QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD LTC3725/LTC3706 DESCRIPTION Demonstration circuit 888A-A is a high power isolated synchronous forward converter featuring the LTC3725 and LTC3706. When powered from a 3672V input, a single DC888A-A provides an isolated 3.3V at 50A in a quarter-brick footprint. If higher output current is required, multiple DC888A boards may be stacked together using on-board connectors for a complete PolyPhase current sharing solution. The converter operates at 250kHz and achieves efficiency up to 93% with synchronous output rectifiers. Secondary-side control eliminates complex optocou- pler feedback, providing fast transient response with a minimum amount of output capacitance. Additional DC888A versions include DC888A-B (5V at 40A) and DC888A-C (12V at 20A). The simple architecture can be easily modified to meet different input and output voltage requirements. Design files for this circuit board are available. Call the LTC factory. , LTC and LT are registered trademarks of Linear Technology Corporation. Table 1. Performance Summary (TA = 25°C) PARAMETER CONDITION VALUE Minimum Input Voltage 36V Maximum Input Voltage 72V Output Voltage VOUT VIN = 36V to 72V, IOUT = 0A to 50A 3.3V Maximum Output Current 200LFM 50A Typical Output Ripple VOUT VIN = 48V, IOUT = 50A, 250kHz < 30mVP–P Output Regulation Over All Input Voltages and Output Currents ±1% (Reference) Peak Deviation with 25A to 50A Load Step (10A/us) ±250mV Settling Time •50us Load Transient Response Nominal Switching Frequency 250kHz Efficiency VIN = 36V, IOUT = 30A 93% Typical Isolation BASIC 1500VDC Size Component Area x Top x Bottom Component Height 2.3” x 1.45” x 0.4” x 0.075” OPERATING PRINCIPLES – SINGLE PHASE The LTC3706 secondary side controller is used on the secondary and the LTC3725 smart driver with selfstarting capability is used on the primary. When an input voltage is applied, the LTC3725 (U1 in Figure 15), which is powered through R29 and Q28, begins a controlled soft-start of the output voltage by switching MOSFETs Q9 and Q11. As the output voltage begins to rise, the LTC3706 secondary controller is quickly powered up via D24, Q29, C67, and Q27. The LTC3706 then assumes control of the output voltage by sending encoded PWM gate pulses to the LTC3725 primary driver via signal transformer, T2. The LTC3725 then operates as a simple driver receiving both input signals and bias power through T2. The transition from primary to secondary control occurs seamlessly at a fraction of the output voltage. From that point on, operation and design simplifies to that of a simple buck converter. The LTC3706 regu- 1 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD lates by observing the output voltage directly resulting in superior output voltage regulation and transient response. OPERATING PRINCIPLES – POLYPHASE The LTC3725 and LTC3706 allow the user to develop modular power supply “building blocks” that can be added as power/current requirements increase. Connecting two DC888A power supplies in a PolyPhase configuration has several advantages. By distributing power across multiple high power/current supplies, heat is also distributed, reducing individual component temperatures. Each parallel module develops equal output currents so that electrical and thermal stresses are shared, increasing reliability. Multi-phase operation and Shared input and output filtering result in fewer/smaller input/output capacitors and inductors for a given voltage/current ripple or transient response. In PolyPhase systems, one power supply is configured as a “master” and one as a “slave”. The master communicates switching frequency