INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: • The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC • The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC HEF4016B gates Quadruple bilateral switches Product specification File under Integrated Circuits, IC04 January 1995 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches impedance between Y and Z is established (OFF condition). Current through a switch will not cause additional VDD current provided the voltage at the terminals of the switch is maintained within the supply voltage range; VDD ≥ (VY, VZ) ≥ VSS. Inputs Y and Z are electrically equivalent terminals. DESCRIPTION The HEF4016B has four independent analogue switches (transmission gates). Each switch has two input/output terminals (Y/Z) and an active HIGH enable input (E). When E is connected to VDD a low impedance bidirectional path between Y and Z is established (ON condition). When E is connected to VSS the switch is disabled and a high Fig.2 Pinning diagram. Fig.1 Functional diagram. PINNING E0 to E3 enable inputs HEF4016BP(N): 14-lead DIL; plastic (SOT27-1) Y0 to Y3 input/output terminals HEF4016BD(F): 14-lead DIL; ceramic (cerdip) (SOT73) Z0 to Z3 input/output terminals HEF4016BT(D): 14-lead SO; plastic (SOT108-1) ( ): Package Designator North America APPLICATION INFORMATION Some examples of applications for the HEF4016B are: • Signal gating • Modulation • Demodulation • Chopper Fig.3 Schematic diagram (one switch). January 1995 2 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Power dissipation per switch P max. 100 mW For other RATINGS see Family Specifications DC CHARACTERISTICS Tamb = 25 °C; VSS = 0 V (unless otherwise specified) PARAMETER VDD V SYMBOL 5 ON resistance ON resistance ON resistance ‘∆’ ON resistance MAX. UNIT 8000 − Ω 230 690 Ω 15 115 350 Ω 5 140 425 Ω 10 RON 65 195 Ω 15 50 145 Ω 5 170 515 Ω 10 RON 95 285 Ω 15 75 220 Ω 5 200 − Ω 15 − Ω 10 − Ω 10 between any two 10 channels 15 PARAMETER TYP. VDD V RON ∆RON CONDITIONS En at VIH; Vis = 0 to VDD; see Fig.4 En at VIH; Vis = VSS; see Fig.4 En at VIH; Vis = VDD; see Fig.4 En at VIH; Vis = 0 to VDD; see Fig.4 Tamb (°C) −40 SYMBOL + 25 + 85 UNIT CONDITION MIN. MAX. MIN. MAX. MIN. MAX. Quiescent 5 device 10 current 15 Input leakage current at En OFF-state leakage 15 IDD ± IIN 5 − 1,0 − 1,0 − 7,5 µA − 2,0 − 2,0 − 15,0 µA − 4,0 − 4,0 − 30,0 µA − − − 300 − 1000 − − − − − − nA En at VSS or VDD nA En at VIL; Vis = VSS or VDD; Vos = VDD or VSS current, any 10 − − − − − − nA channel OFF 15 − − − 200 − − nA 5 − 1,5 − 1,5 − 1,5 V En input voltage LOW En input voltage HIGH − 3,0 − 3,0 − 3,0 V 15 − 4,0 − 4,0 − 4,0 V 5 3,5 − 3,5 − 3,5 − V 7,0 − 7,0 − 7,0 − V 11,0 − 11,0 − 11,0 − V 10 10 15 January 1995 IOZ VIL VIH 3 VSS = 0; all valid input combinations; VI = VSS or VDD switch OFF; see Fig.9 for IOZ low-impedance between Y and Z (ON condition) see RON switch Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches Fig.4 Test set-up for measuring RON. En > VIH Iis = 100 µA VSS = 0 V Fig.5 Typical RON as a function of input voltage. January 1995 4 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches AC CHARACTERISTICS VSS = 0 V; Tamb = 25 °C; input transition times ≤ 20 ns VDD V SYMBOL TYP. MAX. Propagation delays Vis → Vos HIGH to LOW 5 25 50 ns 10 20 ns 5 10 ns 20 40 ns 10 20 ns 15 5 10 ns 5 90 130 ns 80 110 ns 15 75 100 ns 5 85 120 ns 75 100 ns 15 75 100 ns 5 40 80 ns 20 40 ns 10 tPHL 15 5 LOW to HIGH 10 tPLH note 1 note 1 Output disable times En → Vos HIGH LOW 10 10 tPHZ tPLZ note 2 note 2 Output enable times En → Vos HIGH LOW Distortion, sine-wave response Crosstalk between any two channels Crosstalk; enable input to output OFF-state feed-through ON-state frequency response January 1995 10 tPZH 15 15 30 ns 5 40 80 ns 20 40 ns 15 15 30 5 − % 10 0,08 % 15 0,04 5 − MHz 10 1 MHz 10 tPZL note 2 ns note 3 % 15 − MHz 5 − mV 10 50 mV 15 − mV 5 − MHz 10 1 MHz 15 − MHz 5 − MHz 10 90 MHz 15 − MHz 5 note 2 note 4 note 5 note 6 note 7 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches Notes Vis is the input voltage at a Y or Z terminal, whichever is assigned as input. Vos is the output voltage at a Y or Z terminal, whichever is assigned as output. 1. RL = 10 kΩ to VSS; CL = 50 pF to VSS; En = VDD; Vis = VDD (square-wave); see Figs 6 and 10. 2. RL = 10 kΩ; CL = 50 pF to VSS; En = VDD (square-wave); Vis = VDD and RL to VSS for tPHZ and tPZH; Vis = VSS and RL to VDD for tPLZ and tPZL; see Figs 6 and 11. 3. RL = 10 kΩ; CL = 15 pF; En = VDD; Vis = 1⁄2VDD(p-p) (sine-wave, symmetrical about 1⁄2VDD); fis = 1 kHz; see Fig.7. 4. RL = 1 kΩ; Vis = 1⁄2VDD(p-p) (sine-wave, symmetrical about 1⁄2VDD); V os (B) 20 log ------------------- = – 50 dB; E n (A) = V SS ; E n (B) = V DD ; see Fig. 8. V is (A) 5. RL = 10 kΩ to VSS; CL = 15 pF to VSS; En = VDD (square-wave); crosstalk is Vos (peak value); see Fig.6. 6. RL = 1 kΩ; CL = 5 pF; En = VSS; Vis = 1⁄2VDD(p-p) (sine-wave, symmetrical about 1⁄2VDD); V os 20 log --------- = – 50 dB; see Fig. 7. V is 7. RL = 1 kΩ; CL = 5 pF; En = VDD; Vis = 1⁄2VDD(p-p) (sine-wave, symmetrical about 1⁄2VDD); V os 20 log --------- = – 3 dB; see Fig. 7. V is VDD V Dynamic power dissipation per package (P)(1) TYPICAL FORMULA FOR P (µW) 5 550 fi + ∑ (foCL) × VDD2 10 2 600 fi + ∑ (foCL) × VDD2 fi = input freq. (MHz) 15 6 500 fi + ∑ (foCL) × VDD fo = output freq. (MHz) 2 where CL = load capacitance (pF) ∑ (foCL) = sum of outputs VDD = supply voltage (V) Note 1. All enable inputs switching. January 1995 6 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches Fig.6 Fig.7 Fig.8 Fig.9 January 1995 7 Philips Semiconductors Product specification HEF4016B gates Quadruple bilateral switches Fig.10 Waveforms showing propagation delays from Vis to Vos. (1) Vis at VDD (2) Vis at VSS Fig.11 Waveforms showing output disable and enable times. January 1995 8