DC1031A-A - Demo Manual

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
LTC3725 / LTC3726
DESCRIPTION
Demonstration circuit 1031A-A is a 36V-72Vin, synchronous forward converter featuring the
LTC3725/LTC3726. This circuit was designed specifically to attain a high current, low ripple, synchronously rectified forward converter to efficiently
power 2.5V loads at up to 20A from a typical telecom
input voltage range. This circuit features secondary-
side control of the supply eliminating the need for an
optocoupler, self-starting architecture, input undervoltage lockout, and output overvoltage protection.
Design files for this circuit board are available.
Call the LTC factory.
, LTC and LT are registered trademarks of Linear Technology Corporation.
Table 1. Performance Summary (TA = 25°C)
PARAMETER
CONDITION
VALUE
Minimum Input Voltage
36V
Maximum Input Voltage
72V
Output Voltage VOUT
VIN = 36V to 72V, IOUT = 0A to 20A
2.5V
Maximum Output Current
200LFM Airflow
20A
Typical Output Ripple VOUT
VIN = 72V, IOUT = 20A
100mVP–P
Size
Component Area x Top Component Height
2.3” x 0.9” x 0.394”
Peak Deviation with Load Step of 10A to 20A (10A/us)
±150mV
Settling Time
40us
Load Transient Response
Nominal Switching Frequency
Efficiency
200kHz
VIN = 48V, IOUT = 20A
90% Typical
OPERATING PRINCIPLES
The LTC3726 controller is used on the secondary and
the LTC3725 driver with self-starting capability is
used on the primary. When an input voltage is applied, the LTC3725 begins a controlled soft-start of
the output voltage. As this voltage begins to rise, the
LTC3726 secondary controller is quickly powered up
via T1, D25, and Q27. The LTC3726 then assumes
control of the output voltage by sending encoded
PWM gate pulses to the LTC3725 primary driver via
the small signal transformer, T2. The LTC3725 then
operates as a simple driver receiving both input signals and bias power through T2.
The transition from primary to secondary control occurs seamlessly at a fraction of the output voltage.
From that point on, operation and design simplifies to
that of a simple buck converter. Secondary sensing
eliminates delays, tames large-signal overshoot and
reduces output capacitance while utilizing off-theshelf magnetics and attaining high efficiency.
For large values of input inductance, a 100V, 47uF electrolytic capacitor can be added across the input terminals to damp the input filter and provide adequate stability. See Linear Technology Application Note AN19 for a
discussion on input filter stability analysis. A recommended part is the Sanyo 100MV39AX.
1
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
QUICK START PROCEDURE
Demonstration circuit 1031A-A is easy to set up to
evaluate the performance of the LTC3725/LTC3726.
Refer to Figure 1 for proper measurement equipment
setup and follow the procedure below:
NOTE: When
measuring the input or output voltage
ripple, care must be taken to avoid a long ground lead
on the oscilloscope probe. Measure the output (or
input) voltage ripple by touching the probe tip and
probe ground directly across the input or output capacitor. See Figure 2 for proper scope probe technique.
1.
Set an input power supply that is capable of 36V to
72V at a current of at least 2A to a voltage of 36V.
Then, turn off the supply.
2.
With power off, connect the supply to the input
terminals +Vin and –Vin.
a.
Input voltages lower than 36V can keep the converter from turning on due to the undervoltage
lockout feature of the LTC3725/LTC3726.
b.
If efficiency measurements are desired, an ammeter capable of measuring 2Adc can be put in
series with the input supply in order to measure
the DC1031A-A’s input current.
c.
A voltmeter with a capability of measuring at
least 72V can be placed across the input terminals in order to get an accurate input voltage
measurement.
3.
Turn on the power at the input.
NOTE: Make
sure that the input voltage never ex-
ceeds 72V.
4.
Check for the proper output voltage of 2.5V
5.
Turn off the power at the input.
6.
Once the proper output voltages are established,
connect a variable load capable of sinking 20A at
2.5V to the output terminals +Vout and –Vout. Set
the current for 0A.
7.
a.
If efficiency measurements are desired, an ammeter or a resistor current shunt that is capable
of handling at least 20Adc can be put in series
with the output load in order to measure the
DC1031A-A’s output current.
b.
A voltmeter with a capability of measuring at
least 2.5V can be placed across the output terminals in order to get an accurate output voltage
measurement.
Turn on the power at the input.
NOTE: If there is no output, temporarily disconnect
the load to make sure that the load is not set too
high.
8.
Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage,
efficiency and other desired parameters.