via the PT+ pin to FS/SYNC pin of the slave (Figures 19 and 20). The relative clock phase of each stage is determined by the slave. The master’s voltage error amplifier’s output (ITH pin) controls the output current of all the phases via the ITH pin voltage which is distributed to each slave’s unity-gain differential amplifier. Several of the signals that are shared between the master and the slave are of a bidirectional nature. A fault on either phase can be communicated to the opposite phase via the primary side SS/FLT pin interconnection or the secondary side RUN/SS interconnection. Sharing Vcc on the secondary side ensures the master, which initially develops this bias voltage, and slave power up simultaneously. Each phase then contributes to the shared Vcc bus. Finally, the input voltage (Vin) and output voltage (Vout) busses are interconnected to allow for load sharing. OPTIONAL POLYPHASE SETUP Only minor modifications and minimal interconnections are needed to implement PolyPhase with the DC888. See component changes list (Figure 18) and schematics (Figures 21 and 22) for the required electrical changes to master and slave units. After the modifications are done, the boards are then stacked one on top of another (Figure 23). J1 and P1 headers interconnect small signals and E1, E2, E3, and E4 stand offs provide interconnection for the power signals. The DC888 was designed primarily to demonstrate the chipset’s single phase operation and therefore be further optimized for PolyPhase applications. A small resistor can be placed between the R76/D27 junction and C70/U2-16 junction to reduce already small PWM jitter associated with separate master and slave ground planes. Another optimization can result from combining each individual phase’s input/output filter components into one shared input/output filter. QUICK START PROCEDURE Demonstration Circuit 888A-A is easy to set up to evaluate the performance of the LTC3725 and LTC3706. Refer to Figure 1 for proper equipment setup. Follow the procedure below: NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the scope probe. Measure the output (or input) voltage ripple by touching the probe tip and probe 2 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD in order to measure the DC888A-A’s input current. ground directly across the +Vout and –Vout (or +Vin and –Vin) terminals. See Figure 2 for proper probing technique. 1. The optional input LC filter stage (C2/L5) lowers ac input rms current. A power supply’s complete input filter must have output impedance that is less than the converter input impedance to assure stability. This may require a damping impedance. (See Linear Technology Application Note AN19 for a discussion of input filter stability.) A source with a 50mOhm or higher ESR at the filter resonant frequency is one way of providing damping for the filter elements provided on the DC888A. For bench testing, adding an 82uF electrolytic capacitor such as a Sanyo 100MV82AX to the input terminals will provide suitable damping and ripple current capability. The values selected have a filter resonant frequency that is below the converter switching frequency, thus avoiding high circulating currents in the filter. 2. Set an input power supply to a voltage of 36V. Make sure that it is capable of 36V to 72V at a current supplying capability of at least 8A per number of phases being tested. Then, turn off the supply. 