

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN89610 PSoC 4 and PSoC 5LP ARM Cortex Code Optimization.pdf

		
				 AN89610
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Authors: Mark Ainsworth, Asha Ganesan, Mahesh Balan, Keith Mikoleit
Associated Project: No
Associated Part Family: All PSoC 4 and PSoC 5LP Parts
Software Version: PSoC Creator™ 3.0
Related Documents: For a complete list, click here.
To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/go/AN89610.
®
AN89610 shows how to optimize C and assembler code for the ARM Cortex CPUs in PSoC 4 and PSoC 5LP. Coding
techniques exist for improved CPU performance and effective use of the PSoC memory architecture, which can lead to
increased efficiency and reduced power consumption. This application note covers both the gcc and Keil Microcontroller
Development Kit (MDK) C compilers supported by PSoC Creator™.
Contents
1
2
3
4
5
6
7
8
9
Introduction ...2
PSoC 4 and PSoC 5LP Architectures3
2.1 Register Set ..3
2.2 Address Map ...4
2.3 Interrupts ...7
Compiler General Topics ..8
3.1 Compiler Predefined Macros...............................8
3.2 Viewing Compiler Output8
3.3 Compiler Optimizations9
3.4 Attributes ...9
Accessing Variables ... 10
4.1 Global and Static Variables 10
4.2 Automatic Variables .. 11
4.3 Function Arguments and Result 11
4.4 LDR and STR instructions................................. 12
Mixing C and Assembler Code 13
5.1 Syntax ... 13
5.2 Automatic Variables .. 14
5.3 Global and Static Variables 15
5.4 Function Arguments .. 16
Special-Function Instructions.................................. 17
6.1 Saturation Instructions 17
6.2 Intrinsic Functions ... 18
6.3 Assembler ... 19
Packed and Unpacked Structures 19
Compiler Libraries .. 21
Placing Code and Variables 23
www.cypress.com
9.1 Linker Script Files ... 23
9.2 Placement Procedure 27
9.3 Example .. 29
9.4 General Considerations 29
9.5 EMIF Considerations (PSoC 5LP Only) 30
10 Cortex-M3 Bit Band (PSoC 5LP Only) 31
11 DMA Addresses (PSoC 5LP only) 32
12 Summary .. 32
12.1
Use All of the Resources in Your PSoC......... 33
13 Related Documents .. 34
13.1
Application Notes ... 34
13.2
C Documentation ... 34
13.3
ARM Cortex Documentation 34
A
Appendix A: Compiler Output Details 35
A.1
Assembler Examples, gcc for Cortex-M3 35
A.2
Assembler Examples, gcc for Cortex-M0 42
A.3
Assembler Examples, MDK for Cortex-M3 49
A.4
Assembler Examples, MDK for Cortex-M0 54
A.5
Compiler Test Program.................................. 60
Document History.. 64
Worldwide Sales and Design Support 65
Products .. 65
PSoC Solutions ... 65
Cypress Developer Community....................................... 65
Technical Support ... 65
Document No. 001-89610 Rev. *A
1
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
1
Introduction
The ARM Cortex CPUs in the PSoC 4 and PSoC 5LP devices are designed to implement C code in a highly efficient
manner. Thus, most of the time, you will not need any special knowledge to do C programming for PSoC 4 or
PSoC 5LP. This application note helps you to solve more advanced, unique problems, typically around:

Fitting an application into a small amount of flash or SRAM
Time-constrained applications, that is, maximizing code speed and efficiency
A number of methods are provided to solve these types of problems.
This application note assumes that you know how to program embedded applications in the C language. Some
knowledge of the gcc (GNU Compiler Collection) or Keil MDK (Microcontroller Development Kit) C compiler is
recommended. Knowledge of the Thumb-2 assembly language used by the CPUs will also help.
You should also know how to use PSoC Creator, the integrated development environment for PSoC 3, PSoC 4, and
PSoC 5LP. If you are new to PSoC 4 or PSoC 5LP, you can find introductions in AN79953, Getting Started with
PSoC 4 and AN77759, Getting Started with PSoC 5LP. If you are new to PSoC Creator, see the PSoC Creator home
page.
Note: Although many of the examples show code in Thumb-2, the Cortex assembly language, this application note is
not intended to be a tutorial on this language. For details and tutorials on Thumb-2 assembler, see ARM Cortex
Documentation.
For information on optimizing C code for the 8051 CPU in PSoC 3, see AN60630, PSoC 3 8051 Code and Memory
Optimization.
www.cypress.com
Document No. 001-89610 Rev. *A
2
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
2
PSoC 4 and PSoC 5LP Architectures
To effectively use the methods described in this application note, it is important to understand the register and
address architectures on which they are based. This section describes those architectures.
2.1
Register Set
The Cortex register set and instruction set are the basis for implementing highly efficient C code. The PSoC 4 CortexM0 and the PSoC 5LP Cortex-M3 registers are very similar, as Figure 1 shows.
Figure 1. Cortex CPU Architectures
Cortex-M0 in PSoC 4
Cortex-M3 in PSoC 5LP
All registers are 32-bit. There are 12 general-purpose registers (low registers R0 – R7 have more extensive support
in the instruction set). Special registers include:

Dual stack pointers (R13) for more efficient implementation of a real-time operating system (RTOS)
Link register (R14) for fast return from function calls
Program counter (R15)
Program status register (PSR) contains instruction results such as zero and carry flags
Interrupt mask register (Cortex-M0) / exception mask registers (Cortex-M3)
Control register
The PSoC 5LP Cortex-M3 has more features in stack management, and in the PSR, interrupt, and control registers.
The Cortex-M3 also has a more extensive instruction set, including divide (UDIV, SDIV), multiply and accumulate
(MLA, MLS), saturate (USAT, SSAT), and bitfield instructions. See Special-Function Instructions for information on
how to take advantage of these instructions.
www.cypress.com
Document No. 001-89610 Rev. *A
3
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
2.2
Address Map
The Cortex-M0 and Cortex-M3 have a very similar address map, as Figure 2 shows.
Figure 2. Cortex Address Map
Bit band feature on Cortex-M3 only.
For more information see Cortex-M3 Bit Band.
The address space is 4 Gbyte (32-bit addressing), and is divided into the access regions shown in Figure 2. The
CPUs can execute instructions in the Code, SRAM, and External RAM regions; you can put code or data in any of
these regions. The CPUs have a 3-instruction pipeline, which enables parallel fetch and execution of instructions.
The PSoC 5LP Cortex-M3 has a bit band feature, where accessing an address in an alias region results in bit-level
access in the corresponding bit band region. This lets you quickly set, clear or test a single bit in the bottom 1 Mbyte
of the region. See Cortex-M3 Bit Band for more information.
Although the Cortex CPUs can access a 4 Gbyte address space, within the PSoC devices only a small fraction of
these addresses access PSoC memory or registers. Following is an overview of where in the Cortex address space
the PSoC memory and registers are located; for details see the memory maps in the device datasheets or Technical
Reference Manuals (TRMs).
www.cypress.com
Document No. 001-89610 Rev. *A
4
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
2.2.1
P S o C 4 Ad d r e s s M a p
Figure 3 shows that a single Cortex-M0 bus, the System Bus, is used to access most of the regions in the address
map.
Figure 3. PSoC 4 Address Map
Cortex-M0 Addresses
0xFFFF FFFF
System Region
0xE000 0000
0xDFFF FFFF
External
Device
Region
0xA000 0000
0x9FFF FFFF
External
RAM Region
PSoC 4 Memory and
Register Addresses
0x6000 0000
0x5FFF FFFF
Cortex-M0
Core
Peripheral
Region
System Bus
0x4000 0000
0x3FFF FFFF
PSoC 4 Registers
See TRM for specific register addresses
SRAM Region
Up to 4 KB SRAM
0x2000 0000
0x1FFF FFFF
Code Region
0x0000 0000
Up to 32 KB flash
0x2000 0FFF
0x2000 0000
0x0000 7FFF
0x0000 0000
The PSoC 4 memory and registers are addressed as follows:

The PSoC 4 flash starts at address 0, in the Cortex Code region. The flash block includes a read accelerator; see
a PSoC 4 device datasheet for details.

The PSoC 4 SRAM starts at address 0x20000000, in the Cortex SRAM region.
The PSoC 4 registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See a PSoC 4
Technical Reference Manual (TRM) for specific register addresses.
All memory accesses are 32-bit.
Code can be placed in PSoC 4 SRAM; see Placing Code and Variables for details.
Note: Because PSoC 4 has only one bus, the speed and efficiency of code execution and data access depend solely
on the speed of the memory occupying those regions. SRAM is usually faster than flash; however, the combination of
the Cortex instruction pipeline and the flash read accelerator makes Code region accesses almost as fast as SRAM
region accesses. It is possible to execute code from SRAM but significant performance gains may not necessarily be
realized.
www.cypress.com
Document No. 001-89610 Rev. *A
5
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
2.2.2
PSoC 5LP Address Map
The PSoC 5LP / Cortex-M3 architecture is more complex and has more features than that of the PSoC 4, as Figure 4
shows. The Cortex-M3 has three buses instead of one:

I (instruction) Bus and D (data) Bus: for reading instructions and accessing data, respectively, from the Code
region.
In PSoC 5LP, the I and D Buses are multiplexed to a single C (code) Bus for accessing the Code region.

S (system) Bus: for reading instructions and accessing data from the other regions
Because the C Bus and the S Bus are separate, the Cortex-M3 can do simultaneous parallel accesses of the Code
region and the other regions, for more efficient operation.
Figure 4. PSoC 5LP Address Map
Cortex-M3 Addresses
0xFFFF FFFF
System Region
0xE000 0000
0xDFFF FFFF
External
Device
Region
0xA000 0000
0x9FFF FFFF
External
Ram Region
PSoC 5LP Memory and
Register Addresses
0x60FF FFFF
EMIF
0x6000 0000
0x6000 0000
0x5FFF FFFF
S Bus
Peripherals
Region
0x4000 0000
0x3FFF FFFF
Cortex-M3
Core
SRAM Region
0x2000 0000
0x1FFF FFFF
I Bus
Bit band alias region
Up to 64 KB SRAM
Code Region
C Bus
D Bus
PSoC 5LP Registers
See TRM for specific register addresses
0x0000 0000
Up to 256 KB flash
0x2200 0000
0x2000 7FFF
0x1FFF 8000
0x0003 FFFF
0x0000 0000
The PSoC 5LP memory and registers are addressed as follows:

The PSoC 5LP flash starts at address 0, in the Cortex Code region. A flash cache is included; see a PSoC 5LP
device datasheet for details.

The PSoC 5LP SRAM is logically split in half, centered at address 0x20000000. For example, in a device with
64 KB SRAM, half of the SRAM, 32 KB, is addressed below 0x20000000 and the other half above 0x20000000.
So the SRAM addresses range from 0x1FFF8000 to 0x20007FFF. The addresses in a device with 32 KB SRAM
range from 0x1FFFC000 to 0x20003FFF.
The lower half of SRAM, called code SRAM, is located in the Cortex Code region. The upper half, called upper
SRAM, is located in the Cortex SRAM region. The two halves are accessed by different buses, as Figure 4
shows. Locating half of the SRAM in the Code region enables placement of code and data for possible faster
access – see Placing Code and Variables for details.
Note: Within the PSoC 5LP, SRAM accesses are usually faster than flash accesses, however the combination of the
Cortex instruction pipeline and the flash cache makes flash accesses almost as fast as SRAM accesses. It is possible
to execute code from either code SRAM or upper SRAM but significant performance gains may not necessarily be
realized.
www.cypress.com
Document No. 001-89610 Rev. *A
6
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Note that only upper SRAM is in the Cortex-M3 bit band region.

The PSoC 5LP registers are addressed starting at 0x40000000, in the Cortex Peripheral region. See a
PSoC 5LP Technical Reference Manual (TRM) for specific register addresses.

The PSoC 5LP External Memory Interface (EMIF) addresses start at 0x60000000, in the Cortex External RAM
region. For more information on PSoC 5LP EMIF see the device datasheet, TRM, or the EMIF Component
datasheet.
All memory accesses are 32-bit except EMIF, which can be set to either 8-bit or 16-bit.
The PSoC 5LP also includes a direct memory access (DMA) controller. It shares bandwidth with the CPU as dual bus
masters, using bus arbitration techniques. For more information, see AN52705, Getting Started with PSoC DMA. See
also DMA Addresses in this application note.
2.3
Interrupts
Both Cortex CPUs offer sophisticated support for rapid and deterministic interrupt handling. For more information see
a device datasheet or TRM, the PSoC Creator Interrupt Component datasheet, or AN54460, PSoC Interrupts.
www.cypress.com
Document No. 001-89610 Rev. *A
7
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
3
Compiler General Topics
Before we begin in-depth examination of the gcc and MDK compilers, let us examine a few general compiler topics.
Note: All of the C code examples shown in this application note are designed for use with the C compilers supported
by PSoC Creator 3.0: gcc 4.7.3 and the Keil Microcontroller Development Kit (MDK) version 5.03. The gcc 4.7.3
compiler is included free with your PSoC Creator installation. MDK must be purchased however an object-size-limited
evaluation version, MDK-Lite, is available free from Keil. Compiler optimizations are turned off (the PSoC Creator
default) except where noted.
All of the C code examples in this application note use ANSI standard C except for compiler-specific extensions.
3.1
Compiler Predefined Macros
It is a best practice to write C code that can be directly ported between as many different compilers as possible.
However there are cases where this is not possible and you must write multiple versions of the same code, to be
used with multiple compilers. If you need to do this you can use predefined macros, provided with most compilers,
to identify the compiler being used. This allows you to compile only the code for the compiler being used, for
example:
#if defined(MY_COMPILER_MACRO)
/* put your compiler-unique code here */
#endif
To apply this technique to PSoC Creator projects, use the following macros that are included with the gcc and MDK
compilers, respectively. Note that for MDK you are checking just for whether __ARMCC_VERSION is defined,
indicating that that compiler is being used. You do not necessarily need to care about its actual value, i.e., the
compiler version.
#if defined(__GNUC__)
/* put your gcc unique code here */
#elif defined(__ARMCC_VERSION)
/* put your MDK unique code here */
#endif
3.2
Viewing Compiler Output
To understand how a compiler performs under
different conditions, you must review the output
assembler code. There are two ways to do that in
PSoC Creator.
1.
Figure 5. Listing Files
Open the list file corresponding to the
compiled C file (filename.lst), as Figure 5
shows.
The default PSoC Creator project build
setting is to create a list file; see menu item
Project >
Build
Settings >
Compiler >
General.
2.
Use the disassembly window in the debugger
(menu
item
Debug >
Windows >
Disassembly). Right-click in that window to
bring up options to show mixed source and
assembler.
Of course, this method has the disadvantage
that you must have working target hardware
and a PSoC Creator project that builds
correctly before you can use the debugger.
Note: The free evaluation version of MDK, MDKLite, does not include assembler in the .lst file, so
method 2 must be used to see the output
assembler code.
www.cypress.com
Document No. 001-89610 Rev. *A
8
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
3.3
Compiler Optimizations
Turning on optimization options makes the compiler attempt to improve the C code‟s performance and/or size, at the
expense of compilation time and possibly the ability to debug the program.
PSoC Creator allows you to set compiler optimizations for an entire project, under Project > Build Settings >
Compiler > Optimization. The optimizations offered by PSoC Creator for both gcc and MDK are just for “speed” or
“size”. (This is different from the 11 levels of optimization offered for the Keil 8051 compiler.)
The optimization option selected in the Build Settings dialog applies to all C files in the project. You can also apply
optimizations to individual C files – in the Workspace Explorer window right-click on the file and select Build Settings.
With gcc you can‟t set optimization levels for individual functions except for using certain function attributes. With
MDK you can use #pragma to set optimization for an individual function. For more information see C Documentation.
It is strongly recommended that after compiling C code with optimizations you carefully review the assembler output
and confirm that it is doing what you expect. Stepping through the assembler code in the debugger may also be
helpful. One best practice is to get your C code working without optimizations, then rebuild with optimizations and
repeat your tests. You can do this using the Debug and Release configurations in your PSoC Creator project build
settings.
For specific examples of how various optimization options work, see Appendix A.
3.4
Attributes
An extension to the C language that is supported by both gcc and MDK is to apply attributes to functions, variables,
and structure types. Attributes can be used, for example, to control:

specific function optimizations
how structures occupy memory (see Packed and Unpacked Structures)
function and variable location in memory (see Placing Code and Variables)
The syntax is (two underscore characters before and after the "attribute"):
__attribute__ ((<attribute-list>))
Specific attributes are described in detail in subsequent sections in this application note. For more information, see
C Documentation.
www.cypress.com
Document No. 001-89610 Rev. *A
9
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
4
Accessing Variables
When reviewing compiler output, one of the first areas to examine is how variables (and arrays and structures) are
read and written. In their assembly language output, the gcc and MDK compilers both implement certain techniques
for accessing:

