018/32/36AGT-xxxV Block Diagram Register A0–An D Q A0 A0 D0 Q0 A1 A1 D1 Q1 Counter Load A LBO ADV Memory Array CK ADSC ADSP Q D Register GW BW BA D Q Register D 36 Q BB 36 4 Register D Q D Q D Q Register Register D Q Register BC BD Register D Q Register E1 E2 E3 D Q Register D Q FT G ZZ DCD=1 Power Down DQx1–DQx9 Control Note: Only x36 version shown for simplicity. Rev: 1.03 8/2013 6/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Mode Pin Functions Mode Name Pin Name Burst Order Control LBO Output Register Control FT Power Down Control ZZ State Function L Linear Burst H Interleaved Burst L Flow Through H or NC Pipeline L or NC Active H Standby, IDD = ISB Note: There is a pull-up device on the FT pin and a pull-down device on the ZZ pin , so this input pin can be unconnected and the chip will operate in the default states as specified in the above tables. Burst Counter Sequences Linear Burst Sequence Interleaved Burst Sequence A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] A[1:0] 1st address 00 01 10 11 1st address 00 01 10 11 2nd address 01 10 11 00 2nd address 01 00 11 10 3rd address 10 11 00 01 3rd address 10 11 00 01 4th address 11 00 01 10 4th address 11 10 01 00 Note: The burst counter wraps to initial state on the 5th clock. Rev: 1.03 8/2013 Note: The burst counter wraps to initial state on the 5th clock. 7/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Byte Write Truth Table Function GW BW BA BB BC BD Notes Read H H X X X X 1 Write No Bytes H L H H H H 1 Write byte a H L L H H H 2, 3 Write byte b H L H L H H 2, 3 Write byte c H L H H L H 2, 3, 4 Write byte d H L H H H L 2, 3, 4 Write all bytes H L L L L L 2, 3, 4 Write all bytes L X X X X X Notes: 1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs, BA, BB, BC and/or BD. 2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes. 3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs. 4. Bytes “C” and “D” are only available on the x32 and x36 versions. Rev: 1.03 8/2013 8/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Synchronous Truth Table Operation Address Used State Diagram Key E1 E2 E3 ADSP ADSC ADV W DQ3 Deselect Cycle, Power Down None X L X H X L X X High-Z Deselect Cycle, Power Down None X L L X X L X X High-Z Deselect Cycle, Power Down None X L X H L X X X High-Z Deselect Cycle, Power Down None X L L X L X X X High-Z Deselect Cycle, Power Down None X H X X X L X X High-Z Read Cycle, Begin Burst External R L H L L X X X Q Read Cycle, Begin Burst External R L H L H L X F Q Write Cycle, Begin Burst External W L H L H L X T D Read Cycle, Continue Burst Next CR X X X H H L F Q Read Cycle, Continue Burst Next CR H X X X H L F Q Write Cycle, Continue Burst Next CW X X X H H L T D Write Cycle, Continue Burst Next CW H X X X H L T D Read Cycle, Suspend Burst Current X X X H H H F Q Read Cycle, Suspend Burst Current H X X X H H F Q Write Cycle, Suspend Burst Current X X X H H H T D Write Cycle, Suspend Burst Current H X X X H H T D Notes: 1. X = Don’t Care, H = High, L = Low 2. E = T (True) if E2 = 1 and E1 = E3 = 0; E = F (False) if E2 = 0 or E1 = 1 or E3 = 1 3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding. 4. G is an asynchronous input. G can be driven high at any time to disable active output drivers. G low can only enable active drivers (shown as “Q” in the Truth Table above). 5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity. 6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See BOLD items above. 7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above. Rev: 1.03 8/2013 9/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Simplified State Diagram X Deselect W R Simple Burst Synchronous Operation Simple Synchronous Operation W X R R First Write First Read CR CW W X CR R R X Burst Write Burst Read X CR CW CR Notes: 1. The diagram shows only supported (tested) synchronous state transitions. The diagram presumes G is tied low. 2. The upper portion of the diagram assumes active use of only the Enable (E1, E2, and E3) and Write (BA, BB, BC, BD, BW, and GW) control inputs, and that ADSP is tied high and ADSC is