PRELIMINARY EZ-PD™ CCG4M USB Type-C Dual Port Controller with USB 3.1 Gen 1/DP1.2 Mux General Description EZ-PD™ CCG4M is a USB Type-C dual port controller that complies with the latest USB Type-C and PD standards. EZ-PD CCG4M provides a complete dual USB Type-C and USB-Power Delivery port control solution for notebooks and PCs. EZ-PD CCG4M uses Cypress’s proprietary M0S8 technology with a 32-bit, 48-MHz ARM® Cortex®-M0 processor with 128-KB flash and integrates two complete Type-C Transceivers including the Type-C termination resistors RP and RD as well as a 6:4 mux for USB 3.0 and DisplayPort signals. Applications ■ Type-C Support ■ Notebooks and PCs ■ Features ■ 32-bit MCU Subsystem ■ 48-MHz ARM Cortex-M0 CPU ■ 128-KB Flash ■ 8-KB SRAM ■ In-system reprogrammable ■ Low-Power Operation ■ ■ ■ Integrated Digital Blocks Four integrated timers or counters to meet response times required by the USB-PD protocol ■ Four run-time serial communication blocks (SCBs) with reconfigurable I2C, SPI, or UART functionality ■ 2.7-V to 5.5-V operation Integrated VCONN FETs to power EMCA cables Independent supply voltage pin for GPIO that allows 1.71-V to 5.5-V signaling on the I/Os System-Level ESD on CC Pins ■ ± 8-kV Contact Discharge and ±15-kV Air Gap Discharge based on IEC61000-4-2 level 4C Hot Swappable I/Os Integrated 6:4 Mux Six differential channels to 4 differential channels Multiplexes USB 3.0 (5 Gbps) and DisplayPort 1.2 (5.4 Gbps) signals to the USB Type-C connector ■ With DisplayPort 1.2, AUX signals are multiplexed to SBU pins ■ ■ ■ Port 1 I2C pins and CC1, CC2 pins are hot-swappable Packages ■ ■ Clocks and Oscillators ■ Two integrated transceivers (baseband PHY) Integrated UFP (RD) and current sources for DFP (RP) on both Type-C ports Integrated dead battery termination for DRP applications Supports two USB Type-C ports 6.0 mm 6.0 mm, 0.5 mm, 96-ball BGA Supports industrial temperature range (–40 °C to +85 °C) Integrated oscillator eliminating the need for external clock Cypress Semiconductor Corporation Document Number: 002-11084 Rev. ** • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised February 18, 2016 PRELIMINARY EZ-PD™ CCG4M Logic Block Diagram CCG4M: Single-Chip Type-C Controller MCU Subsystem I/O Subsystem Integrated Digital Blocks CC_PORT15 4 x SCB2 (I2C, SPI, UART) CC_PORT25 Programmable I/O Matrix CORTEX-M0 4 x TCPWM1 Flash (128KB) SRAM (8KB) Advanced High-Performance Bus (AHB) 48 MHz Profiles and Configurations 2 x Baseband MAC 2 x Baseband PHY 2x VCONN FETs (PORT1) 2x VCONN FETs (PORT2) GPIOs6 3 Integrated Rd and Rp 4 4 x 8-bit SAR ADC Integrated 6:4 Mux for USB 3.0 and DisplayPort Serial Wire Debug 1 Timer, counter, pulse-width modulation block Serial communication block configurable as UART, SPI, or I2C 3 Termination resistor denoting a UFP 4 Current source to indicate a DFP 5 Configuration Channel 6 General-purpose input/output 2 Document Number: 002-11084 Rev. ** Page 2 of 34 PRELIMINARY EZ-PD™ CCG4M Contents Functional Overview ........................................................ 4 CPU and Memory Subsystem ..................................... 4 USB-PD Subsystem (SS)............................................ 4 System Resources ...................................................... 5 Peripherals .................................................................. 5 GPIO ........................................................................... 6 Mux.............................................................................. 6 Pinouts .............................................................................. 7 Power............................................................................... 16 Electrical Specifications ................................................ 19 Absolute Maximum Ratings....................................... 19 Device-Level Specifications ...................................... 19 Digital Peripherals ..................................................... 23 Memory ..................................................................... 25 System Resources .................................................... 25 Document Number: 002-11084 Rev. ** Ordering Information...................................................... Ordering Code Definitions ......................................... Packaging........................................................................ Acronyms ........................................................................ Document Conventions ................................................. Units of Measure ....................................................... Document History Page ................................................. Sales, Solutions, and Legal Information ...................... Worldwide Sales and Design Support....................... Products .................................................................... PSoC® Solutions ...................................................... Cypress Developer Community................................. Technical Support ..................................................... 28 28 29 31 32 32 33 34 34 34 34 34 34 Page 3 of 34 PRELIMINARY Functional Overview CPU and Memory Subsystem CPU The Cortex-M0 CPU in EZ-PD CCG4M is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. It mostly uses 16-bit instructions and executes a subset of the Thumb-2 instruction set. This enables fully compatible binary upward migration of the code to higher performance processors such as the Cortex-M3 and M4, thus enabling upward compatibility. The Cypress implementation includes a hardware multiplier that provides a 32-bit result in one cycle. It includes a nested vectored interrupt controller (NVIC) block with 32 interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor up from the Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in the Deep Sleep mode. The Cortex-M0 CPU provides a Non-Maskable Interrupt (NMI) input, which is made available to the user when it is not in use for system functions requested by the user. The CPU also includes a serial wire debug (SWD) interface, which is a 2-wire form of JTAG. The debug configuration used for EZ-PD CCG4M has four break-point (address) comparators and two watchpoint (data) comparators. Flash EZ-PD™ CCG4M USB-PD Subsystem (SS) EZ-PD CCG4M has a USB-PD subsystem consisting of two USB Type-C baseband transceivers and physical-layer logic. These transceivers perform the BMC and the 4b/5b encoding and decoding functions as well as the 1.2-V analog front end. This subsystem integrates the required termination resistors to identify the role of the EZ-PD CCG4M solution. RD is used to identify EZ-PD CCG4M as a UFP in a DRP application. When configured as a DFP, integrated current sources perform the role of RP or pull-up resistors. These current sources can be programmed to indicate the complete range of current capacity on VBUS defined in the USB Type-C spec. EZ-PD CCG4M responds to all USB-PD communication. The USB-PD sub-system contains two 8-bit SAR (Successive Approximation Register) ADC per port for analog to digital conversions. The ADC includes a 8-bit DAC and a comparator. The DAC output forms the positive input of the comparator. The