2
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 1. Proper Measurement Equipment Setup
Figure 2. Measuring Input or Output Ripple
3
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
MEASURED DATA
Figures 3 through 11 are measured data for a typical DC1031A-A. Figures 12 through 21 are schematics, bill of materials and layout.
92
EFFICIENCY (%)
90
88
86
84
36V
48V
82
72V
80
6
8
10
12
14
16
18
20
LOAD CURRENT (A)
Figure 3. Efficiency (200lfm airflow)
50mV/div
2us/div
Figure 4. Output Ripple Voltage (72Vin, 20Aout)
4
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Vout
100mV/DIV
Iout
10A/div
20us/DIV
Figure 5. Output Voltage Transient Response (48Vin, 10A to 20A step)
5
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 6. Temp Data (48Vin, 20A, 25 C, 200LFM airflow – front)
Figure 7. Temp Data (48Vin, 20A, 25 C, 200LFM airflow – back)
Figure 8. Temp Data (36Vin, 20A, 25 C, 200LFM airflow – front)
6
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 9. Temp Data (36Vin, 20A, 25 C, 200LFM airflow – back
Figure 10. Temp Data (72Vin, 20A, 25 C, 200LFM airflow – front)
Figure 11. Temp Data (72Vin, 20A, 25 C, 200LFM airflow – back)
7
R22
15.0K
R18
365K
-Vin
1uF
470pF
3
FB/IN+
330pF
C27
100
R3
C29
33nF
SSFLT
ULVO
U1
FS/IN-
LTC3725EMSE
VCC
R29
100K
10
1uF,100V TDK C3225X7R2A105M (1210)
100uF, 6.3V CER TDK C3225X5R0J107M (1210)
C68 Sanyo 6TPE220MI
C30 Murata GA343QR7GD222KW01L (1812)
L1 Vishay IHLP-2525CZER1R0M-01
L2 Cooper HC1-R87
T1 PA0865 (4:4:1:1)
T2 Pulse PA0297 2(1.4mH):1:1
C24
2
1
8
Q28
FDC2512
(SOT6)
C3,C4,C5
3x1.0uF
100V
C55
36-72Vin
C2
1.0uF
100V
7
1uH
5
4
5.1K
C72
R58
R63
160K
R61
100
2
VIN
8
1
C30
T2
5
6
4
3
PT-
C71
1uF
C69
2.2nF
R51
50V
2.4
1/4W
7
10
9
11
2.2nF -VOUT
250V
C66
1nF
200V
R48
0.039
1W
C73 0.1uF
470pF
Q8
Si7450DP
3
4
5
14
15
VA
Q14
Si7336ADP
VSW
PT-
PT+
Q34
D29
PT-
910
R89
R76
1K
1/4W
VA
C67
4.7uF
25V
R2
1.2
1/4W
C79
2.2nF
R68
6.2K
Q27
FCX491
(SOT89)
FB/PH
220uF
6.3V
4
C77
2.2uF
VCC
2.5V/20A
C31,C33
2x100uF
6.3V
+ C68
R46
604
R41
1.91K
-Vout
+Vout
LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A CIRCUIT
THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS; HOWEVER, IT
REMAINS THE CUSTOMER'S RESPONSIBILITY TO VERIFY PROPER AND
RELIABLE OPERATION IN THE ACTUAL APPLICATION. COMPONENT
SUBSTITUTION AND PRINTED CIRUIT BOARD LAYOUT MAY SIGNIFICANTLY
AFFECT CIRCUIT PERFORMANCE OR RELIABILITY. CONTACT LINEAR
TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.
CUSTOMER NOTICE
LINEAR TECHNOLOGY CORPORATION
CONFIDENTIAL
THIS CIRCUIT IS DISTRIBUTED
TO CUSTOMERS ONLY FOR USE
WITH LTC PARTS.
C75
47pF
L2
0.87uH
-VOUT
D28
MMBZ5236B
7.5V
R69
0ohms
1N4148W
R66
100K
10pF
VSW C81
C78
33nF
100
R55
Q12
Si7336ADP
CMPSH1-4
D25
LTC3726EGN
U2
330pF
C70
0.002
1W
100
R54
R50
-VOUT
2N7002
-VOUT
R79
510
IS+
T1
23.4 x 20.1 x 9.4mm PLANAR
1
SG
VIN
16
VCC
L1
2
FG
GND
8
NDRV
VSLMT
9
12
13
SW
PGND
10
ISRUN/SS
6
11
SLP
7
GATE
PGND
6
FS/SYNC
9
IS
GND
11
ITH
5
3
MODE
+Vin
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 12. Simplified Schematic
8
E2
C24
1uF
C55
470pF
Vout/Iout
2.5V/20A
3.3V/20A
5.0V/20A
VERSION
DC1031A-A
DC1031A-B
DC1031A-C
R29
100K
CMPSH1-4
4.42K
2.74K
opt.