tied low. 3. The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and assumes ADSP is tied high and ADV is tied low. Rev: 1.03 8/2013 10/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Simplified State Diagram with G X Deselect W R W X R R First Write CR CW W CW W X First Read X CR R Burst Write R CR CW W Burst Read X CW CR Notes: 1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of G. 2. Use of “Dummy Reads” (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passing through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles. 3. Transitions shown in gray tone assume G has been pulsed high long enough to turn the RAM’s drivers off and for incoming data to meet Data Input Set Up Time. Rev: 1.03 8/2013 11/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Absolute Maximum Ratings (All voltages reference to VSS) Symbol Description Value Unit VDD Voltage on VDD Pins –0.5 to 4.6 V VDDQ Voltage on VDDQ Pins –0.5 to VDD V VI/O Voltage on I/O Pins –0.5 to VDD +0.5 ( 4.6 V max.) V VIN Voltage on Other Input Pins –0.5 to VDD +0.5 ( 4.6 V max.) V IIN Input Current on Any Pin +/–20 mA IOUT Output Current on Any I/O Pin +/–20 mA PD Package Power Dissipation 1.5 W TSTG Storage Temperature –55 to 125 oC TBIAS Temperature Under Bias –55 to 125 oC Note: Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component. Power Supply Voltage Ranges (1.8 V/2.5 V Version) Parameter Symbol Min. Typ. Max. Unit 1.8 V Supply Voltage VDD1 1.7 1.8 2.0 V 2.5 V Supply Voltage VDD2 2.3 2.5 2.7 V 1.8 V VDDQ I/O Supply Voltage VDDQ1 1.7 1.8 VDD V 2.5 V VDDQ I/O Supply Voltage VDDQ2 2.3 2.5 VDD V Parameter Symbol Min. Typ. Max. Unit VDD Input High Voltage VIH 0.6*VDD — VDD + 0.3 V VDD Input Low Voltage VIL –0.3 — 0.3*VDD V VDDQ2 & VDDQ1 Range Logic Levels Notes: 1. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. 2. VIH (max) must be met for any instantaneous value of VDD. 3. VDD needs to power-up before or at the same time as VDDQ to make sure VIH (max) is not involved. Rev: 1.03 8/2013 12/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Operating Temperature Parameter Symbol Min. Typ. Max. Unit Junction Temperature (Commercial Range Versions) TJ 0 25 85 C Junction Temperature (Industrial Range Versions)* TJ –40 25 100 C Note: * The part numbers of Industrial Temperature Range versions end with the character “I”. Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device. Thermal Impedance Package Test PCB Substrate JA (C°/W) Airflow = 0 m/s JA (C°/W) Airflow = 1 m/s JA (C°/W) Airflow = 2 m/s JB (C°/W) JC (C°/W) 100 TQFP 4-layer 28.7 23.8 22.3 15.1 6.5 Notes: 1. Thermal Impedance data is based on a number of of samples from mulitple lots and should be viewed as a typical number. 2. Please refer to JEDEC standard JESD51-6. 3. The characteristics of the test fixture PCB influence reported thermal characteristics of the device. Be advised that a good thermal path to the PCB can result in cooling or heating of the RAM depending on PCB temperature. Undershoot Measurement and Timing Overshoot Measurement and Timing VIH 20% tKC VDD + 2.0 V VSS 50% 50% VDD VSS – 2.0 V 20% tKC VIL Note: Input Under/overshoot voltage must be –2 V > Vi < VDDn+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC. Capacitance (TA = 25oC, f = 1 MHZ, VDD = 2.5 V) Parameter Symbol Test conditions Typ. Max. Unit Input Capacitance CIN VIN = 0 V 8 10 pF Input/Output Capacitance CI/O VOUT = 0 V 12 14 pF Note: These parameters are sample tested. Rev: 1.03 8/2013 13/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV AC Test Conditions Parameter Conditions Input high level VDD – 0.2 V Input low level 0.2 V Input slew rate 1 V/ns Input reference level VDD/2 Output reference level VDDQ/2 Output load Fig. 1 Figure 1 Output Load 1 DQ 30pF* 50 VDDQ/2 * Distributed Test Jig Capacitance Notes: 1. Include scope and jig capacitance. 2. Test conditions as specified with output loading as shown in Fig. 1 unless otherwise noted. 