3. With power off, connect the supply to the input terminals +Vin and –Vin. a. b. Input voltages lower than 36V can keep the converter from turning on due to the undervoltage lockout feature of the LTC3725. If efficiency measurements are desired, an ammeter capable of measuring at least 8Adc per phase can be put in series with the input supply c. 4. A voltmeter with a capability of measuring • 72V can be placed across the input to get an accurate input voltage measurement. Turn on the power at the input. NOTE: Make sure that the input voltage • 72V. 5. Check for the proper output voltage of 3.3V. 6. Turn off the power at the input. 7. Once the proper output voltages are established, connect a variable load capable of sinking 50A per phase at 3.3V to the output terminals +Vout and – Vout. Set current to 0A. 8. a. If efficiency measurements are desired, an ammeter or a resistor current shunt that is capable of handling at least 50Adc per phase can be put in series with the output load in order to measure the DC888A-A’s output current. b. A voltmeter with a capability of measuring at least 3.3V can be placed across the output terminals in order to get an accurate output voltage measurement. Turn on the power at the input. NOTE: If there is no output, disconnect the load to verify that the load is not set too high. 9. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other desired parameters. 3 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 1. Proper Measurement Equipment Setup GND VIN Figure 2. Measuring Input or Output Ripple 4 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD MEASURED DATA Figures 3 through 14 are measured data for a typical DC888A-A. Figures 15 through 23 consist of schematics, bill of materials, and a picture. DC888A-A (Efficiency) 94% 92% Efficiency (%) 90% 88% 36Vin 48Vin 72Vin 86% 84% 82% 80% 78% 76% 74% 5 10 15 20 25 30 35 40 45 50 Load (A) Figure 3. Efficiency Figure 4. Output Voltage Ripple (48Vin, 50A, Single Phase) 5 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 5. Load Transient Response (48Vin, 25A to 50A to 25A at 10A/us, Single Phase) Figure 6. Loop Response (48Vin, 50A, Single Phase) 6 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 7. Turn-on (48Vin, 50A, Single Phase) Figure 8. Turn-on (48Vin, 100A, PolyPhase) 7 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 9. Transient Sharing of Inductor Current (48Vin, 50A to 100A, PolyPhase) Figure 10. Transient Sharing of Inductor Current (48Vin, 100A to 50A, PolyPhase) 8 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 11. Temp Data (48Vin, 50A, 200LFM airflow – top) Figure 12. Temp Data (48Vin, 50A, 200LFM airflow – bottom) 9 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 13. Temp Data (48Vin, 43A, 0LFM airflow – top) Figure 14. Temp Data (48Vin, 43A, 0LFM airflow – bottom) 10 B A C2 2.2uF 100V C3-C5 3 X 2.2uF 100V T4 6 4 D DA2318-ALC 3 1 C D1 IS+ C29 10nF SSFLT U1 3 9.53 R76 2.2K R84 4 C85 0.1uF +VOUT Q29 Si2303BDS Vaux FS/IN- FB/IN+ LTC3725EMSE R79 68K D2 CMPSH1-4 100uH L1 R29 100K D27 BAS21 ULVO VCC C84 R80 0.1uF 100K 1uF 1nF CMPSH1-4 D24 C24 2 1 8 Q28 FDC2512 C55 CMPSH1-4 R22 15.0K R18 365K NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL -Vin 36V-72Vin 3 5 4 100pF C27 100 R3 -VOUT T3 CT02-100 Q9 Q11 620 R78 10pF C83 T2 1 8 B 1uF C71 21 22 R53 12 R52 Q25 5.1 1/4W FMMT718 Q14 Q15 Q24 C51 4.7n 100V Si7336ADP A -VOUT R51 5.1 1/4W C69 4.7n 100V 11 10 8 -VOUT SW 3 4 6 5 Q30 2N7002 R63 100K BAS21 D29 5 6 C66 1.5n 200V 0.1uF C101 C100 470pF 150pF R101 100 5.1K C72 R58 R48 15m 1.5W Si7450DP 4 3 PA0950(6:6:1:1) 1 T1 7 2 PT- PT+ 2.2nF 250V C30 -VOUT VCC 3.3n C70 -VOUT D26 CMPSH1-4 SW R75 510 -VOUT C78 10nF Vsg IS+ SG U2 LTC3706EGN R66 100K SG L6 150 C86 68pF R82 FCX491A Q27 C67 10uF 25V PA1382.650 Vaux R69 110K Si7336ADP Q12 Q13 Q23 5.1 1/4W -VOUT 15 0.68uH 7 R23 IS+ 10 5.1 1/4W R24 19 VIN 2 12 18 1 2 FG GND 20 SW PGND 23 ISRUN/SS 8 