2.5V/3.3V DUAL 1:5 DIFFERENTIAL LVECL/LVPECL/HSTL ...

2.5V/3.3V DUAL 1:5 DIFFERENTIAL
LVECL/LVPECL/HSTL CLOCK DRIVER
Micrel, Inc.
Precision Edge®
SY100EP210U
Precision
Edge®
SY100EP210U
FEATURES
■ 2.5V and 3.3V power supply options
Precision Edge®
■ Guaranteed AC parameters over temperature:
• fMAX > 3.0GHz
• < 25ps within-device skew
• < 250ps tr / tf
• < 380ps propagation delay (differential)
DESCRIPTION
The SY100EP210U is a high-speed, precision low skew
1-to-5 dual differential clock driver. HSTL inputs can be
used when the EP210U is operating in PECL mode.
The EP210U specifically guarantees critical AC
parameters over temperature and voltage. Optimal design,
layout, and processing minimize skew within device and
from device-to-device.
The SY100EP210U, as with most other ECL devices,
can be operated from a positive VCC supply in PECL mode.
This allows the EP210U to be used for high performance
clock distribution in +3.3V or +2.5V systems. Single-ended
input operation is limited to a VCC ≥ 3.0V in PECL mode, or
VEE ≤ –3.0V in ECL mode.
Designers can take advantage of the EP210U’s
performance to distribute low skew clocks across the
backplane or to multiple points on a board.
■ Wide temperature range: –40°C to +85°C
■ Differential design
■ VBB output
■ Fully compatible with industry standard 100K I/O
levels
■ Available in 32-pin TQFP Package
BLOCK DIAGRAM
Qa0
Qb0
/Qa0
/Qb0
Qa1
CLKa
75kΩ
/CLKa
VEE
/Qa1
Qb1
CLKb
75kΩ
VEE
/Qb1
/CLKb
75kΩ
VEE VCC 75kΩ
75kΩ
Qa2
VCC VEE 75kΩ
/Qa2
Qb2
/Qb2
Qa3
Qb3
/Qa3
/Qb3
Qa4
Qb4
/Qa4
VBB
/Qb4
Precision Edge is a registered trademark of Micrel, Inc.
M9999-120505
[email protected] or (408) 955-1690
Rev.: D
1
Amendment: /0
Issue Date: December 2005
Precision Edge®
SY100EP210U
Micrel, Inc.
Ordering Information(1)
VCC
Qa2
/Qa2
Qa1
/Qa1
Qa0
/Qa0
VCC
PACKAGE/ORDERING INFORMATION
Package
Type
Operating
Range
Package
Marking
Lead
Finish
SY100EP210UTC
T32-1
Commercial
XEP210U
Sn-Pb
Qa4
SY100EP210UTCTR(2)
T32-1
Commercial
XEP210U
Sn-Pb
/Qa4
SY100EP210UTG(3)
T32-1
Industrial
XEP210U with
Pb-Free bar-line indicator
Pb-Free
NiPdAu
SY100EP210UTGTR(2, 3)
T32-1
Industrial
XEP210U with
Pb-Free bar-line indicator
Pb-Free
NiPdAu
Part Number
32 31 30 29 28 27 26 25
24
1
Qa3
NC
2
23
/Qa3
22
21
20
Qb0
VCC
CLKa
3
/CLKa
4
VBB
5
Top View
TQFP
T32-1
8
17
9 10 11 12 13 14 15 16
/Qb1
VCC
/Qb3
Qb2
VEE
/Qb2
Qb1
Qb3
/Qb0
18
Qb4
19
7
/Qb4
6
VCC
CLKb
/CLKb
Notes:
1. Contact factory for die availability. Dice are guaranteed at TA = 25°C, DC Electricals only.
2. Tape and Reel.
3. Pb-Free package is recommended for new designs.
32-Pin TQFP (T32-1)
PIN NAMES
Pin
Function
CLKa, /CLKa
LVPECL, LVECL, HSTL Clock Input: CLKa input includes a 75kΩ pull-down. Default is LOW if left floating.