global and static variables
automatic (local) variables
function arguments and function result
Let us examine how each of these is done.
4.1
Global and Static Variables
The Thumb-2 assembly language used by both Cortex CPUs does not generally support loading 32-bit immediate
values into a register. (There are exceptions; for example small immediate values can be loaded and sign-extended.)
This makes it difficult to load the address of a global or static variable, or in general to load any address. Table 1
shows two methods for handling this problem, for the following example C code:
/* loading a global variable */
uint32 myVar;
. . .
myVar = 7;
Table 1. Example Methods for Loading Addresses into CPU Registers
Method 1: two 16-bit immediate loads
; rx = address of myVar
; load the lower and upper halves of the
; address
movw rx, #<LS word> ; 32-bit instruction
movt rx, #<MS word> ; 32-bit instruction
. . .
movs ry, #7
str
ry, [rx, #0] ; myVar = 7
Method 2: PC-relative load
; rx = address of myVar
; load the value stored in flash, below
ldr
rx, [pc, #<offset>] ; 16-bit instruction
. . .
movs ry, #7
str
ry, [rx, #0] ; myVar = 7
. . .
; address value stored after the end of
; the function
.word <address of myVar> ; 32-bit value
In general method 2 is preferred for size-limited applications because it uses two fewer bytes (one 16-bit word).
However, method 1 may execute faster due to the Cortex instruction pipeline. Note that with PSoC, instruction
execution speed also depends on the flash cache (PSoC 5LP) or accelerator (PSoC 4) and thus is not necessarily
deterministic. See Memory Map for details.
Different compiler optimizations implement one or the other of these two methods; for detailed examples see
Appendix A.
It is a coding best practice to minimize use of global variables. Doing so with the PSoC Cortex CPUs may also act to
reduce code size by reducing the loading of memory and PSoC register addresses.
www.cypress.com
Document No. 001-89610 Rev. *A
10
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
4.2
Automatic Variables
In C, automatic variables are variables that are defined within (local to) a function. Depending on the size and
complexity of the function, and the compiler optimization setting, an automatic variable may be assigned to a CPU
register or it may be saved on the stack, as Table 2 shows:
Table 2. Example Methods for Using Automatic Variables
C Code
void MyFunc(void)
{
uint8 i = 3;
uint8 j = 10;
. . .
}
Assembler Code
; use rx as i, do NOT save it on the stack
movs rx, #3 ; initialize i
; store j on the stack; use ry to temporarily
; hold the initial value
movs ry, #10
; initialize j
strb ry, [sp, #<offset>] ; on the stack
Both size and speed optimizations tend to reduce stack usage for automatic variables; see Appendix A for examples.
4.3
Function Arguments and Result
The Procedure Call Standard for ARM Architecture allocates registers R0 – R3 for passing arguments to a function,
and R0 for passing a function result. If the number of arguments is greater than four, the first four arguments are
placed in the registers and the rest are pushed onto the stack.
Within the function, the arguments may be maintained in their respective registers, transferred to other registers, or
saved on the stack. Given that a function‟s automatic variables may also be stored on the stack (Table 2), stack
management may become complex. To handle this complexity two sequences of instructions, known as prolog and
epilog, may be included in a compiled function, as the example in Table 3 shows:
Table 3. Example Function With Prolog and Epilog Instructions
C Code
Assembler Code
/* Function with 6 arguments and a return
value */
uint32 MyFunc(uint32 a, uint32 b, uint32 c,
uint32 d, uint32 e, uint32 f)
{
return a + b + c + d + e + f;
}
; function prolog
push {r7}
sub
sp, sp, #20
add
r7, sp, #0
str
r0, [r7, #12]
str
r1, [r7, #8]
str
r2, [r7, #4]
str
r3, [r7, #0]
; function body
ldr
r2, [r7, #12]
ldr
r3, [r7, #8]
adds r2, r2, r3
ldr
r3, [r7, #4]
adds r2, r2, r3
ldr
r3, [r7, #0]
adds r2, r2, r3
ldr
r3, [r7, #24]
adds r2, r2, r3
ldr
r3, [r7, #28]
adds r3, r2, r3
mov
r0, r3
; function epilog
add
r7, r7, #20
mov
sp, r7
pop
{r7}
bx
lr
;
;
;
;
;
make room on the stack
for the arguments
use r7 as a base pointer
save the arguments
on the stack
; build the sum
; in r2 and r3
; argument e
; argument f
; return value in r0
; restore stack and r7
; return
To minimize code size and maximize speed, you should limit the number of function arguments to four.
www.cypress.com
Document No. 001-89610 Rev. *A
11
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Depending on the size and complexity of the function, the size optimization tries to reduce the function prolog and
epilog code; see Appendix A for examples.
4.4
LDR and STR instructions
These instructions are used to read to and write from memory and PSoC registers. They are quite powerful and offer
many flexible options. Variants of the instructions support byte and halfword (16-bit) accesses, zero and sign
extensions, and immediate and register offsets. The offset options are particularly useful for handling pointer offsets
and for accessing members of arrays and structures, as Table 4 shows.
Table 4. Example Usage of LDR and STR Instructions
C Code
Assembler Code
/* loading an array member */
uint8 myArray[100];
. . .
myArray[6] = 7;
ldr
rx, [pc, #<offset>] ; rx = address of myArray
movs
strb
ry, #7
ry, [rx, #6]
uint8 myArray[100];
. . .
uint8 i;
. . .
myArray[i] = 7;
ldr
rx, [pc, #<offset>] ; rx = address of myArray
ldrb ry, [sp, #<offset>] ; ry = i (automatic
variable)
movs rz, #7
strb rz, [rx, ry]
Note that the LDR and STR instructions are always register-relative, so before an LDR or STR instruction there is
always another instruction to load a register with the target address; see Table 1. Variations and options for these
instructions are different in the Cortex-M0 (PSoC 4) and the Cortex-M3 (PSoC 5LP). For more information, see ARM
Cortex Documentation.
www.cypress.com
Document No. 001-89610 Rev. *A
12
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
5
Mixing C and Assembler Code
One of the most effective ways to make your code shorter, faster, and more efficient is to write it in assembler. Using
assembler may also enable you to take advantage of special-function instructions that are supported by the CPU but
are not used by the C compiler; see Special-Function Instructions. However, coding in assembler is a daunting task
for all but the smallest applications, and once written the code is not easy to maintain or port to other compilers or
CPUs. That is why most code is written in C, and if assembler is used at all it is used only for a few critical functions.
Another problem with assembler is that it must be written in its own file, separate from the C files with which it must
coexist. This can cause difficulties integrating and maintaining the code.
A solution to both of these problems is an extension to the C language called inline assembler, where assembler
code can be placed directly in C files and is treated as just another C statement. This lets you use assembler only
where it‟s needed to increase efficiency, and makes it easier to mix C and assembler. The gcc and MDK compilers
both support inline assembler. In addition, MDK supports a similar feature called embedded assembler, where a
function is written entirely in assembler but is included in a C file.
This section shows how to use combined C and assembler code, for both the gcc and MDK compilers. To effectively
use the methods described in this section, it is important to understand the register architectures on which they are
based – see CPU Register Architectures for details.
Note: The following examples show assembler for the Cortex-M3; the Cortex-M0 uses a more limited subset of the
Cortex-M3 instructions. For details see ARM Cortex Documentation.
Note: Most assembler instructions act on the Cortex registers (see Register Set). The Procedure Call Standard for
ARM Architecture requires that some of these registers be preserved by functions. If needed, use the PUSH and
POP instructions to save and restore registers on the stack.
5.1
Syntax
The gcc syntax for inline assembler is:
asm("assembler instruction");
which adds a single line of assembler code to the
C code. For example, the following increments
the R0 register:
asm("ADD
r0, r0, #1")
; /* R0 = R0 + 1 */
The syntax for multi-line inline assembler is:
asm("line
"line
"line
. . .
"line
1\n"
2\n"
3\n"
__asm("line
"line
"line
. . .
"line
1\n"
2\n"
3\n"
n");
__asm return-type
function-name(argument-list)
{
/* This is a C comment */
instruction ; assembler comment
...
instruction
}
For example:
/* R0 = R0 + 1; R1 = R0 */
asm("ADD r0, r0, #1\n"
"MOV r1, r0");
Note: The keyword __asm__ can be used
instead of asm; see C Documentation for details.
Note: You can add the keyword volatile to
prevent the statement from being optimized out
by the compiler:
www.cypress.com
__asm("assembler instruction");
The syntax for the MDK embedded assembler is:
n");
asm volatile(" ... ");
The MDK syntax for inline assembler is the same as that
for gcc, except that the “asm” is preceded by two
underscore characters:
For example:
__asm int DoSum(int x, int y)
{
ADD r0, r0, r1
BX lr
}
Document No. 001-89610 Rev. *A
13
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
5.2
Automatic Variables
With gcc, to access an automatic (or local) variable from inline assembler, you must first force the variable to occupy
a register Rx. Declare the variable as follows:
register int foo asm("r0"); /* foo occupies register R0 */
Note: gcc actually supports a complex language of C expression operands for the asm keyword. A tutorial on this
language is beyond the scope of this application note. Details can be found in C Documentation, especially section
6.41 of “Using the GNU Compiler Collection”.
As an example, let us define two automatic variables, „foo‟ and „bar‟, and do a simple math operation between them:
void main()
{
register int foo asm("r0") = 5L; /* register variables can be initialized */
register int bar asm("r1");
bar = foo + 1; /* C code version */
asm("ADD r1, r0, #1"); /* bar = foo + 1 */
}
In the above example, the C code and the inline assembler do the same operation. However, the compiled C code
(no optimization) uses an intermediate register and consequently produces 3x the instructions using 2x the flash
memory, as this excerpt from the .lst file shows:
20:.\main.c

42 0008 0346
mov
43 000a 03F10103 add
44 000e 1946
mov
bar
r3,
r3,
r1,
= foo + 1;
r0
r3, #1
r3
22:.\main.c

47 0010 00F10101 ADD
asm("ADD r1, r0, #1"); /* bar = foo + 1 */
r1, r0, #1
Depending on the function size and complexity it may be possible to eliminate the intermediate register by using a
compiler optimization option.
With MDK, there is no need to force an automatic (local) variable to occupy a register. Instead, you can access the
variables directly:
void main()
{
/* no need to declare variables in registers */
int foo = 5;
int bar;
bar = foo + 1; /* C code version */
__asm("ADDS bar, foo, #1"); /* bar = foo + 1 */
}
In this example, the C code and the inline assembler do the same operation and produce the exact same code.
www.cypress.com
Document No. 001-89610 Rev. *A
14
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
5.3
Global and Static Variables
The previous methods can also be used with global and static variables (“globals”). Note that before accessing a
global you must load a register with the address of the variable – see Global and Static Variables.
With gcc, use the following syntax to load an
address:
LDR rx, =variable_name
LDR ry, =0x1FFF9000 ; or any
address
Let us repeat the previous example using globals
instead of automatic variables:
int foo = 5L;
int bar;
void main()
{
bar = foo + 1;
/* bar =
asm("LDR
"LDR
"LDR
"ADD
"STR
foo
r0,
r1,
r2,
r2,
r2,
Again, the C code and the inline assembler do
the same operation but due to different address
load methods (see Table 1) the compiled C code
(no
optimizations)
produces
two
more
instructions and uses four more bytes of memory
than the inline assembler (for the Cortex-M3), as
the following debugger snip shows:
/* bar = foo
asm("LDR r0,
"LDR r1,
"LDR r2,
"ADD r2,
"STR r2,
4804
4905
6802
F1020201
600A
+ 1 */
=foo\n"
=bar\n"
[r0]\n"
r2, #1\n"
[r1]");
ldr
r0,
ldr
r1,
ldr
r2,
add.w r2,
str
r2,
However, the assembler output is quite different:
4805
6800
1C40
4905
6008
ldr
ldr
adds
ldr
str
r0,
r0,
r0,
r1,
r0,
[pc, #14]
[r0, #0]
r0, #1
[pc, #14]
[r1, #0]
The embedded assembler method looks like this:
}
r3,
r3,
r3,
r2,
r3,
r3,
r2,
/* bar = foo + 1 */
__asm("ADDS bar, foo, #1");
The additional instructions are required for loading the
variable addresses; see Global and Static Variables for
more information. In this case the inline assembler is
effectively a pseudoinstruction, generating five actual
assembler instructions. The output is the same as if it
were written in C, so in this case there is no advantage to
using inline assembler.
+ 1 */
=foo\n"
=bar\n"
[r0]\n"
r2 #1\n"
[r1]");
bar = foo + 1;
F248130C movw
F6C173FF movt
681B
ldr
F1030201 add.w
F248132C movw
F6C173FF movt
601A
str
With MDK there are two methods to access global
variables. The first method, inline assembler, is similar to
that for accessing automatic variables:
#810c
#1fff
[r3, #0]
r3, #1
#812c
#1fff
[r3, #0]
__asm void AddGlobals(void)
{
extern foo
extern bar
LDR
LDR
LDR
ADD
STR
BX
r0,
r1,
r0,
r0,
r0,
lr
=foo
=bar
[r0]
r0, #1
[r1]
}
In this case the resultant code is the same as for the inline
assembler method.
[pc, #10]
[pc, #14]
[r0, #0]
r2, #1
[r1, #0]
The above results may be different if compiler
optimizations are used.
www.cypress.com
Document No. 001-89610 Rev. *A
15
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
5.4
Function Arguments
As noted in Function Arguments and Result, the Procedure Call Standard for ARM Architecture allocates registers
R0 – R3 for passing arguments to a function, and R0 for passing a function result. If the number of arguments is
greater than four, the first four arguments are placed in the registers and the rest are pushed onto the stack.
So if you limit the number of arguments to four, you can write assembler to directly access the registers that have
those arguments. The following example shows multiple ways to implement a function to calculate the sum of four
arguments:
uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)
{
return a + b + c + d;
}
gcc:
uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)
{
/* define return value in R0 */
/* does not overwrite input argument 'a' in R0 */
register uint32 rtnval asm("r0");
/* the arguments are in registers R0 – R3 */
asm volatile ("add r0, r0, r1\n"
"add r0, r0, r2\n"
"add r0, r0, r3");
return rtnval; /* return value in R0 */
}
MDK embedded assembler:
__asm uint32 addFunc(uint32 a, uint32 b, uint32 c, uint32 d)
{
; the arguments are in registers R0 – R3
ADD r0, r0, r1
ADD r0, r0, r2
ADD r0, r0, r3
; return value in R0
BX lr
}
www.cypress.com
Document No. 001-89610 Rev. *A
16
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
6
Special-Function Instructions
Some CPUs have special-function instructions which are not normally used by C compilers; this type of instruction
can be accessed with C intrinsic functions or in some cases can only be accessed using assembler. This section
explains how to use C intrinsic functions and mixed C and assembler to more easily gain access to these instructions.
Let us look at the PSoC 5 Cortex-M3 saturation instructions as an example; for other special-function instructions see
C Documentation.
6.1
Saturation Instructions
Saturation is commonly used in signal processing, for example when a signal is amplified, as Figure 6 shows.
Suppose we are using a 16 bit ADC and are interested in just the 12 LS bits. After amplification, if the value is
adjusted by simply removing the unused MS bits, overflow may seriously distort the resulting signal. Saturation
avoids overflow and reduces distortion.
Figure 6. Saturation Operation
Saturation can be done in C using multiple comparison and if-else statements, but the Cortex-M3 has two assembler
instructions that make the process far more efficient: SSAT and USAT for signed and unsigned, respectively. These
instructions work as follows:
6.1.1
S S AT I n s t r u c t i o n
n–1
n–1
The SSAT instruction saturates to the signed range −2 ≤ x ≤ 2 −1:

if the value to be saturated is less than −2
n−1
if the value to be saturated is greater than 2
, the result returned is −2
n−1
n-1
n-1
−1, the result returned is 2 −1
otherwise, the result returned is the same as the value to be saturated.
www.cypress.com
Document No. 001-89610 Rev. *A
17
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
6.1.2
USAT Instruction
n−1
The USAT instruction saturates to the unsigned range 0 ≤ x ≤ 2 :

6.1.3
if the value to be saturated is less than 0, the result returned is 0
if the value to be saturated is greater than 2
n−1
n−1
, the result returned is 2
otherwise, the result returned is the same as the value to be saturated
S yn t a x
op Rd, #n, Rm
where:

op is one of the following:

SSAT saturates a signed value to a signed range
USAT saturates a signed value to an unsigned range
Rd is the destination register.
n specifies the bit position to saturate to:

n ranges from 1 to 32 for SSAT
n ranges from 0 to 31 for USAT
Rm is the register containing the value to saturate.
Note: The SSAT and USAT instructions operate on a 32-bit value in the input register. The corresponding C variable
should be of type int, int32 or uint32. Sign extension may be required before executing the saturation instruction.
6.2
Intrinsic Functions
In C, an intrinsic function has the appearance of a function call but is replaced during compilation by a specific
sequence of one or more assembler instructions. The ARM Cortex Microcontroller Software Interface Standard
(CMSIS) library includes a set of intrinsic functions for most of the Cortex special-function assembler instructions.
After a PSoC Creator project is built, you can find these functions in the Workspace Explorer window in the folder
Generated Source > PSoCx > cyboot > core_cmInstr.h.
The saturation intrinsics look like this:
__SSAT(ARG1, ARG2)
__USAT(ARG1, ARG2)
where ARG1 is the input value to be saturated and ARG2 is the bit position to saturate to. Call the functions as
follows:
int data_unsat = -1L;
int data_sat = __USAT(data_unsat, 8);
In this example, we saturate data_unsat to 8 bits, unsigned. If the value of data_unsat exceeds 255 (0xFF), the result
is saturated to 255 (0xFF) and is stored in data_sat. If the value of data_unsat is negative, 0 is stored in data_sat.
www.cypress.com
Document No. 001-89610 Rev. *A
18
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
6.3
Assembler
You can also use the techniques described in Mixing C and Assembler Code to insert special-function instructions, as
Table 5 shows.
Table 5. Using Saturation Instructions in Mixed C and Assembler
gcc Example
MDK Example
void main()
void main()
{
{
register int data_unsat asm("r0");
register int data_sat asm("r3");
int data_unsat;
int data_sat;
asm("ssat r3, 8, r0");
. . .
. . .
__asm("ssat data_sat, 8, data_unsat");
}
}
In this example, we saturate data_unsat to 8 bits, signed. With 8-bit signed saturation the value can range from -128
to +127. So if the value is less than -128, the result is -128 and if the value is greater than +127, the result is +127.
So the result is saturated to 0x7F in the positive direction and 0x80 in the negative direction.
We can use the saturation instructions to saturate a value to the required number of saturation bits. USAT can be
used with an ADC configured in single ended mode and SSAT can be used with an ADC configured in differential
mode.
7
Packed and Unpacked Structures
2
In most embedded systems, data is transmitted in a byte-by-byte fashion, for example with a UART or I C port. (The
SPI protocol is an exception, for details see one of the PSoC Creator SPI Component datasheets.) With 8-bit CPUs
complex data structures can be transmitted and received byte by byte and the result will exactly match the original.
However with larger CPUs (16-bit, 32-bit, etc.) this is not necessarily true. Let us examine in detail why this is so,
using the PSoC 4 Cortex-M0 and PSoC 5LP Cortex-M3 CPUs as examples.
The 32-bit Cortex CPUs in PSoC access memory as 32-bit words, and therefore they work most efficiently when data
is stored on 32-bit boundaries, that is, where the two LS address bits are zero. If for example a 16-bit or 32-bit
variable is saved starting at an odd address, where the LS bit of the address is 1, then two 32-bit memory reads are
required to read it, and two read-modify-write cycles are required to write it. This can significantly impact execution
speed.
Unfortunately, in C it is easy to create structures where words are on odd boundaries. Consider the following
example:
struct myStruct
{
uint8 m1; /* stored on a 32-bit boundary, address = ...xx00 */
uint32 m2; /* stored on an 8-bit boundary, address = ...xx01 */
}
The above is called a packed structure, because the structures are placed in memory byte-by-byte regardless of
address boundary considerations. Compilers for 8-bit CPUs usually generate packed structures. The gcc and MDK
compilers as a default for the Cortex CPUs save structures in unpacked format, where the address is determined by
the size of the structure member. For example:
struct myUnpackedStruct
{
uint8 m1; /* stored on a 32-bit boundary, address = ...xx00 */
/* 3 unused filler bytes */
uint32 m2; /* stored on a 32-bit boundary, address = ...yy00 */
}
www.cypress.com
Document No. 001-89610 Rev. *A
19
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
An unpacked structure can be accessed more efficiently but is larger, which may be a problem with devices with
limited SRAM. But a more serious problem can occur when for example an unpacked structure is transmitted byte-bybyte and the receiver saves the bytes in a packed structure – the data becomes corrupted causing hard-to-find
system-level defects.
There are several ways to correct this problem in code; the easiest is to simply optimize the order of structure
member declarations. For example, we could reorder the original structure as:
struct myStruct
{
uint32 m2; /* stored on a 32-bit boundary, address = ...xx00 */
uint8 m1; /* stored on a 32-bit boundary, address = ...yy00 */
}
Now the structure is packed and each of its members‟ addresses are on 32-bit boundaries.
7.1.1
Compiler Considerations
For both gcc and MDK compilers, by default, structures are unpacked according to the following rules:

A char or uint8 (one byte) is 1-byte aligned
A short or uint16 (two bytes) is 2-byte aligned; LS address bit is 0
A long or uint32 (four bytes) is 4-byte aligned; two LS address bits are 00
A float (four bytes) is 4-byte aligned; two LS address bits are 00
Any pointer, e.g., char *, int * (four bytes) is 4-byte aligned; two LS address bits are 00.
It is possible to force a structure to be packed, using the following syntax:
gcc:
MDK:
struct myStruct
{
. . .
} __attribute__ ((packed));
__packed struct myStruct
{
. . .
};
Note: It is recommended to use the packed statement in structure definitions only. It should not be used in
declarations of actual structure variables nor should it be used in typedef declarations.
www.cypress.com
Document No. 001-89610 Rev. *A
20
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
8
Compiler Libraries
For both gcc and MDK compilers, replacing C standard library function calls with equivalent C statements can
significantly reduce memory usage. For example, consider the following C fragment:
#include <math.h>
uint32 a, b;
a = 5;
b = pow(a,3);
Table 6 shows the Flash and SRAM memory consumption for both compilers for PSoC 5LP and PSoC 4:
Table 6. Memory Consumption With a pow() Function Call
PSoC 5LP
gcc
MDK
PSoC 4
gcc
MDK
Flash
8939
7696
Flash
14374
7700
SRAM
405
196
SRAM
364
312
If the call to the pow() library function is replaced with the following equivalent code, you use a lot less memory, as
Table 7 shows:
b = a * a * a;
Table 7. Memory Consumption Without Using a pow() Function Call
PSoC 5LP
gcc
MDK
Flash
1582 (-82.3%)
1444 (-81.2%)
SRAM
301 (-25.7%)
200 (-32.4%)
PSoC 4
gcc
MDK
Flash
1198 (-91.7%)
1004 (-87.0%)
SRAM
252 (-30.8%)
216 (-30.8%)
The reason for the size reduction is that by ANSI C definition the pow() function takes arguments of type double and
returns a type double. When you call this function with integers they are automatically cast to the proper type before
and after the function call, and this requires a lot of code to implement.
With PSoC Creator 3.0, a choice of gcc libraries is available: newlib and newlib-nano. The newlib-nano library cuts
some less-used features from the standard C library functions, to reduce memory usage.
Note: One of features removed from newlib-nano is floating-point support in printf(), which may cause problems if you
intend to display floating-point values. For example, consider the following code fragment:
char My_String[30];
float My_Float = 3.14159;
sprintf(My_String, "Value of pi is: %.2f to 2dp", My_Float);
www.cypress.com
Document No. 001-89610 Rev. *A
21
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
With newlib-nano, the string "Value of pi is: to 2dp" is created in My_String; the expected value 3.14 is not
included. There are two possible work-arounds:
1.
Enable floating-point formatting support in newlib-nano, as Figure 7 shows. This feature is disabled as a default.
Enabling it increases flash usage by 10K to 15K bytes.
Figure 7. Enable floating-point formatting support in newlib-nano
2.
Change the library to the full-featured newlib, as Figure 8 shows. Note that the Use Default Libraries option
must also be set to False. The default is to use newlib-nano; changing to newlib increases flash usage by 25K to
30K bytes, and increases SRAM usage by approximately 2K bytes.
Figure 8. Disabling newlib-nano
MDK also offers a reduced-function library called Microlib. For more information see the MDK documentation.
www.cypress.com
Document No. 001-89610 Rev. *A
22
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
9
9.1
Placing Code and Variables
This section shows how to place C code and
variables into custom locations in memory. There
are a number of reasons to do this, see Define
Custom Locations for examples.
If you use a custom linker script file, it is a best practice to
add it to the project (menu Project > Existing Item…) and
save it in the project folder. A custom .scat file must be
saved in the PSoCx folder under Generated Source.
To effectively use the methods described in this
section, it is important to understand the CPU
architectures on which they are based – see
Address Map for details.
Figure 9. PSoC Creator Linker Script Files
Linker Script Files
To place code and variables in custom locations,
you must know how to modify linker script files.
This section shows the basics of how linker script
files control the use of memory in PSoC 4 and
PSoC 5LP. Details can be found in your gcc or
MDK documentation.
After your PSoC Creator project is built, the
default linker script files can be found in the
Generated Source folder, as Figure 9 shows. For
gcc the linker script file is of type .ld, and for MDK
the linker script file is of type .scat (for “scatter”).
Note: Linker script files are automatically
generated by PSoC Creator at project build time,
and changes that you make to those files may be
overwritten on the next build. You can instruct
PSoC Creator to use a custom script file, using
the PSoC Creator menu Project > Build
Settings > Linker > General > Custom Linker
Script.
9.1.1
Linker Script File for gcc
An .ld file has two major commands: MEMORY {} and SECTIONS {}. The MEMORY command describes the type,
location and usage of all physical memory in the PSoC. For example, for a PSoC 4 with 32 KB flash and 4 KB SRAM:
MEMORY
{
rom (rx) : ORIGIN = 0x0, LENGTH = 32768
ram (rwx) : ORIGIN = 0x20000000, LENGTH = 4096
}
The region rom describes the PSoC flash and the region ram describes the PSoC SRAM. The letters "rwx" are
memory attribute indicators: read, write, and execute, respectively. All origin and length units are in bytes, and the
values can be in decimal or hexadecimal. PSoC 5LP is similar; the ram ORIGIN value describes the SRAM crossing
the Cortex-M3 Code / SRAM region boundary (Figure 4). For example, for a PSoC 5LP with 256 KB flash and 64 KB
SRAM:
MEMORY
{
rom (rx) : ORIGIN = 0x0, LENGTH = 262144
ram (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = 65536
}
www.cypress.com
Document No. 001-89610 Rev. *A
23
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
The SECTIONS command lists all of the sections
in address order, for example:
SECTIONS
{
.text: { ... }
.rodata: { ... }
.ramvectors: { ... }
.noinit: { ... }
.data: { ... }
.bss: { ... }
.heap: { ... }
.stack: { ... }
}
Figure 10. SECTIONS Command and PSoC Memory
EMIF
(PSoC 5LP)
stack
(Not all of the sections are shown above, only the
major ones.) Figure 10 shows where these
sections are placed in PSoC 4 and PSoC 5LP
flash and SRAM:
.text: executable code
SRAM
.rodata: const variables; initialization data
ram (rwx)

heap
.bss
.ramvectors: Cortex exception vectors table
.data
.noinit: variables that are not initialized
.noinit
.data: variables that are explicitly initialized
.ramvectors
.bss: variables that are initialized to 0
heap
stack
.text: { ... } >rom
.data: { ... } >ram AT>rom
.heap: { ... } >ram
Flash
The AT statement enables explicit initialization of
variables; see Variable Initialization.
Note: For PSoC 5LP, the placement of the
sections in SRAM are indeterminate relative to
position of the code SRAM / upper SRAM
boundary (0x20000000; see Figure 4.
rom (rx)
A closer examination of the linker script file
shows that many of the sections end with a
region statement. This statement tells the linker
the memory region in which to place the section,
for example:
.rodata
other sections
.text
Note: For most applications it can be assumed
that the stack is in upper SRAM and the other
sections are all in code SRAM. This can be
changed; see Modify the Linker Script File.
Complete documentation of .ld file usage can be
found in your gcc documentation.
www.cypress.com
Document No. 001-89610 Rev. *A
24
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
9.1.2
Linker Script File for MDK
A .scat (for “scatter”) file has no commands;
instead it defines regions and sections. It has a
single load region called APPLICATION {}.
The load region contains several execution
regions, which in turn contain one or more
section attributes, for example:
APPLICATION ... // load region
{
CODE ...
// execution
region
{
* (+RO)
// section
attribute
}
ISRVECTORS ...
{
* (.ramvectors)
}
NOINIT_DATA ...
{
* (.noinit)
}
DATA ...
{
.ANY (+RW, +ZI)
}
ARM_LIB_HEAP ... { }
ARM_LIB_STACK ... { }
}
Note: . For most applications it can be assumed that the
stack and heap are in upper SRAM and the other sections
are all in code SRAM. This can be changed; see Modify
the Linker Script File.
Complete documentation of .scat file usage can be found
in your MDK documentation.
Figure 11. .scat File Sections and PSoC Memory
EMIF
(PSoC 5LP)
stack
heap
SRAM
(Not all of the execution regions and section
attributes are shown above, only the major ones.)
Figure 11 shows where the regions and sections
are placed in PSoC 4 and PSoC 5LP flash and
SRAM. Special sections RO, RW, and ZI are
defined as follows:

RO: all code, const variables,
initialization bytes for the RW section

RW: all variables that are explicitly initialized;
see Variable Initialization

ZI: all variables that are initialized to zero;
see Variable Initialization
DATA { }
.noinit
.ramvectors
and
Other attributes such as .noinit cause
placement of code or variables that match that
attribute; see Define Custom Locations.
Flash
Note: For PSoC 5LP, the placement of the
regions and sections in SRAM is indeterminate
relative to the position of the code SRAM / upper
SRAM boundary (0x20000000; see Figure 4.
CODE { }
other sections
www.cypress.com
Document No. 001-89610 Rev. *A
25
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
The following points are valid for both linker file types:
9.1.3
1.
Only global and C static variables are included. C automatic variables are handled differently; see Automatic
Variables.
2.
The size of the heap and stack are defined in the PSoC Creator project DWR window, System tab. The stack
pointer is initialized to the highest SRAM address plus 1, and the stack grows downward. The heap, which is
used by C functions such as malloc() and free(), grows upward from its base.
3.
Although the heap has a defined size in the DWR window, in practice it can use all of SRAM between the
sections in SRAM and the current value of the stack pointer. Similarly, the stack can grow downward beyond the
defined stack section. If the stack starts to overlap the memory regions below it, hard-to-find defects can occur.
One way to detect stack overflow is to add code to each function to check the current value of the stack pointer.
Variable Initialization
When placing global and static variables in custom locations, it is important to understand how they are initialized. For
example, consider these global variable definitions:
uint8 foo = 5;
uint16 myArray[10] = {1234, 12, ... };
Because these variables are located in SRAM, their values are undefined when the PSoC is powered up. To properly
initialize them the values are saved in flash and the C startup code, i.e., the code that is executed before main(),
copies the values from flash to SRAM. The values in flash are in the .rodata section for gcc (Figure 10) or the
CODE (RO) section for MDK (Figure 11). They are copied into the variables in the .data section for gcc or the
DATA (RW) section for MDK – explicitly initialized variables must be located in these sections.
Global and static variables that are not explicitly initialized are set to zero by the C startup code. They must be
located in the .bss section (gcc) or the DATA (ZI) section (MDK).
Global and static variables that are located outside the above sections are not initialized and their initial values are
undefined – they must be initialized in your code. Explicit initializations are ignored.
9.1.4
Map File
The gcc and MDK linkers both have an option to
produce a .map file when a project is built. You
can find the file in the Results tab in the
Workspace Explorer window, as Figure 12
shows.
Figure 12. .map File in PSoC Creator
The .map file shows where in memory all code
modules and variables have been placed by the
linker. You should review it after a build operation
and confirm that:

All code and variables have been placed in
the expected locations, and

There are no section overlaps.
For MDK, the linker‟s default is to produce a .map
file with no symbols, which makes it difficult to
determine where your code and variables have
been placed. To include the symbols, add
--symbols to the linker command line, using
the PSoC Creator menu Project > Build
Settings > Linker > Command Line > Custom
Flags.
Now that we have seen the basics of how linker script files work, we can examine how to use them to place code or
variables in custom locations in PSoC memory.
www.cypress.com
Document No. 001-89610 Rev. *A
26
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
9.2
Placement Procedure
To place C functions or variables (including arrays and structures) in custom locations, do the following:
1.
Define the custom locations.
2.
In the C source code, declare the functions and variables that are to be located, along with their custom sections.
3.
Build the PSoC Creator project. Copy the generated linker script file to a custom file, then modify it to add and
locate the sections from step 2.
4.
Rebuild the PSoC Creator project. Review the .map file and confirm that the custom locations have been filled
correctly and that there are no section overlaps.
Let us examine each of these steps in detail.
9.2.1
Define Custom Locations
Before using custom locations, you should understand clearly the reasons why you want to use them. For example,
do you want to:

Place a function, or a variable of type const, in a custom location in flash?

