AD768S Single Event Effects Radiation Report PDF

SINGLE EVENT LATCH‐UP TEST REPORT PRODUCT: AD768AF/QMLR DIE TYPE: B768 DATE CODE: 1048 CASE TEMPERATURE: 125⁰C EFFECTIVE LET: 83MeV‐cm2/mg MINIMUM FLUENCE: 1E7 ion/cm2 FLUX: ~2E5 ion/cm2‐s FACILITIES: Lawrence Berkeley National Laboratories TESTED: August 31, 2011 The RADTESTSM DATA SERVICE is a compilation of radiation test results on Analog Devices’ Space grade products. It is designed to assist customers in selecting the right product for applications where radiation is a consideration. Many products manufactured by Analog Devices, Inc. have been shown to be radiation tolerant to most tactical radiation environments. Analog Devices, Inc. does not make any claim to maintain or guarantee these levels of radiation tolerance without lot qualification test. It is the responsibility of the Procuring Activity to screen products from Analog Devices, Inc. for compliance to Nuclear Hardness Critical Items (HCI) specifications. WARNING: Analog Devices, Inc. does not recommend use of this data to qualify other product grades or process levels. Analog Devices, Inc. is not responsible and has no liability for any consequences, and all applicable Warranties are null and void if any Analog product is modified in any way or used outside of normal environmental and operating conditions, including the parameters specified in the corresponding data sheet. Analog Devices, Inc. does not guarantee that wafer manufacturing is the same for all process levels. Page:1
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Single Event Latchup Testing of the AD768 16-bit, High Speed Digitalto-Analog Converter (DAC) for Analog Devices
Customer: Analog Devices (PO# 45352065)
RAD Job Number: 11-434
Part Types Tested: Analog Devices AD768 16-bit, High Speed Digital-to-Analog Converter (DAC).
The units were irradiated on August 31st, 2011.
Traceability Information: Lot Date Code: 1048A; see a photograph of a sample unit-under-test in
Appendix A for traceability information/part markings.
Quantity of Parts for Testing: Two units were exposed to a maximum fluence of 1E7ion/cm2 at a
maximum LET of approximately 83MeV-cm2/mg using worst-case bias and temperature (125°C).
Pre-Irradiation Burn-In: Burn-in not specified by the customer.
Referenced Test Standard(s): ASTM F1192, EIA/JESD57
Electrical Test Conditions: Supply current monitored during exposure.
Test Software / Hardware: ICC.XLS, See Appendix C, Table C.1 for a list of test equipment and
calibration dates.
Bias Conditions: All units-under-test were biased during heavy ion irradiation using a worst-case supply
potential. See Section 4 and Appendix B for the details of the bias conditions.
Ion Energy and LET Ranges: Minimum of 10MeV/n Xe beam with a maximum effective LET of
approximately 83MeV-cm2/mg. The 10MeV/n Xe beam had a minimum range of approximately 60μm in
silicon to the Bragg Peak (which is the shortest range particle used).
Heavy Ion Flux and Maximum Fluence Levels: Flux of approximately 1 to 2E5ions/cm2. Minimum
1E7 ions/cm2 per unit tested when no events were detected.
Facility and/or Radiation Source: Lawrence Berkeley National Laboratories (LBNL) Berkeley, CA
(10MeV/n beam).
Irradiation Temperature: Maximum 125°C case temperature as specified as the worst-case condition
by the customer.
The AD768 16-bit High Speed Digital-to-Analog Converter (DAC) is
IMMUNE to SEL events to the maximum tested LET of approximately
83MeV-cm2/mg and at a worst-case temperature of 125°C.
1
An ISO 9001:2008 and DSCC Certified Company
Page:2
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
1.0. Overview and Background
It is well known that heavy ion exposure can cause temporary and/or permanent damage in
electronic devices. The damage can occur through various mechanisms including single event
latch-up (SEL), single event burnout (SEB) and single event gate rupture (SEGR). An SEL
event occurs when a parasitic npnp feedback latch structure becomes biased into the on state due
to a dense track of electron-hole pairs created along the heavy ion path in silicon. This latch-up
is self-sustaining since there is a positive feedback path created and requires a power cycle to
reset. A single event latch-up can lead to single event burnout if the current draw from the SEL
event is sufficient to damage the junction and/or bond wire. The damage is worse and/or
becomes evident with increasing linear energy transfer (LET) and fluence. The two test
standards usually used to govern this testing are ASTM F1192 and EIA/JESD57. This
destructive testing is usually performed at the maximum datasheet voltage and temperature to a
total fluence of not less than 1E7ion/cm2.