negative input of the comparator is from a 4-input multiplexer. The four inputs of the multiplexer are a pair of global analog multiplex busses an internal bandgap voltage and an internal voltage proportional to the absolute temperature. All GPIO inputs can be connected to the global Analog Multiplex Busses through a switch at each GPIO that can enable that GPIO to be connected to the mux bus for ADC use. The CC1 and CC2 pins of both Type-C ports are not available to connect to the mux busses. The EZ-PD CCG4M device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The flash block is designed to deliver two wait-states (WS) access time at 48 MHz and with 0-WS access time at 16 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average. Part of the flash module can be used to emulate EEPROM operation if required. SROM A supervisory ROM that contains boot and configuration routines is provided. Document Number: 002-11084 Rev. ** Page 4 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 1. USB-PD Subsystem To/From System Resources vref iref To/ from AHB 2 x 8-bit ADC per Type-C port From AMUX VCONN FET Enable V5V TxRx Enable VCONN FETs 2 x Digital Baseband PHY Tx_data from AHB Enable Logic Tx SRAM 4b5b Encoder SOP Insert BMC Encoder Rx_data to AHB Rp TX CRC CC1 RD1 RX Rx SRAM 4b5b Decoder SOP Detect BMC Decoder CC2 Comp CC control CC detect Deep Sleep Reference Enable Ref Active Rd DB Rd RD2 8kV IEC ESD 2 x Analog Baseband PHY Deep Sleep Vref & Iref Gen Functional, Wakeup Interrupts vref, iref RD1 shorted to CC1 and RD2 shorted to CC2 for DRP applications using bondwire. For DFP applications, RD1 and RD2 not shorted to CC1 and CC2. Dead Battery (DB) Rd termination removed after MCU boots up System Resources Peripherals Power System Serial Communication Blocks (SCB) The power system is described in detail in the section “Power” on page 16. It provides assurance that voltage levels are as required for each respective mode and either delay mode entry (on power-on reset (POR), for example) until voltage levels are as required for proper function or generate resets (Brown-Out Detect (BOD)) or interrupts (Low Voltage Detect (LVD)). EZ-PD CCG4M can operate from three different power sources over the range of 2.7 to 5.5 V and has three different power modes, transitions between which are managed by the power system. EZ-PD CCG4M provides Sleep and Deep Sleep low-power modes. EZ-PD CCG4M has four SCBs, which can be configured to implement an I2C, SPI, or UART interface. The hardware I2C blocks implement full multi-master and slave interfaces capable of multimaster arbitration. In the SPI mode, the SCB blocks can be configured to act as a master or a slave. Clock System The clock system for EZ-PD CCG4M consists of the Internal Main Oscillator (IMO) and the Internal Low-power Oscillator (ILO). Document Number: 002-11084 Rev. ** In the I2C mode, the SCB blocks are capable of operating at speeds up to 1 Mbps (Fast Mode Plus) and have flexible buffering options to reduce interrupt overhead and latency for the CPU. These blocks also support I2C that creates a mailbox address range in the memory of EZ-PD CCG4M and effectively reduce I2C communication to reading from and writing to an array in memory. In addition, the blocks support 8-deep FIFOs for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduce the need for clock stretching caused by the CPU not having read data on time. The I2C peripherals are compatible with the I2C Standard-mode, Fast-mode, and Fast-mode Plus devices as defined in the NXP I2C-bus specification and user manual (UM10204). The I2C bus I/Os are implemented with GPIO in open-drain modes. Page 5 of 34 PRELIMINARY The I2C port on SCB2, SCB3, and SCB4 blocks of EZ-PD CCG4M are not completely compliant with the I2C spec in the following: ■ ■ ■ The GPIO cells for SCB2, SCB3, and SCB4 I2C port are not overvoltage-tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I2C system. Fast-mode Plus has an IOL specification of 20 mA at a VOL of 0.4 V. The GPIO cells can sink a maximum of 8-mA IOL with a VOL maximum of 0.6 V. Fast-mode and Fast-mode Plus specify minimum Fall times, which are not met with the GPIO cell; Slow strong mode can help meet this spec depending on the bus load. Timer/Counter/PWM Block (TCPWM) EZ-PD CCG4M has four TCPWM blocks. Each implements a 16-bit timer, counter, pulse-width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode quadrature signals. GPIO EZ-PD CCG4M has 30 GPIOs that includes the I2C and SWD pins, which can also be used as GPIOs. The I2C pins from only SCB 1 are overvoltage-tolerant. The number of available GPIOs vary with the part numbers. The GPIO block implements the following: ■ Seven drive strength modes: ❐ Input only ❐ Weak pull-up with strong pull-down ❐ Strong pull-up with weak pull-down Document Number: 002-11084 Rev. ** EZ-PD™ CCG4M Open drain with strong pull-down Open drain with strong pull-up ❐ Strong pull-up with strong pull-down ❐ Weak pull-up with weak pull-down ❐ ❐ ■ Input threshold select (CMOS or LVTTL) ■ Individual control of input and output buffer enabling/disabling in addition to the drive strength modes ■ Hold mode for latching previous state (used for retaining I/O state in Deep Sleep mode) ■ Selectable slew rates for dV/dt related noise control to improve EMI During power-on and reset, the I/O pins are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin. Mux EZ-PD CCG4M integrates a 6:4 differential channel mux used for switching USB 3.0 and/or DP 1.2 signals through the USB Type-C connector. CCG4M can mux the following signals to the USB Type-C connector: ■ USB 3.0 signals only ■ One lane of USB 3.0 signals and two lanes of DP 1.2 signals ■ Four lanes of DP 1.2 signals In addition, the AUX signals are also multiplexed to the SBU pins. The insertion loss is –1.2 dB and the return loss –21 dB at 5-Gbps USB 3.0 speed. Page 6 of 34 PRELIMINARY EZ-PD™ CCG4M Pinouts Table 1. Pinout for CYPD4255-96BZXI Group USB Type-C Port 1 USB Type-C Port 2 Mux VBUS Control VCONN Control Name Ball Location Description CC1_P1 K2 USB PD connector detect/Configuration Channel 1 CC2_P1 H2 USB PD connector detect/Configuration Channel 2 CC1_P2 K9 USB PD connector detect/Configuration Channel 1 CC2_P2 K10 USB PD connector detect/Configuration Channel 2 TX_P L11 Differential USB 3.0 transmit signal TX_M K11 Differential USB 3.0 transmit signal RX_P H11 Differential USB 3.0 receive signal RX_M G11 Differential USB 3.0 receive signal TX1_P A8 Differential transmit signal 1 TX1_M A7 Differential transmit signal 1 RX1_P A11 Differential receive signal 1 RX1_M A10 Differential receive signal 1 TX2_P A4 Differential transmit signal 2 TX2_M A5 Differential transmit signal 2 RX2_P A1 Differential receive signal 2 RX2_M A2 Differential receive signal 2 AUX_P F11 Auxiliary signal for DisplayPort AUX_M E11 Auxiliary signal for DisplayPort DP0_P C1 Differential DisplayPort 0 signal DP0_M D1 Differential DisplayPort 0 signal DP1_P F1 Differential DisplayPort 1 signal DP1_M G1 Differential DisplayPort 1 signal DP2_P J1 Differential DisplayPort 2 signal DP2_M K1 Differential DisplayPort 2 signal DP3_P L2 Differential DisplayPort 3 signal DP3_M L3 