/CLKa includes both pull-up and pull-down resistors. Default condition is VCC/2.
CLKb, /CLKb
LVPECL, LVECL, HSTL Clock Input: CLKb input includes a 75kΩ pull-down. Default is LOW if left floating.
/CLKb includes both pull-up and pull-down resistors. Default condition is VCC/2.
Qn0:4, /Qn0:4
LVPECL or LVECL Outputs: Terminate to VCC–2V. (see “Termination” section)
VBB
Reference Voltage for Single-Ended Inputs: It provides the switching reference for the input differential amplifier.
When used, bypass with a 0.0µF capacitor to the most positive reference (usually VCC) as shown in Figure 3.
VCC
Positive Power Supply: For LVPECL operation, connect VCC to 3.3V or 2.5V. For LVECL operation, connect to
GND. Bypass with 0.1µF//0.01µF low ESR capacitors.
VEE
Negative Power Supply: For LVPECL operation, connect to GND. For LVECL operation, connect to –3.3V or
–2.5V.
M9999-120505
[email protected] or (408) 955-1690
2
Precision Edge®
SY100EP210U
Micrel, Inc.
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Rating
Value
Unit
6.0
V
–6.0 to 0
+6.0 to 0
V
V
50
100
mA
±0.5 to 0
mA
+260
°C
VCC — VEE
Power Supply Voltage
VIN
Input Voltage (VCC = 0V, VIN not more negative than VEE)
Input Voltage (VEE = 0V, VIN not more positive than VCC)
IOUT
Output Current
IBB
VBB Sink/Source Current(2)
TLEAD
Lead Temperature (soldering, 20sec.)
TA
Operating Temperature Range
–40 to +85
°C
Tstore
Storage Temperature Range
–65 to +150
°C
θJA
Package Thermal Resistance
(Junction-to-Ambient)
50
42
°C/W
θJC
Package Thermal Resistance
(Junction-to-Case)
20
°C/W
–Continuous
–Surge
–Still-Air
–500lfpm
Note 1.
Permanent device damage may occur if absolute maximum ratings are exceeded. This is a stress rating only and functional operation is not
implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to absolute maximum ratlng conditions
for extended periods may affect device reliability.
Note 2.
Use for inputs of same package only.
DC ELECTRICAL CHARACTERISTICS(1)
TA = –40°C
Symbol
Parameter
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
2.37
–2.37
—
—
3.8
–3.8
2.37
–2.37
—
—
3.8
–3.8
2.37
–2.37
—
—
3.8
–3.8
V
Condition
VCC
Power Supply
Voltage
IEE
Internal Supply Current
—
70
90
—
70
90
—
70
90
mA
IIH
Input HIGH Current
—
—
150
—
—
150
—
—
150
µA
VIN = VIH
IIL
Input LOW Current
CLKa, CLKb
/CLKa, /CLKb
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
0.5
–150
—
—
—
—
µA
µA
VIN = 0V
VIN = 0V
—
—
—
—
2
—
—
—
—
pF
CIN
Note 1.
(LVPECL)
(LVECL)
TA = +25°C
Input Capacitance
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
M9999-120505
[email protected] or (408) 955-1690
3
Precision Edge®
SY100EP210U
Micrel, Inc.
3.3V LVPECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 3.3V ±10%
TA = –40°C
Symbol
TA = +25°C
TA = +85°C
Parameter
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
VIH
Input HIGH Voltage
2135
—
2420
2135
—
2420
2135
—
2420
mV
VIL
Input LOW Voltage
1490
—
1675
1490
—
1675
1490
—
1675
mV
VOL
Output LOW Voltage
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV 50Ω to VCC –2V
VOH
Output HIGH Voltage
2155
2280
2405
2155
2280
2405
2155
2280
2405
mV 50Ω to VCC –2V
1775
1875
1975
1775
1875
1975
1775
1875
1975
mV
1.2
—
VCC
1.2
—
VCC
1.2
—
VCC
mV
Voltage(2)
VBB
Output Reference
VIHCMR
Input HIGH Voltage
Common Mode Range(3)
Note 1.