NDRV VSLMT 9 REGSD 17 100 R56 150 R81 47p C75 24 FB VS+ -VOUT Q26 FMMT718 Vsg Q32 FMMT619 VCC 6 10 11 -VOUT VS- VCC C77 2.2uF PSGV0G227M9 4V 220u R46 604 R41 2.74K +VOUT + C31, C33, C68 -VOUT C34 22n Q31 MMBT2907A C79 4.7n R68 9.1K VCC L5 13 GATE PGND 6 PGOOD 3 16 SLP 14 1 SG FS/SYNC IS GND 11 PHASE 5 NDRV ITH 7 4 MODE VSOUT 9 +Vin +Vout -Vout 3.3Vo@50A QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 15. Single Phase Schematic 11 E2 1 P1-2 2 J1-2 2 P1-1 J1-1 1 6 4 T4 3 1 D C T4 6 4 C Vout/Iout 3.3V@50A 5.0V@40A 12V@20A VERSION DC888A-B DC888A-C C33 68uF, 16V opt 220uF, 4V 220uF, 6.3V C31,C68 D1 2 1 8 SSFLT C29 10nF * U1 C85 0.1uF 4.7nF 2.2nF 1.5nF 680pF 22uF 10uF 1.0nF C51,C69 22uF C66 C27 100pF 3.3nF 4.7uF 10nF 10uF 5 3.3nF C70 Vaux FS/IN- 4 3 * 1 -VIN R78 BAS21 D29 1 10pF C83 11 10 8 7 T2 -VOUT 2.2nF 250V C30 * * C71 -VOUT * 36V D31 C75 470pF 100pF 47pF C79 4.7nF 3.3nF 4.7nF BAS21 opt. opt. D30 MMBZ5258B opt. opt. D31 L6 21 22 R53 12 Q25 4 PT- PT+ * PA1382.650 PA1494.242 R23 opt. Q8 SG C70 -VOUT * VCC D26 CMPSH1-4 SW Si7450DP 4 U2 LTC3706EGN Vaux opt. R67 2 4 5 * * opt. Si7336ADP 10 6.8 5.1 Vsg 11.5K 4.42K 2.74K R41 Q26 FMMT718 -VOUT * C34 VS- 0.010 0.015 0.015 R48 FB 6 10 11 * + C33 VS+ VCC Q32 FMMT619 VCC * C79 * R64 OPT R68 Q23,Q24 R23,R24,R51,R52 R102 100 Q31 MMBT2907A C75 * 3 1 2 FCX491A Q27 25V C67 * L6 R56 150 R81 R69 R70 0 110K VCC Si7336ADP Q12-Q15 150 C86 68pF R82 R66 100K HAT2244WP C78 10nF IS+ 321 Vsg * SG Q12 Q13 Q23 8765 1/4W -VOUT R75 510 * 1/4W *R24 Si7450DP -VOUT PA1382.650 1uF 321 8765 Q14 Q15 Q24 C51 *100V FMMT718 1/4W D30 1 8 B R52 * A -VOUT 1/4W R51 C69 *100V SW 3 4 6 5 * T1 Q30 2N7002 R63 100K C82 opt. C100 C101 150pF 470pF R101 100 5 6 4 3 C66 *200V * R48 1.5W 0.1uF 5.1K C72 R58 123 5678 * Q8 Q9 Q11 Si7450DP 1 2 NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL opt. C81 4 100 R3 0 R49 -VOUT T3 CT02-100 FB/IN+ 10uF C67 +VOUT 3 Q29 Si2303BDS 1.5nF * 2 R29 100K * R76 * R84 3 4 LTC3725EMSE R79 68K D2 CMPSH1-4 R108 -VOUT C34 L1 100uH R107 IS+ ULVO C84 R80 0.1uF 100K 1uF 1nF CMPSH1-4 D24 C24 3 VCC C5 2.2uF 100V Q28 FDC2512 C4 2.2uF 100V C55 CMPSH1-4 R22 15.0K * VERSION TABLE D DA2318-ALC 3 1 DC888A-A B A T4 connection for A-A B A T4 connection for A-B & A-C SSP -VIN R18 365K -VIN TO CONFIGURE FOR POLYPHASE -Vin C3 2.2uF 100V 3 C2 2.2uF 100V 6 5 2 1 4 D27 BAS21 10 36V-72Vin 7 2 15 1 IS+ L5 19 VIN 0.68uH 12 NDRV 9 VSLMT 1 2 FG GND 20 SW PGND 23 ISRUN/SS 8 GATE PGND 6 REGSD 17 IS GND 11 PGOOD 3 16 SLP 14 1 SG FS/SYNC 13 24 VCC E1 3 2 PHASE 5 18 1 NDRV ITH 7 4 MODE VSOUT 9 +Vin 6.2K 9.1K 9.1K R68 C74 OPT -VOUT * + C31 +VOUT * 7.50 8.06 9.53 R76 R46 604 OPT R62 R41 * E3 390 620 750 R78 330 1.0K 2.2K R84 -Vout * +Vout C77 2.2uF VCC E4 + C68 E8 - + E7 R59 P1-4 opt. 240 opt. R102 4 3 P1-3 OPT R74 OPT OPT R72 R71 OPT R60 OPT R73 opt. 0 opt. R107 4 3 -VOUT OPT J1-6 P1-5 opt. 0 0 8 8 J1-8 T1 -VOUT SSS SYNC -ITH PA0955(6:6:2:1) PA0954(4:4:1:1) PA0950(6:6:1:1) P1-11 11 J1-11 11 P1-10 10 J1-10 10 P1-9 9 J1-9 9 P1-8 R108 J1-4 J1-3 7 P1-7 J1-7 +ITH 7 +VPKS -VPKS J1-5 P1-6 6 6 5 5 TO CONFIGURE FOR POLYPHASE QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 16. Full Single Phase Schematic 12 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Qty Reference Part Description Manufacturer / Part # 1 REQUIRED CIRCUIT COMPONENTS 3 C3,C4,C5 CAP., X7R, 2.2uF, 100V, 20%, 1210 2 C24,C71 CAP., X7R, 1.0uF, 16V 10%, 0805 1 C27, CAP., C0G, 100pF, 50V, 10%, 0603 2 C29,C78 CAP., X7R, 10nF, 50V, 10%, 0603 1 C30 CAP., X7R, 2.2nF, 250V, 10%, 1812 3 C31,C33,C68 NeoCap., 220uF, 4V, 20%, V case 1 C34 CAP., X5R, 22uF, 6.3V, 20%, 1206 2 C51,C69 CAP., C0G, 4.7nF, 100V, 5%, 1206 1 C66 CAP., C0G, 1.5nF, 200V, 10%, 1206 