Differential DisplayPort 3 signal SBU1 B11 Sideband Use signal SBU2 C11 Sideband Use signal31 VBUS_P_CTRL_P1 K3 Full rail control I/O for enabling/disabling Provider load FET of USB Type-C port 1 VBUS_C_CTRL_P1 K4 Full rail control I/O for enabling/disabling Consumer load FET of USB Type-C port 1 or SCB1 (see Table 3 through Table 6) VBUS_DISCHARGE_P1 K8 I/O used for discharging VBUS line during voltage change VBUS_P_CTRL_P2 B4 Full rail control I/O for enabling/disabling Provider load FET of USB Type-C port 2 VBUS_C_CTRL_P2 B5 Full rail control I/O for enabling/disabling Consumer load FET of USB Type-C port 2 VBUS_DISCHARGE_P2 B3 I/O used for discharging VBUS line during voltage change VCONN_MON_P1/GPIO/ VSEL_1_P1 L7 Monitor VCONN for UVP condition on port 1 or GPIO or Voltage selection control for VBUS on port 1 SCL_3/VCONN_MON_P2/ VSEL_1_P2 L10 SCB3 (see Table 3 through Table 6) or Monitor VCONN for UVP condition on port 2 or Voltage selection control for VBUS on port 2 Document Number: 002-11084 Rev. ** Page 7 of 34 PRELIMINARY EZ-PD™ CCG4M Table 1. Pinout for CYPD4255-96BZXI (continued) Group Overvoltage Protection (OVP) GPIOs and Serial Interfaces Reset Name Ball Location Description OVP_TRIP_P1/ VSEL_2_P1 K5 VBUS overvoltage output indicator for port 1 or voltage selection control for VBUS on port 1 or SCB1 (see Table 3 through Table 6) OVP_TRIP_P2 L8 VBUS overvoltage output indicator for port 2 or SCB3 (see Table 3 through Table 6) VBUS_MON_P1/GPIO L4 VBUS overvoltage protection monitoring signal or GPIO VBUS_MON_P2 B6 VBUS overvoltage protection monitoring signal HPD_P1/GPIO K7 Hot Plug Detect I/O for port 1 or GPIO HPD_P2/GPIO E10 Hot Plug Detect I/O for port 2 or GPIO GPIO/MUX_CTRL_3_P2 B9 Mux control for port 2 or GPIO GPIO/MUX_CTRL_2_P2 B8 Mux control for port 2 or GPIO or SCB4 (see Table 3 through Table 6) GPIO/MUX_CTRL_1_P2 B7 Mux control for port 2 or GPIO or SCB4 (see Table 3 through Table 6) VSEL_2_P2/GPIO H10 I2C_SCL_SCB1_EC L6 SCB1 (see Table 3 through Table 6) I2C_SDA_SCB1_EC K6 SCB1 (see Table 3 through Table 6) or SCB3 (see Table 3 through Table 6) I2C_INT_EC L5 I2C interrupt line I2C_SCL_SCB2_AR/GPIO E2 SCB2 (see Table 3 through Table 6) or GPIO I2C_SDA_SCB2_AR/GPIO D2 SCB2 (see Table 3 through Table 6) or GPIO I2C_INT_AR_P1 F2 I2C interrupt line I2C_INT_AR_P2 G2 I2C interrupt line or SCB2 (see Table 3 through Table 6) Voltage selection control for VBUS on port 2 or GPIO SDA_3/GPIO J10 SCB3 (see Table 3 through Table 6) or GPIO SCL_4 F10 SCB4 (see Table 3 through Table 6) SDA_4 G10 SWD_IO/AR_RST# B2 Serial Wire Debug I/O or SCB2 (see Table 3 through Table 6) SWD_CLK/I2C_CFG_EC C2 SWD Clock or I2C config line XRES H6 Reset input Document Number: 002-11084 Rev. ** SCB4 (see Table 3 through Table 6) Page 8 of 34 PRELIMINARY EZ-PD™ CCG4M Table 1. Pinout for CYPD4255-96BZXI (continued) Group Power Ground No Connect Name Ball Location Description VDDM A3 3.0-V to 3.6-V supply for integrated mux VDDM A6 3.0-V to 3.6-V supply for integrated mux VDDM A9 3.0-V to 3.6-V supply for integrated mux VDDM B1 3.0-V to 3.6-V supply for integrated mux VDDM D11 3.0-V to 3.6-V supply for integrated mux VDDM E1 3.0-V to 3.6-V supply for integrated mux VDDM H1 3.0-V to 3.6-V supply for integrated mux VDDM J11 3.0-V to 3.6-V supply for integrated mux VDDM L1 VDDD D10 VDDD supply input/output (2.7-V to 5.5-V) 3.0-V to 3.6-V supply for integrated mux VCCD B10 1.8-V regulator output for filter capacitor. This pin cannot drive external load. VDDIO C10 1.71-V to 5.5-V supply for I/Os V5V_P1 J2 2.7-V to 5.5-V supply for VCONN FET of Type-C port 1 V5V_P2 L9 2.7-V to 5.5-V supply for VCONN FET of Type-C port 2 GND D5 Ground GND D6 Ground GND D7 Ground GND D8 Ground GND E4 Ground GND E5 Ground GND E6 Ground GND E7 Ground GND E8 Ground GND F4 Ground GND F5 Ground GND F6 Ground GND F7 Ground GND F8 Ground GND G4 Ground GND G5 Ground GND G6 Ground GND G7 Ground GND H7 Ground NC G8 No connect NC H4 No connect NC H5 No connect NC H8 No connect Document Number: 002-11084 Rev. ** Page 9 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 2. 96-Ball BGA Map for CYPD4255-96BZXI 1 2 3 4 5 6 7 8 9 10 11 A RX2_P RX2_M VDDM TX2_P TX2_M VDDM TX1_M TX1_P VDDM RX1_M RX1_P B VDDM SWD_IO/AR _RST# VBUS_DISC HARGE_P2 VBUS_P_C TRL_P2 GPIO/MUX_ CTRL_1_P2 GPIO/MUX_ CTRL_2_P2 GPIO/MUX_ CTRL_3_P2 VCCD SBU1 C DP0_P SWD_CLK/I2 C_CFG_EC VDDIO SBU2 D DP0_M I2C_SDA_S CB2_AR/ GPIO E VDDM I2C_SCL_SC B2_AR/GPIO F DP1_P G VBUS_C_CT VBUS_MON RL_P2 _P2 GND GND GND GND VDDD VDDM GND GND GND GND GND HPD_P2/ GPIO AUX_M I2C_INT_AR _P1 GND GND GND GND GND SCL_4 AUX_P DP1_M I2C_INT_AR _P2 GND GND GND GND NC SDA_4 RX_M H VDDM CC2_P1 NC NC XRES GND NC VSEL_2_P2/ GPIO RX_P J DP2_P V5V_P1 SDA_3/GPIO VDDM K DP2_M CC1_P1 VBUS_P_CT RL_P1 L VDDM DP3_P DP3_M Document Number: 002-11084 Rev. ** VBUS_C_C TRL_P1 OVP_TRIP_ P1/VSEL_2_ P1 I2C_SDA_S CB1_EC HPD_P1/ GPIO VCONN_MO VBUS_MON I2C_INT_EC I2C_SCL_SC N_P1/GPIO/ _P1/GPIO B1_EC VSEL_1_P1 VBUS_DISC HARGE_P1 CC1_P2 CC2_P2 TX_M OVP_TRIP_ P2 V5V_P2 SCL_3/VCON N_MON_P2/ VSEL_1_P2 TX_P Page 10 of 34 PRELIMINARY EZ-PD™ CCG4M Table 2. Pinout for CYPD4155-96BZXI Group USB Type-C Port 1 Mux VBUS Control Name Ball Location Description CC1_P1 K2 USB PD connector detect/Configuration Channel 1 CC2_P1 H2 USB PD connector detect/Configuration Channel 2 TX_P L11 Differential USB 3.0 transmit signal TX_M K11 Differential USB 3.0 transmit signal RX_P H11 Differential USB 3.0 receive signal RX_M G11 Differential USB 3.0 receive signal TX1_P A8 Differential transmit signal 1 TX1_M A7 Differential transmit signal 1 RX1_P A11 Differential receive signal 1 RX1_M A10 Differential receive signal 1 TX2_P A4 Differential transmit signal 2 TX2_M A5 Differential transmit signal 2 RX2_P A1 Differential receive signal 2 RX2_M A2 Differential receive signal 2 AUX_P F11 Auxiliary signal for DisplayPort AUX_M E11 Auxiliary signal for DisplayPort DP0_P C1 Differential DisplayPort 0 signal DP0_M D1 Differential DisplayPort 0 signal DP1_P F1 Differential DisplayPort 1 signal DP1_M G1 Differential DisplayPort 1 signal DP2_P J1 Differential DisplayPort 2 signal DP2_M K1 Differential DisplayPort 2 signal DP3_P L2 Differential DisplayPort 3 signal DP3_M L3 Differential DisplayPort 3 signal SBU1 B11 Sideband Use signal SBU2 C11 Sideband Use signal VBUS_P_CTRL_P1 K3 Full rail control I/O for enabling/disabling Provider load FET of USB Type-C port 1 VBUS_C_CTRL_P1 K4 Full rail control I/O for enabling/disabling Consumer load FET of USB Type-C port 1 or SCB1 (see Table 3 through Table 6) VBUS_DISCHARGE_P1 K8 I/O used for discharging VBUS line during voltage change VCONN Control VCONN_MON_P1/GPIO/V SEL_1_P1 L7 Monitor VCONN for UVP condition on port 1 or GPIO or Voltage selection control for VBUS on port 1 Overvoltage Protection (OVP) OVP_TRIP_P1/ VSEL_2_P1 K5 VBUS overvoltage output indicator for port 1 or Voltage selection control for VBUS on port 1 or SCB1 (see Table 3 through Table 6) Document Number: 002-11084 Rev. ** Page 11 of 34 PRELIMINARY EZ-PD™ CCG4M Table 2. Pinout for CYPD4155-96BZXI (continued) Group GPIOs and Serial Interfaces Reset Power Name Ball Location Description VBUS_MON_P1/GPIO L4 VBUS overvoltage protection monitoring signal or