Condition
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output varies
1:1 with VCC.
Note 2.
Single-ended input operation is limited to VCC ≥ 3.0V in LVPECL mode. VBB reference varies 1:1 with VCC.
Note 3.
The VIHCMR (min) varies with VEE. VIHCMR (max) varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the
differential input signal.
2.5V LVPECL DC ELECTRICAL CHARACTERISTICS(1)
VCC = 2.5V ±10%, VEE = 0V
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
Condition
VOL
Output LOW Voltage
555
680
895
555
680
895
555
680
895
mV 50Ω to VCC –2V
VOH
Output HIGH Voltage
1355
1480
1605
1355
1480
1605
1355
1480
1605
mV 50Ω to VCC –2V
1.2
—
VCC
1.2
—
VCC
1.2
—
VCC
VIHCMR
Voltage(2)
Input HIGH
Common Mode Range
V
Note 1.
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained. Input and output varies
1:1 with VCC.
Note 2.
The VIHCMR (min) varies with VEE. VIHCMR (max) varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the
differential input signal.
M9999-120505
[email protected] or (408) 955-1690
4
Precision Edge®
SY100EP210U
Micrel, Inc.
LVECL DC ELECTRICAL CHARACTERISTICS(1)
VEE = –2.375V to –3.8V; VCC = 0V
TA = –40°C
Symbol
Max.
Min.
Typ.
Typ.
Max.
Unit
Input LOW Voltage
(Single-Ended)
–1810
—
–1625 –1810
—
–1625 –1810
—
–1625
mV
VIH
Input HIGH Voltage
(Single-Ended)
–1165
—
–0880 –1165
—
–0880 –1165
—
–0880
mV
VOL
Output LOW Voltage
–1945 –1820 –1695 –1945 –1820 –1695 –1945 –1820 –1695
mV
50Ω to
VCC –2V
VOH
Output HIGH Voltage
–1145 –1020 –0895 –1145 –1020 –0895 –1145 –1020 –0895
mV
50Ω to
VCC –2V
VBB
Output Reference Voltage(2) –1525 –1425 –1325 –1525 –1425 –1325 –1525 –1425 –1325
mV
VIHCMR
Input HIGH Voltage
Common Mode Range(3)
VEE +1.2
Min.
0.0
Typ.
TA = +85°C
VIL
Note 1.
Parameter
TA = +25°C
Max.
VEE +1.2
0.0
Min.
VEE +1.2
Condition
V
0.0
100KEP circuits are designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. The
circuit is in a test socket or mounted on a printed circuit board and traverse airflow greater than 500lfpm is maintained.
Note 2.
Single-ended input operation is limited to VEE ≤ –3.0V in ECL/LVECL mode. VBB reference varies 1:1 with VCC.
Note 3.
The VIHCMR (min) varies with VEE. The VIHCMR range is referenced to the most positive side of the differential input signal.
HSTL DC ELECTRICAL CHARACTERISTICS
VCC = 2.375V to 3.8V; VEE = 0V
TA = –40°C
Symbol
TA = +25°C
TA = +85°C
Parameter
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
VIH
VIL
Input HIGH Voltage
1200
—
—
1200
—
—
1200
—
—
mV
Input LOW Voltage
—
—
400
—
—
400
—
—
400
mV
VX
Input Crossover Voltage
680
—
900
680
—
900
680
—
900
mV
M9999-120505
[email protected] or (408) 955-1690
5
Condition
Precision Edge®
SY100EP210U
Micrel, Inc.
AC ELECTRICAL CHARACTERISTICS
(LVPECL) VCC = 2.375 to 3.8V, VEE = 0V; (LVECL) VEE = –2.375V to –3.8V, VCC = 0V
TA = –40°C
Symbol
Parameter
TA = +25°C
TA = +85°C
Min.
Typ.
Max.
Min.
Typ.
Max.
Min.
Typ.
Max.
