908E622ACDWBTAD Rev 1.0, 09/2005 Freescale Semiconductor Technical Data Integrated Quad H-Bridge, Triple High-Side and EC Glass Driver with Embedded MCU and LIN for Mirror Thermal Addendum 908E622ACDWB 54-TERMINAL SOICW-EP Introduction This thermal addendum ia provided as a supplement to the MM908E622 technical data sheet. The addendum provides thermal performance information that may be critical in the design and development of system applications. All electrical, application and packaging information is provided in the data sheet. Package and Thermal Considerations This MM908E622 is a dual die package. There are two heat sources in the package independently heating with P1 and P2. This results in two junction temperatures, TJ1 and TJ2, and a thermal resistance matrix with RθJAmn. For m, n = 1, RθJA11 is the thermal resistance from Junction 1 to the reference temperature while only heat source 1 is heating with P1. For m = 1, n = 2, RθJA12 is the thermal resistance from Junction 1 to the reference temperature while heat source 2 is heating with P2. This applies to RθJ21 and RθJ22, respectively. TJ1 TJ2 = RθJA11 RθJA12 RθJA21 RθJA22 . DWB SUFFIX 98ARL105910 54-TERMINAL SOICW-EP Note For package dimensions, refer to the 908E622 device datasheet. P1 P2 The stated values are solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were obtained by measurement and simulation according to the standards listed below. Standards Table 1. Thermal Performance Comparison 1.0 1 = Power Chip, 2 = Logic Chip [°C/W] Thermal Resistance m = 1, n=1 m = 1, n = 2 m = 2, n = 1 m = 2, n=2 RθJAmn (1)(2) 23 20 24 (2)(3) 9.0 6.0 10 RθJAmn (1)(4) 52 47 52 RθJCmn (5) 1.0 0 2.0 RθJBmn Notes: 1. Per JEDEC JESD51-2 at natural convection, still air condition. 2. 2s2p thermal test board per JEDEC JESD51-7and JESD51-5. 3. Per JEDEC JESD51-8, with the board temperature on the center trace near the power outputs. 4. Single layer thermal test board per JEDEC JESD51-3 and JESD51-5. 5. Thermal resistance between the die junction and the exposed pad, “infinite” heat sink attached to exposed pad. © Freescale Semiconductor, Inc., 2005. All rights reserved. 1.0 0.2 0.2 * All measurements are in millimeters Soldermast openings Thermal vias connected to top buried plane 54 Terminal SOIC-EP 0.65 mm Pitch 17.9 mm x 7.5 mm Body 10.3 mm x 5.1 mm Exposed Pad Figure 1. Thermal Land Pattern for Direct Thermal Attachment Per JEDEC JESD51-5 PTC4/OSC1 PTC3/OSC2 PTC2/MCLK PTB5/AD5 PTB4/AD4 PTB3/AD3 1 54 2 53 3 52 4 51 5 50 6 49 IRQ RST 7 48 8 47 (PTD0/TACH0/BEMF -> PWM) PTD1/TACH1 9 46 10 45 RST_A IRQ_A 11 44 LIN A0CST A0 GND1 HB4 VSUP1 GND2 HB3 VSUP2 EC ECR TESTMODE GND3 HB2 VSUP3 13 12 14 15 43 42 Exposed Pad 41 40 16 39 17 38 18 37 19 36 20 35 21 34 22 33 23 32 24 31 25 30 26 29 27 28 A PTA0/KBD0 PTA1/KBD1 PTA2/KBD2 FLSVPP PTA3/KBD3 PTA4/KBD4 VDDA/VREFH EVDD EVSS VSSA/VREFL (PTE1/RXD <- RXD) VSS VDD HVDD L0 H0 HS3 VSUP8 HS2 VSUP7 HS1b HS1a VSUP6 VSUP5 GND4 HB1 VSUP4 908E622 Terminal Connections 54-Terminal SOICW-EP 0.65 mm Pitch 17.9 mm x 7.5 mm Body 10.3 mm x 5.1 mm Exposed Pad Figure 2. Thermal Test Board Device on Thermal Test Board Material: Outline: Single layer printed circuit board FR4, 1.6 mm thickness Cu traces, 0.07 mm thickness 80 mm x 100 mm board area, including edge connector for thermal testing Area A: Cu heat-spreading areas on board surface Ambient Conditions: Natural convection, still air Table 2. Thermal Resistance Performance Thermal Resistance RθJAmn RθJSmn Area A (mm2) 1 = Power Chip, 2 = Logic Chip (°C/W) m = 1, n=1 m = 1, n = 2 m = 2, n = 1 m = 2, n=2 0 53 48 53 300 39 34 38 600 35 30 34 0 21 16 20 300 15 11 15 600 14 9.0 13 RθJA is the thermal resistance between die junction and ambient air. RθJSmn is the thermal resistance between die junction and the reference location on the board surface near a center lead of the package (see Figure 2) This device is a dual die package. Index m indicates the die that is heated. Index n refers to the number of the die where the junction temperature is sensed. 908E622ACDWB 2 Analog Integrated Circuit Device Data Freescale Semiconductor Thermal Resistance [ºC/W] 60 50 40 30 20 10 0 x RθJA11 RθJA22 RθJA12 = RθJA21 0 300 600 Heat spreading area A [mm²] Figure 3. Device on Thermal Test Board RθJA Thermal Resistance [ºC/W] 100 10 1 x 0.1 1.00E-03 1.00E-02 RθJA11 RθJA22 RθJA12 = RθJA21 1.00E-01 1.00E+00 1.00E+01 1.00E+02 1.00E+03 1.00E+04 Time[s] Figure 4. Transient Thermal Resistance RθJA (1.0 W Step Response) Device on Thermal Test Board Area A = 600 (mm2) 908E622ACDWB Analog Integrated Circuit Device Data Freescale Semiconductor 3 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] 908E622ACDWBTAD Rev 1.0 09/2005 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should a Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, the Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2005. All rights reserved.