GPIO HPD_P1/GPIO K7 Hot Plug Detect I/O for port 1 or GPIO SCL_3/GPIO L10 SCB3 (see Table 3 through Table 6) or GPIO SDA_3/GPIO J10 SCB3 (see Table 3 through Table 6) or GPIO SCL_4 F10 SCB4 (see Table 3 through Table 6) SDA_4 G10 SCB4 (see Table 3 through Table 6) I2C_SCL_SCB1_EC L6 SCB1 (see Table 3 through Table 6) I2C_SDA_SCB1_EC K6 SCB1 (see Table 3 through Table 6) or SCB3 (see Table 3 through Table 6) I2C_INT_EC L5 I2C interrupt line I2C_SCL_SCB2_AR/ GPIO E2 SCB2 (see Table 3 through Table 6) or GPIO I2C_SDA_SCB2_AR/ GPIO D2 SCB2 (see Table 3 through Table 6) or GPIO I2C_INT_AR_P1 F2 I2C interrupt line GPIO B3 GPIO GPIO B4 GPIO GPIO B5 GPIO GPIO B6 GPIO GPIO B7 GPIO or SCB4 (see Table 3 through Table 6) GPIO B8 GPIO or SCB4 (see Table 3 through Table 6) GPIO B9 GPIO GPIO E10 GPIO GPIO G2 GPIO or SCB2 (seeTable 3 through Table 6) GPIO H10 GPIO L8 GPIO GPIO or SCB3 (see Table 3 through Table 6) SWD_IO/AR_RST# B2 Serial Wire Debug I/O or SCB2 (see Table 3 through Table 6) SWD_CLK/I2C_CFG_EC C2 SWD Clock or I2C config line XRES H6 Reset input VDDM A3 3.0-V to 3.6-V supply for integrated mux VDDM A6 3.0-V to 3.6-V supply for integrated mux VDDM A9 3.0-V to 3.6-V supply for integrated mux VDDM B1 3.0-V to 3.6-V supply for integrated mux VDDM D11 3.0-V to 3.6-V supply for integrated mux VDDM E1 3.0-V to 3.6-V supply for integrated mux VDDM H1 3.0-V to 3.6-V supply for integrated mux VDDM J11 3.0-V to 3.6-V supply for integrated mux VDDM L1 3.0-V to 3.6-V supply for integrated mux VDDD D10 VDDD supply input/output (2.7-V to 5.5-V) VCCD B10 1.8-V regulator output for filter capacitor. This pin cannot drive external load. VDDIO C10 1.71-V to 5.5-V supply for I/Os V5V_P1 J2 Document Number: 002-11084 Rev. ** 2.7-V to 5.5-V supply for VCONN FET of Type-C port 1 Page 12 of 34 PRELIMINARY EZ-PD™ CCG4M Table 2. Pinout for CYPD4155-96BZXI (continued) Group Ground No Connect Name Ball Location Description GND D5 Ground GND D6 Ground GND D7 Ground GND D8 Ground GND E4 Ground GND E5 Ground GND E6 Ground GND E7 Ground GND E8 Ground GND F4 Ground GND F5 Ground GND F6 Ground GND F7 Ground GND F8 Ground GND G4 Ground GND G5 Ground GND G6 Ground GND G7 Ground GND H7 Ground NC G8 No connect NC H4 No connect NC H5 No connect NC H8 No connect NC K9 No connect NC K10 No connect NC L9 No connect Document Number: 002-11084 Rev. ** Page 13 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 3. 96-Ball BGA Ball Map for CYPD4155-96BZXI 1 2 3 4 5 6 7 8 9 10 11 A RX2_P RX2_M VDDM TX2_P TX2_M VDDM TX1_M TX1_P VDDM RX1_M RX1_P B VDDM SWD_IO/AR _RST# GPIO GPIO GPIO GPIO GPIO GPIO GPIO VCCD SBU1 C DP0_P SWD_CLK/I 2C_CFG_EC VDDIO SBU2 D DP0_M I2C_SDA_S CB2_AR/ GPIO E VDDM I2C_SCL_S CB2_AR/ GPIO F DP1_P G GND GND GND GND VDDD VDDM GND GND GND GND GND GPIO AUX_M I2C_INT_AR _P1 GND GND GND GND GND SCL_4 AUX_P DP1_M GPIO GND GND GND GND NC SDA_4 RX_M H VDDM CC2_P1 NC NC XRES GND NC GPIO RX_P J DP2_P V5V_P1 SDA_3/ GPIO VDDM K DP2_M CC1_P1 L VDDM DP3_P VBUS_P_C VBUS_C_C OVP_TRIP_ P1/VSEL_2 I2C_SDA_S TRL_P1 TRL_P1 CB1_EC _P1 DP3_M Document Number: 002-11084 Rev. ** VBUS_MON _P1/GPIO I2C_INT_ EC HPD_P1/ GPIO VCONN_M I2C_SCL_S ON_P1/GPI CB1_EC O/VSEL_1_ P1 VBUS_DIS CHARGE_ P1 NC NC TX_M GPIO NC SCL_3/ GPIO TX_P Page 14 of 34 PRELIMINARY EZ-PD™ CCG4M Table 3. Serial Communication Block (SCB1) Configuration Pin K4 UART UART_TX_SCB1 SPI Master SPI_MOSI_SCB1 SPI Slave I2C Master I2C Slave SPI_MOSI_SCB1 VBUS_C_CTRL_P1 VBUS_C_CTRL_P1 SPI_CLK_SCB1 VSEL_2_P1/ VCONN_MON_P1 VSEL_2_P1/ VCONN_MON_P1 K5 UART_RX_SCB1 SPI_CLK_SCB1 L6 UART_RTS_SCB1 SPI_MISO_SCB1 SPI_MISO_SCB1 I2C_SDA_SCB1 I2C_SDA_SCB1 K6 UART_CTS_SCB1 SPI_SEL_SCB1 SPI_SEL_SCB1 I2C_SCL_SCB1 I2C_SCL_SCB1 Table 4. Serial Communication Block (SCB2) Configuration Pin UART SPI Master SPI Slave I2C Master I2C Slave E2 UART_TX_SCB2 SPI_CLK_SCB2 SPI_CLK_SCB2 I2C_SCL_SCB2 I2C_SCL_SCB2 D2 UART_RX_SCB2 SPI_MISO_SCB2 SPI_MISO_SCB2 I2C_SDA_SCB2 I2C_SDA_SCB2 G2 UART_RTS_SCB2 SPI_SEL_SCB2 SPI_SEL_SCB2 GPIO GPIO B2 UART_CTS_SCB2 SPI_MOSI_SCB2 SPI_MOSI_SCB2 SWD_IO SWD_IO Table 5. Serial Communication Block (SCB3) Configuration Pin UART SPI Master SPI Slave I2C Master I2C Slave J10 UART_TX_SCB3 SPI_MISO_SCB3 SPI_MISO_SCB2 I2C_SDA_SCB3 I2C_SDA_SCB3 L10 UART_RX_SCB3 SPI_MOSI_SCB3 SPI_MOSI_SCB3 I2C_SCL_SCB3 I2C_SCL_SCB3 K6 UART_RTS_SCB3 SPI_SEL_SCB3 SPI_SEL_SCB3 I2C_SCL_SCB1 I2C_SCL_SCB1 L8 UART_CTS_SCB3 SPI_CLK_SCB3 SPI_CLK_SCB3 AR_RST# AR_RST# Table 6. Serial Communication Block (SCB4) Configuration Pin UART SPI Master SPI Slave I2C Master I2C Slave G10 UART_TX_SCB4 SPI_MOSI_SCB4 SPI_MOSI_SCB4 I2C_SDA_SCB4 I2C_SDA_SCB4 F10 UART_RX_SCB4 SPI_MISO_SCB4 SPI_MISO_SCB4 I2C_SCL_SCB4 I2C_SCL_SCB4 B7 UART_RTS_SCB4 SPI_SEL_SCB4 SPI_SEL_SCB4 GPIO GPIO B8 UART_CTS_SCB4 SPI_CLK_SCB4 SPI_CLK_SCB4 GPIO GPIO Document Number: 002-11084 Rev. ** Page 15 of 34 PRELIMINARY EZ-PD™ CCG4M Power The VCCD output of EZ-PD CCG4M must be bypassed to ground via an external capacitor (in the range of 1 to 1.6 µF; X5R ceramic or better). The following power system diagram shows the set of power supply pins as implemented in EZ-PD CCG4M. CCG4M shall be able to operate from three possible external supply sources: V5V_P1 for first Type-C port, V5V_P2 for second Type- C port and VDDD. CCG4M has the power supply input V5V_P1 and V5V_P2 pins for providing power to EMCA cables through integrated VCONN FETs. There are two VCONN FETs in CCG4M per Type-C port to power either CC1 or CC2 pin. These FETs are capable of providing a minimum of 1W on the CC1 and CC2 pins for the EMCA cables. In USB-PD applications, the valid levels on V5V_P1 and V5V_P2 supplies can range from 4.85 – 5.5 V. Bypass capacitors must be used from VDDD and V5V_P1 or V5V_P2 pins to ground; typical practice for systems in this frequency range is to use a 0.1-µF capacitor on VDDD, V5V_P1 and V5V_P2. Note that these are simply rules of thumb and that for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing. Figure 4 shows an example of the power supply bypass capacitors. The chip’s internal operating power supply is derived from VDDD. In UFP mode, CCG4M operates in 2.7 – 5.5V. In DFP and DRP modes, it operates at 3.0 – 5.5V range. A separate I/O supply pin, VDDIO, allows the GPIOs to operate at levels from 1.71 to 5.5 V. The VDDIO pin can be equal to or less than the voltages connected to the V5V_P1 or V5V_P2 and VDDD pins. Figure 4. EZ-PD CCG4M Power and Bypass Scheme Example [3] [2] CC1_P2 CC2_P2 [1] V5V_P2 CC1_P1 CC2_P1 V5V_P1 VDDD Core Regulator (SRSS-Lite) VDDIO VCCD GPIOs Core 2 x CC Tx/Rx VSS Note 1. V5V_P1 denoted power supply input for Type-C port 1 V5V_P2 denoted power supply input for Type-C port 2 2. CC1_1:USB PD connector detect/Configuration Channel 1 for Type-C port 1 CC1_2:USB PD connector detect/Configuration Channel 1 for Type-C port 2 3. CC2_1:USB PD connector detect/Configuration Channel 2 for Type-C port 1 CC2_2:USB PD connector detect/Configuration Channel 2 for Type-C port 2 Document Number: 002-11084 Rev. ** Page 16 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 5. Dual Port Notebook Application Using CCG4M (CYD4255-96BZXI) VBUS_SINK 100 KO 100 KO 100 KO 100 KO 10 O VBUS_C_CTRL_P1 100 KO VBUS_SOURCE VBUS_1 49.9KO 100 KO 100 KO 5.0V 1µF 1µF 