1 C67 CAP., X5R, 10uF, 25V, 10%, 1210 1 C70 CAP., X7R, 3.3nF, 50V, 10%, 0603 1 C75 CAP., C0G, 47pF, 25V, 10%, 0603 1 C79 CAP., X7R, 4.7nF, 50V, 10%, 0603 1 C55 CAP., C0G, 1nF, 25V, 10%, 0603 1 C77 CAP., X7R, 2.2uF, 16V, 20%, 1206 1 C72 CAP., X7R, 0.1uF, 25V, 10%, 0805 1 C83 CAP., C0G, 10pF, 50V, 10%, 0603 2 C84,C85 CAP., X7R, 0.1uF, 50V, 10%, 0603 1 C86 CAP., C0G, 68pF, 25V, 10%, 0603 1 C100 CAP., C0G, 150pF, 25V, 10%, 0603 1 C101 CAP., C0G, 470pF, 25V, 10%, 0603 4 D1,D2,D24,D26 Diode Schottky, CMPSH1-4, 40V, SOT23 2 D27,D29 Diode, BAS21 SOT23 1 L1 INDUCTOR, 100uH, DO1606T 1 L6 INDUCTOR, PLANAR, 0.65uH 2 Q11,Q9 FET, N-CH., Si7450DP, Powerpak SO-8 6 Q12,Q13,Q14,Q15,Q23,Q24 FET, N-CH., Si7336ADP, Powerpak SO-8 2 Q25,Q26 TRANSISTOR, NPN, FMMT718, SOT23 1 Q27 TRANSISTOR, NPN, FCX491A, SOT89 1 Q28 FET, N-CH, FDC2512, SUPERSOT-6 1 Q29 FET, P-CH, 30-V(D-S) SOT-23 1 Q30 N-MOSFET, 2N7002 SOT23 1 Q31 TRANSISTOR, PNP, SOT-23 1 Q32 TRANSISTOR, NPN, SOT-23 3 R3,R56,R101 RES., CHIP, 100, 1/16W, 5%, 0603 1 R18 RES., CHIP, 365K, 1/8W, 1%, 0805 1 R22 RES., CHIP, 15.0K, 1/16W, 1%, 0603 4 R23,R24,R51,R52 RES., CHIP, 5.1, 1/4W, 5%, 1206 1 R41 RES., CHIP, 2.74K, 1/16W, 1%, 0603 1 R48 RES., CHIP, 0.015, 1.5W, 2%, 2512 1 RES., CHIP, 9.1K, 1/16W, 5%, 0603 R68 1 R76 RES., CHIP, 9.53, 1/16W, 1%, 0805 1 R78 RES., CHIP, 620, 1/16W, 5%, 0603 Murata, GRM32ER72A225K TAIYO YUDEN, EMK212BJ105KG AVX, 06035A101KAT2A AVX, 06035C103KAT2A Murata, GA343QR7GD222KW01L NEC Tokin, TE PSGV0G227M9-12R TDK, C3216X5R0J226M Murata, GRM3195C2A472JA01D AVX, 12062A152KAT2A Taiyo Yuden, TMK325BJ106KN AVX, 06035C332KAT2A AVX, 06033A470KAT2A AVX, 06035C472KAT2A AVX, 06033A102KAT2A AVX, 1206YD225MAT2A AVX, 08053C104KAT2A AVX, 06035A100KAT2A TDK, C1608X7R1H104K AVX, 06033A680KAT2A AVX, 06033A151KAT2A AVX, 06033A471KAT2A CENTRAL SEMI., CMPSH1-4-LTC Diodes Inc., BAS21 Coilcraft, DO1606T-104MLC PULSE, PA1382.650 VISHAY, Si7450DP VISHAY, Si7336ADP-T1-e3 ZETEX, FMMT718 ZETEX, FCX491A Fairchild, FDC2512_NL VISHAY, Si2303BDS-T1-E3 Diodes Inc., 2N7002-7-F DIODES., MMBT2907A-7-F ZETEX, FMMT619 VISHAY, CRCW0603100RJNEA VISHAY, CRCW0805365KFKEA VISHAY, CRCW060315K0FKEA VISHAY, CRCW12065R10JNEA VISHAY, CRCW06032K74FKEA IRC, LRC-LRF2512-01-R015-G VISHAY, CRCW06039K10JNEA VISHAY, CRCW08059R53FNEA VISHAY, CRCW0603620RJNEA 13 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 17. Bill of Materials (Single Phase) 1 1 1 1 1 3 1 1 1 2 1 1 1 1 1 1 R84 R29 R46 R53 R58 R63,R66,R80 R69 R75 R79 R81,R82 T1 T2 T3 T4 U1 U2 RES., CHIP, 2.2K, 1/16W, 5%, 0805 RES., CHIP, 100K, 1/8W, 5%, 0805 RES., CHIP, 604, 1/16W, 1%, 0603 RES., CHIP, 12, 1/16W, 5%, 0603 RES., CHIP, 5.1K, 1/16W, 5%, 0603 RES., CHIP, 100K, 1/16W, 5%, 0603 RES., CHIP, 110K, 1/16W, 5%, 0603 RES., CHIP, 510, 1/16W, 5%, 0603 RES., CHIP, 68K, 1/8W, 5%, 0603 RES., CHIP, 150, 1/16W, 5%, 0603 TRANSFORMER, PLANAR, 6:6:1:1 TRANSFORMER, PA1954NL TRANSFORMER, CT02-100 TRANSFORMER, 1.5 : 1 I.C. LTC3725EMSE, MS10E I.C. LTC3706EGN, SSOP-24GN VISHAY, CRCW08052K20JNEA VISHAY, CRCW0805100KJNEA VISHAY, CRCW0603604RFKEA VISHAY, CRCW060312R0JNEA VISHAY, CRCW06035K10JNEA VISHAY, CRCW0603100KJNEA VISHAY, CRCW0603110KJNEA VISHAY, CRCW0603510RJNEA VISHAY, CRCW060368K0JNEA VISHAY, CRCW0603150RJNEA PULSE, PA0950 PULSE, PA1954NL ICE Components., CT02-100 Coilcraft, DA2318-ALC LINEAR TECH., LTC3725EMSE#PBF LINEAR TECH., LTC3706EGN#PBF 2 ADDITIONAL DEMO BOARD CIRCUIT COMPONENTS 1 C2 CAP., X7R, 2.2uF, 100V, 20%, 1210 0 C74(opt) CAP., 0603 0 C81,C82(opt.) CAP., 0603 0 D30 (opt) Diode, SOT23 0 D31 (opt) Diode, SOT23 1 L5 INDUCTOR, 0.68uH, 0 Q8(opt) FET, N-CH., SO-8 2 R49,R70 RES., CHIP, 0, 1/16W, 0603 R59,R60.R62,R64,R67,R710 RES., 0603 R74(opt) RES., 0603 0 