2.0. Single Event Latch-Up Test Apparatus
The single event latch-up testing described in this final report was performed at the Lawrence
Berkeley National Laboratories (LBNL) using the 88-Inch Cyclotron. The 88-Inch Cyclotron is
operated by the University of California for the US Department of Energy (DOE) and is a
K=140 sector-focused cyclotron with both light- and heavy-ion capabilities. Protons and other
light-ions are available at high intensities (10-20pμA) up to maximum energies of 55 MeV
(protons), 65 MeV (deuterons), 135 MeV (3He) and 140 MeV (4He). Most heavy ions through
uranium can be accelerated to maximum energies, which vary with the mass and charge state.
For the SEL testing described in this final report the units-under-test were be placed in the Cave
4B vacuum chamber aligned with the heavy ion beam line. The test platter in the vacuum
chamber has full x and y alignment capabilities along with 2-dimensional rotation, allowing for
a variety of effective LETs for each ion. For SEE testing Lawrence Berkeley Laboratories
provides the dosimetry via a local control computer running a Lab View based program. Each
ion is calibrated just prior to use using five photomultiplier tubes (PMTs). Four of the five
PMTS are used during the test to provide the beam statistics, while the center PMT is removed
following calibration. Figure 2.1 shows an illustration of the LBL facility; including the
location of Cave 4B, where the heavy ion SEE testing takes place.
2
An ISO 9001:2008 and DSCC Certified Company
Page:3
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Figure 2.1. Map of 88-Inch Cyclotron Facility showing the location of Cave 4B, where the SEE testing was
performed.
3
An ISO 9001:2008 and DSCC Certified Company
Page:4
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
3.0. Radiation Test Conditions
The AD768 16-bit, High Speed Digital-to-Analog Converter (DAC) described in this final report
was irradiated using the 10MeV/n Xe beam at the Lawrence Berkeley National Laboratory using
a split supply voltage of ±5.25V and at the worst-case temperatures of 125°C (±5°C). Figure 3.1
shows the test board used for the SEL testing described in this final report (See the test circuit
schematic in Appendix B for the additional details of the bias conditions). The test board was
mounted on the test stage at Berkeley and provided 3-axis of motion plus rotation. The board
had multiple units-under-test that allowed for sequential testing of the units without vacuum
breaks during testing. Additional features of the test board include:
1. DACs individually powered – power inputs filtered via RLC filters.
2. DAC output converted immediately to voltage (0V to +2V) and fed to output amplifiers
3. DAC data inputs held at steady-state during test (Clock running)
4. Multiple gain stages x1, x10, x100, x1000 selectable as output
5. Output buffers have a gain of +2.
6. Clock input via BNC connector – can be run at frequencies up to 5MHz.
The 10MeV/n beam was used to provide sufficient range in silicon while meeting the maximum
LET requirements of the program. The other beams available at Berkeley are the 4.5MeV/n
beam and the 16MeV/n beam. The 4.5MeV/n beam does not provide sufficient range for
destructive SEE testing while the 16MeV/n beam provides a much smaller selection of ions.
Figure 3.2 shows the 10MeV/n beam characteristics for Xe. As seen in the figure, the range to
the Bragg Peak is approximately 60μm while the surface LET is approximately 58MeV-cm2/mg
for the Xe beam. Figure 3.3 shows the characteristics for all the beams available at Berkeley.
Note that the units were de-encapsulated prior to testing and all exposures took place from the
top surface providing a distance to the active layer in Silicon of approximately 5 to 10μm.
As noted above, the devices were irradiated to a minimum fluence of 1E7ion/cm2. The flux
varied during the testing, but was consistently targeted to approximately 4.5E4ion/cm2-s to
4.8E4ion/cm2-s, depending on the ion species and the response of the unit-under-test. The
irradiation of the units-under-test continued until either the minimum fluence was reached or a
latchup event was observed.