3.3V 5.0V 10 O VBUS_P_CTRL_P1 100 KO 10O 1µF VBUS_DISCHARGE_P1 10 O USB 3.0 HOST B10 VDDM L11 TX + K11 TX - RX + RX - 100 KO VCCD D10 C10 VDDD VDDIO V5V_P1 V5V_P2 B2 SWD_IO/ AR_RST#/GPIO C2 SWD_CLK/I2C_CFG_EC/ GPIO 2 HS J2 L9 0.1µF 1µF A3, A6, A9, B1, D11, E1, H1, J11, L1 0.1µF SSTX/RX H11 RX + G11 RX - VBUS_C_CTRL_P1 VBUS_P_CTRL_P1 K4 HS K3 VBUS_DISCHARGE_P1 K8 C1 DP0 + D1 DP0 - DP1 + DP1 - F1 DP1 + G1 DP1 - DP2 + DP2 - J1 DP2 + K1 DP2 - DP3 + DP3 - L2 DP3 + L3 DP3 - AUX + AUX - F11 AUX + E11 AUX K7 HPD_P2 E10 TX1 + TX1 - A4 TX2 + TX2 - A5 TX2 + TX2 - A11 RX1 + RX1 - A10 CCG4M (CYPD4255-96BZXI) RX1 + RX1 - A1 RX2 + RX2 - A2 RX2 + RX2 - B11 SBU1 SBU2 C11 SBU1 SBU2 11 KO HPD_P2/GPIO VBUS_MON_P1/GPIO L4 0.1µF 1 KO K5 VSEL_2_P1/ OVP_TRIP_P1 CC2_P1 CC1_P1 VSEL_2_P2/GPIO H2 CC2 K2 CC1 VDDIO VDDIO POWER SUB-SYSTEM TYPE-C RECEPTACLE 1 VBUS_1 HPD_P1/GPIO L7 VSEL_1_P1/ VCONN_MON_P1/GPIO H10 4.7 KO H6 0.1µF 2.2 KO EMBEDDED CONTROLLER L8 2.2 KO L5 L6 K6 E2 D2 F2 G2 VDDIO L10 2.2 KO 2.2 KO J10 I2C_SCL F10 I2C_SDA G10 390pF H4, H5, H8, G8 NC 2.2 KO VBUS 390pF VBUS_2 XRES GND 11 KO OVP_TRIP_P2 VBUS_MON_P2 B6 0.1µF 1 KO I2C_INT_EC MUX_CTRL_3_P2/GPIO I2C_SCL_SCB1_EC MUX_CTRL_2_P2/GPIO I2C_SDA_SCB1_EC I2C_SCL_SCB2_AR/GPIO MUX_CTRL_1_P2/GPIO I2C_SDA_SCB2_AR/GPIO GND B9 GND B8 B7 D5, D6, D7, D8, E4, E5, E6, E7, E8, F4, F5, F6, F7, F8, G4, G5, G6, G7, H7 I2C_INT_AR_P1/GPIO I2C_INT_AR_P2/GPIO VSEL_1_P2/SCL_3/VCONN_MON_P2/GPIO CC2_P2 SDA_3/GPIO CC1_P2 SCL_4 SDA_4 VBUS_C_CTRL_P2 VBUS_DISCHARGE_P2 K10 CC2 K9 CC1 B5 390pF 390pF TYPE-C RECEPTACLE 2 VBUS_P_CTRL_P2 B3 B4 VBUS_SINK VBUS 100 KO DP/DM DP/DM TO DISPLAY PORT CONTROLLER 2 HPD_P1 TX1 + TX1 - A7 2 SSTX/RX HPD A8 DP/DM DP/DM DISPLAY PORT SOURCE DP0 + DP0 - 2 SBU TX + TX - 100 KO 2 100 KO 2 100 KO 10 O VBUS_C_CTRL_P2 100 KO VBUS_2 VBUS_SOURCE 49.9KO 100 KO VBUS_P_CTRL_P2 10 O 100 KO 10 O VBUS_DISCHARGE_P2 10 O 100 KO USB 3.0 HOST HS 2 SSTX/RX 4 TX 4 RX 4 SBU 2 HPD_P2 DISPLAY PORT CONTROLLER 2 ML_LANE_[0:3]N 4 ML_LANE_[0:3]P 4 AUX P/N 2 MUX HPD_P2 I2C_SCL Document Number: 002-11084 Rev. ** I2C_SDA Page 17 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 6. Single Port Notebook Application Using CCG4M (CYD4155-96BZXI) VBUS_SINK 100 KO 100 KO 100 KO 100 KO VBUS_C_CTRL_P1 10 O 100 KO VBUS_SOURCE VBUS 49.9KO 100 KO 100 KO 5.0V 5.0V 10 O VBUS_P_CTRL_P1 3.3V 100 KO 1µF 10 O 10O 1µF VBUS_DISCHARGE_P1 10 O 1µF USB 3.0 HOST 2 B10 1µF VDDM 0.1µF A3, A6, A9, B1, D11, E1, H1, J11, L1 L11 TX + K11 TX - RX + RX - 100 KO VCCD C10 D10 VDDD C2 SWD_CLK/I2C_CFG_EC/ GPIO VDDIO V5V_P1 V5V_P2 B2 SWD_IO/ AR_RST#/GPIO HS J2 L9 0.1µF SSTX/RX H11 RX + G11 RX - TX + TX - VBUS_C_CTRL_P1 VBUS_P_CTRL_P1 VBUS_DISCHARGE_P1 C1 DP0 + D1 DP0 - DP1 + DP1 - F1 DP1 + G1 DP1 - DP2 + DP2 - J1 DP2 + K1 DP2 L2 DP3 + L3 DP3 - DP3 + DP3 - HPD_P1 HPD K7 E10 2 TX1 + TX1 - A7 A4 CCG4M (CYPD4155-96BZXI) EMBEDDED CONTROLLER H6 0.1µF 2.2 KO L8 2.2 KO L5 L6 K6 E2 D2 F2 G2 VDDIO 2.2 KO TYPE-C RECEPTACLE 1 11 KO VBUS_MON_P1/GPIO L4 1 KO CC2_P1 CC1_P1 GPIO 0.1µF H2 CC2 K2 CC1 390pF 4.7 KO 2.2 KO SBU1 SBU2 VBUS VDDIO VDDIO RX2 + RX2 - B11 HPD_P1/GPIO VBUS RX1 + RX1 - A1 RX2 + RX2 - A2 SBU1 SBU2 C11 GPIO 2 TX2 + TX2 - A11 RX1 + RX1 - A10 L7 VSEL_1_P1/ VCONN_MON_P1/GPIO POWER SUB-SYSTEM TX1 + TX1 - TX2 + TX2 - A5 K5 VSEL_2_P1/ OVP_TRIP_P1 H10 HS K8 A8 F11 AUX + E11 AUX - AUX + AUX - K3 DP/DM DP/DM DISPLAY PORT SOURCE DP0 + DP0 - K4 L10 2.2 KO J10 I2C_SCL F10 I2C_SDA G10 D5, D6, D7, D8, E4, E5, E6, E7, E8, F4, F5, F6, F7, F8, G4, G5, G6, G7, H7 390pF XRES GND GPIO I2C_INT_EC GPIO I2C_SCL_SCB1_EC GPIO I2C_SDA_SCB1_EC B9 B8 B7 I2C_SCL_SCB2_AR/GPIO GPIO I2C_SDA_SCB2_AR/GPIO GPIO I2C_INT_AR_P1/GPIO GPIO B4 GPIO B5 GPIO B3 SCL_3/GPIO GPIO B6 SDA_3/GPIO SCL_4 SDA_4 GND NC H4, H5, H8, G8, K9, K10 Document Number: 002-11084 Rev. ** Page 18 of 34 PRELIMINARY EZ-PD™ CCG4M Electrical Specifications Absolute Maximum Ratings Table 7. Absolute Maximum Ratings[4] Parameter Description Min Typ Max Units Details/Conditions VDDD_MAX Digital supply relative to VSS –0.5 – 6 V Absolute max VDDM_MAX Mux supply relative to VSS –0.3 – 4.3 V Absolute max V5V_P1 Max supply voltage relative to VSS – – 6 V Absolute max V5V_P2 Max supply voltage relative to VSS – – 6 V Absolute max VDDIO_MAX Max supply voltage relative to VSS – – 6 V Absolute Max VMUX_ABS Mux USB/DP signal voltage – 0.3 – 1.2 V Absolute Max VAUX_ABS Mux AUX signal voltage – 0.35 – VDDM V Absolute Max VGPIO_ABS GPIO voltage –0.5 – VDDIO + 0.5 V Absolute max IGPIO_ABS Maximum current per GPIO –25 – 25 mA Absolute max IGPIO_injection GPIO injection current, Max for VIH > VDDD, and Min for VIL < VSS –0.5 – 0.5 mA Absolute max, current injected per pin ESD_HBM Electrostatic discharge human body model 2200 – – V – ESD_CDM Electrostatic discharge charged device model 500 – – V – LU Pin current for latch-up –200 – 200 mA – ESD_IEC_CON Electrostatic discharge IEC61000-4-2 8000 – – V Contact discharge on CC1, CC2 pins ESD_IEC_AIR Electrostatic discharge IEC61000-4-2 15000 – – V Air discharge for pins CC1, CC2 Device-Level Specifications All specifications are valid for –40 °C TA 85 °C and TJ 100 °C, except where noted. Specifications are valid for 3.0 V to 5.5 V, except where noted. Table 8. DC Specifications Spec ID Parameter Description Min Typ Max Units Details/Conditions SID.PWR#1 VDDD Power supply input voltage 2.7 – 5.5 V UFP Applications SID.PWR#1_A VDDD Power supply input voltage 3.0 – 5.5 V DFP/DRP Applications SID.PWR#26 V5V_P1, V5V_P2 Power supply input voltage 4.85 – 5.5 V SID.VDDM VDDM Mux power supply input voltage 3.0 3.3 3.6 V SID.IDDM IDDM VDDM current supply – 300 350 µA PWR#13 VDDIO GPIO power supply 1.71 – 5.5 V – SID.PWR#24 VCCD Output voltage (for core logic) – 1.8 – V – SID.PWR#15 CEFC External regulator voltage bypass on VCCD 80 100 120 nF X5R ceramic or better SID.PWR#16 CEXC Power supply decoupling capacitor on VDDD 0.8 1 – µF X5R ceramic or better – Note 4. Usage above the absolute maximum conditions listed in Table 7 may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods of time may affect device reliability. The maximum storage temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below absolute maximum conditions but above normal operating conditions, the device may not operate to specification. Document Number: 002-11084 Rev. ** Page 19 of 34 PRELIMINARY EZ-PD™ CCG4M Table 8. DC Specifications (continued) Spec ID SID.PWR#27 Parameter CEXV Description Power Supply Decoupling Capacitor on V5V_P1 and V5V_P2 Min Typ Max Units Details/Conditions – 0.1 – µF X5R ceramic or better Active Mode, VDDD = 2.7 to 5.5 V. Typical values measured at VDD = 3.3 V. SID.PWR#4 IDD12 Supply current – 10 – mA V5V_P1 and V5V_P2 = 5 V, TA = 25 °C, CC I/O IN Transmit or Receive, no I/O sourcing current, CPU at 24 MHz, two PD ports active – 2.5 4.0 mA VDDD = 3.3 V, TA = 25 °C, all blocks except CPU are ON, CC I/O ON, no I/O sourcing current Sleep Mode, VDDD = 2.7 to 5.5 V SID25A IDD20A I2C wakeup WDT ON IMO at 48 MHz Deep Sleep Mode, VDDD = 2.7 to 3.6 V (Regulator on) SID34 IDD29 VDDD = 2.7 to 3.6 V I2C wakeup and WDT ON – 360 – µA VDDD = 3.3 V, TA = 25 °C SID_DS IDD_DS VDDD = 2.7 to 3.6 V CC wakeup ON – 32.5 – µA Power source = VDDD, Type-C not attached, CC enabled for