CMPSH1-4
opt.
R41
1.91K
D25
opt.
5
VIN
FS/IN-
4
CMPSH1-4
R88
0
R86
R87
0
330pF
C27
100
R3
FB/IN+
LTC3725EMSE
U1
R49
0
5678
4
5.1K
C72
R58
0.022
0.039
0.039
R48
* R63
R61
100
2
3
4
100K
160K
160K
8
1
124K
0
0
R69
2.2nF
250V
R85
3.01K
opt
opt
PT-
PT+
T1
PA0811(4:4:2:1)
PA0815(6:6:2:1)
PA0865(4:4:1:1)
R55
100
1%
C69
1.5nF
2.2nF
2.2nF
Q26 VCC
opt.
R76
1K
1206
VA
* D1
THIS CIRCUIT IS PROPRIETARY TO LINEAR TECHNOLOGY AND
SUPPLIED FOR USE WITH LINEAR TECHNOLOGY PARTS.
LINEAR TECHNOLOGY HAS MADE A BEST EFFORT TO DESIGN A
CIRCUIT THAT MEETS CUSTOMER-SUPPLIED SPECIFICATIONS;
HOWEVER, IT REMAINS THE CUSTOMER'S RESPONSIBILITY TO
VERIFY PROPER AND RELIABLE OPERATION IN THE ACTUAL
APPLICATION. COMPONENT SUBSTITUTION AND PRINTED
CIRUIT BOARD LAYOUT MAY SIGNIFICANTLY AFFECT CIRCUIT
PERFORMANCE OR RELIABILITY. CONTACT LINEAR
TECHNOLOGY APPLICATIONS ENGINEERING FOR ASSISTANCE.
C75
47pF
* D25
K. Mathews
J. WU
12/5/05
12/5/05
DATE
C79
2.2nF
R68
6.2K
Wednesday , August 23, 2006
DESIGNER
ENGINEER
APPROVED
CHECKED
DRAWN
APPROVALS
CONTRACT NO.
* R69
1
L2
Q27
FCX491
0.87uH
R2
1.2
1/4W
C67
4.7uF
25V
-VOUT
R83
0
D28
R56
opt. MMBZ5236B
7.5V
Q32
opt.
321
4
Q12
Si7336ADP
8765
R66
100K
CUSTOMER NOTICE
536
910
910
R89
C70
330pF
*
R85
0.002
1W
R50
C78
33nF
VSW
R79
510
R54
Q25 100
opt. 1%
VCC
VA
-VOUT
LTC3726EGN
U2
14
15
R84
0
R53
opt.
321
4
Q14
Si7336ADP
8765
Q33
opt.
VA
PT-
C71
1uF
-VOUT
5
6
4
3
R52
opt.
1/4W
50V
C30
T2
*
7
8
10
9
11
C69
* T1
R51
1/4W
2.4
C66
1nF
200V
R63
C73 0.1uF
470pF
1W
* R48
123
Q11
Q8
Si7450DP opt.
D1
C29
33nF
SSFLT
ULVO
VCC
C5
1.0uF
100V
opt.
2
1
8
Q28
FDC2512
3
C4
1.0uF
100V
C3
1.0uF
100V
* VERSION TABLE
R22
15.0K
R77
0
R18
365K
C2
1.0uF
100V
For All The Versions
C2-C5 1uF,100V TDK C3225X7R2A105M (1210)
C31,C33 100uF, 6.3V CER TDK C3225X5R0J107M (1210)
C68 Sanyo 6TPE220MI
L1 Vishay IHLP-2525CZER1R0M-01 or
COOPER HCP0703-1R0-R
L2 Coil Tronics HC1-R87
T2 Pulse PA0297 2(1.4mH):1:1
-Vin
36-72Vin
6
5
2
1
4
1.0uH
7
E1
3
NDRV
VSLMT
9
10
5
IS +
VIN
8
GATE
PGND
2
FG
GND
12
SW
P GND
13
IS RUN/SS
6
11
S LP
7
1
SG
2
3
16
FB/PH
4
Q34
C77
2.2uF
+
E8
-
PT-
*
E4
220uF
6.3V
opt.
E3
+ C80
1630 McCarthy Blvd.
Milpitas, CA 95035
Phone: (408)432-1900
Fax: (408)434-0507
R89
C23
opt.
R75
opt.