R102,R107(opt) RES., CHIP, 0, 1/16W, 0603 1 R108 2 E1,E2 TESTPOINT, TURRET, .094" 2 E8,E7 TESTPOINT, TURRET, .061" 2 E3,E4 STUD 4 E3,E4(2 EACH) NUT, BRASS, #10-32 2 E3,E4 WASHER, STAR #10 BRASS NICKEL 2 E3,E4 Ring, Lug Ring # 10 1 J1 HEADER, SMD, single row, 2mm 1 P1 SOCKET, SMD, single row, 2mm Murata, GRM32ER72A225K VISHAY, IHLP-2525CZERR68M01 e3 VISHAY, CRCW06030000Z0EA VISHAY, CRCW06030000Z0EA MILL-MAX, 2501-2-00-80-00-00-07-0 MILL-MAX, 2308-2-00-80-00-00-07-0 PEM, KFH-032-6 ANY ANY KEYSTONE 8205 Comm Com, 2SMD1-140/335/180-11G2 COMM COM, 1309-11G2 Notes: 1. Required Circuit Components are those parts that are required to implement the circuit function 2. Additional Demo Board Circuit Components are those parts that provide added functionality for the demo board but are or may not be required in the actual circuit. 14 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 17. Bill of Materials (Single Phase) (cont’d) SLAVE MASTER Ref Des Single Phase PolyPhase C29 10nF 4.7nF C70 3.3nF 15nF C78 10nF 4.7nF R71 OPT 0Ω R72 OPT 0Ω R74 OPT 0Ω C29 10nF 4.7nF C70 3.3nF 15nF C78 10nF 4.7nF C79 4.7nF open R41 2.74kΩ open R46 604Ω open R59 OPT 0Ω R60 OPT 0Ω R62 OPT 0Ω R63 100kΩ open R64 OPT 0Ω R67 OPT 0Ω R68 9.1kΩ open R69 110kΩ open R70 0Ω open R73 OPT 0Ω Figure 18. Single Phase to PolyPhase Electrical Component Changes 15 1 1 2 1 P1-1 B A J1-2 3 1 T4 2 6 4 C P1-2 D DA2318-ALC 2 SSP (to SSP SLV) 1 E1 E2 -VIN (to SLV) 2 -Vin (to SLV) J1-1 E2 E1 +Vin (to SLV) D1 CMPSH1-4 D24 1nF C55 CMPSH1-4 R22 15.0K R18 365K NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL -Vin C2 2.2uF 100V 2 1 U1 9.53 R76 +VOUT Q29 Si2303BDS C85 0.1uF D2 CMPSH1-4 100uH L1 R29 100K 3 2.2K R84 4 Vaux FS/IN- FB/IN+ LTC3725EMSE R79 68K C29 4.7nF SSFLT ULVO VCC C84 R80 0.1uF 100K 1uF C24 SSP 8 Q28 FDC2512 IS+ D27 BAS21 3 C3-C5 3 X 2.2uF 100V 7 36V-72Vin 10 5 4 100pF C27 100 R3 -VOUT T3 CT02-100 Q9 Q11 C100 620 R78 10pF C83 T2 1 1uF Q14 Q15 Q24 FMMT718 21 22 SYNC R53 12 R52 Q25 5.1 1/4W C71 8 B Si7336ADP A -VOUT R51 5.1 1/4W C69 4.7n 100V 11 10 8 -VOUT SW 3 4 6 5 Q30 2N7002 R63 100K BAS21 D29 5 6 C66 1.5n 200V C101 470pF 150pF R101 100 0.1uF 5.1K C72 R58 R48 15m 1.5W Si7450DP 4 3 PA0950(6:6:1:1) 1 T1 7 2 C51 4.7n 100V PT- PT+ SW R75 510 VCC 15n C70 -VOUT -VOUT C78 4.7nF SSS Vsg IS+ SG Si7336ADP Q12 Q13 Q23 5.1 1/4W -VOUT D26 CMPSH1-4 2.2nF 250V C30 -VOUT R23 5.1 1/4W R24 15 2 U2 LTC3706EGN IS+ 1 12 R66 100K SG R69 110K L6 150 C86 68pF R82 -ITH 100 R56 150 R81 47p C75 VS- FB -VOUT Q26 FMMT718 Vsg Q32 FMMT619 VCC 6 10 11 -VOUT VS+ VCC C77 2.2uF PSGV0G227M9 4V 220u + C31, C33, C68 -VOUT C34 22n R46 604 R41 2.74K +VOUT MASTER Q31 MMBT2907A C79 4.7n R68 9.1K +ITH FCX491A Q27 -VPKS +VPKS C67 10uF 25V PA1382.650 Vaux 19 VIN L5 2 FG GND 20 SW PGND 23 ISRUN/SS 8 NDRV VSLMT 9 REGSD 17 24 VCC 0.68uH 13 GATE PGND 6 PGOOD 3 16 SLP 14 1 SG FS/SYNC IS GND 11 PHASE 5 18 NDRV ITH 7 4 MODE VSOUT 9 +Vin 3 E3 E3 4 E4 E4 5 5 P1-5 6 6 P1-6 7 7 P1-7 8 8 P1-8 9 9 P1-9 10 10 P1-10 J1-11 11 11 P1-11 -VOUT (to SLV) J1-10 SSS (to SSS SLV) J1-9 SYNC (to SYNC SLV) J1-8 -ITH (to -ITH SLV) J1-7 +ITH (to +ITH SLV) J1-6 +VPKS (to +VPKS SLV) J1-5 -VPKS (to -VPKS SLV) 4 -Vout (to -Vout SLV) 3 +Vout (to +Vout SLV) -Vout +Vout QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 19. PolyPhase Master Schematic 16 1 1 2 1 P1-1 E2 E1 B A J1-2 3 1 T4 2 6 4 C P1-2 D DA2318-ALC 2 SSP (to SSP SLV) 1 -VIN (to SLV) 2 -Vin (to SLV) J1-1 E2 E1 +Vin (to SLV) D1 CMPSH1-4 D24 1nF C55 CMPSH1-4 R22 15.0K R18 365K NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL -Vin C3-C5 3 X 2.2uF 100V 2 1 U1 9.53 R76 +VOUT Q29 Si2303BDS C85 0.1uF D2 CMPSH1-4 100uH L1 R29 100K 3 2.2K R84 4 Vaux FS/IN- 5 4 