Place a variable such that it is not initialized by C startup code? This is typically used to maintain a variable‟s
state through a device reset (except for a power-cycle reset).

Place variables in PSoC 5LP upper SRAM, for bit band access?
Place a function in SRAM, for possible faster execution? If so, note that in PSoC 4 and PSoC 5LP flash accesses
are almost as fast as SRAM accesses, so significant performance gains may not be realized. See Cortex-M0 in
PSoC 4 and Cortex-M3 in PSoC 5LP for details.
Place variables in other custom locations in SRAM?
Place variables in PSoC 5LP EMIF memory?
Your answers to the above questions will help you to determine the addresses of your custom locations.
9.2.2
Declare Functions and Variables
Once you have determined the custom location addresses, declare your functions and variables. In the declarations,
add the sections in which they will reside, using the __attribute__ keyword (two underscore characters before
and after the "attribute"):
uint8 foo __attribute__ ((section(".MY_section")));
This keyword can be used with both gcc and MDK. PSoC Creator provides a convenient macro CY_SECTION to
simplify the above statement. Following are some examples of its usage:
uint8 foo CY_SECTION(".MY_section"); /* no explicit initialization, = 0 */
uint8 foo CY_SECTION(".MY_section") = 10; /* explicit initialization */
/* declare a function’s section in the prototype only, and not in the actual
function */
uint16 MyFunction(char *x) CY_SECTION(".MY_section");
/* CYISR is a PSoC Creator macro to define an interrupt handler function.
See Related Documents for more information. */
CYISR(MyFunction) CY_SECTION(".MY_section");
PSoC Creator also provides a convenient macro CY_NOINIT, which places a variable in the .noinit section; see
Figure 10 and Figure 11:
/* no initialization by C startup code, initial value is undefined */
uint8 foo CY_NOINIT;
www.cypress.com
Document No. 001-89610 Rev. *A
27
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
9.2.3
Modify the Linker Script File
The final task is to modify your project‟s linker script file, to declare where you want the previously defined sections to
be placed.
For gcc, modify the linker script .ld file – change the SECTIONS {} command and possibly the MEMORY {}
command. A common way to modify it would be to add statements for EMIF memory, or to split the SRAM, for
example:
MEMORY
{
rom (rx) : ORIGIN = 0x0, LENGTH = 262144
coderam (rwx) : ORIGIN = 0x20000000 - (65536 / 2), LENGTH = (65536 / 2)
upperram (rwx) : ORIGIN = 0x20000000, LENGTH = (65536 / 2)
EMIF (rwx) : ORIGIN = 0x60000000, LENGTH = 0x1000000
}
Note: Changing the SRAM region names will cause errors in some section definitions in the default file, so you must
change each section definition as needed. For example, change .stack: { ... } >ram to
.stack: { ... } >upperram .
To locate a section, add a section definition to the SECTIONS {} command. The syntax for a section definition is:
.MY_section <address> <(NOLOAD)> : <alignment>
{
*(.MY_section)
} ><memory region>
Note that the section definition name and the name of the section within that section can be the same. Having the first
character of the name be a period “.” is not required but is a common convention.
Use a memory region name from the MEMORY {} command, as described previously.
You can also just place your section within an existing section, for example:
.data:
{
...
*(.MY_section)
...
} >ram AT>rom
For MDK, modify the linker script .scat file. The procedure is similar to that for gcc but simpler – there is no
MEMORY {} or SECTIONS {} command to change. Instead, just add your execution region, for example:
MY_REGION <address> <UNINIT> <length>
{
* (.MY_section)
}
You can also just place your section within an existing section, for example:
DATA
{
* (.MY_section)
.ANY (+RW, +ZI)
}
www.cypress.com
Document No. 001-89610 Rev. *A
28
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
9.3
Example
As noted previously, there are several different applications for custom locations. Let us examine one of them as an
example of Placement Procedure. In this example we will place an array in PSoC 5LP upper SRAM so that it can be
accessed by the Cortex-M3 bit band feature – see Cortex-M3 Bit Band.
First, we define the array to occupy a section that we will call “.bitband”:
uint8 myArray[10] CY_SECTION(".bitband");
Then we must modify the linker script file to tell it that we want to place the .bitband section in upper SRAM, starting
at address 0x20000000. Table 8 shows how to do this for gcc (.ld file) or MDK (.scat file):
Table 8. Example Modifications of Linker Script Files
gcc Example, .ld File
MDK Example, .scat File
/* put our .bitband section between the
.heap section in code SRAM and the
.stack section in upper SRAM */
.heap (NOLOAD) :
{
. = _end;
. += 256;
__cy_heap_limit = .;
} >ram
.bitband 0x20000000 (NOLOAD) :
{
*(.bitband)
} >ram
.stack (__cy_stack - 256) (NOLOAD) :
{
__cy_stack_limit = .;
. += 256;
} >ram
/* put our BITBAND execution region between the
DATA exection region in code SRAM and the
heap in upper SRAM */
DATA +0
{
.ANY (+RW, +ZI)
}
BITBAND 0x20000000 UNINIT
{
* (.bitband)
}
ARM_LIB_HEAP (0x20000000 +
(65536 / 2) - 256 - 256) EMPTY 256
{
}
ARM_LIB_STACK (0x20000000 + (65536 / 2)) EMPTY -256
{
}
Build the project, then check the .map file and confirm that the array has been located correctly and that there are no
section overlaps.
Note the initial values of myArray are undefined; they must be initialized in your code. See Variable Initialization for
details.
See Cortex-M3 Bit Band for details on how to do bit-level access of variables located in the bit band region.
9.4
General Considerations
When declaring code and variables in custom sections, keep the following in mind:

Explicitly initialized variables must be placed in the .data section (gcc, Figure 10) or the DATA execution region
(MDK, Figure 11). See Variable Initialization for details.
Similarly, variables for which there is no explicit initialization and which you expect to be auto-initialized to zero
must be placed in the .bss section (gcc) or the DATA execution region (MDK). (The MDK compiler automatically
gives variables an RW or ZI section attribute, depending on whether or not they‟re explicitly initialized.)
Variables that are not placed in the above sections are not initialized. Explicit initializations are ignored.

Functions that are to be located in SRAM must be placed in the .data section (gcc, Figure 10) or the DATA
execution region (MDK, Figure 11).

It is more efficient to have all constant data, for example fixed data tables in arrays, be located in flash, however
the default is to place them in SRAM. To force placement of a variable in flash, set its type to const and explicitly
initialize it, for example:
uint32 const var_in_flash = 0x12345678;
www.cypress.com
Document No. 001-89610 Rev. *A
29
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization

If you are using custom locations in flash, note that the PSoC Creator bootloader uses the top one or two rows of
flash to store information about bootloadable files. For more information see the Bootloader Component
datasheet.

With MDK, the easiest way to put a variable at any
__attribute__((at(address))) variable attribute. For example:
specified
address
is
to
use
the
uint32 const var_in_flash[] __attribute__((at(0x300))) = { . . . };
The linker defines a special section and places the variable at the desired address, adjusting the placement of
other code and variables as needed, as the following .map file snippet shows:
Symbol Name
Value
. . .
.text
0x000002f4
.text
0x000002f4
.ARM.__AT_0x00000300
0x00000300
main.o(.ARM.__AT_0x00000300)
.text
0x0000030c
.text
0x00000394
. . .
Ov Type
Size
Section
Section
Section
0
0
12
Section
Section
0
0
Object(Section)
indicate_semi.o(.text)
exit.o(.text)
init_alloc.o(.text)
h1_free.o(.text)
For more information, see C Documentation.

The .ramvectors section should always be at the bottom of SRAM and the stack section should always be at
the top of SRAM.
Complete documentation of .ld file usage can be found in your PSoC Creator installation folder, typically:
C:\Program Files\Cypress\PSoC Creator\3.0\PSoC Creator\import\gnu_cs\arm\4.7.3\share\doc\gcc-arm-noneeabi\pdf\ld.pdf
Complete documentation of .scat file usage can be found in your MDK installation folder, typically:
C:\Keil\ARM\Hlp\armlink.chm and C:\Keil\ARM\Hlp\armlinkref.chm
9.5
EMIF Considerations (PSoC 5LP Only)
It is possible to place variables in the external memory (EMIF) supported by PSoC 5LP, using the techniques
described previously, but there are some restrictions:

You must have an EMIF Component placed on your PSoC Creator project schematic. Note that the external
memory address, data and control lines can use a significant number of device pins – plan your design
accordingly. See the EMIF Component datasheet for details.

You cannot access the external memory until the EMIF API function EMIF_Start() is called. So you can‟t initialize
EMIF variables in C startup; you must initialize them after the code reaches main() and EMIF_Start() is called.

The EMIF supports 8-bit and 16-bit memories; placement and access of different size variables may be a
consideration. It is recommended to align 16-bit and 32-bit variables and structure members on 2-byte and 4-byte
boundaries, respectively.

Code can be executed from EMIF, but only with 16-bit external memories. The code executes much more slowly
than from device internal flash or SRAM. It is also difficult to initialize code in external memory. In general, having
code in external memory is not recommended.
www.cypress.com
Document No. 001-89610 Rev. *A
30
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
10
Cortex-M3 Bit Band (PSoC 5LP Only)
As indicated in Address Map, Figure 2 and Figure 4, the PSoC 5LP Cortex-M3 has a bit band feature, where
accessing an address in an alias region results in bit-level access in the corresponding bit band region. This lets you
quickly set, clear or test a single bit in the first 1 Mbyte of the region. For a given bit in a given byte address, the
formula for the corresponding alias address is:
alias_address = 0x22000000 + 32 * (byte_address – 0x20000000) + 4 * bit_number
So for example if you want to set bit 5 in address 0x20000001, write a 1 to address:
0x22000000 + 32 * 1 + 4 * 5 = 0x22000034.
Similarly, to clear the bit, write a 0 to the alias address. To test the bit, read the alias address and test bit 0.
Note: In addition to the SRAM region, the Cortex-M3 supports bit band for the peripheral region, in which all of the
PSoC 5LP registers are located. However, peripheral region bit band is not supported in the PSoC 5LP. Writing to the
peripheral region‟s bit band alias region (0x42000000 – 0x43FFFFFF) may give unpredictable results in the
PSoC 5LP registers and is not recommended.
To use the bit band feature with a variable, first place the variable in upper SRAM using the techniques described in
Placing Code and Variables. Then, define macros to calculate and use the corresponding addresses in the bit band
alias region:
#define BIT_BAND_ALIAS_BASE 0x22000000
/* 'byte' should be a number 0x20000000 to 0x200FFFFF
'bit' should be a number 0 to 7 */
#define BIT_BAND_ALIAS_ADDR(byte, bit) ((BIT_BAND_ALIAS_BASE + \
32 * ((uint32)(byte) – \
CYREG_SRAM_DATA_MBASE) + \
4 * (uint8)(bit))
/* 'a' should be an address (uint32 *) */
#define GET_BIT(a, bit)
*(uint32 *)BIT_BAND_ALIAS_ADDR(a, bit)
/* 'val' should be 0 or 1 */
#define SET_BIT(a, bit, val)
GET_BIT(a, bit) = (uint32)(val)
#define TEST_BIT(a, bit, val) (GET_BIT(a, bit) == (uint32)(val))
You can then use the macros to set or test a bit:
SET_BIT(&foo, 5, 1); /* set bit 5 of foo */
if (TEST_BIT(&foo, 5, 1)) { ... } /* test bit 5 */
In general, it is more efficient to set or clear a bit with the bit band technique than by reading, modifying and writing
the variable, as Table 9 shows. When bit band is used, the read-modify-write cycle is done internally by the CPU,
thereby saving one instruction.
Table 9. Assembly Language for Bit Band vs Direct Set
C Code
Assembler Code
/* direct set bit */
foo |= (1 << 5);
; R3 = address of foo
ldr
r2, [r3]
orr
r2, r2, #32
str
r2, [r3]
/* use bit band */
SET_BIT(&foo, 5, 1);
; R3 = bit band alias address for foo bit 5 */
mov
r2, #1
str
r2, [r3]
Note that there is no efficient way use bit banding
to toggle a bit. It is possible to do:
However it is simpler and just as efficient to do:
foo ^= (1 << 5);
SET_BIT(&foo, 5,
GET_BIT(&foo, 5) ^ 1);
www.cypress.com
Document No. 001-89610 Rev. *A
31
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
11
DMA Addresses (PSoC 5LP only)
This section assumes that you know how to use the direct memory access (DMA) controller in PSoC 5LP. The DMA
controller can transfer data from a source to a destination with no CPU intervention. This allows the CPU to handle
other tasks while the DMA does data transfers, thereby achieving a “multiprocessing” environment.
The DMA controller is highly flexible and capable of doing complex transfers of data between PSoC memory and onchip peripherals including ADCs, DACs, the Digital Filter Block (DFB), USB, UART, and SPI. There are 24
independent DMA channels. For more information, see AN52705, Getting Started with PSoC DMA.
In PSoC 5LP, the DMA shares the Cortex-M3 S Bus (Figure 4) with the CPU. However, because the S Bus does not
access the Code region, the DMA cannot directly access code SRAM (0x1FFF8000 to 0x1FFFFFFF). PSoC 5LP
handles this by implementing remapping so that the DMA can access the code SRAM by accessing corresponding
addresses 0x20008000 to 0x2000FFFF, as Figure 13 shows.
Figure 13. DMA Remapping of Code SRAM
DMA Mapping
0x2000 FFFF
0x2000 8000
0x2000 7FFF
CPU Mapping
Upper SRAM
Code SRAM
(Remapped)
Upper SRAM
0x2000 0000
0x1FFF FFFF
Code SRAM
0x1FFF 8000
Since the DMA is a 16-bit subsystem, when it increments an address only the lower 16 bits are incremented, with
rollover. Therefore, the next DMA address following 0x2000FFFF (which is mapped to 0x1FFFFFFF) is 0x20000000.
This means that the SRAM still functions as a contiguous 64-KB block of memory for DMA. This is also true for
devices with less than 64K SRAM because the SRAM is always centered around 0x20000000.
The remapping is taken into account by the PSoC Creator DMA Component API functions used to set up a DMA
channel. If you do not use the API, always set the upper 16 bits of a DMA address for SRAM to 0x2000 regardless of
the actual address.
12
Summary
This application note has presented a number of methods to increase the efficiency of your C code for the Cortex
CPUs in PSoC 4 and PSoC 5LP. The gcc and MDK compilers supported by PSoC Creator work well for most
applications without using these techniques; they are needed for special problems in meeting code size or execution
speed requirements.
The methods presented, in no particular order, are:

Limit the number of function arguments to no more than 4. See Function Arguments and Result.

Use inline or embedded assembler to maximize efficiency in critical sections; see Mixing C and Assembler Code.
You can also use this technique, or intrinsic functions, to take advantage of special instructions, especially in the
Cortex-M3; see Special-Function Instructions.
Minimize the number of global and static variables. Not only is this a coding best practice but it may reduce code
size by reducing the number of address load operations. See Global and Static Variables.
Also see Appendix A for examples of how to write efficient assembler code.

Be careful when using standard compiler libraries, as they may use a lot of memory; consider using inline code
instead. See Compiler Libraries.
www.cypress.com
Document No. 001-89610 Rev. *A
32
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
12.1

When using structures, pay careful attention to whether they should be packed or unpacked – there are
advantages and disadvantages for each. See Packed and Unpacked Structures.

Place speed critical code in SRAM; see Placing Code and Variables. Note that speed gains using this technique
may not be realized.

Place variables to take advantage of the bit band feature in the PSoC 5LP Cortex-M3; see Cortex-M3 Bit Band
and Example.
Use All of the Resources in Your PSoC
There is one final method available for reducing code size. It is based on the fact that PSoC is designed to be a
flexible device that enables you to build custom functions in programmable analog and digital blocks. For example, in
PSoC 5LP you have the following peripherals that can act as “co-processors”:

DMA Controller. Note that the most common CPU assembler instructions are MOV, LDR, and STR, which
implies that the CPU spends a lot of cycles just moving bytes around. Let the DMA controller do that instead.

Digital Filter Block (DFB) – a sophisticated 24-bit sum of products calculator

The UDBs also have programmable logic devices (PLDs) which can be used to build state machines, c.f. the
Lookup Table (LUT) Component datasheet. LUTs can be an effective alternative to programming state machines
in the CPU using C switch / case statements.