wakeup, RP disabled SID_DS1 IDD_DS1 VDDD = 2.7 to 3.6 V CC wakeup ON – 130 – µA Power source = VDDD, Type-C not attached, CC enabled for wakeup, RP and RD connected at 70 ms intervals by CPU. RP, RD connection should be enabled for both PD ports. IDD_XR Supply current while XRES asserted – 1 10 µA – Min Typ Max Units DC – 48 MHz XRES Current SID307 Table 9. AC Specifications Spec ID Parameter Description Details/Conditions 3.0 V VDDD 5.5 V SID.CLK#4 FCPU CPU frequency SID.PWR#20 TSLEEP Wakeup from sleep mode – 0 – µs Guaranteed by characterization SID.PWR#21 TDEEPSLEEP Wakeup from Deep Sleep mode – – 35 µs 24-MHz IMO. Guaranteed by characterization. SID.XRES#5 TXRES External reset pulse width 5 – – µs Guaranteed by characterization T_PWR_RDY Power-up to “Ready to accept I2C / CC command” – 5 25 ms Guaranteed by characterization SYS.FES#1 Document Number: 002-11084 Rev. ** Page 20 of 34 PRELIMINARY EZ-PD™ CCG4M MUX Table 10. Mux Specifications Spec ID Parameter Min Typ Max Units Details/Conditions COFF USB 3.0/DP switch OFF capacitance – 1.2 – pF VIOM = GND f = 1 MHz CON USB 3.0/DP switch ON capacitance – 2.3 – pF VIOM = GND f = 1 MHz COFF AUX+/AUX– switch OFF capacitance – 4.0 – pF VIOM = GND f = 1 MHz CON AUX+/AUX– switch ON capacitance – 7.0 – pF VIOM = GND f = 1 MHz IOZL I/O leakage for TX_to_TX1/TX2, RX_toRX1/RX2, DPx_to_TX/RX (x = 0,1, 2, 3), AUX_to_SBUy (y = 1, 2) µA VDDM = 3.6 V VIOM (USB 3.0) = 0 V VIOM (DP) = 0 V VIOM (AUX) = 0 V IOZH I/O leakage for TX_to_TX1/TX2, RX_toRX1/RX2, DPx_to_TX/RX (x = 0,1, 2, 3), AUX_to_SBUy (y = 1, 2) – µA VDDM = 3.6 V VIOM (USB 3.0) = 1.2 V VIOM (DP) = 1.2 V VIOM (AUX) = 4.0 V Switch on resistance USB 3.0/DP – VDDM = min, ION = –40 mA VIN = 0 V VIN = 1.2 V AUX Switch – VDDM = min, IIN = –40 mA VIN = 0 V VIN = 3.0 V – RON 1 1 7.0 9.0 5 15 10.0 12.0 3.5 4.5 5.0 7.0 Linear region for analog switch VP_IO Linear region for analog switch TX_to_TX1/TX2, RX_to_RX1/RX2, DPx_to_TX/RX (x = 0, 1, 2, 3) 1.4 1.6 – V VDDM = 3.3 V IPASS = 10 mA VP_IOSB Linear region for analog switch AUX_to_SBUx (x = 1, 2) 4.0 4.2 – V VDDM = 3.3 V IPASS = 10 mA Table 11. Dynamic Mux Characteristics Min and max apply for TA between –40 °C to 85 °C. Typical values are referenced to TA = 25 °C. Spec ID tstartup tpd Parameter Min Typ Max Units Details/Conditions Startup time – 10 20 µs Supply voltage valid or the device is powered up and the channel is turned on to its specified characteristics VDDM = 3 V Propagation delay 1 – 80 – ps From input port to output port USB/DP Propagation delay 2 – 150 – ps From input port to output port AUX Skew time 1 – 10 – ps From input port to output USB/DP. Bit to bit skew Skew time 2 – 20 – ps From input port to output AUX. Bit to bit skew tsk VI_sub_dp USB/DP input signal –0.3 – 1.2 V USB/DP switch analog signal VI_aux AUX+/AUX– input signal –0.35 – VDDM V AUX switch analog signal Document Number: 002-11084 Rev. ** Page 21 of 34 PRELIMINARY EZ-PD™ CCG4M Table 12. Mux Switch AC Electrical Characteristics Min and max apply for TA between –40 °C to 85 °C and TJ up to +125 °C (unless otherwise noted). Typical values are referenced to TA = 25 °C, VDDM = 3.3 V. Spec ID Parameter Frequency BW_usb –3 dB bandwidth of USB 3.0 Min Typ Max Units – 6 – GHz Details/ Conditions IL Differential insertion loss 2.5/2.7 GHz – –1.2/–1.3 – dB Vcom = 0 V RL Differential return loss 2.5/2.7 GHz – –21/–20 – dB Vcom = 0 V Xtalk Differential crosstalk 2.5/2.7 GHz – –38/–37 – dB Vcom = 0 V dB Vcom = 0 V Xoff Off isolation 2.5/2.7 GHz dB Vcom = 0 V USB DP –25/–24 – –23/–22 – I/O Table 13. I/O DC Specifications Spec ID Parameter Description Min Typ SID.GIO#37 VIH[5] Input voltage HIGH threshold 0.7 × VDDIO SID.GIO#38 VIL Input voltage LOW threshold – SID.GIO#39 VIH[5] LVTTL input, VDDIO < 2.7 V 0.7× VDDIO SID.GIO#40 VIL LVTTL input, VDDIO < 2.7 V – SID.GIO#41 VIH[5] LVTTL input, VDDIO 2.7 V 2.0 SID.GIO#42 VIL LVTTL input, VDDIO 2.7 V – Max Units Details/Conditions – – V CMOS input – 0.3 × VDDIO V CMOS input – – V – – 0.3 × VDDIO V – – – V – – 0.8 V – SID.GIO#33 VOH Output voltage HIGH level VDDIO –0.6 – – V IOH = 4 mA at 3-V VDDIO SID.GIO#34 VOH Output voltage HIGH level VDDIO –0.5 – – V IOH = 1 mA at 1.8-V VDDIO SID.GIO#35 VOL Output voltage LOW level – – 0.6 V IOL = 4 mA at 1.8-V VDDIO SID.GIO#36 VOL Output voltage LOW level – – 0.6 V IOL = 8 mA at 3 V VDDIO SID.GIO#5 RPULLUP Pull-up resistor 3.5 5.6 8.5 kΩ – SID.GIO#6 RPULLDOWN Pull-down resistor 3.5 5.6 8.5 kΩ – SID.GIO#16 IIL Input leakage current (absolute value) – – 2 nA SID.GIO#17 CIN Input capacitance – – 7 pF – 25 °C, VDDIO = 3.0 V SID.GIO#43 VHYSTTL Input hysteresis LVTTL 25 40 – mV VDDIO 2.7 V. Guaranteed by characterization. SID.GPIO#44 VHYSCMOS Input hysteresis CMOS 0.05 × VDDIO – – mV Guaranteed by characterization SID69 IDIODE Current through protection diode to VDDIO/Vss – – 100 µA Guaranteed by characterization SID.GIO#45 ITOT_GPIO Maximum total source or sink chip current – – 200 mA Guaranteed by characterization Table 14. I/O AC Specifications (Guaranteed by Characterization) Spec ID SID70 Parameter TRISEF Rise time Description Min 2 Typ – Max 12 SID71 TFALLF Fall time 2 – 12 Units Details/Conditions ns 3.3-V VDDIO, Cload = 25 pF ns 3.3-V VDDIO, Cload = 25 pF Note 5. VIH must not exceed VDDIO + 0.2 V. Document Number: 002-11084 Rev. ** Page 22 of 34 PRELIMINARY EZ-PD™ CCG4M XRES Table 15. XRES DC Specifications Spec ID SID.XRES#1 Parameter VIH Description Input voltage HIGH threshold Min Typ 0.7 × VDDIO – Max – Units Details/Conditions V CMOS input SID.XRES#2 VIL Input voltage LOW threshold – – 0.3 × VDDIO V CMOS input SID.XRES#3 CIN Input capacitance – – 7 pF SID.XRES#4 VHYSXRES Input voltage hysteresis – – 0.05 × VDDIO mV – Guaranteed by characterization Digital Peripherals The following specifications apply to the Timer/Counter/PWM peripherals in the Timer mode. Pulse Width Modulation (PWM) for GPIO Pins Table 16. PWM AC Specifications (Guaranteed by Characterization) Spec ID SID.TCPWM.3 Parameter Description TCPWMFREQ Operating frequency Min – Typ Fc SID.TCPWM.4 Max Units Details/Conditions – MHz Fc max = CLK_SYS. Maximum = 48 MHz TPWMENEXT Input trigger pulse width – 2/Fc – ns SID.TCPWM.5 TPWMEXT Output trigger pulse width – 2/Fc – ns SID.TCPWM.5A TCRES Resolution of counter – 1/Fc – ns SID.TCPWM.5B PWMRES PWM resolution – 1/Fc – ns SID.TCPWM.5C QRES Quadrature inputs resolution – 1/Fc – ns For all trigger events Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs Minimum time between successive counts Minimum pulse width of PWM output Minimum pulse width between quadrature-phase inputs I2C Table 17. Fixed I2C DC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Units Details/Conditions SID149 II2C1 Block current consumption at 100 kbps – – 60 µA – SID150 II2C2 Block current consumption at 400 kbps – – 185 µA – SID151 II2C3 Block current consumption at 1 Mbps – – 390 µA – II2C4 I2C – – 1.4 µA – Typ – Max 1 Units Mbps Details/Conditions – SID152 Table 18. Fixed I2C enabled in Deep Sleep mode AC Specifications (Guaranteed by Characterization) Spec ID SID153 Parameter FI2C1 Description Min – Description Min Typ Max Units Details/Conditions Bit rate Table 19. Fixed UART DC Specifications (Guaranteed by