100pF C27 100 R3 -VOUT T3 CT02-100 FB/IN+ LTC3725EMSE R79 68K C29 4.7nF SSFLT ULVO VCC C84 R80 0.1uF 100K 1uF C24 SSP 8 Q28 FDC2512 IS+ D27 BAS21 3 C2 2.2uF 100V 7 620 R78 BAS21 D29 5 6 4 3 T2 1 1uF Q14 Q15 Q24 FMMT718 21 22 R53 12 R52 Q25 5.1 1/4W C71 8 B C51 4.7n 100V Si7336ADP A -VOUT R51 5.1 1/4W C69 4.7n 100V 11 10 8 -VOUT SW 3 4 6 5 Q30 2N7002 10pF C83 C66 1.5n 200V C101 C100 470pF 150pF R101 100 0.1uF 5.1K C72 R58 R48 15m 1.5W Si7450DP Q9 Q11 PA0950(6:6:1:1) 1 T1 7 2 PT- PT+ SW R75 510 VCC 15n C70 -VOUT -VOUT C78 4.7nF SSS Vsg IS+ SG Si7336ADP Q12 Q13 Q23 5.1 1/4W -VOUT D26 CMPSH1-4 2.2nF 250V C30 -VOUT R23 15 36V-72Vin 10 5.1 1/4W R24 U2 LTC3706EGN IS+ 2 R66 100K SG SYNC L6 150 C86 68pF R82 VCC FCX491A Q27 -VPKS +VPKS C67 10uF 25V PA1382.650 Vaux 19 VIN 1 12 18 L5 2 FG GND 20 SW PGND 23 ISRUN/SS 8 NDRV VSLMT 9 REGSD 17 100 R56 150 R81 47p C75 24 VS- FB VCC +ITH -ITH -VOUT Q26 FMMT718 Vsg Q32 FMMT619 VCC 6 10 11 -VOUT VS+ VCC C77 2.2uF PSGV0G227M9 4V 220u + C31, C33, C68 -VOUT C34 22n +VOUT SLAVE Q31 MMBT2907A VCC 0.68uH 13 GATE PGND 6 PGOOD 3 16 SLP 14 1 SG FS/SYNC IS GND 11 PHASE 5 NDRV ITH 7 4 MODE VSOUT 9 +Vin 3 E3 E3 4 E4 E4 5 5 P1-5 6 6 P1-6 7 7 P1-7 8 8 P1-8 9 9 P1-9 10 10 P1-10 J1-11 11 11 P1-11 -VOUT (to SLV) J1-10 SSS (to SSS SLV) J1-9 SYNC (to SYNC SLV) J1-8 -ITH (to -ITH SLV) J1-7 +ITH (to +ITH SLV) J1-6 +VPKS (to +VPKS SLV) J1-5 -VPKS (to -VPKS SLV) 4 -Vout (to -Vout SLV) 3 +Vout (to +Vout SLV) -Vout +Vout QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 20. PolyPhase Slave Schematic 17 -VIN 1 P1-1 J1-1 1 -VIN (to SLV) 6 T4 3 1 D C T4 6 4 Vout/Iout 3.3V@50A 5.0V@40A 12V@20A VERSION DC888A-B DC888A-C D1 C33 68uF, 16V opt 220uF, 4V 220uF, 6.3V C31,C68 2 1 8 SSFLT 10uF 22uF 22uF C34 -VOUT * 2.2nF 1.0nF 4.7nF 680pF C51,C69 C66 1.5nF +VOUT 1.5nF * U1 * R76 3 Q29 Si2303BDS C85 0.1uF D2 CMPSH1-4 R108 100uH L1 2 R29 100K 3 * R84 4 100pF C27 10nF 15nF 15nF C70 Vaux FS/IN- 470pF 100pF 47pF C75 5 opt. C81 4 100 R3 0 R49 -VOUT T3 CT02-100 FB/IN+ LTC3725EMSE R79 68K 4.7nF C29 R107 IS+ D27 BAS21 ULVO C84 R80 0.1uF 100K 1uF 1nF CMPSH1-4 D24 C24 3 VCC C5 2.2uF 100V Q28 FDC2512 C4 2.2uF 100V C55 CMPSH1-4 R22 15.0K R18 365K * VERSION TABLE D DA2318-ALC 3 1 DC888A-A B A C T4 connection for A-A B 4 T4 connection for A-B & A-C P1-2 2 J1-2 2 SSP (to SSP SLV) A C3 2.2uF 100V NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL -Vin (to SLV) E2 C2 2.2uF 100V 6 5 2 1 4 2 10 IS 36V-72Vin 7 1 4 * 4.7nF 3.3nF * 1 1 10pF C83 * 11 10 8 7 T2 -VOUT * C71 * PA1382.650 PA1494.242 PA1382.650 -VOUT 36V D31 21 22 R53 12 Q25 L6 1uF 321 8765 4 Q14 Q15 Q24 C51 *100V FMMT718 1/4W D30 1 8 B R52 * A -VOUT MMBZ5258B opt. opt. D31 2.2nF 250V C30 * 1/4W R51 C69 *100V SW 3 4 6 5 Q30 2N7002 BAS21 opt. opt. D30 -VIN R78 BAS21 4.7nF C79 3 D29 R63 100K C82 opt. C100 C101 150pF 470pF R101 100 5 6 4 3 C66 *200V R48 1.5W 0.1uF 5.1K C72 R58 123 5678 * Q8 Q9 Q11 Si7450DP 1 2 T1 * PT- PT+ SG Si7450DP C70 -VOUT * VCC D26 CMPSH1-4 SW C78 U2 LTC3706EGN R82 R66 100K HAT2244WP 150 R81 100 R56 opt. R67 C75 * R102 * opt. 10 6.8 5.1 3 * C79 * OPT R68 R64 R41 11.5K 4.42K 2.74K FB VS+ 0.015 0.010 0.015 6 6.2K 9.1K 9.1K R68 10 11 * + C33 VS- R48 Vsg Q26 FMMT718 -VOUT * C34 VCC Q32 FMMT619 VCC FCX491A Q27 Q31 MMBT2907A R69 R70 0 110K VCC 2 1 2 C67 10uF 25V * L6 Q23,Q24 R23,R24,R51,R52 Si7336ADP Si7336ADP Q12-Q15 150 C86 68pF 4.7nF IS+ 321 4 Vaux 4 5 MASTER Vsg * SG Q12 Q13 Q23 8765 1/4W -VOUT R75 510 * Si7450DP opt. Q8 -VOUT R23 1/4W *R24 15 L5 IS+ 0.68uH 12 19 VIN 3 9 2 FG GND 20 SW PGND 23 ISRUN/SS 8 NDRV VSLMT 1 REGSD 17 GATE PGND 6 GND 11 PGOOD 3 16 SLP 14 1 SG FS/SYNC 13 24 VCC E1 3 2 PHASE 5 18 1 NDRV ITH 7 4 MODE VSOUT 9 +Vin (to SLV) C74 OPT 7.50 