3. Device is deselected as defined by the Truth Table. DC Electrical Characteristics Parameter Symbol Test Conditions Min Max Input Leakage Current (except mode pins) IIL VIN = 0 to VDD –1 uA 1 uA FT Input Current IIN VDD VIN 0 V –100 uA 100 uA Output Leakage Current IOL Output Disable, VOUT = 0 to VDD –1 uA 1 uA 1.8 V Output High Voltage VOH1 IOH = –4 mA, VDDQ = 1.7 V VDDQ – 0.4 V — 2.5 V Output High Voltage VOH2 IOH = –8 mA, VDDQ = 2.375 V 1.7 V — 1.8 V Output Low Voltage VOL1 IOL = 4 mA — 0.4 V 2.5 V Output Low Voltage VOL2 IOL = 8 mA — 0.4 V Rev: 1.03 8/2013 14/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology Rev: 1.03 8/2013 — — ZZ VDD – 0.2 V Device Deselected; All other inputs VIH or VIL Operating Current Standby Current Deselect Current Flow Through IDD IDD 100 100 55 ISB Flow Through Pipeline 55 ISB Pipeline 330 35 270 45 355 70 120 120 75 75 265 25 350 35 290 45 375 70 –40 to 85°C -333 0 to 70°C 245 25 IDD IDDQ IDD IDDQ IDD IDDQ IDD Symbol IDDQ Flow Through Pipeline Flow Through Pipeline Mode Notes: 1. IDD and IDDQ apply to any combination of VDD and VDDQ operation. 2. All parameters listed are worst case scenario. (x18) Device Selected; All other inputs VIH or VIL Output open (x32/ x36) Test Conditions Parameter Operating Currents 100 100 55 55 225 20 265 25 240 40 295 50 0 to 70°C 120 120 75 75 245 20 285 25 260 40 315 50 –40 to 85°C -250 100 100 55 55 195 15 230 20 215 35 250 40 0 to 70°C 120 120 75 75 215 15 250 20 235 35 270 40 –40 to 85°C -200 100 100 55 55 185 15 200 15 200 30 210 30 0 to 70°C 120 120 75 75 205 15 220 15 220 30 230 30 –40 to 85°C -150 mA mA mA mA mA mA mA mA Unit GS832018/32/36AGT-xxxV Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. 15/22 © 2011, GSI Technology GS832018/32/36AGT-xxxV AC Electrical Characteristics Pipeline Flow Through Parameter Symbol Clock Cycle Time -333 -250 -200 -150 Unit Min Max Min Max Min Max Min Max tKC 3.0 — 4.0 — 5.0 — 6.7 — ns Clock to Output Valid tKQ — 3.0 — 3.0 — 3.0 — 3.8 ns Clock to Output Invalid tKQX 1.5 — 1.5 — 1.5 — 1.5 — ns Clock to Output in Low-Z tLZ1 1.5 — 1.5 — 1.5 — 1.5 — ns Setup time tS 1.0 — 1.2 — 1.4 — 1.5 — ns Hold time tH 0.1 — 0.2 — 0.4 — 0.5 — ns Clock Cycle Time tKC 5.0 — 5.5 — 6.5 — 7.5 — ns Clock to Output Valid tKQ — 5.0 — 5.5 — 6.5 — 7.5 ns Clock to Output Invalid tKQX 2.0 — 2.0 — 2.0 — 2.0 — ns Clock to Output in Low-Z tLZ1 2.0 — 2.0 — 2.0 — 2.0 — ns Setup time tS 1.3 — 1.5 — 1.5 — 1.5 — ns Hold time tH 0.3 — 0.5 — 0.5 — 0.5 — ns Clock HIGH Time tKH 1.0 — 1.3 — 1.3 — 1.5 — ns Clock LOW Time tKL 1.2 — 1.5 — 1.5 — 1.7 — ns Clock to Output in High-Z tHZ1 1.5 2.5 1.5 2.5 1.5 3.0 1.5 3.8 ns G to Output Valid tOE — 2.5 — 2.5 — 3.0 — 3.8 ns G to output in Low-Z tOLZ1 0 — 0 — 0 — 0 — ns G to output in High-Z tOHZ1 — 2.5 — 2.5 — 3.0 — 3.8 ns ZZ setup time tZZS2 5 — 5 — 5 — 5 — ns ZZ hold time tZZH2 1 — 1 — 1 — 1 — ns ZZ recovery tZZR 20 — 20 — 20 — 20 — ns Notes: 1. These parameters are sampled and are not 100% tested. 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above. Rev: 1.03 8/2013 16/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Pipeline Mode Timing Begin Read A Cont Cont Single Read Deselect Write B Read C Read C+1 Read C+2 Read C+3 Cont Single Write tKL tKH tKC Deselect Burst Read CK ADSP tS tH ADSC initiated read ADSC tS tH ADV tS tH A0–An A B C tS GW tS tH BW tH tS Ba–Bd tS Deselected with E1 tH E1 masks ADSP E1 tS tH E2 and E3 only sampled with ADSP and ADSC E2 tS tH E3 G tS tOE DQa–DQd Rev: 1.03 8/2013 tOHZ Q(A) tKQ tH D(B) tKQX tLZ tHZ Q(C) 17/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. Q(C+1) Q(C+2) Q(C+3) © 2011, GSI Technology GS832018/32/36AGT-xxxV Flow Through Mode Timing Begin Read A Cont Cont Write B Read C Read C+1 Read C+2 Read C+3 Read C Cont Deselect tKL tKH tKC CK ADSP Fixed High tS tH tS tH initiated read ADSC ADSC tS tH ADV tS tH A0–An A B C tS tH GW tS tH BW tS tH Ba–Bd tS Deselected with E1 tH E1 tS tH E2 and E3 only sampled with ADSC E2 tS tH E3 G tH tS tOE DQa–DQd Rev: 1.03 8/2013 tOHZ Q(A) D(B) tKQ tLZ tHZ tKQX Q(C) Q(C+1) Q(C+2) 18/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. Q(C+3) Q(C) © 2011, GSI Technology GS832018/32/36AGT-xxxV Sleep Mode During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after 2 cycles of wake up time. Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to ISB2. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, ISB2 is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode. Sleep Mode Timing Diagram tKH tKC tKL CK Setup Hold ADSP ADSC tZZR tZZS tZZH ZZ Rev: 1.03 8/2013 19/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Description A1 Standoff 0.05 0.10 0.15 A2 Body Thickness 1.35 1.40 1.45 b Lead Width 0.20 0.30 0.40 c Lead Thickness 0.09 — 0.20 D Terminal Dimension 21.9 22.0 22.1 D1 Package Body 19.9 20.0 20.1 E Terminal Dimension 15.9 16.0 16.1 E1 Package Body 13.9 14.0 14.1 e Lead Pitch — 0.65 — L Foot Length 0.45 0.60 0.75 L1 Lead Length — 1.00 — Y Coplanarity Lead Angle D D1 Symbol Pin 1 TQFP Package Drawing (Package T) L c L1 Min. Nom. Max e b A1 A2 0.10 Y 0 — 7 E1 E Notes: 1. All dimensions are in millimeters (mm). 2. Package width and length do not include mold protrusion. Rev: 1.03 8/2013 20/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV Ordering Information for GSI Synchronous Burst RAMs Org Part Number1 Type Voltage Option Package Speed2 (MHz/ns) TJ3 2M x 18 GS832018AGT-333V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 2M x 18 GS832018AGT-250V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 2M x 18 GS832018AGT-200V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 2M x 18 GS832018AGT-150V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 1M x 32 GS832032AGT-333V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 1M x 32 GS832032AGT-250V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 1M x 32 GS832032AGT-200V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 1M x 32 GS832032AGT-150V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 1M x 36 GS832036AGT-333V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 C 1M x 36 GS832036AGT-250V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 C 1M x 36 GS832036AGT-200V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 C 1M x 36 GS832036AGT-150V Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 C 2M x 18 GS832018AGT-333IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 2M x 18 GS832018AGT-250IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 2M x 18 GS832018AGT-200IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 2M x 18 GS832018AGT-150IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I 1M x 32 GS832032AGT-333IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 1M x 32 GS832032AGT-250IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 1M x 32 GS832032AGT-200IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 1M x 32 GS832032AGT-150IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I 1M x 36 GS832036AGT-333IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 333/5.0 I 1M x 36 GS832036AGT-250IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 250/5.5 I 1M x 36 GS832036AGT-200IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 200/6.5 I 1M x 36 GS832036AGT-150IV Synchronous Burst 1.8 V or 2.5 V RoHS-compliant TQFP 150/7.5 I Notes: 1. Customers requiring delivery in Tape and Reel should add the character “T” to the end of the part number. Example: GS832018AGT-150IT. 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow Through mode-selectable by the user. 3. C = Commercial Temperature Range. I = Industrial Temperature Range. 4. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings. Rev: 1.03 8/2013 21/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology GS832018/32/36AGT-xxxV 36Mb Sync SRAM Datasheet Revision History File Name Types of Changes Format or Content Page;Revisions;Reason • Creation of new datasheet • (Rev1.00a: Removed all non-RoHS-compliant TQFP references) 8320xxA_V_r1 8320xxA_V_r1_01 Content • Updated Absolute Maximum Ratings • Added thermal information 8320xxA_V_r1_02 Content • Updated to reflect MP status 8320xxA_V_r1_03 Content • Updated Op current numbers Rev: 1.03 8/2013 22/22 Specifications cited are subject to change without notice. For latest documentation see http://www.gsitechnology.com. © 2011, GSI Technology