1N4148W
D29
R46
604
220uF
6.3V
+ C68
E7
* R41
TECHNOLOGY
-VOUT
1
10pF
VSW C81
C76
opt.
VCC
-VOUT
C31
100uF
6.3V
2N7002
C33
100uF
6.3V
+VOUT
SCALE:
FILENAME:
SIZE CAGE CODE
DWG NO
SHEET
DC1031A
1
OF
1
A
REV
-Vout
+Vout
LTC3725EMSE, LTC3726EGN, 36V - 72Vin Forward Converter
TITLE
V CC
10
6
FS/SY NC
9
IS
GND
11
ITH
5
3
MODE
L1
3
2
+Vin
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 13. Full Board Schematic
9
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Item
Qty
Reference
Part Description
Manufacture / Part #
1
REQUIRED CIRCUIT COMPONENTS
1
4
C2,C3,C4,C5
2
2
C71,C24
3
2
C27,C70
4
2
C29,C78
5
1
C30
6
2
C31,C33
7
2
C73,C55
8
1
C66
9
1
C67
10
1
C68
11
1
C69
12
1
C72
13
1
C75
14
1
C77
15
1
C79
16
1
C81
17
1
D25
18
1
D28
19
1
D29
20
1
L1
0
L1 (second source)
21
1
L2
22
1
Q8
23
2
Q12,Q14
24
1
Q34
25
1
Q27
26
1
Q28
27
1
R2
28
2
R54,R55
29
1
R18
30
1
R22
31
1
R29
32
1
R41
33
1
R46
34
1
R48
35
1
R50
36
1
R51
37
1
R58
38
2
R3,R61
39
1
R63
40
1
R66
41
1
R68
42
1
R69
43
1
R76
44
1
R79
CAP., X7R, 1.0uF, 100V, 20%, 1210
CAP., X7R, 1uF, 16V 10%, 0805
CAP., X7R, 330pF, 25V, 10%, 0603
CAP., X7R, 33nF, 25V, 10%, 0603
CAP., X7R, 2.2nF, 250V, 10%, 1812
CAP., X5R, 100uF, 6.3V, 20%, 1210
CAP., C0G, 470pF, 25V, 10%, 0603
CAP., C0G, 1nF, 200V, 10%, 1206
CAP., X7R, 4.7uF, 25V, 20%, 1206
CAP., POSCAP, 220uF, 6.3V, 20% 7343
CAP., NPO, 2.2nF, 50V, 10%, 0805
CAP., X7R, 0.1uF, 25V, 10%, 0805
CAP., NPO, 47pF, 25V, 10%, 0603
CAP., X7R, 2.2uF, 16V, 20%, 1206
CAP., X7R, 2.2nF, 25V, 10%, 0603
CAP., C0G, 10pF, 50V, 5%, 0603
DIODE, Schottky, CMPSH1-4, 40V, SOT23
Diode, MMBZ5236B, SOT23
Diode, 1N4148W SOD-123
INDUCTOR, 1.0uH
INDUCTOR, 1.0uH
INDUCTOR, 0.87uH
FET, N-CH,. Si7450DP, POWERPAK SO-8
FET, N-CH,. Si7336ADP, POWERPAK SO-8
N-CH., Transistor. 2N7002 SOT23
NPN TRANSISTOR, FCX491
N-CH FET, 150V, FDC2512, Super SOT-6
RES., CHIP, 1.2, 1/4W, 5%, 1206
RES., CHIP, 100, 1/16W, 1%, 0603
RES., CHIP, 365K, 1/8W, 1%, 0805
RES., CHIP, 15.0K, 1/16W, 1%, 0603
RES., CHIP, 100K, 1/8W, 5%, 0805
RES., CHIP, 1.91K, 1/16W,1%, 0603
RES., CHIP, 604, 1/16W, 1%, 0603
RES., CHIP, 0.039, 1W, 2%, 2010
RES., CHIP, 0.002, 1W, 1%, 2512
RES., CHIP, 2.4, 1/4W, 5%, 1206
RES., CHIP, 5.1K, 1/16W, 5%, 0603
RES., CHIP, 100, 1/16W, 5%, 0603
RES., CHIP, 160K, 1/16W, 5%, 0603
RES., CHIP, 100K, 1/16W, 5%, 0603
RES., CHIP, 6.2K, 1/16W, 5%, 0603
RES., CHIP, 0, 1/16W, 0603
RES., CHIP, 1K, 1/4W, 5%, 1206
RES., CHIP, 510, 1/8W, 5%, 0805 e3
TDK, C3225X7R2A105M
TAIYO YUDEN, EMK212BJ105KG
AVX, 06033C331KAT2A
AVX, 06033C333KAT2A
MURATA, GA343QR7GD222KW01L
TDK, C3225X5R0J107M
AVX, 06033A471KAT2A
AVX, 12062A102KAT2A
TDK, C3216X7R1E475M
SANYO, 6TPE220MI
AVX, 08055A222KAT2A
AVX, 08053C104KAT2A
AVX, 06033A470KAT2A
TDK, C3216X7R1C225M