Analog components including ADCs, DACs, comparators, opamps, as well as programmable switched
capacitor / continuous time (SC/CT) blocks from which you can create programmable gain amplifiers (PGAs),
transimpedance amplifiers (TIAs), and mixers. Consider doing your processing in the analog domain instead of
the digital domain.
Universal Digital Blocks (UDBs). There are as many as 24 UDBs, and each UDB has an 8-bit datapath that can
add, subtract, and do bitwise operations, shifts, and cyclic redundancy check (CRC). The datapaths can be
chained for word-wide calculations. Consider offloading CPU calculations to the datapaths.
PSoC Creator offers a large number of Components to implement various functions in these peripherals. This allows
you to develop an effective multiprocessing system in a single chip, offloading a lot of functionality from the CPU. This
in turn can not only reduce code size, but by reducing the number of tasks that the CPU must perform, you can
reduce CPU speed and thereby reduce power.
For example, with PSoC 5LP a digital system can be designed to control multiplexed ADC inputs, and interface with
DMA to save the data in SRAM, to create an advanced analog data collection system with zero usage of the CPU.
Cypress offers extensive application note support for PSoC peripherals, as well as detailed data in the device
datasheets and technical reference manuals (TRMs). For more information see Related Documents.
www.cypress.com
Document No. 001-89610 Rev. *A
33
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
13
Related Documents
13.1
Application Notes
Name:
Mark Ainsworth

AN77759 – Getting Started with PSoC 5LP
Title:
Applications Engineer Principal
Background:
Mark Ainsworth has a BS in Computer
Engineering from Syracuse University
and an MSEE from University of
Washington, as well as many years
experience designing and building
embedded systems.

AN90799 – PSoC 4 Interrupts
Name:
Asha Ganesan
Title:
Applications Engineer
Background:
Asha Ganesan, a gold medalist from
College of Engineering Guindy, India,
earned her BE in Electronics and
Communication Engineering. She is
currently working on PSoC 3/4/5LP
based projects and assisting PSoC
users with their designs.
Name:
Mahesh Balan
Title:
Applications Engineer
Background:
Mahesh Balan earned his BTech in
Electronics
and
Communication
Engineering from Model Engineering
College. He is currently working on
PSoC 3/4/5LP based projects and
assisting PSoC users with their
designs.
Name:
Keith Mikoleit
Title:
Systems Engineer
Background:
Keith Mikoleit graduated from Western
Washington
University
with
a
Bachelor's
Degree
in
Electrical
Engineering Technology.
13.2
About the Authors
AN79953 – Getting Started with PSoC 4
AN52705 – Getting Started with PSoC DMA
AN54460 – PSoC 3 and PSoC 5LP
Interrupts
AN60630 – PSoC 3 8051 Code and Memory
Optimization
C Documentation

gcc documentation can be found in your
PSoC Creator installation folder.
The compiler documentation can be found in:
C:\Program Files\Cypress\PSoC Creator\3.0\
PSoC Creator\import\gnu_cs\arm\4.7.3\share\
doc\gcc-arm-none-eabi\pdf\gcc\gcc.pdf
The linker script file documentation can be
found in:
C:\Program Files\Cypress\PSoC Creator\3.0\
PSoC Creator\import\gnu_cs\arm\4.7.3\share\
doc\gcc-arm-none-eabi\pdf\ld.pdf

For MDK, the documentation can be found in
your MDK installation folder, typically:
C:\Keil\ARM\Hlp. Start with armtools.chm.
For the compiler, see
armccref.chm.
armcc.chm and
The linker script file documentation can be
found in armlink.chm and armlinkref.chm.
13.3
ARM Cortex Documentation
ARM provides on their web site a wealth of
information about the Cortex-M3 and the
Cortex-M0 CPUs:

Cortex-M0 Instruction Set

ARM Related Books
Cortex-M3 Instruction Set
Cortex Microcontroller Software Interface
Standard (CMSIS) library
www.cypress.com
Document No. 001-89610 Rev. *A
34
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
A
Appendix A: Compiler Output Details
This section shows in detail the assembler output for both compilers supported by PSoC Creator (gcc and MKD) and both PSoC CPUs (Cortex-M0 and
Cortex-M3), with and without optimizations. The details are shown in several tables, which are organized as follows:

Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU
Table 11. Compiler Output Details for gcc Compiler for Cortex-M0 CPU
Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU
Table 13. Compiler Output Details for MDK Compiler for Cortex-M0 CPU
Although it may not be exactly what you get when you compile your C code, the assembler code in the tables can serve as useful examples that you can
incorporate in your code. For details see Mixing C and Assembler Code.
The test program used to generate the tables can be found in Compiler Test Program.
A.1
Assembler Examples, gcc for Cortex-M3
Table 10 shows, for the gcc compiler for the Cortex-M3, examples of compiler output for different optimization options. The examples were extracted from
the .lst files generated by the compiler.
See Function Arguments for details on register usage and stack usage in compiler functions.
Table 10. Compiler Output Details for gcc Compiler for Cortex-M3 CPU
gcc, Cortex-M3
No Optimization
C Code
gcc, Cortex-M3,
Size Optimization
gcc, Cortex-M3,
Speed Optimization
// Calling a function
// with no arguments
LCD_Start();
; do the function call
bl
LCD_Start
; same as for no optimization
; same as for no optimization
// Calling a function with
// one argument
LCD_PrintInt8(128);
; R0 = first argument
; conditional flags are NOT
; updated by mov
mov r0, #80
bl
LCD_PrintInt8
; R0 = first argument
; conditional flags ARE updated
; by movs
movs r0, #80
bl
LCD_PrintInt8
; same as for size optimization
// Calling a function with
// two arguments
LCD_Position(0, 2);
; R0
; R1
mov
mov
bl
; R0 = first argument
; R1 = second argument
movs r1, #2
movs r0, #0
bl
LCD_Position
; same as for size optimization
www.cypress.com
= first argument
= second argument
r0, #0
r1, #2
LCD_Position
Document No. 001-89610 Rev. *A
35
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M3
No Optimization
C Code
// For loop:
void ForLoop(uint8 i)
{
for(i = 0; i < 10; i++)
{
LCD_PrintInt8(i);
}
}
; function prolog
; i is saved on the stack
sub
sp, sp, #16
add
r7, sp, #0
mov
r3, r0
strb r3, [r7, #15]
; i =
mov
strb
b
0
r3, #0
r3, [r7, #15]
.L2
; do the function call with
; i as the argument in R0
.L3:
ldrb r3, [r7, #15]
uxth r3, r3 ; sign extend
mov
r0, r3
bl
LCD_PrintInt8
gcc, Cortex-M3,
Size Optimization
gcc, Cortex-M3,
Speed Optimization
; function prolog
push {r4, lr}
; function prolog
push
{r3, lr}
; R4 = i
movs r4, #0
; unroll the loop
; do the function call
; 10 times
; i as the argument in R0
movs r0, #0
bl
LCD_PrintInt8
.L2:
; do the function call with
; i as the argument in R0
mov
r0, r4 ; sign extend
adds r4, r4, #1 ; i++
uxtb r4, r4
bl
LCD_PrintInt8
movs
bl
. . .
; check i not equal to 10
cmp
r4, #10
bne
.L2
; function epilog
pop
{r4, pc} ; return
movs r0, #9
pop
{r3, lr}
; function returns back to
; caller of this function
b
LCD_PrintInt8
; i++
ldrb r3, [r7, #15]
add
r3, r3, #1
strb r3, [r7, #15]
; check i 10, by comparing
; it with 9
.L2:
ldrb r3, [r7, #15]
cmp
r3, #9
bls
.L3
; function epilog
add
r7, r7, #16
mov
sp, r7
pop
{r7, pc} ; return
www.cypress.com
Document No. 001-89610 Rev. *A
r0, #1
LCD_PrintInt8
36
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M3
No Optimization
C Code
// While loop
// i is type automatic, see
// Accessing Automatic Variables
// for details
uint8 i = 0;
; prolog not shown
; i = 0
mov
r3, #0
strb r3, [r7, #7]
b
.L5
while (i < 10)
{
LCD_PrintInt8(i);
i++;
}
.L6:
; LCD_PrintInt8(i)
ldrb r3, [r7, #7]
uxth r3, r3
mov
r0, r3
bl
LCD_PrintInt8
; i++
ldrb r3, [r7, #7]
add
r3, r3, #1
strb r3, [r7, #7]
gcc, Cortex-M3,
Size Optimization
; prolog not shown
; i = 0
movs r4, #0
.L6:
mov
r0, r4
adds r4, r4, #1 ; i++
uxtb r4, r4
; LCD_PrintInt8(i)
bl
LCD_PrintInt8
; check i not equal to 10
cmp
r4, #10
bne
.L6
gcc, Cortex-M3,
Speed Optimization
; function prolog
push
{r3, lr}
; unroll the loop
; do the function call
; 10 times
; i as the argument in R0
movs r0, #0
bl
LCD_PrintInt8
movs
bl
r0, #1
LCD_PrintInt8
. . .
; epilog not shown
movs r0, #9
pop
{r3, lr}
; function returns back to
; caller of this function
b
LCD_PrintInt8
; no prolog
; if(j == 1)
cmp
r1, #1
beq
.L10
; same as for size optimization
.L5:
; while(i 10)
ldrb r3, [r7, #7]
cmp
r3, #9
bls
.L6
; epilog not shown
// Conditional statement
void Conditional(uint8 i, uint8
j)
{
if(j == 1)
{
LCD_PrintInt8(i);
}
else
{
LCD_PrintInt8(i + 1);
}
}
; prolog not shown
; if(j == 1)
ldrb r3, [r7, #6]
cmp
r3, #1
bne
.L5
; LCD_PrintInt8(i)
ldrb r3, [r7, #7]
uxth r3, r3
mov
r0, r3
bl
LCD_PrintInt8
b
.L4
; LCD_PrintInt8(i)
adds r0, r0, #1
uxtb r0, r0
.L10:
; function returns back to
; caller of this function
b
LCD_PrintInt8
.L5:
; LCD_PrintInt8(i + 1)
ldrb r3, [r7, #7]
uxth r3, r3
add
r3, r3, #1
uxth r3, r3
mov
r0, r3
bl
LCD_PrintInt8
.L4:
; epilog not shown
www.cypress.com
Document No. 001-89610 Rev. *A
37
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M3
No Optimization
C Code
// Switch case statements
void SwitchCase(uint8 j)
{
switch(j)
{
case 0:
LCD_PrintInt8(1);
break;
case 1:
LCD_PrintInt8(2);
break;
default:
LCD_PrintInt8(0);
break;
}
}
gcc, Cortex-M3,
Size Optimization
; prolog not shown
; switch(j)
ldrb
r3, [r7, #7]
cmp
r3, #0
beq
.L9
cmp
r3, #1
beq
.L10
b
.L12
; no prolog
; switch(j)
cbz
r0, .L13
cmp
r0, #1
bne
.L15
.L9:
mov
bl
b
.L13:
movs r0, #1 ; case 0
b
.L16
; case 0
r0, #1
LCD_PrintInt8
.L7
; break
.L10:
mov
bl
b
; case 1
r0, #2
LCD_PrintInt8
.L9
; break
.L12:
mov.w
bl
nop
; default
r0, #0
LCD_PrintInt8
; break
movs
b
r0, #2 ; case 1
.L16
.L15:
movs r0, #0 ; default
.L16:
; no epilog
b
LCD_PrintInt8
gcc, Cortex-M3,
Speed Optimization
; no prolog
; switch(j)
cbnz r0, .L12
movs r0, #1 ; case 0
; no epilog
b
LCD_PrintInt8
.L12:
cmp
r0, #1
beq
.L13
movs r0, #0 ; default
; no epilog
b
LCD_PrintInt8
movs r0, #2 ; case 1
; no epilog
b
LCD_PrintInt8
.L7:
; epilog not shown
// Ternary operator
void Ternary(uint8 i)
{
LCD_PrintInt8(
(i == 1) ? 80 : 100);
}
; prolog not shown
; check value of i
ldrb r3, [r7, #7]
cmp
r3, #1
bne
.L17
; no prolog
; check value of i
cmp
r0, #1
.L17:
mov
r3, #100
; “ite” stands for if-then; else instruction
; “ne” condition checks
; if the previous compare
; instruction has cleared the
; “equal to” flag
ite
ne
.L18:
mov
r0, r3
bl
LCD_PrintInt8
; epilog not shown
; mov if the result of the
; previous “ite” instruction is
; “not equal”
movne r0, #100
mov
b
r3, #80
.L18
; same as for size optimization
; mov if the result of the
; previous “ite” instruction is
; “equal”
moveq r0, #80
; no epilog
b
LCD_PrintInt8
www.cypress.com
Document No. 001-89610 Rev. *A
38
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
C Code
gcc, Cortex-M3
No Optimization
gcc, Cortex-M3,
Size Optimization
gcc, Cortex-M3,
Speed Optimization
// Addition operation
int DoAdd(int x, int y)
{
return x + y;
}
; prolog not shown
ldr
r2, [r7, #4]
ldr
r3, [r7, #0]
adds r3, r2, r3
mov
r0, r3 ; return value
; epilog not shown
; no prolog
adds r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Subtraction operation
int DoSub(int x, int y)
{
return x - y;
}
; prolog not shown
ldr
r2, [r7, #4]
ldr
r3, [r7, #0]
subs r3, r2, r3
mov
r0, r3 ; return value
; epilog not shown
; no prolog
subs r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Multiplication
int DoMul(int x, int y)
{
return x * y;
}
; prolog not shown
ldr
r3, [r7, #4]
ldr
r2, [r7, #0]
mul
r3, r2, r3
mov
r0, r3 ; return value
; epilog not shown
; no prolog
muls r0, r1, r0
bx
lr ; return with result
; same as for size optimization
// Division
int DoDiv(int x, int y)
{
return x / y;
}
; prolog not shown
ldr
r2, [r7, #4]
ldr
r3, [r7, #0]
sdiv r3, r2, r3
mov
r0, r3 ; return value
; epilog not shown
; no prolog
sdiv r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Modulo operator
int DoMod(int x, int y)
{
return x % y;
}
; prolog not shown
ldr
r3, [r7, #4]
ldr
r2, [r7, #0]
; truncated quotient
sdiv r2, r3, r2
; quotient * divisor
ldr
r1, [r7,#0]
mul
r2, r1, r2
; remainder = dividend ; (quotient * divisor)
subs r3, r3, r2
mov
r0, r3 ; return value
; epilog not shown
; no prolog
sdiv r3, r0, r1
; multiply and subtract instruction
; implements remainder =
; dividend - (quotient * divisor)
mls
r0, r3, r1, r0
bx
lr ; return with result
; same as for size optimization
www.cypress.com
Document No. 001-89610 Rev. *A
39
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
C Code
// Pointer
void Pointer(uint8 x, uint8
*ptr)
{
*ptr = *ptr + x;
ptr++;
LCD_PrintInt8(*ptr);
}
gcc, Cortex-M3
No Optimization
; *ptr = *ptr + x
ldr
r3, [r7, #0] ; ptr
ldrb r2, [r3, #0]
ldrb r3, [r7, #7] ; x
adds r3, r2, r3
uxtb r2, r3
ldr
r3, [r7, #0] ; ptr
strb r2, [r3, #0]
gcc, Cortex-M3,
Size Optimization
; *ptr = *ptr + x
ldrb r3, [r1, #0] ; R1 = ptr
adds r0, r0, r3
; R0 = x
strb r0, [r1, #0]
gcc, Cortex-M3,
Speed Optimization
; same as for size optimization
; ptr++
; LCD_PrintInt8(*ptr)
ldrb r0, [r1, #1]
b
LCD_PrintInt8
; ptr++
ldr
r3, [r7, #0] ; ptr
add
r3, r3, #1
str
r3, [r7, #0]
; LCD_PrintInt8(*ptr)
ldr
r3, [r7, #0]
ldrb r3, [r3, #0]
mov
r0, r3
bl
LCD_PrintInt8
// Function pointer
void FuncPtr(uint8 x,
void *fptr(uint8))
{
(*fptr)(x);
}
www.cypress.com
; (*fptr)(x)
ldrb r2, [r7, #7] ; x
ldr
r3, [r7, #0] ; fptr
mov
r0, r2
; in a blx instruction, the
; LS bit of the register
; must be 1 to keep the CPU
; in Thumb mode, or an
; exception occurs
blx
r3
Document No. 001-89610 Rev. *A
; (*fptr)(x)
; in a blx instruction, the LS
; bit of the register must be
; 1 to keep the CPU in Thumb
; mode, or an exception occurs
blx
r1
; same as for size optimization
40
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
C Code
// Packed structures
struct FOO_P
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__ ((packed));
extern struct FOO_P myfoo_p;
void PackedStruct(void)
{
myfoo_p.membera = 5;
myfoo_p.memberb = 10;
myfoo_p.memberc = 15;
myfoo_p.memberd = 20;
}
// unpacked structures
struct FOO
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
extern struct FOO myfoo;
void PackedStruct(void)
{
myfoo.membera = 5;
myfoo.memberb = 10;
myfoo.memberc = 15;
myfoo.memberd = 20;
}
www.cypress.com
gcc, Cortex-M3
No Optimization
gcc, Cortex-M3,
Size Optimization
; membera
movw r3,
movt r3,
mov
r2,
strb r2,
; memberb
movw r3,
movt r3,
mov
r2,
strb r2,
; memberc
movw r3,
movt r3,
mov
r2,
orr
r2,
strb r2,
mov
r2,
strb r2,
mov
r2,
strb r2,
mov
r2,
strb r2,
; memberd
movw r3,
movt r3,
mov
r2,
orr
r2,
strb r2,
mov
r2,
strb r2,
= 5
#:lower16:myfoo_p
#:upper16:myfoo_p
#5
[r3, #0]
= 10
#:lower16:myfoo_p
#:upper16:myfoo_p
#10
[r3, #1]
= 15
#:lower16:myfoo_p
#:upper16:myfoo_p
#0
r2, #15
[r3, #2]
#0
[r3, #3]
#0
[r3, #4]
#0
[r3, #5]
= 20
#:lower16:myfoo_p
#:upper16:myfoo_p
#0
r2, #20
[r3, #6]
#0
[r3, #7]
ldr
movs
movs
strb
strb
movs
movs
movs
strb
strb
strb
strb
strb
strb
bx
; membera
movw r3,
movt r3,
mov
r2,
strb r2,
; memberb
movw r3,
movt r3,
mov
r2,
strb r2,
; memberc
movw r3,
movt r3,
mov
r2,
str
r2,
; memberd
movw r3,
movt r3,
mov
r2,
strh r2,
= 5
#:lower16:myfoo
#:upper16:myfoo
#5
[r3, #0]
= 10
#:lower16:myfoo
#:upper16:myfoo
#10
[r3, #1]
= 15
#:lower16:myfoo
#:upper16:myfoo
#15
[r3, #4]
= 20
#:lower16:myfoo
#:upper16:myfoo
#20
[r3, #8]
ldr
movs
strb
movs
movs
movs
strb
str
strh
bx
Document No. 001-89610 Rev. *A
.L28:
.word
.L31:
.word
r3,
r2,
r0,
r2,
r0,
r2,
r1,
r0,
r1,
r2,
r2,
r2,
r0,
r2,
lr
[pc,
#5
#10
[r3,
[r3,
#0
#15
#20
[r3,
[r3,
[r3,
[r3,
[r3,
[r3,
.L28]
#0] ; membera = 5
#1] ; memberb = 10
#2] ; memberc = 15
#3]
#4]
#5]
#6] ; memberd = 20
#7]
myfoo_p
r3,
r2,
r2,
r0,
r1,
r2,
r0,
r1,
r2,
lr
[pc,
#5
[r3,
#10
#15
#20
[r3,
[r3,
[r3,
myfoo
.L31]
#0] ; membera = 5
#1] ; memberb = 10
#4] ; memberc = 15
#8] ; memberd = 20
gcc, Cortex-M3,
Speed Optimization
movw
movt
movs
movs
movs
strb
strb
10
movs
movs
strb
15
strb
strb
strb
strb
20
strb
bx
r3,
r3,
r1,
r0,
r2,
r1,
r0,
movw
movt
movs
strb
movs
movs
movs
strb
10
str
15
strh
20
bx
r3,
r3,
r2,
r2,
r0,
r1,
r2,
r0,
41
#:lower16:myfoo_p
#:upper16:myfoo_p
#5
#10
#0
[r3, #0] ; membera = 5
[r3, #1] ; memberb =
r1, #15
r0, #20
r1, [r3, #2] ; memberc =
r2,
r2,
r2,
r0,
[r3,
[r3,
[r3,
[r3,
#3]
#4]
#5]
#6] ; memberd =
r2, [r3, #7]
lr
#:lower16:myfoo
#:upper16:myfoo
#5
[r3, #0] ; membera = 5
#10
#15
#20
[r3, #1] ; memberb =
r1, [r3, #4] ; memberc =
r2, [r3, #8] ; memberd =
lr
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
A.2
Assembler Examples, gcc for Cortex-M0
Table 11 shows, for the gcc compiler for the Cortex-M0, examples of compiler output for different optimization options. The examples were extracted from
the .lst files generated by the compiler.
See Function Arguments for details on register usage and stack usage in compiler functions.
Table 11. Compiler Output Details for gcc Compiler for Cortex-M0 CPU
gcc, Cortex-M0,
No Optimization
C Code
gcc, Cortex-M0,
Size Optimization
gcc, Cortex-M0,
Speed Optimization
// Calling a function
// with no arguments
LCD_Start();
; do the function call
bl
LCD_Start
; same as for no optimization
; same as for no optimization
// Calling a function with
// one argument
LCD_PrintInt8(128);
; R0 = first argument
; conditional flags are NOT
; updated by mov
mov r0, #128
bl
LCD_PrintInt8
; same as for no optimization
; same as for no optimization
// Calling a function with
// two arguments
LCD_Position(0, 2);
; R0
; R1
mov
mov
bl
; same as for no optimization
; same as for no optimization
www.cypress.com
= first argument
= second argument
r1, #2
r0, #0
LCD_Position
Document No. 001-89610 Rev. *A
42
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// For loop:
void ForLoop(uint8 i)
{
for(i = 0; i < 10; i++)
{
LCD_PrintInt8(i);
}
}
; function prolog
; i is saved on the stack
push {r7, lr}
sub
sp, sp, #16
add
r7, sp, #0
mov
r2, r0
add
r3, r7, #7
strb r2, [r3]
; i =
mov
add
mov
strb
b
0
r3,
r3,
r2,
r2,
.L2
r7
r3, #15
#0
[r3]
; do the function call with
; i as the argument in R0
.L3:
mov
r3, r7
add
r3, r3, #15
ldrb r3, [r3]
mov
r0, r3
bl
LCD_PrintInt8
; i++
mov
add
mov
add
ldrb
add
strb
r3,
r3,
r2,
r2,
r2,
r2,
r2,
; check i
; it with
.L2:
mov
r3,
add
r3,
ldrb r3,
cmp
r3,
bls
.L3
gcc, Cortex-M0,
Size Optimization
gcc, Cortex-M0,
Speed Optimization
; function prolog
push {r4, lr}
; function prolog
push {r3, lr}
; R4 = i
mov
r4, #0
; unroll the loop
; do the function call
; 10 times
; i as the argument in R0
mov
r0, #0
bl
LCD_PrintInt8
.L2:
; do the function call with
; i as the argument in R0
mov
r0, r4 ; sign extend
add
r4, r4, #1 ; i++
uxtb r4, r4
bl
LCD_PrintInt8
mov
bl
. . .
; check i not equal to 10
cmp
r4, #10
bne
.L2
mov
bl
r0, #9
LCD_PrintInt8
pop
pop
{r3, pc} ; return
{r4, pc} ; return
r7
r3, #15
r7
r2, #15
[r2]
r2, #1
[r3]
10, by comparing
9
r7
r3, #15
[r3]
#9
; function epilog
mov
sp, r7
add
sp, sp, #16
pop
{r7, pc}
www.cypress.com
Document No. 001-89610 Rev. *A
r0, #1
LCD_PrintInt8
43
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// While loop
// i is type automatic, see
// Accessing Automatic Variables
// for details
uint8 i = 0;
while (i < 10)
{
LCD_PrintInt8(i);
i++;
}
; prolog not shown
; i = 0
add
r3, r7, #7
mov
r2, #0
strb r2, [r3]
b
.L5
.L6:
; LCD_PrintInt8(i)
add
r3, r7, #7
ldrb r3, [r3]
mov
r0, r3
bl
LCD_PrintInt8
; i++
add
add
ldrb
add
strb
r3,
r2,
r2,
r2,
r2,
r7, #7
r7, #7
[r2]
r2, #1
[r3]
gcc, Cortex-M0,
Size Optimization
; prolog not shown
; i = 0
movs r4, #0
.L6:
mov
r0, r4
add
r4, r4, #1 ; i++
uxtb r4, r4
; LCD_PrintInt8(i)
bl
LCD_PrintInt8
; check i not equal to 10
cmp
r4, #10
bne
.L6
gcc, Cortex-M0,
Speed Optimization
; prolog not shown
; unroll the loop
; do the function call
; 10 times
; i as the argument in R0
mov
r0, #0
bl
LCD_PrintInt8
mov
bl
. . .
mov
bl
; epilog not shown
; epilog not shown
Document No. 001-89610 Rev. *A
r0, #9
LCD_PrintInt8
; epilog not shown
.L5:
; while(i 10)
add
r3, r7, #7
ldrb r3, [r3]
cmp
r3, #9
bls
.L6
www.cypress.com
r0, #1
LCD_PrintInt8
44
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// Conditional statement
void Conditional(uint8 i, uint8 j)
{
if(j == 1)
{
LCD_PrintInt8(i);
}
else
{
LCD_PrintInt8(i + 1);
}
}
; prolog not shown
; if(j == 1)
add
r3, r7, #6
ldrb r3, [r3]
cmp
r3, #1
bne
.L8
; LCD_PrintInt8(i)
add
r3, r7, #7
ldrb r3, [r3]
mov
r0, r3
bl
LCD_PrintInt8
b
.L7
gcc, Cortex-M0,
Size Optimization
; prolog not shown
; if(j == 1)
cmp
r1, #1
beq
.L11
gcc, Cortex-M0,
Speed Optimization
; same as for size optimization
; LCD_PrintInt8(i)
add
r0, r0, #1
uxtb r0, r0
.L11:
bl
LCD_PrintInt8
; epilog not shown
.L8:
; LCD_PrintInt8(i + 1)
add
r3, r7, #7
ldrb r3, [r3]
add
r3, r3, #1
uxtb r3, r3
mov
r0, r3
bl
LCD_PrintInt8
.L7:
; epilog not shown
// Switch case statements
void SwitchCase(uint8 j)
{
switch(j)
{
case 0:
LCD_PrintInt8(1);
break;
case 1:
LCD_PrintInt8(2);
break;
default:
LCD_PrintInt8(0);
break;
}
}
; prolog not shown
; switch(j)
add
r3, r7, #7
ldrb r3, [r3]
cmp
r3, #0
beq
.L12
cmp
r3, #1
beq
.L13
b
.L15
; prolog not shown
; switch(j)
cmp r0, #0
beq .L14
cmp r0, #1
bne .L17
; prolog not shown
; switch(j)
cmp r0, #0
bne .L14
mov r0, #1 ; case 0
bl
LCD_PrintInt8
mov
b
.L8:
pop {r3, pc} ; return
.L12
mov
bl
b
.L14:
mov r0, #1 ; case 0
b
.L18
; case 0
r0, #1
LCD_PrintInt8
.L10
; break
.L13:
; case 1
mov
r0, #2
bl
LCD_PrintInt8
b
.L10
; break
r0, #2 ; case 1
.L18
.L17:
mov r0, #0 ; default
.L14:
cmp r0, #1
beq .L15
mov r0, #0 ; default
bl
LCD_PrintInt8
b
.L8
.L18:
bl
LCD_PrintInt8
; epilog not shown
mov
bl
b
.L15:
; default
mov
r0, #0
bl
LCD_PrintInt8
mov
r8, r8 ; break - nop
.L10:
; epilog not shown
www.cypress.com
Document No. 001-89610 Rev. *A
45
r0, #2 ; case 1
LCD_PrintInt8
.L8
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// Ternary operator
void Ternary(uint8 i)
{
LCD_PrintInt8(
(i == 1) ? 80 : 100);
}
; prolog not shown
; check value of i
add
r3, r7, #7
ldrb r3, [r3]
cmp
r3, #1
bne
.L17
mov
b
r3, #80
.L18
gcc, Cortex-M0,
Size Optimization
; prolog not shown
mov r3, #100
cmp r0, #1
bne .L20
mov r3, #80
.L20:
mov r0, r3
bl
LCD_PrintInt8
; epilog not shown
.L17:
mov
r3, #100
gcc, Cortex-M0,
Speed Optimization
; prolog not shown
mov r3, #100
cmp r0, #1
beq .L19
.L17:
mov r0, r3
bl
LCD_PrintInt8
pop {r3, pc} ; return
.L19:
mov r3, #80
b
.L17
.L18:
mov
r0, r3
bl
LCD_PrintInt8
; epilog not shown
// Addition operation
int DoAdd(int x, int y)
{
return x + y;
}
; prolog
ldr r2,
ldr r3,
add r3,
mov r0,
; epilog
not shown
[r7, #4]
[r7, #0]
r2, r3
r3 ; return value
not shown
; no prolog
add r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Subtraction operation
int DoSub(int x, int y)
{
return x - y;
}
; prolog
ldr r2,
ldr r3,
sub r3,
mov r0,
; epilog
not shown
[r7, #4]
[r7, #0]
r2, r3
r3 ; return value
not shown
; no prolog
sub r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Multiplication
int DoMul(int x, int y)
{
return x * y;
}
; prolog
ldr r3,
ldr r2,
mul r3,
mov r0,
; epilog
not shown
[r7, #4]
[r7, #0]
r2
r3 ; return value
not shown
; no prolog
mul r0, r1
bx
lr ; return with result
; same as for size optimization
// Division
int DoDiv(int x, int y)
{
return x / y;
}
; prolog not shown
ldr r0, [r7, #4]
ldr r1, [r7, #0]
bl
__aeabi_idiv
mov r3, r0
mov r0, r3 ; return value
; epilog not shown
push {r3, lr}
bl
__aeabi_idiv
; return with result
pop
{r3, pc}
; same as for size optimization
// Modulo operator
int DoMod(int x, int y)
{
return x % y;
}
; prolog not shown
ldr r3, [r7, #4]
mov r0, r3
ldr r1, [r7]
bl
__aeabi_idivmod
mov r3, r1
mov r0, r3 ; return value
; epilog not shown
push {r3, lr}
bl
__aeabi_idivmod
; return with result
mov
r0, r1
pop
{r3, pc}
; same as for size optimization
www.cypress.com
Document No. 001-89610 Rev. *A
46
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// Pointer
void Pointer(uint8 x, uint8 *ptr)
{
*ptr = *ptr + x;
ptr++;
LCD_PrintInt8(*ptr);
}
; *ptr = *ptr + x
ldr
r3, [r7]
; ptr
ldrb r2, [r3]
add
r3, r7, #7 ; x
ldrb r3, [r3]
add
r3, r2, r3
uxtb r2, r3
ldr
r3, [r7]
; ptr
strb r2, [r3]
gcc, Cortex-M0,
Size Optimization
; *ptr = *ptr + x
ldrb r3, [r1]
; R1 = ptr
add
r0, r0, r3 ; R0 = x
strb r0, [r1]
gcc, Cortex-M0,
Speed Optimization
; same as for size optimization
; ptr++
; LCD_PrintInt8(*ptr)
ldrb r0, [r1, #1]
bl
LCD_PrintInt8
; ptr++
ldr
r3, [r7]
; ptr
add
r3, r3, #1
str
r3, [r7]
; LCD_PrintInt8(*ptr)
ldr
r3, [r7]
ldrb r3, [r3]
mov
r0, r3
bl
LCD_PrintInt8
// Function pointer
void FuncPtr(uint8 x,
void *fptr(uint8))
{
(*fptr)(x);
}
www.cypress.com
; (*fptr)(x)
add
r3, r7, #7 ; x
ldrb r2, [r3]
ldr
r3, [r7]
; fptr
mov
r0, r2
; in a blx instruction, the
; LS bit of the register
; must be 1 to keep the CPU
; in Thumb mode, or an
; exception occurs
blx
r3
Document No. 001-89610 Rev. *A
; (*fptr)(x)
; in a blx instruction, the LS
; bit of the register must be
; 1 to keep the CPU in Thumb
; mode, or an exception occurs
blx
r1
; same as for size optimization
47
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// Packed structures
struct FOO_P
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__ ((packed));
extern struct FOO_P myfoo_p;
void PackedStruct(void)
{
myfoo_p.membera = 5;
myfoo_p.memberb = 10;
myfoo_p.memberc = 15;
myfoo_p.memberd = 20;
}
; membera
ldr
r3,
mov
r2,
strb r2,
; memberb
ldr
r3,
mov
r2,
strb r2,
; memberc
ldr
r3,
ldrb r1,
mov
r2,
and
r2,
mov
r1,
orr
r2,
strb r2,
ldrb r1,
mov
r2,