For the elevated temperature portion of the single event latch-up testing an aluminum plate
heater fixed to the back of the board and was used to heat the device-under-test (DUT) with an
RTD used to monitor the temperature. The case temperature of the DUT was calibrated prior to
the testing to the RTD with a thermocouple, allowing the RTD to provide feedback and maintain
a calibrated case temperature (up to 125°C) throughout the testing. The data monitored during
the test (case temperature, supply voltage and supply current) was routed to the control room
(approximately 20-feet away) using shielded coaxial cable.
4
An ISO 9001:2008 and DSCC Certified Company
Page:5
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Figure 3.1. Single event test board that was mounted on the test stage at Berkeley. The board has four unitsunder-test (labeled as DUTs 1, 2, 3 and 4) mounted simultaneously to minimize vacuum breaks during testing.
There is also a heater plate mounted to the backside of the board to provide the elevated temperature required
for this testing.
5
An ISO 9001:2008 and DSCC Certified Company
Page:6
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
80.0
70.0
136Xe
LET (MeV/mg/cm2)
60.0
50.0
40.0
30.0
20.0
10.0
0.0
0
20
40
60
80
100
120
Depth in Si (micron)
Figure 3.1. Range of the 10MeV/n Xe beam into silicon. The range to the Bragg Peak for Xe (the shortest
range ion used) is approximately 60μm while the surface LET is approximately 58MeV-cm2/mg.
6
An ISO 9001:2008 and DSCC Certified Company
Page:7
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Figure 3.2. Characteristics of all the beams available at Berkeley. For the testing discussed in this report the
10MeV/n beam was used exclusively.
7
An ISO 9001:2008 and DSCC Certified Company
Page:8
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
4.0. Tested Parameters
During the heavy ion exposure, the positive and negative supply currents to the unit-under-test
were measured and recorded in approximately 1-second increments. A plot of the supply
currents versus time/fluence for each of the heavy ion exposures is included in this final report
(see Section 5, “Single Event Latch-Up Test Results”).
During the heavy ion exposure the two outputs of the units-under-test (IOUTA and IOUTB, see the
functional block diagram of the unit-under-test in Appendix B) were measured for proper
operation/output voltage. The units were run dynamically with a 1MHz signal on the clock in
with each output captured on a digitizing oscilloscope. Note that the output transients are
reported separately in a report entitled “Single Event Transient Testing of the AD768 16-bit,
High Speed Digital-to-Analog Converter (DAC) for Analog Devices”. However, for the SEL
portion of the testing we did verify proper operation and/or recovery of the device using an
oscilloscope that triggered whenever there was a significant distortion in the IOUTA pin.
Table 4.1 summarizes the single event transient tests performed for the AD768 16-bit, High
Speed Digital-to-Analog Converter (DAC). The table records the total effective fluence, the
average flux, the run time, the beam energy, the ion and the effective LET. As noted above, the
SEL testing occurred at three case temperatures of approximately 125°C (±5°C)
In general the following minimum criteria must be met for a device to have considered passing
the SEL test for a given ion, LET and/or temperature: during the heavy ion exposure the DUT’s
supply current must remain within the unit’s specification limit without cycling power. If this
condition is not satisfied following the heavy ion testing, then the SEL testing could be logged as
a failure. Note that during heavy ion testing a substantial amount of total dose can be absorbed
by the units-under-test. If a functional failure occurs during or following the testing, it is
important to separate TID failures from destructive single event effects. Also, a single event
latch-up may not be a “destructive” event since it is still functional, however a unit which
experiences an SEL (i.e., a high sustained supply current requiring a power cycle to recover) is
considered to have failed this test even if the units are functional and meet parametric limits
following the testing.
For the testing described in this report the following general test procedure was used:
1. Turn on DAC power (+5.25V, -5.25V)
2. Set Clock Frequency to 1MHz
3. Set gain to x1 via USB
4. Program DAC data lines via USB
5. Verify correct DAC output voltage
6. Adjust temperature to +125°C
7. Turn ON ion beam, observe/monitor/log device current
8. Repeat process with different ion energies as device response dictates
8
An ISO 9001:2008 and DSCC Certified Company
Page:9
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
9. 4.1. Summary of the single event latch-up test runs for the Analog Devices AD768 16-bit,
Table
High Speed Digital-to-Analog Converter (DAC).