AVX, 06033C222KAT2A
AVX, 06035A100JAT2A
CENTRAL SEMI., CMPSH1-4-LTC
DIODES INC., MMBZ5236B-7
DIODES INC., 1N4148W-7-F
VISHAY DALE, IHLP2525CZER1R0M01
COOPER, HCP0703-1R0-R
COOPER, HC1-R87
VISHAY, Si7450DP
VISHAY, Si7336ADP
DIODES INC., 2N7002-7-F
ZETEX, FCX491
FAIRCHILD, FDC2512
AAC, CR18-1R2JM
VISHAY, CRCW06031000FRT6
VISHAY, CRCW0805365KFKEB
AAC, CR16-1502FM
AAC, CR10-104JM
AAC, CR16-1911FM
AAC, CR16-6040FM
IRC, LRC-LR2010-01-R039-G
PANASONIC, ERJM1WTF2M0U
AAC, CR18-2R4JM
AAC, CR16-512JM
AAC, CR16-101JM
AAC, CR16-164JM
AAC, CR16-104JM
AAC, CR16-622JM
Panasonic, ERJ3GEY0R00V
AAC, CR18-102JM
AAC, CR10-511JM
10
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
45
46
47
48
49
1
1
1
1
1
R89
T1
T2
U1
U2
RES., CHIP, 910, 1/16W, 5%, 0603 e3
TRANSFORMER, 1750VDC BASIC, PA0865
TRANSFORMER, 1500VRMS BASIC, PA0297
I.C., LTC3725EMSE, MS10E
I.C., LTC3726EGN, SSOP16GN
VISHAY, CRCW0603910RJNEA
PULSE, PA0865
PULSE, PA0297
LINEAR TECH., LTC3725EMSE
LINEAR TECH., LTC3726EGN
2
ADDITIONAL DEMO BOARD CIRCUIT COMPONENTS
1
0
C23,C76 (opt.)
CAP., 0603
2
0
C80 (opt.)
CAP., POSCAP, 220uF, 6.3V, 20% 7343
3
0
D1 (opt.)
DIODE, Schottky, CMPSH1-4, 40V, SOT23
4
0
Q11 (opt.)
FET, N-CH, POWERPAK SO-8
5
0
Q25,Q26 (opt.)
NPN Transistor, FMMT619, SOT23
6
0
Q32,Q33 (opt.)
PNP Transistor, FMMT718, SOT23
7
5
R49,R83,R84,R87,R88
RES., CHIP, 0, 1/16W, 0603
8
0
R52 (opt.)
RES., CHIP, 1206
9
0
R53,R56,R75,R85 (opt.) RES., CHIP, 0603
11
1
R77
RES., CHIP, 0, 1/8W, 0805
12
0
R86 (opt.)
RES., CHIP, 0805
1
2
3
4
5
6
7
2
2
4
2
2
2
4
HARDWARE-FOR DEMO BOARD ONLY:
E1,E2
TESTPOINT, TURRET, .094"
E3,E4
STUD
E3,E4 (2 EACH)
NUT, BRASS, #10-32
E3,E4
Ring, Lug Ring # 10
E3,E4
WASHER, STAR #10 BRASS NICHEL
E8,E7
TURRET,
(STAND-OFF)
STAND-OFF, NYLON 0.50"
Panasonic, ERJ3GEY0R00V
AAC, CJ10-000M
MILL-MAX, 2501-2
PEM, KFH-032-10
ANY
KEYSTONE 8205
ANY
MILL-MAX2308-2-00-44
KEYSTONE 8833 (SNAP ON)
Notes:
1. Required Circuit Components are those parts that are required to implement the circuit function
2. Additional Demo Board Circuit Components are those parts that provide added functionality for the demo board but
are not required in the actual circuit.
Figure 14. Bill of Materials
11
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 15. Top
12
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 16. Layer 2
13
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 17. Layer 3
14
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 18. Layer 4
15
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 19. Layer 5
16
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 20. Bottom
17
QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 1031A-A
36V-72VIN, SYNCHRONOUS FORWARD CONVERTER
Figure 21. Bottom Mirrored
18