8.06 9.53 R76 -VOUT * + C31 +VOUT * 390 620 750 R78 R46 604 OPT R62 R41 * E3 R84 2.2K 330 1.0K opt. 240 R74 4 3 opt. 0 opt. J1-6 J1-4 J1-3 opt. 0 0 R108 4 3 7 8 9 10 PA0955(6:6:2:1) PA0954(4:4:1:1) PA0950(6:6:1:1) T1 -VOUT (to SLV) P1-11 11 J1-11 11 P1-10 10 J1-10 SSS (to SSS SLV) P1-9 9 J1-9 SYNC (to SYNC SLV) P1-8 J1-8 8 -ITH (to -ITH SLV) P1-7 7 J1-7 +ITH (to +ITH SLV) +VPKS (to +VPKS SLV) P1-5 -VPKS (to -VPKS SLV) J1-5 P1-6 6 6 5 5 -VOUT OPT R107 P1-4 P1-3 0ohms R102 opt. 0ohms 0ohms R73 R72 R71 OPT R60 OPT R59 -Vout (to -Vout SLV) * +Vout (to +Vout SLV) C77 2.2uF VCC E4 + C68 E8 - + E7 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 21. Full PolyPhase Master Schematic 18 E2 -VIN 1 1 6 4 T4 3 1 D C B A 6 4 C D1 Vout/Iout 3.3V@50A 5.0V@40A 12V@20A VERSION DC888A-A DC888A-B DC888A-C C33 68uF, 16V opt 100uH L1 * U1 R76 C85 0.1uF 2.2nF 1.0nF 22uF 680pF 4.7nF 10uF C51,C69 C66 1.5nF Vaux 1.5nF +VOUT 3 Q29 Si2303BDS FS/IN- FB/IN+ 100pF C27 22uF C34 * 2 R29 100K * * R84 3 LTC3725EMSE R79 68K 4.7nF SSFLT C29 R107 IS+ D27 BAS21 ULVO D2 CMPSH1-4 R108 -VOUT 220uF, 4V 220uF, 6.3V C31,C68 2 1 8 C84 R80 0.1uF 100K 1uF 1nF CMPSH1-4 D24 C24 3 VCC C5 2.2uF 100V Q28 FDC2512 C4 2.2uF 100V C55 CMPSH1-4 R22 15.0K R18 365K * VERSION TABLE D DA2318-ALC 3 1 T4 T4 connection for A-A B A T4 connection for A-B & A-C P1-2 2 J1-2 SSP (to SSP MSTR) 2 P1-1 J1-1 -VIN (to MSTR) NOTE: C2-C5 2.2uF,100V Murata GRM32ER72A225K L5 VISHAY IHLP2525CZERR68M01 T2 Pulse PA1954NL -Vin (to MSTR) C3 2.2uF 100V 6 5 2 1 4 C2 2.2uF 100V 3 36V-72Vin 7 4 10 10nF 15nF 15nF C70 5 opt. C81 4 100 R3 0 R49 -VOUT T3 CT02-100 4 * 470pF * 1 1 10pF C83 * 11 10 8 7 T2 -VOUT * * C71 PA1382.650 PA1494.242 PA1382.650 -VOUT * 36V D31 21 22 R53 12 Q25 L6 1uF 321 8765 4 Q14 Q15 Q24 C51 *100V FMMT718 1/4W D30 1 8 B R52 A -VOUT MMBZ5258B opt. opt. D31 2.2nF 250V C30 * 1/4W R51 C69 *100V SW 3 4 6 5 Q30 2N7002 BAS21 opt. opt. D30 -VIN R78 BAS21 100pF 47pF C75 3 D29 R63 100K C82 opt. C100 C101 150pF 470pF R101 100 5 6 4 3 C66 *200V R48 1.5W 0.1uF 5.1K C72 R58 123 5678 * Q8 Q9 Q11 Si7450DP 1 2 T1 * PT- PT+ SG Si7450DP * C70 VCC -VOUT D26 CMPSH1-4 SW C78 U2 LTC3706EGN R82 R66 100K VCC R102 * 100 10 6.8 5.1 Q26 FMMT718 R48 0.010 0.015 0.015 FB 7.50 8.06 9.53 R76 Vsg Q32 FMMT619 -VOUT Q31 MMBT2907A R56 150 * C79 * VS- 6 390 620 750 R78 10 11 * + C33 VS+ VCC * C34 0ohms R64 R68 C75 * 3 FCX491A Q27 1 2 0ohms R67 2 * 25V C67 * L6 R69 R70 0 110K VCC R81 opt. Si7336ADP HAT2244WP Vaux 4 5 SLAVE Q23,Q24 R23,R24,R51,R52 Si7336ADP Q12-Q15 150 C86 68pF 4.7nF IS+ 321 4 Vsg * SG Q12 Q13 Q23 8765 1/4W -VOUT R75 510 * Si7450DP opt. Q8 -VOUT R23 1/4W *R24 15 2 IS+ 1 19 VIN L5 18 1 0.68uH 12 NDRV 9 VSLMT 1 2 FG GND 20 SW PGND 23 ISRUN/SS 8 GATE PGND 6 REGSD 17 IS GND 11 PGOOD 3 16 SLP 14 1 SG FS/SYNC 13 24 VCC E1 3 2 PHASE 5 NDRV ITH 7 4 MODE VSOUT 9 +Vin (to MSTR) C74 OPT 330 1.0K 2.2K R84 -VOUT * + C31 +VOUT * opt. 240 opt. R102 R46 604 E4 opt. 0 opt. R107 R73 opt. 0 0 R108 0ohms 4 3 T1 4 3 -VOUT 8 P1-9 9 J1-9 9 P1-8 J1-8 8 -ITH (to -ITH MSTR) P1-7 7 7 J1-7 J1-4 J1-3 PA0955(6:6:2:1) PA0954(4:4:1:1) 11 P1-11 11 J1-11 -VOUT (to MSTR) P1-10 10 10 J1-10 SSS (to SSS MSTR) SYNC (to SYNC MSTR) P1-6 +ITH (to +ITH MSTR) +VPKS (to +VPKS MSTR) P1-5 J1-5 -VPKS (to -VPKS MSTR) J1-6 6 6 5 5 PA0950(6:6:1:1) P1-4 P1-3 OPT R74 OPT OPT R72 R71 0ohms R60 0ohms R59 -Vout (to -Vout MSTR) * +Vout (to +Vout MSTR) C77 2.2uF VCC 0ohms R62 R41 * E3 + C68 E8 - + E7 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 22. Full PolyPhase Slave Schematic 19 QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 888A-A 36V-72VIN, ISOLATED SYNCHRONOUS FORWARD Figure 23. Picture of two DC888A’s configured for PolyPhase 20