Run
#
DUT
Temp
(degC)
Time
Total Eff
Fluence
Average
Flux
110
DAC DUT4 sn84
125
8/31/2011 12:41
1.00E+07
4.75E+04
10 MeV Xe 58.78 58.78
111
DAC DUT4 sn84
125
8/31/2011 12:52
1.00E+07
4.72E+04
10 MeV Xe 58.78 83.13
112
DAC DUT2 sn82
125
8/31/2011 13:00
1.00E+07
4.43E+04
10 MeV Xe 58.78 83.13
Beam
Ion
Eff LET
9
An ISO 9001:2008 and DSCC Certified Company
Page:10
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
5.0. Single Event Latch-Up Test Results
The AD768 16-bit, High Speed Digital-to-Analog Converter (DAC) (of the lot date code
identified on the first page of this report) PASSED the SEL test with no significant events
detected at the worst-case tested LET of 83MeV-cm2/mg and at the worst-case temperature of
125°C.
Further, the unit-under-test continued operating normally based on a check of the
output levels without needed to cycle power. Note that SET events were detected during the
course of the SEL test and are reported in a separate report (as noted above). However the SET
events were short lived and the unit returned to proper operation within a short period of time.
Table 5.1 show a summary of the single event latch-up data acquired. The table shows the part
type (AD768), the serial number of the part irradiated, the test configuration (all units irradiated
with a 1MHz clock and static data inputs), the case temperature during testing, the ion species,
the effective fluence, the effective LET and whether or not an SEL event occurred. Based on the
total fluence received by each unit-under-test we can estimate that no device received more that
10krad(Si) of total ionizing dose (TID) during the testing and, therefore, TID damage did not
play a significant role in these results.
Figures 5.1 through 5.3 show the supply current data during the SEL runs. In these figures the
supply currents (positive and negative 5.25V power supplies) are plotted as a function of time.
The plots show the response of the unit-under-test from the start to the end of the exposure (See
Table 5.1 for the fluence levels). As seen in these figures, the units-under-test show essentially
no change in supply current during the course of the exposure.
10
An ISO 9001:2008 and DSCC Certified Company
Page:11
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Table 5.1. Summary of the SEL test runs for the AD768 16-bit, High Speed Digital-to-Analog
Converter (DAC)
Run
#
DUT
Temp
(degC)
Total Eff Average
Beam
Fluence
Flux
110
DAC DUT4
sn84
125
1.00E+07 4.75E+04
111
DAC DUT4
sn84
125
112
DAC DUT2
sn82
125
Ion
Eff LET
Comments
10
MeV
Xe
58.78
58.78
No latchup - Supply Currents
Stable
1.00E+07 4.72E+04
10
MeV
Xe
58.78
83.13
No latchup - Supply Currents
Stable
1.00E+07 4.43E+04
10
MeV
Xe
58.78
83.13
No latchup - Supply Currents
Stable
11
An ISO 9001:2008 and DSCC Certified Company
Page:12
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
0.08
1
0.07
Beam On/Off (0/1)
0.06
Current (A)
0.05
0.04
0.03
Iplus (A)
0.02
Iminus (A)
0.01
Beam
0
0
50
100
150
200
0
250
Time (sec)
Figure 5.1. Input supply currents (positive and negative) versus time/fluence for the AD768 16-bit, High
Speed Digital-to-Analog Converter (DAC) (run 110, DUT 4, SN84). See Table 4.1 for the details of the
test conditions. In this figure the dark blue data points represent the positive input supply current, the
green data points represent the negative input supply current and the magenta data points represent the
beam condition (beam on/beam off). A “0” indicates the shutter is closed (beam off) and a “1”
indicates that the shutter is open (beam on).