Characterization) Spec ID Parameter SID160 IUART1 Block current consumption at 100 Kbit/sec – – 125 µA – SID161 IUART2 Block current consumption at 1000 Kbit/sec – – 312 µA – Document Number: 002-11084 Rev. ** Page 23 of 34 PRELIMINARY EZ-PD™ CCG4M Table 20. Fixed UART AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Units Details/Conditions SID162 FUART Bit rate – – 1 Mbps – Table 21. Fixed SPI DC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Units Details/Conditions SID163 ISPI1 Block current consumption at 1 Mbit/sec – – 360 µA – SID164 ISPI2 Block current consumption at 4 Mbit/sec – – 560 µA – SID165 ISPI3 Block current consumption at 8 Mbit/sec – – 600 µA – Table 22. Fixed SPI AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Units Details/Conditions SID166 FSPI SPI Operating frequency (Master; 6X oversampling) – – 8 MHz – Min Typ Max Units Details / Conditions – Table 23. Fixed SPI Master Mode AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description SID167 TDMO MOSI Valid after SClock driving edge – – 15 ns SID168 TDSI MISO Valid before SClock capturing edge 20 – – ns Full clock, late MISO sampling SID169 THMO Previous MOSI data hold time 0 – – ns Referred to Slave capturing edge Table 24. Fixed SPI Slave Mode AC Specifications (Guaranteed by Characterization) Spec ID Parameter Description Min Typ Max Units Details / Conditions 40 – – ns – SID170 TDMI MOSI Valid before Sclock capturing edge SID171 TDSO MISO Valid after Sclock driving edge – – 48 + 3 * TSCB ns SID171A TDSO_EXT MISO Valid after Sclock driving edge in Ext Clk mode – – 48 ns – SID172 THSO Previous MISO data hold time 0 – – ns – SID172A TSSELSCK 100 – – ns – SSEL Valid to first SCK valid edge Document Number: 002-11084 Rev. ** TSCB = TCPU = 1/24 MHz Page 24 of 34 PRELIMINARY EZ-PD™ CCG4M Memory Table 25. Flash AC Specifications Spec ID Parameter Description Min Typ Max Units Details/Conditions – – 20 ms – SID.MEM#4 TROWWRITE[6] Row (block) write time (erase and program) SID.MEM#3 TROWERASE[6] Row erase time SID.MEM#8 TROWPROGRAM[6] Row program time after erase SID178 TBULKERASE [6] Bulk erase time (128 KB) SID180 TDEVPROG[6] Total device program time SID.MEM#6 FEND Flash endurance SID182 FRET1 SID182A FRET2 – – 13 ms – – – 7 ms – – – 35 ms – Guaranteed by seconds characterization – – 25 100 K – – cycles Guaranteed by characterization Flash retention. TA 55 °C, 100 K P/E cycles 20 – – years Guaranteed by characterization Flash retention. TA 85 °C, 10 K P/E cycles 10 – – years Guaranteed by characterization Min Typ Max Units System Resources Power-on-Reset (POR) with Brown Out Table 26. Imprecise Power On Reset (PRES) Spec ID Parameter Description Details/Conditions SID185 VRISEIPOR Rising trip voltage 0.80 – 1.50 V Guaranteed by characterization SID186 VFALLIPOR Falling trip voltage 0.75 – 1.4 V Guaranteed by characterization Min Typ Max Units Table 27. Precise Power On Reset (POR) Spec ID Parameter Description Details/Conditions SID190 VFALLPPOR BOD trip voltage in active and sleep modes 1.48 – 1.62 V Guaranteed by characterization SID192 VFALLDPSLP BOD trip voltage in Deep Sleep 1.1 – 1.5 V Guaranteed by characterization SWD Interface Table 28. SWD Interface Specifications Description Min Typ Max Units Details/Conditions SID.SWD#1 F_SWDCLK1 Spec ID Parameter 3.3 V VDDIO 5.5 V – – 14 MHz SWDCLK ≤ 1/3 CPU clock frequency SID.SWD#2 F_SWDCLK2 1.8 V VDDIO 3.3 V – – 7 MHz SID.SWD#3 T_SWDI_SETUP T = 1/f SWDCLK 0.25 * T – – ns Guaranteed by characterization SID.SWD#4 T_SWDI_HOLD T = 1/f SWDCLK 0.25 * T – – ns Guaranteed by characterization SID.SWD#5 T_SWDO_VALID T = 1/f SWDCLK – – 0.5*T ns Guaranteed by characterization SID.SWD#6 T_SWDO_HOLD T = 1/f SWDCLK 1 – – ns Guaranteed by characterization SWDCLK ≤ 1/3 CPU clock frequency Note 6. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated. Document Number: 002-11084 Rev. ** Page 25 of 34 PRELIMINARY EZ-PD™ CCG4M Internal Main Oscillator Table 29. IMO DC Specifications (Guaranteed by Design) Spec ID Parameter SID218 IIMO Description Min Typ Max Units Details/Conditions IMO operating current at 48 MHz – – 1000 µA – Min Typ Max Units Details/Conditions – – ±2 % – Table 30. IMO AC Specifications Spec ID Parameter Description SID.CLK#13 FIMOTOL Frequency variation at 24, 36, and 48 MHz (trimmed) SID226 TSTARTIMO IMO startup time – – 7 µs – SID229 TJITRMSIMO RMS jitter at 48 MHz – 145 – ps – IMO frequency 24 – 48 MHz – Min Typ Max FIMO – Internal Low-Speed Oscillator Table 31. ILO DC Specifications (Guaranteed by Design) Spec ID Parameter Description Units Details/Conditions SID231 IILO ILO operating current at 32 kHz – 0.3 1.05 µA Guaranteed by Characterization SID233 IILOLEAK ILO leakage current – 2 15 nA Guaranteed by Design Details/Conditions Table 32. ILO AC Specifications Spec ID Parameter Description Min Typ Max Units SID234 TSTARTILO ILO startup time – – 2 ms Guaranteed by characterization SID236 TILODUTY ILO duty cycle 40 50 60 % Guaranteed by characterization ILO Frequency 20 40 80 kHz SID.CLK#5 FILO – Power Down Table 33. PD DC Specifications Spec ID Parameter Description Min Typ Max Units Details/Conditions SID.PD.1 Rp_std DFP CC termination for default USB Power 64 80 96 µA – SID.PD.2 Rp_1.5A DFP CC termination for 1.5A power 166 180 194 µA – SID.PD.3 Rp_3.0A DFP CC termination for 3.0A power 304 330 356 µA – SID.PD.4 Rd UFP CC termination 4.59 5.1 5.61 kΩ – 4.08 5.1 6.12 kΩ All supplies forced to 0 V and 0.6 V applied at CC1 or CC2. Applicable for DRP applications only. Voltage drop from V5V_P1 and SID.PD.15 Vdrop_V5V_CC1 V5V_P2 pins to CC1 pin while sourcing 215 mA – – 100 mV – Voltage drop from V5V_P1 and SID.PD.16 Vdrop_V5V_CC2 V5V_P2 pins to CC2 pin while sourcing 215 mA – – 100 mV – SID.PD.5 Rd_DB UFP Dead Battery CC termination on CC1 and CC2 Document Number: 002-11084 Rev. ** Page 26 of 34 PRELIMINARY EZ-PD™ CCG4M Analog to Digital Converter Table 34. ADC DC Specifications Spec ID Parameter Description SID.ADC.1 Resolution ADC resolution SID.ADC.2 INL Integral non-linearity Min Typ – 8 –1.5 – Max Units Details/Conditions – bits – 1.5 LSB – SID.ADC.3 DNL Differential non-linearity –2.5 – 2.5 LSB – SID.ADC.4 Gain Error Gain error –1.0 – 1.0 LSB – Min Typ Max Units Details/Conditions – – 3 V/ms – Table 35. ADC AC Specifications Spec ID Parameter Description Rate of change of sampled voltage SID.ADC.5 SLEW_Max signal Document Number: 002-11084 Rev. ** Page 27 of 34 PRELIMINARY EZ-PD™ CCG4M Ordering Information The EZ-PD CCG4M part numbers and features are listed in Table 36. Table 36. EZ-PD CCG4M Ordering Information Part Number Application Type-C Ports Dead Battery Termination Termination Resistor Role Package CYPD4255-96BZXI Notebooks, Desktops 2 Yes RP[7], RD[8] DRP 96-ball BGA Yes RP[7], DRP 96-ball BGA CYPD4155-96BZXI Notebooks, Desktops 1 RD [8] Ordering Code Definitions CY PD 4 1/2 0 X - XX XX X I T T = Tape and Reel Temperature Grade: I = Industrial Pb-free Package Type: XX = BZ BZ = BGA Number of pins in the package: XX = 96 Device Role: Unique combination of role and termination: X = 2 or 3 or 4 or 5 Feature: Unique Applications Number of Type-C Ports: 1 = 1 Port, 2 = 2 Ports Product Type: 4 = Fourth-generation product family Marketing Code: PD = Power Delivery product family Company ID: CY = Cypress Notes 7. Termination resistor denoting an accessory or downstream facing port. 8. Termination resistor denoting a upstream facing port. Document Number: 002-11084 Rev. ** Page 28 of 34 PRELIMINARY EZ-PD™ CCG4M Packaging Table 37. Package Characteristics Parameter Description Conditions Min Typ Max Units TA Operating ambient temperature – –40 25 85 °C TJ Operating junction temperature – –40 – 100 °C TJA Package θJA (96-ball BGA) – – 62 – °C/W TJC Package θJC (96-ball BGA) – – 23 – °C/W Table 38. Solder Reflow Peak Temperature Package Maximum Peak Temperature Maximum Time within 5 °C of Peak Temperature 96-ball BGA 245 °C 30 seconds Table 39. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-2 Package MSL 96-ball BGA MSL 3 Document Number: 002-11084 Rev. ** Page 29 of 34 PRELIMINARY EZ-PD™ CCG4M Figure 7. 96-Ball BGA(6 × 6 × 0.5 mm), 002-10631 E1 2X 0.10 C E B (datum B) A1 CORNER A 11 10 9 8 7 6 5 4 3 2 1 7 A1 CORNER A B C D E F G H J K L 6 SD D 0.10 C 2X eD D1 (datum A) 6 SE eE TOP VIEW BOTTOM VIEW DETAIL A 0.10 C A1 0.08 C A C 96XØb 5 SIDE VIEW Ø0.15 M C A B Ø0.05 M C DETAIL A NOTES: 1. ALL DIMENSIONS ARE IN MILLIMETERS. DIMENSIONS SYMBOL MIN. NOM. MAX. A - - 1.00 A1 0.16 - - D 6.00 BSC E 6.00 BSC D1 5.00 BSC E1 5.00 BSC MD 11 ME 11 N 96 b 0.25 0.30 eD 0.50 BSC eE 0.50 BSC SD SE 0.00 0.00 2. SOLDER BALL POSITION DESIGNATION PER JEP95, SECTION 3, SPP-020. 3. "e" REPRESENTS THE SOLDER BALL GRID PITCH. 4. SYMBOL "MD" IS THE BALL MATRIX SIZE IN THE "D" DIRECTION. SYMBOL "ME" IS THE BALL MATRIX SIZE IN THE "E" DIRECTION. N IS THE NUMBER OF POPULATED SOLDER BALL POSITIONS FOR MATRIX SIZE MD X ME. 5. DIMENSION "b" IS MEASURED AT THE MAXIMUM BALL DIAMETER IN A PLANE PARALLEL TO DATUM C. 6. "SD" AND "SE" ARE MEASURED WITH RESPECT TO DATUMS A AND B AND DEFINE THE POSITION OF THE CENTER SOLDER BALL IN THE OUTER ROW. 0.35 WHEN THERE IS AN ODD NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" OR "SE" = 0. WHEN THERE IS AN EVEN NUMBER OF SOLDER BALLS IN THE OUTER ROW, "SD" = eD/2 AND "SE" = eE/2. 7. A1 CORNER TO BE IDENTIFIED BY CHAMFER, LASER OR INK MARK METALIZED MARK, INDENTATION OR OTHER MEANS. 8. "+" INDICATES THE THEORETICAL CENTER OF DEPOPULATED SOLDER BALLS. 9. JEDEC SPECIFICATION NO. REF. : MO-225. Document Number: 002-11084 Rev. ** 002-10631 ** Page 30 of 34 PRELIMINARY Acronyms Table 40. Acronyms Used in this Document (continued) Table 40. Acronyms Used in this Document Acronym EZ-PD™ CCG4M Description Acronym Description opamp operational amplifier OCP overcurrent protection OVP overvoltage protection PCB printed circuit board PD power delivery PGA programmable gain amplifier PHY physical layer ADC analog-to-digital converter API application programming interface ARM® advanced RISC machine, a CPU architecture CC configuration channel CPU central processing unit CRC cyclic redundancy check, an error-checking protocol POR power-on reset CS current sense PRES precise power-on reset DFP downstream facing port PSoC® Programmable System-on-Chip™ DIO digital input/output, GPIO with only digital capabilities, no analog. See GPIO. PWM pulse-width modulator DRP dual role port RAM random-access memory RISC reduced-instruction-set computing RMS root-mean-square RTC real-time clock electrically erasable programmable read-only EEPROM memory EMCA a USB cable that includes an IC that reports cable characteristics (e.g., current rating) to the Type-C ports RX receive SAR successive approximation register SCL I2C serial clock SDA I2C serial data EMI electromagnetic interference ESD electrostatic discharge FPB flash patch and breakpoint FS full-speed GPIO general-purpose input/output IC integrated circuit SRAM static random access memory IDE integrated development environment SWD serial wire debug, a test protocol TX transmit Type-C a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power UART Universal Asynchronous Transmitter Receiver, a communications protocol USB Universal Serial Bus USBIO USB input/output, CCG4M pins used to connect to a USB port XRES external reset I/O pin I2C, or IIC Inter-Integrated Circuit, a communications protocol ILO internal low-speed oscillator, see also IMO IMO internal main oscillator, see also ILO I/O input/output, see also GPIO LVD low-voltage detect LVTTL low-voltage transistor-transistor logic MCU microcontroller unit NC no connect NMI nonmaskable interrupt NVIC nested vectored interrupt controller Document Number: 002-11084 Rev. ** S/H sample and hold SPI Serial Peripheral Interface, a communications protocol Page 31 of 34 PRELIMINARY EZ-PD™ CCG4M Document Conventions Units of Measure Table 41. Units of Measure Symbol Unit of Measure °C degrees Celsius Hz hertz KB 1024 bytes kHz kilohertz k kilo ohm Mbps megabits per second MHz megahertz M mega-ohm Msps megasamples per second µA microampere µF microfarad µs microsecond µV microvolt µW microwatt mA milliampere ms millisecond mV millivolt nA nanoampere ns nanosecond ohm pF picofarad ppm parts per million ps picosecond s second sps samples per second V volt Document Number: 002-11084 Rev. ** Page 32 of 34 PRELIMINARY EZ-PD™ CCG4M Document History Page Document Title: EZ-PD™ CCG4M USB Type-C Dual Port Controller with USB 3.1 Gen 1/DP1.2 Mux Document Number: 002-11084 Revision ECN Orig. of Change Submission Date ** 5131574 VGT 02/18/2016 Document Number: 002-11084 Rev. ** Description of Change New datasheet Page 33 of 34 PRELIMINARY EZ-PD™ CCG4M Sales, Solutions, and Legal Information Worldwide Sales and Design Support Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office closest to you, visit us at Cypress Locations. PSoC® Solutions Products Automotive Clocks & Buffers Interface Lighting & Power Control Memory cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory PSoC cypress.com/go/psoc Touch Sensing cypress.com/go/touch USB Controllers Wireless/RF psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP Cypress Developer Community Community | Forums | Blogs | Video | Training Technical Support cypress.com/go/support cypress.com/go/USB cypress.com/go/wireless © Cypress Semiconductor Corporation, 2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you under its copyright rights in the Software, a personal, non-exclusive, nontransferable license (without the right to sublicense) (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units. Cypress also grants you a personal, non-exclusive, nontransferable, license (without the right to sublicense) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely to the minimum extent that is necessary for you to exercise your rights under the copyright license granted in the previous sentence. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited. CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and Company shall and hereby does release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. Company shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products. Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners. Document Number: 002-11084 Rev. ** Revised February 18, 2016 All products and company names mentioned in this document may be the trademarks of their respective holders. Page 34 of 34