Unit
fMAX
Maximum Frequency(1)
HSTL/LVPECL
3.0
—
—
3.0
—
—
3.0
—
—
GHz
tPD
Propagation Delay(2)
220
300
380
220
300
380
220
300
380
ps
Within-Device Skew
—
20
25
—
20
25
—
20
25
ps
Skew(4)
—
85
160
—
85
160
—
85
160
ps
—
0.2
<1
—
0.2
<1
—
0.2
<1
psRMS
(3)
tSKEW
Part-to-Part
tJITTER
Cycle-to-Cycle Jitter (rms)
VPP
Minimum Input Swing(5)
150
800
1200
150
800
1200
150
800
1200
mV
tr, tr
Output Rise/Fall Times
(20% to 80%)
100
150
250
100
150
250
100
150
250
ps
Note 1.
fMAX guaranteed for functionality only (toggel frequency).
Note 2.
CLK 0 to Bank A and CLK 1 to Bank B; Differential. Maximum propagation delay is worst-case, over temperature and voltage.
Note 3.
Skew is measured between outputs under identical transitions.
Note 4.
Measured for same transitions.
Note 5.
See “Timing Waveform.”
TIMING WAVEFORM
CLKa/b
150mV to 1200mV
/CLKa/b
M9999-120505
[email protected] or (408) 955-1690
6
Condition
Precision Edge®
SY100EP210U
Micrel, Inc.
TYPICAL CHARACTERISTICS
Frequency Response
vs. Output Amplitude
Frequency Response
vs. Output Amplitude
900
FREQUENCY (MHz)
7
4000
3500
3000
200
0
FREQUENCY (MHz)
M9999-120505
[email protected] or (408) 955-1690
300
100
4000
3500
3000
2500
2000
1500
0
100
1000
200
400
2500
300
500
2000
400
600
1500
500
700
1000
600
VSUP = 3.3V
VDIFFIN = 800mV
800
500
700
OUTPUT AMPLITUDE (mV)
VSUP = 2.5V
VDIFFIN = 800mV
800
500
OUTPUT AMPLITUDE (mV)
900
Precision Edge®
SY100EP210U
Micrel, Inc.
TERMINATION RECOMMENDATIONS
+3.3V
+3.3V
ZO = 50Ω
R1
130Ω
R1
130Ω
+3.3V
R2
82Ω
R2
82Ω
Vt = VCC –2V
ZO = 50Ω
Figure 1. Parallel Termination–Thevenin Equivalent
Note 1.
For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω.
+3.3V
+3.3V
Z = 50Ω
Z = 50Ω
50Ω
50Ω
“source”
“destination”
Rb
46Ω to 50Ω
Figure 2. Three-Resistor “Y–Termination”
Note 1.
Power-saving alternative, Thevenin termination.
Note 2.
Place termination resistors as close to destination inputs as possible.
Note 3.
Rb resistor sets the DC bias voltage, equal to Vt.
+3.3V
+3.3V
+3.3V
R1
130Ω
Q
R1
130Ω
ZO = 50Ω
+3.3V
50Ω
/Q
VBB
Vt = VCC –2V
R2
82Ω
0.01µF
R2
82Ω
+3.3V
Figure 3. Terminating Unused I/O
Note 1.
Unused output (/Q) must be terminated to balance the output.
Note 2.
Micrel's differential I/O logic devices include a VBB reference pin .
Note 3.
Connect unused input through 50Ω to VBB. Bypass with a 0.01µF capacitor to GND.
Note 4.
For +2.5V systems: R1 = 250Ω, R2 = 62.5Ω.
M9999-120505
[email protected] or (408) 955-1690
8
Precision Edge®
SY100EP210U
Micrel, Inc.
32-PIN THIN QUAD FLATPACK (T32-1)
Rev. 01
MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
+ 1 (408) 944-0800
FAX
+ 1 (408) 474-1000
WEB
USA
http://www.micrel.com
The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2005 Micrel, Incorporated.
M9999-120505
[email protected] or (408) 955-1690
9