12
An ISO 9001:2008 and DSCC Certified Company
Page:13
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
0.08
1
0.07
Beam On/Off (0/1)
0.06
Current (A)
0.05
0.04
0.03
Iplus (A)
0.02
Iminus (A)
0.01
Beam
0
0
50
100
150
200
250
0
350
300
Time (sec)
Figure 5.2. Input supply currents (positive and negative) versus time/fluence for the AD768 16-bit, High
Speed Digital-to-Analog Converter (DAC). See Table 4.1 for the details of the test conditions. In this
figure the dark blue data points represent the positive input supply current, the green data points
represent the negative input supply current and the magenta data points represent the beam condition
(beam on/beam off). A “0” indicates the shutter is closed (beam off) and a “1” indicates that the shutter
is open (beam on).
13
An ISO 9001:2008 and DSCC Certified Company
Page:14
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
0.08
1
0.07
Beam On/Off (0/1)
0.06
Current (A)
0.05
0.04
0.03
Iplus (A)
0.02
Iminus (A)
0.01
Beam
0
0
50
100
150
200
250
0
350
300
Time (sec)
Figure 5.3. Input supply currents (positive and negative) versus time/fluence for the AD768 16-bit, High
Speed Digital-to-Analog Converter (DAC). See Table 4.1 for the details of the test conditions. In this
figure the dark blue data points represent the positive input supply current, the green data points
represent the negative input supply current and the magenta data points represent the beam condition
(beam on/beam off). A “0” indicates the shutter is closed (beam off) and a “1” indicates that the shutter
is open (beam on).
14
An ISO 9001:2008 and DSCC Certified Company
Page:15
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
6.0. Summary/Conclusions
The single event latch-up testing described in this final report was performed at the Lawrence
Berkeley National Laboratories (LBNL) using the 88-Inch Cyclotron. The 88-Inch Cyclotron is
operated by the University of California for the US Department of Energy (DOE) and is a
K=140 sector-focused cyclotron with both light- and heavy-ion capabilities.
The AD768 16-bit, High Speed Digital-to-Analog Converter (DAC) described in this final report
was irradiated using the 10MeV/n Xe, Kr, Cu and Ar using split supply voltages of ±5.25V and
at the worst-case temperature of 125°C (±5°C). The test board was mounted on the test stage at
Berkeley and provided 3-axis of motion plus rotation. The board had multiple units-under-test
that allowed for sequential testing of the units without vacuum breaks during testing.
The devices were irradiated to a minimum fluence of 1E7ion/cm2, if no events were detected.
The flux varied during the testing, but was consistently targeted to approximately 4.5E4ion/cm2-s
to 4.8E5ion/cm2-s, depending on the ion species and the response of the unit-under-test. The
irradiation of the units-under-test continued until either the minimum fluence was reached or a
latchup event was observed.
The AD768 16-bit, High Speed Digital-to-Analog Converter (DAC) (of the lot date code
identified on the first page of this report) PASSED the SEL test with no significant events
detected at the worst-case tested LET of 83MeV-cm2/mg and at the worst-case temperature of
125°C.
Further, the unit-under-test continued operating normally based on a check of the
output levels without needed to cycle power. Note that SET events were detected during the
course of the SEL test and are reported in a separate report (as noted above). However the SET
events were short lived and the unit returned to proper operation within a short period of time.