and
r2,
strb r2,
ldrb r1,
mov
r2,
and
r2,
strb r2,
ldrb r1,
mov
r2,
and
r2,
strb r2,
; memberd
ldr
r3,
ldrb r1,
mov
r2,
and
r2,
mov
r1,
orr
r2,
strb r2,
ldrb r1,
mov
r2,
and
r2,
strb r2,
.L32:
.word
www.cypress.com
= 5
[pc,
#5
[r3]
= 10
[pc,
#10
[r3,
= 15
[pc,
[r3,
#0
r1
#15
r1
[r3,
[r3,
#0
r1
[r3,
[r3,
#0
r1
[r3,
[r3,
#0
r1
[r3,
= 20
[pc,
[r3,
#0
r1
#20
r1
[r3,
[r3,
#0
r1
[r3,
.L32]
.L32]
#1]
.L32]
#2]
#2]
#3]
gcc, Cortex-M0,
Size Optimization
ldr
mov
mov
strb
strb
mov
mov
mov
strb
strb
strb
strb
strb
strb
bx
.L30:
.word
r3,
r2,
r0,
r2,
r0,
r2,
r1,
r0,
r1,
r2,
r2,
r2,
r0,
r2,
lr
[pc,
#5
#10
[r3]
[r3,
#0
#15
#20
[r3,
[r3,
[r3,
[r3,
[r3,
[r3,
.L30]
gcc, Cortex-M0,
Speed Optimization
; same as for size optimization
; membera = 5
#1] ; memberb = 10
#2] ; memberc = 15
#3]
#4]
#5]
#6] ; memberd = 20
#7]
myfoo_p
#3]
#4]
#4]
#5]
#5]
.L32]
#6]
#6]
#7]
#7]
myfoo_p
Document No. 001-89610 Rev. *A
48
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
gcc, Cortex-M0,
No Optimization
C Code
// unpacked structures
struct FOO
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
extern struct FOO myfoo;
void PackedStruct(void)
{
myfoo.membera = 5;
myfoo.memberb = 10;
myfoo.memberc = 15;
myfoo.memberd = 20;
}
A.3
; membera
ldr
r3,
mov
r2,
strb r2,
; memberb
ldr
r3,
mov
r2,
strb r2,
; memberc
ldr
r3,
mov
r2,
str
r2,
; memberd
ldr
r3,
mov
r2,
strh r2,
.L35:
.word
= 5
[pc,
#5
[r3]
= 10
[pc,
#10
[r3,
= 15
[pc,
#15
[r3,
= 20
[pc,
#20
[r3,
.L35]
.L35]
#1]
.L35]
#4]
gcc, Cortex-M0,
Size Optimization
ldr
mov
strb
mov
mov
mov
strb
str
strh
bx
.L33:
.word
r3,
r2,
r2,
r0,
r1,
r2,
r0,
r1,
r2,
lr
[pc,
#5
[r3]
#10
#15
#20
[r3,
[r3,
[r3,
.L33]
gcc, Cortex-M0,
Speed Optimization
; same as for size optimization
; membera = 5
#1] ; memberb = 10
#4] ; memberc = 15
#8] ; memberd = 20
myfoo
.L35]
#8]
myfoo
Assembler Examples, MDK for Cortex-M3
Note: Table 12 shows, for the MDK compiler for the Cortex-M3, examples of compiler output for different optimization options. Since the free evaluation
version of MDK, MDK-Lite, does not include assembler in the .lst file, the examples were extracted from the assembler-level debug window in PSoC
Creator.
See Function Arguments for details on register usage and stack usage in compiler functions.
Table 12. Compiler Output Details for MDK Compiler for Cortex-M3 CPU
C Code
MDK, Cortex-M3,
No Optimization
MDK, Cortex-M3,
Size Optimization
MDK, Cortex-M3,
Speed Optimization
// Calling a function
// with no arguments
LCD_Start();
; do the function call
bl
LCD_Start
; same as for no optimization
; same as for no optimization
// Calling a function with
// one argument
LCD_PrintInt8(128);
; R0 = first argument
movs r0, #80
bl
LCD_PrintInt8
; same as for no optimization
; same as for no optimization
// Calling a function with
// two arguments
LCD_Position(0, 2);
; R0 = first argument
; R1 = second argument
movs r1, #2
movs r0, #0
bl
LCD_Position
; same as for no optimization
; same as for no optimization
www.cypress.com
Document No. 001-89610 Rev. *A
49
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M3,
No Optimization
C Code
// For loop:
void ForLoop(uint8 i)
{
for(i = 0; i < 10; i++)
{
LCD_PrintInt8(i);
}
}
; prolog
push
{r4, lr}
mov
r4, r0
r4, #0 ; i = 0
<ForLoop+0x12>
<ForLoop+0x8>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
r0, r4, #1 ; i++
r4, r0 ; sign extend
<ForLoop+0x12>:
cmp
r4, #a ; i < 10
blt.n <ForLoop+0x8>
pop
while (i < 10)
{
LCD_PrintInt8(i);
i++;
}
r4, #0
; same as for size optimization
; i = 0
adds
uxtb
cmp
bcc.n
r4, r4, #1 ; i++
r4, r4 ; sign extend
r4, #a ; i < 10
<ForLoop+0x4>
pop
{r4, pc} ; return
{r4, pc} ; return
; prolog
push
{r4, lr}
movs
b.n
movs
r4, #0 ; i = 0
<WhileLoop+0x10>
<WhileLoop+0x6>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
r0, r4, #1 ; i++
r4, r0 ; sign extend
<WhileLoop+0x10>:
cmp
r4, #a ; i < 10
blt.n <WhileLoop+0x6>
pop
MDK, Cortex-M3,
Speed Optimization
<ForLoop+0x4>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
; prolog
push
{r4, lr}
adds
uxtb
www.cypress.com
; prolog
push
{r4, lr}
movs
movs
b.n
adds
uxtb
// While loop
// i is type automatic, see
// Accessing Automatic
Variables
// for details
uint8 i = 0;
MDK, Cortex-M3,
Size Optimization
r4, #0
; same as for size optimization
; i = 0
<WhileLoop+0x4>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
adds
uxtb
r4, r4, #1 ; i++
r4, r4 ; sign extend
cmp
bcc.n
r4, #a ; i < 10
<WhileLoop+0x4>
pop
{r4, pc}; return
{r4, pc}; return
Document No. 001-89610 Rev. *A
50
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M3,
No Optimization
C Code
// Conditional statement
void Conditional(uint8 i,
uint8 j)
{
if(j == 1)
{
LCD_PrintInt8(i);
}
else
{
LCD_PrintInt8(i + 1);
}
}
; prolog
push
{r4, r5, r6, lr}
mov
mov
cmp
bne.n
r4, r0
r5, r1
r5, #1 ; j == 1
<Conditional+0x12>
mov
bl
b.n
r0, r4
LCD_PrintInt8
<Conditional+0x1a>
MDK, Cortex-M3,
Size Optimization
; no prolog
; if(j == 1)
cmp
r1, #1
beq.n <Conditional+0x8>
adds
uxtb
MDK, Cortex-M3,
Speed Optimization
; same as for size optimization
r0, r0, #1 ; i + 1
r0, r0
<Conditional+0x8>:
; function returns back to
; caller of this function
b.w
LCD_PrintInt8
<Conditional+0x12>:
; LCD_PrintInt8(i + 1)
adds
r1, r4, #1
uxtb
r0, r1 ; sign extend
bl
LCD_PrintInt8
<Conditional+0x1a>:
; return
pop
{r4, r5, r6, pc}
// Switch case statements
void SwitchCase(uint8 j)
{
switch(j)
{
case 0:
LCD_PrintInt8(1);
break;
case 1:
LCD_PrintInt8(2);
break;
default:
LCD_PrintInt8(0);
break;
}
}
; prolog
push
{r4, lr}
; switch(j)
mov
r4, r0
cbz
r4, <SwitchCase+0xc>
cmp
r4, #1
bne.n <SwitchCase+0x1c>
b.n
<SwitchCase+0x14>
<SwitchCase+0xc>:
movs
r0, #1 ; case 0
bl
LCD_PrintInt8
b.n
<SwitchCase+0x24>
<SwitchCase+0x14>:
movs
r0, #2 ; case 1
bl
LCD_PrintInt8
b.n
<SwitchCase+0x24>
; prolog not shown
; switch(j)
cbz
r0, <SwitchCase+0xa>
cmp
r0, #1
beq.n <SwitchCase+0xe>
movs
b.n
; same as for size optimization
r0, #0 ; default
<SwitchCase+0x10>
<SwitchCase+0xa>:
movs
r0, #1 ; case 0
b.n
<SwitchCase+0x10>
<SwitchCase+0xe>:
movs
r0, #2 ; case 1
<SwitchCase+0x10>:
; function returns back to
; caller of this function
b.w
LCD_PrintInt8
<SwitchCase+0x1c>:
movs
r0, #0 ; default
bl
LCD_PrintInt8
nop
<SwitchCase+0x24>:
nop
pop
{r4, pc} ; return
www.cypress.com
Document No. 001-89610 Rev. *A
51
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M3,
No Optimization
C Code
// Ternary operator
void Ternary(uint8 i)
{
LCD_PrintInt8(
(i == 1) ? 80 : 100);
}
; prolog
push {r4, lr}
mov
cmp
bne.n
r4, r0 ; i == 1
r4, #1
<Ternary+0xc>
movs
b.n
r1, #50
<Ternary+0xe>
<Ternary+0xc>:
movs
r1, #64
MDK, Cortex-M3,
Size Optimization
; no prolog
cmp
r0, #1
beq.n <Ternary+0xa>
MDK, Cortex-M3,
Speed Optimization
; same as for size optimization
<Ternary+0x6>:
movs
r0, #64
; 0x64
; function returns back to
; caller of this function
b.w
LCD_PrintInt8
<Ternary+0xa>:
movs
r0, #50
; 0x50
b.n
<Ternary+0x6>
<Ternary+0xe>:
mov
r0, r1
bl
LCD_PrintInt8
pop
{r4, pc} ; return
// Addition operation
int DoAdd(int x, int y)
{
return x + y;
}
; no prolog
mov
r2, r0
adds r0, r2, r1
bx
lr ; return with result
; no prolog
add
r0, r1
bx
lr ; return with result
; same as for size optimization
// Subtraction operation
int DoSub(int x, int y)
{
return x - y;
}
; no prolog
mov
r2, r0
subs r0, r2, r1
bx
lr ; return with result
; no prolog
subs r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Multiplication
int DoMul(int x, int y)
{
return x * y;
}
; no prolog
mov
r2, r0
mul.w r0, r2, r1
bx
lr ; return with result
; no prolog
muls r0, r1
bx
lr ; return with result
; same as for size optimization
// Division
int DoDiv(int x, int y)
{
return x / y;
}
; no prolog
mov
r2, r0
sdiv r0, r2, r1
bx
lr ; return with result
; no prolog
sdiv r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Modulo operator
int DoMod(int x, int y)
{
return x % y;
}
; no prolog
mov
r2, r0
; truncated quotient
sdiv r0, r2, r1
; multiply and subtract
instruction
; implements remainder =
; dividend - (quotient *
divisor)
mls
r0, r1, r0, r2
bx
lr ; return with result
; no prolog
; truncated quotient
sdiv r2, r0, r1
; multiply and subtract instruction
; implements remainder =
; dividend - (quotient * divisor)
mls
r0, r1, r2, r0
bx
lr ; return with result
; same as for size optimization
www.cypress.com
Document No. 001-89610 Rev. *A
52
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M3,
No Optimization
C Code
// Pointer
void Pointer(uint8 x, uint8
*ptr)
{
*ptr = *ptr + x;
ptr++;
LCD_PrintInt8(*ptr);
}
// Function pointer
void FuncPtr(uint8 x,
void
*fptr(uint8))
{
(*fptr)(x);
}
; prolog
push {r4, r5, r6, lr}
mov
r5, r0
mov
r4, r1
; *ptr = *ptr + x;
ldrb r0, [r4, #0]
add
r0, r5
strb r0, [r4, #0]
adds
r4, r4, #1 ; ptr++;
ldrb
bl
r0, [r4, #0]
LCD_PrintInt8
pop
{r4, r5, r6, pc} ; return
; prolog
push {r4, r5, r6, lr}
mov
r5, r0
mov
r4, r1
; (*fptr)(x)
mov
r0, r5
; in a blx instruction, the
; LS bit of the register
; must be 1 to keep the CPU
; in Thumb mode, or an
; exception occurs
blx
r4
pop
// Packed structures
struct FOO_P
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__ ((packed));
extern struct FOO_P
myfoo_p;
void PackedStruct(void)
{
myfoo_p.membera = 5;
myfoo_p.memberb = 10;
myfoo_p.memberc = 15;
myfoo_p.memberd = 20;
}
www.cypress.com
MDK, Cortex-M3,
Size Optimization
; no prolog
; *ptr = *ptr + x
ldrb r2, [r1, #0] ; R1 = ptr
add
r0, r2
; R0 = x
strb r0, [r1, #0]
MDK, Cortex-M3,
Speed Optimization
; same as for size optimization
; ptr++
; LCD_PrintInt8(*ptr)
ldrb r0, [r1, #1]
; function returns back to
; caller of this function
b.w
LCD_PrintInt8
;
;
;
;
;
(*fptr)(x)
in a bx instruction, the LS
bit of the register must be
1 to keep the CPU in Thumb
mode, or an exception occurs
; same as for size optimization
; function returns back to
; caller of this function
bx
r1
{r4, r5, r6, pc} ; return
; no prolog
; membera = 5
movs
r0, #5
ldr
r1, [pc, #14]
strb
r0, [r1, #0]
; memberb = 10
movs
r0, #a
strb
r0, [r1, #1]
; memberc = 15
movs
r0, #f
; word unaligned access
str.w r0, [r1, #2]
; memberd = 20
movs
r0, #14
strh
r0, [r1, #6]
bx
lr ; return
; no prolog
ldr
r0, [pc, #14]
; membera = 5
movs
r1, #5
strb
r1, [r0, #0]
; memberb = 10
movs
r1, #a
strb
r1, [r0, #1]
; memberc = 15
movs
r1, #f
; word unaligned access
str.w r1, [r0, #2]
; memberd = 20
movs
r1, #14
strh
r1, [r0, #6]
bx
lr ; return
.word
.word
&myfoo_p
Document No. 001-89610 Rev. *A
; same as for size optimization
&myfoo_p
53
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M3,
No Optimization
C Code
// unpacked structures
struct FOO
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
extern struct FOO myfoo;
void PackedStruct(void)
{
myfoo.membera = 5;
myfoo.memberb = 10;
myfoo.memberc = 15;
myfoo.memberd = 20;
}
A.4
MDK, Cortex-M3,
Size Optimization
; no prolog
; membera = 5
movs
r0, #5
ldr
r1, [pc, #10]
strb
r0, [r1, #0]
; memberb = 10
movs
r0, #a
strb
r0, [r1, #1]
; memberc = 15
movs
r0, #f
str
r0, [r1, #4]
; memberd = 20
movs
r0, #14
strh
r0, [r1, #8]
bx
lr ; return
; no prolog
ldr
r0, [pc, #10]
; membera = 5
movs
r1, #5
strb
r1, [r0, #0]
; memberb = 10
movs
r1, #a
strb
r1, [r0, #1]
; memberc = 15
movs
r1, #f
str
r1, [r0, #4]
; memberd = 20
movs
r1, #14
strh
r1, [r0, #8]
bx
lr ; return
.word
.word
&myfoo
MDK, Cortex-M3,
Speed Optimization
; same as for size optimization
&myfoo
Assembler Examples, MDK for Cortex-M0
Table 13 shows, for the MDK compiler for the Cortex-M0, examples of compiler output for different optimization options. Since the free evaluation version
of MDK does not produce a usable .lst file, the examples were extracted from the assembler-level debug window in PSoC Creator.
See Function Arguments for details on register usage and stack usage in compiler functions.
Table 13. Compiler Output Details for MDK Compiler for Cortex-M0 CPU
C Code
MDK, Cortex-M0,
No Optimization
MDK, Cortex-M0,
Size Optimization
MDK, Cortex-M0,
Speed Optimization
// Calling a function
// with no arguments
LCD_Start();
; do the function call
bl
LCD_Start
; same as for no optimization
; same as for no optimization
// Calling a function
with
// one argument
LCD_PrintInt8(128);
; R0 = first argument
movs r0, #80
bl
LCD_PrintInt8
; same as for no optimization
; same as for no optimization
// Calling a function
with
// two arguments
LCD_Position(0, 2);
; R0 = first argument
; R1 = second argument
movs r1, #2
movs r0, #0
bl
LCD_Position
; same as for no optimization
; same as for no optimization
www.cypress.com
Document No. 001-89610 Rev. *A
54
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M0,
No Optimization
C Code
// For loop:
void ForLoop(uint8 i)
{
for(i = 0; i < 10;
i++)
{
LCD_PrintInt8(i);
}
}
; prolog
push
{r4, lr}
mov
r4, r0
r4, #0 ; i = 0
<ForLoop+0x12>
<ForLoop+0x8>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
r0, r4, #1 ; i++
r4, r0 ; sign extend
<ForLoop+0x12>:
cmp
r4, #a ; i < 10
blt.n <ForLoop+0x8>
pop
while (i < 10)
{
LCD_PrintInt8(i);
i++;
}
r4, #0
; same as for size optimization
; i = 0
<ForLoop+0x4>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
adds
uxtb
cmp
bcc.n
r4, r4, #1 ; i++
r4, r4 ; sign extend
r4, #a ; i < 10
<ForLoop+0x4>
pop
{r4, pc} ; return
; prolog
push
{r4, lr}
; prolog
push
{r4, lr}
movs
b.n
movs
r4, #0 ; i = 0
<WhileLoop+0x10>
<WhileLoop+0x6>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
adds
uxtb
pop
MDK, Cortex-M0,
Speed Optimization
{r4, pc} ; return
r0, r4, #1 ; i++
r4, r0 ; sign extend
<WhileLoop+0x10>:
cmp
r4, #a ; i < 10
blt.n <WhileLoop+0x6>
www.cypress.com
; prolog
push
{r4, lr}
movs
movs
b.n
adds
uxtb
// While loop
// i is type automatic,
see
// Accessing Automatic
Variables
// for details
uint8 i = 0;
MDK, Cortex-M0,
Size Optimization
r4, #0
; same as for size optimization
; i = 0
<WhileLoop+0x4>:
; do the function call with
; i as the argument in R0
mov
r0, r4
bl
LCD_PrintInt8
adds
uxtb
r4, r4, #1 ; i++
r4, r4 ; sign extend
cmp
bcc.n
r4, #a ; i < 10
<WhileLoop+0x4>
pop
{r4, pc}; return
{r4, pc}; return
Document No. 001-89610 Rev. *A
55
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M0,
No Optimization
C Code
// Conditional statement
void Conditional(uint8
i, uint8 j)
{
if(j == 1)
{
LCD_PrintInt8(i);
}
else
{
LCD_PrintInt8(i +
1);
}
}
MDK, Cortex-M0,
Size Optimization
; prolog
push
{r4, r5, r6, lr}
; prolog
push
{r4, lr}
mov
mov
cmp
bne.n
r4, r0
r5, r1
r5, #1 ; j == 1
<Conditional+0x12>
; if(j == 1)
cmp
r1, #1
beq.n <Conditional+0xa>
mov
bl
b.n
r0, r4
LCD_PrintInt8
<Conditional+0x1a>
<Conditional+0x12>:
; LCD_PrintInt8(i + 1)
adds
r1, r4, #1
uxtb
r0, r1 ; sign extend
bl
LCD_PrintInt8
adds
uxtb
MDK, Cortex-M0,
Speed Optimization
; same as for size optimization
r0, r0, #1 ; i + 1
r0, r0
<Conditional+0xa>:
bl
LCD_PrintInt8
; return
pop
{r4, pc}
<Conditional+0x1a>:
; return
pop
{r4, r5, r6, pc}
// Switch case
statements
void SwitchCase(uint8 j)
{
switch(j)
{
case 0:
LCD_PrintInt8(1);
break;
case 1:
LCD_PrintInt8(2);
break;
default:
LCD_PrintInt8(0);
break;
}
}
; prolog
push
{r4, lr}
; prolog
push
{r4, lr}
; switch(j)
mov
r4, r0
cmp
r4, #0
beq.n <SwitchCase+0xe>
cmp
r4, #1
bne.n <SwitchCase+0x1e>
b.n
<SwitchCase+0x16>
; switch(j)
cmp
r0, #0
beq.n <SwitchCase+0xe>
cmp
r0, #1
beq.n <SwitchCase+0x12>
<SwitchCase+0xe>:
movs
r0, #1 ; case 0
bl
LCD_PrintInt8
b.n
<SwitchCase+0x26>
<SwitchCase+0x14>:
movs
r0, #2 ; case 1
bl
LCD_PrintInt8
b.n
<SwitchCase+0x26>
<SwitchCase+0x1e>:
movs
r0, #0 ; default
bl
LCD_PrintInt8
nop
movs
b.n
; same as for size optimization
r0, #0 ; default
<SwitchCase+0x14>
<SwitchCase+0xe>:
movs
r0, #1 ; case 0
b.n
<SwitchCase+0x14>
<SwitchCase+0x12>:
movs
r0, #2 ; case 1
<SwitchCase+0x14>:
bl
LCD_PrintInt8
pop
{r4, pc} ; return
<SwitchCase+0x26>:
nop
pop
{r4, pc} ; return
www.cypress.com
Document No. 001-89610 Rev. *A
56
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M0,
No Optimization
C Code
// Ternary operator
void Ternary(uint8 i)
{
LCD_PrintInt8(
(i == 1) ? 80 :
100);
}
MDK, Cortex-M0,
Size Optimization
; prolog
push {r4, lr}
; prolog
push {r4, lr}
mov
cmp
bne.n
r4, r0 ; i == 1
r4, #1
<Ternary+0xc>
cmp
beq.n
r0, #1 ; i == 1
<Ternary+0xe>
movs
r0, #64
movs
b.n
r1, #50
<Ternary+0xe>
<Ternary+0xc>:
movs
r1, #64
<Ternary+0xe>:
mov
r0, r1
bl
LCD_PrintInt8
pop
MDK, Cortex-M0,
Speed Optimization
; same as for size optimization
<Ternary+0x8>:
bl
LCD_PrintInt8
pop
{r4, pc} ; return
<Ternary+0xe>:
movs
r0, #50
b.n
<Ternary+0x8>
{r4, pc} ; return
// Addition operation
int DoAdd(int x, int y)
{
return x + y;
}
; no prolog
mov
r2, r0
adds r0, r2, r1
bx
lr ; return with result
; no prolog
adds r0, r1
bx
lr ; return with result
; same as for size optimization
// Subtraction operation
int DoSub(int x, int y)
{
return x - y;
}
; no prolog
mov
r2, r0
subs r0, r2, r1
bx
lr ; return with result
; no prolog
subs r0, r0, r1
bx
lr ; return with result
; same as for size optimization
// Multiplication
int DoMul(int x, int y)
{
return x * y;
}
; no prolog
mov
r2, r0
muls r0, r2, r1
bx
lr ; return with result
; no prolog
muls r0, r1
bx
lr ; return with result
; same as for size optimization
// Division
int DoDiv(int x, in`t y)
{
return x / y;
}
; prolog
push {r4, r5, r6, lr}
mov
r4, r0
mov
r5, r1
mov
r1, r5
mov
r0, r4
bl
__aeabi_idiv
; return with result
pop
{r4, r5, r6, pc}
; prolog
push {r4, lr}
bl
__aeabi_idiv
; return with result
pop
{r4, pc}
; same as for size optimization
www.cypress.com
Document No. 001-89610 Rev. *A
57
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M0,
No Optimization
C Code
MDK, Cortex-M0,
Size Optimization
MDK, Cortex-M0,
Speed Optimization
// Modulo operator
int DoMod(int x, int y)
{
return x % y;
}
; prolog
push {r4, r5, r6, lr}
mov
r4, r0
mov
r5, r1
mov
r1, r5
mov
r0, r4
bl
__aeabi_idiv
; return with result
mov
r0, r1
pop
{r4, r5, r6, pc}
; prolog
push {r4, lr}
bl
__aeabi_idiv
; return with result
mov
r0, r1
pop
{r4, pc}
; same as for size optimization
// Pointer
void Pointer(uint8 x,
uint8 *ptr)
{
*ptr = *ptr + x;
ptr++;
LCD_PrintInt8(*ptr);
}
; prolog
push {r4, r5, r6, lr}
mov
r5, r0
mov
r4, r1
; prolog
push {r4, lr}
; same as for size optimization
// Function pointer
void FuncPtr(uint8 x,
void
*fptr(uint8))
{
(*fptr)(x);
}
; *ptr = *ptr + x;
ldrb r0, [r4, #0]
adds r0, r0, r5
strb r0, [r4, #0]
adds
r4, r4, #1 ; ptr++;
ldrb
bl
r0, [r4, #0]
LCD_PrintInt8
pop
{r4, r5, r6, pc} ; return
; prolog
push {r4, r5, r6, lr}
mov
r5, r0
mov
r4, r1
; (*fptr)(x)
mov
r0, r5
; in a blx instruction, the
; LS bit of the register
; must be 1 to keep the CPU
; in Thumb mode, or an
; exception occurs
blx
r4
pop
www.cypress.com
; *ptr = *ptr + x
ldrb r2, [r1, #0] ; R1 = ptr
adds
r0, r2, r0
; R0 = x
strb r0, [r1, #0]
; ptr++
; LCD_PrintInt8(*ptr)
ldrb r0, [r1, #1]
bl
LCD_PrintInt8
pop
;
;
;
;
;
{r4, pc} ; return
(*fptr)(x)
in a bx instruction, the LS
bit of the register must be
1 to keep the CPU in Thumb
mode, or an exception occurs
; same as for size optimization
; function returns back to
; caller of this function
bx
r1
{r4, r5, r6, pc} ; return
Document No. 001-89610 Rev. *A
58
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
MDK, Cortex-M0,
No Optimization
C Code
// Packed structures
struct FOO_P
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__
((packed));
extern struct FOO_P
myfoo_p;
void PackedStruct(void)
{
myfoo_p.membera = 5;
myfoo_p.memberb = 10;
myfoo_p.memberc = 15;
myfoo_p.memberd = 20;
}
; prolog
push {r4, lr}
; membera = 5
movs r0, #5
ldr
r1, [pc, #18]
strb r0, [r1, #0]
; memberb = 10
movs r0, #a
strb r0, [r1, #1]
; memberc = 15
adds r1, r1, #2
movs r0, #f
bl
__aeabi_uwrite4
; memberd = 20
movs r1, #14
ldr
r0, [pc,#8]
strb r1, [r0, #6]
movs r1, #0
strb r1, [r0, #7]
pop
{r4, pc} ; return
MDK, Cortex-M0,
Size Optimization
; prolog
push {r4, lr}
ldr
r4, [pc, #18]
; membera = 5
movs r0, #5
strb r0, [r4, #0]
; memberb = 10
movs r0, #a
strb r0, [r4, #1]
; memberc = 15
adds r1, r4, #2
movs r0, #f
bl
__aeabi_uwrite4
; memberd = 20
movs r0, #14
strb r1, [r4, #6]
movs r0, #0
strb r1, [r4, #7]
pop
{r4, pc} ; return
.word
.word
// unpacked structures
struct FOO
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
extern struct FOO myfoo;
void PackedStruct(void)
{
myfoo.membera = 5;
myfoo.memberb = 10;
myfoo.memberc = 15;
myfoo.memberd = 20;
}
www.cypress.com
; same as for size optimization
&myfoo_p
&myfoo_p
; no prolog
; membera = 5
movs
r0, #5
ldr
r1, [pc, #10]
strb
r0, [r1, #0]
; memberb = 10
movs
r0, #a
strb
r0, [r1, #1]
; memberc = 15
movs
r0, #f
str
r0, [r1, #4]
; memberd = 20
movs
r0, #14
strh
r0, [r1, #8]
bx
lr ; return
.word
MDK, Cortex-M0,
Speed Optimization
&myfoo
Document No. 001-89610 Rev. *A
; same as for no optimization
; no prolog
ldr
r0, [pc, #10]
; membera = 5
movs
r1, #5
strb
r1, [r0, #0]
; memberb = 10
movs
r1, #a
strb
r1, [r0, #1]
; memberc = 15
movs
r1, #f
str
r1, [r0, #4]
; memberd = 20
movs
r1, #14
strh
r1, [r0, #8]
bx
lr ; return
.word
59
&myfoo
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
A.5
Compiler Test Program
The following C code was used to generate the compiler output in the previous tables. It compiles for PSoC 4 and
PSoC 5LP, for gcc and MDK, with no optimization and with size and speed optimization. It can be added to a PSoC
Creator project; the following must also be done in the project:

Add a Character LCD Component to the project schematic, and rename it to “LCD”.
For PSoC 4, reduce the heap and stack size settings for these lower-memory parts. This is done in the DesignWide Resource (DWR) window, System tab. Values of 0x100 and 0x400, for heap size and stack size
respectively, are usually appropriate.
The code is in two files, main.c and test.c. This is main.c:
#include <project.h>
extern void ForLoop(uint8);
extern void WhileLoop(void);
extern void Conditional(uint8, uint8);
extern void SwitchCase(uint8);
extern void Ternary(uint8);
extern int DoAdd(int, int);
extern int DoSub(int, int);
extern int DoMul(int, int);
extern int DoDiv(int, int);
extern int DoMod(int, int);
extern void Pointer(uint8, uint8 *);
extern void FuncPtr(uint8, void (*)(uint8));
extern void PackedStruct(void);
extern void UnpackedStruct(void);
struct FOO /* structures are unpacked by default */
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
struct FOO_P /* packed structure */
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__ ((packed));
uint8 myData = 6;
struct FOO_P myfoo_p;
struct FOO
myfoo;
int main()
{
/* Place your initialization/startup code here (e.g. MyInst_Start()) */
LCD_Start();
/* CyGlobalIntEnable; */ /* Uncomment this line to enable global interrupts. */
for(;;)
{
LCD_PrintInt8(128);
LCD_Position(0, 2);
ForLoop(9);
WhileLoop();
www.cypress.com
Document No. 001-89610 Rev. *A
60
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Conditional(3, 4);
SwitchCase(4);
Ternary(5);
LCD_PrintNumber((uint16)DoAdd(5,
LCD_PrintNumber((uint16)DoSub(5,
LCD_PrintNumber((uint16)DoMul(5,
LCD_PrintNumber((uint16)DoDiv(5,
LCD_PrintNumber((uint16)DoMod(5,
Pointer(4, &myData);
FuncPtr(3, &LCD_PrintInt8);
PackedStruct();
UnpackedStruct();
} /* end of for(;;) */
} /* end of main() */
4));
4));
4));
4));
4));
And this is test.c:
#include <project.h>
struct FOO /* structures are unpacked by default */
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
};
struct FOO_P /* packed structure */
{
uint8 membera;
uint8 memberb;
uint32 memberc;
uint16 memberd;
} __attribute__ ((packed));
extern struct FOO_P myfoo_p;
extern struct FOO
myfoo;
void ForLoop(uint8 i)
{
for(i = 0; i < 10; i++)
{
LCD_PrintInt8(i);
}
}
void WhileLoop(void)
{
uint8 i = 0;
while(i < 10)
{
LCD_PrintInt8(i);
i++;
}
}
void Conditional(uint8 i, uint8 j)
{
if(j == 1)
{
www.cypress.com
Document No. 001-89610 Rev. *A
61
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
LCD_PrintInt8(i);
}
else
{
LCD_PrintInt8(i + 1);
}
}
void SwitchCase(uint8 j)
{
switch(j)
{
case 0:
LCD_PrintInt8(1);
break;
case 1:
LCD_PrintInt8(2);
break;
default:
LCD_PrintInt8(0);
break;
}
}
void Ternary(uint8 i)
{
LCD_PrintInt8((i == 1) ? 80 : 100);
}
int DoAdd(int x, int y)
{
return x + y;
}
int DoSub(int x, int y)
{
return x - y;
}
int DoMul(int x, int y)
{
return x * y;
}
int DoDiv(int x, int y)
{
return x / y;
}
int DoMod(int x, int y)
{
return x % y;
}
void Pointer(uint8 x, uint8 *ptr)
{
*ptr = *ptr + x;
ptr++;
LCD_PrintInt8(*ptr);
www.cypress.com
Document No. 001-89610 Rev. *A
62
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
}
void FuncPtr(uint8 x, void *fptr(uint8))
{
(*fptr)(x);
}
void PackedStruct(void)
{
myfoo_p.membera = 5;
myfoo_p.memberb = 10;
myfoo_p.memberc = 15;
myfoo_p.memberd = 20;
}
void UnpackedStruct(void)
{
myfoo.membera = 5;
myfoo.memberb = 10;
myfoo.memberc = 15;
myfoo.memberd = 20;
}
www.cypress.com
Document No. 001-89610 Rev. *A
63
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Document History
®
Document Title: PSoC 4 and PSoC 5LP ARM Cortex Code Optimization - AN89610
Document Number: 001-89610
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
4275133
MKEA
02/07/2014
New application note
*A
4994599
MKEA
10/29/2015
Clarified that PSoC 5LP cannot execute code from an 8-bit EMIF memory.
Added a reference to AN90799, PSoC 4 Interrupts.
www.cypress.com
Document No. 001-89610 Rev. *A
64
PSoC® 4 and PSoC 5LP ARM® Cortex® Code Optimization
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer‟s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
Products
PSoC Solutions
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Cypress Developer Community
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2014-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-89610 Rev. *A
65

				

 Open as PDF

 	Similar pages
	

										AN60630 PSoC 3 8051 Code and Memory Optimization.pdf

	

										Presentation

	

										AN73503 PSoC® USB HID Bootloader.pdf

	

										PMC PM73487-PI

	

										ETC RTL8305SB

	

										AP32307 - XMC1000 - Math Coprocessor(MATH)

	

										Acquiring Digital Sensor Measurements

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