15
An ISO 9001:2008 and DSCC Certified Company
Page:16
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Appendix A: Photograph of a Sample Unit-Under-Test for Device Traceability and
a Decapsulated Unit Ready for SEL Testing
16
An ISO 9001:2008 and DSCC Certified Company
Page:17
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
17
An ISO 9001:2008 and DSCC Certified Company
Page:18
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Appendix B: Schematic of Test Board (Single Test Site) Used During Heavy Ion
Exposure and Functional Block Diagram of the Unit-Under-Test
L1_1
VDD1
2
2
C6_1
1uF
2
Ferrite Bead
C8_1
0.1uF
VDD1
C7_1
4.7uF, 35V
1
2
1
1
2
2
10.0
1
1 R4_1
S1_VDD
1
S1_VDD
1 R1_1
C5_1
0.1uF
RTN
2
1
2
2
C10_1
1uF
2
1
VEE1
2
1
10.0
L2_1
C9_1
0.1uF
1
1
C1_1
0.1uF
R3_1
499 GND
2
C2_1
1uF
2
1
C3_1
0.1uF
2
1
1
2
C4_1
1uF
REG_CLR
REG_CLK
REG_CLK
REG_DAT
REG_DAT
Iout A
2
NR
3
RefOut
4
NC
5
RefCom
S1_DB0
7
S1_DB1
8
S1_DB2
9
S1_DB3
10
S1_DB4
11
S1_DB5
12
S1_DB6
13
S1_DB7
14
U_AD768_1Data
AD768_1Data.SchDoc
REG_CLR
1
6
GND
OutA
+
3
Lad Com
28
Iout B
27
VEE
26
GND
VDD1
25
24
S1_DB15
Iref In
DB14
23
S1_DB14
DB0
DB13
22
S1_DB13
21
S1_DB12
20
S1_DB11
19
S1_DB10
18
S1_DB9
17
S1_DB8
DB3
DB4
DB5
DB12
DB11
DB10
DB9
DB8
DB6
Clock
DB7
D Com
+
OutB
-
6
VDD
DB2
V1_A
7
V1_B
V1_A
U2_1B
5
VEE1
DB15
DB1
1
OP2354
U1_1
Ferrite Bead
2
2
S1_VEE
GND
C12_1
0.1uF
R5_1
1
2
C11_1
4.7uF, 35V
1
U2_1A
1
S1_VEE
2
100
V1_B
OP2354
1 R2_1
2
100
16
DAC_CLK1
15
GND
AD768S
S1_DB[0..15]
S1_DB[0..15]
OE1
+5V
+5V
GND
GND
U6_1
VDD1
GND
GND
OE1
D
+5V
VCC
-2.5V
1 R6_1
2
47.0k
1
C13_1
0.1uF
2
1
U2_1C
OP2354
2
V+
C15_1
0.1uF
V-
1
C16_1
1uF
-2.5V
MAX809
C14_1
1uF
GND
4
2
GND
2
1
8
+2.5V
Q1_1
BST82
G
RESET
S
+2.5V
GND
18
An ISO 9001:2008 and DSCC Certified Company
Page:19
OE1
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
19
An ISO 9001:2008 and DSCC Certified Company
Page:20
Single Event Latch-Up Test Report
11-434 110914 R1.0
Aeroflex RAD
5017 N 30th Street
Colorado Springs, CO 80919
(719) 531-0800
Appendix C: Electrical Test Parameters and Equipment List:
The single event latch-up testing described in this final report was performed at the Lawrence
Berkeley National Laboratories (LBNL) using the 88-Inch Cyclotron. The 88-Inch Cyclotron is
operated by the University of California for the US Department of Energy (DOE) and is a K=140
sector-focused cyclotron with both light- and heavy-ion capabilities. The AD768 16-bit, High
Speed Digital-to-Analog Converter (DAC) described in this final report was irradiated using the
10MeV/n Xe, Kr, Cu and Ar using a single ended supply voltage of 5V and at three case
temperatures of 125°C, 85°C and 25°C (±5°C).
The devices were irradiated to a minimum fluence of 1E7ion/cm2, if no events were detected.
The flux varied during the testing, but was consistently targeted to approximately 1E4ion/cm2-s.
to 4E5ion/cm2-s, depending on the ion species and the response of the unit-under-test. The
irradiation of the units-under-test continued until either the minimum fluence was reached or a
latchup event was observed. Table C.1 shows the test equipment used for this testing.
Table C.1. Test equipment and calibration dates for testing the AD768 16-bit, High Speed Digital-toAnalog Converter (DAC)
HP 34401A Multimeter
3146A65284
5/15/011
5/15/12
N/A
N/A
N/A
N/A
2/19/11
2/19/12
233126
2/19/11
2/19/12
Temperature Calibration
B011044
10/22/10
10/22/11
Output Waveform
Measurements
Agilent E3642A DC Power
MY40004345
Supply
Agilent E3631A DC Power
K920920312
Supply
Fluke Model 77 Multimeter 38301747
Omega HH12 Handheld
Thermometer
Tektronics TDS5104
Oscilloscope
Icc measurement
Test power supplyPositive Supply
Test power supplyNegative Supply
Vcc measurement at the
DUT
20
An ISO 9001:2008 and DSCC Certified Company
Page:21