AN11014 BGX7100 evaluation board application note Rev. 1.0 — 13 April 2012 Application note Document information Info Content Keywords BGX7100, I/Q modulator, EVB, IP3, CP1, NF, PCB Abstract This application note describes the BGX7100 evaluation board (EVB) design and its performance. BGX7100 is an I/Q modulator designed for base station applications. This EVB includes the 50 Ω standard SMA connectors for ease of evaluation. AN11014 NXP Semiconductors BGX7100 evaluation board application note Revision history Rev Date Description 1.0 Initial version 20120413 Contact information For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 2 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 1. Introduction The evaluation board (EVB) described in this document allows evaluating the BGX7100. This document provides the EVB circuit schematic, the bill of materials of the board, the information about PCB technology and its artwork, list of equipments for a typical test set-up required to evaluate the device, and finally the typical test results expected to be obtained. 2. Product Description The BGX7100 is a high linearity I/Q modulator and provides 1.5 dB of typical voltage gain, 11 dBm of 1 dB output compression point (OCP1dB) and 27 dBm typical outputs IP3O. BGX7100 has 200 Ω differentials I/Q input termination internally. Thanks to its flexible input Vi(cm) feature, any common mode voltage value between 0.25 V up to 3.3 V can be acceptable for similar RF performances. Fig 1. Pin description Its high level of integration enables easy application usage and reduced BOM. Dedicated power OFF/ON pin permits to switch ON or OFF the device. In addition, multiple supply and ground pins allow for independent supply domains to improve the isolation between blocks. 3. EVB Circuit Description The evaluation board was built on a 25 mil, 4 layers PCB using FR4 based technology and is illustrated in Fig.2 associated with its schematic in Fig.3. AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 3 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 2. AN11014 Application note Evaluation board All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 4 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 3. Evaluation board schematic Two LO configuration options available, resulting two bills of material: 1. 2. LO differential (use RF transformer to apply LO in differential between LO_N and LO_P) LO single (LO source connected to LO_P using matching surface mount component, LO_N connected to ground using a DC bypass capacitor) Choice depends on performances to be achieved. LO differential mode will be chosen to improve image suppression and IP2. Whereas LO single mode will be chosen to improve LO leakage. AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 5 of 51 Description Package Vendors Qty Multi Contact 2 T1, T2 2 mm 200 – 52 Banana Plug supply connector RX1, RX2, RX3, RX4, RX5, RX6 142-0701-851 SMA connector, 50 Ω Emerson/Johnson 6 L7 BLM18SG700TN1D ferrite bead 0603 Murata 1 capacitor 0805 Murata 1 Samtec 1 C10 Values 4.7 µF / 16 V 2.54 mm header 2 ways Poff drive C6, C7 COG capacitor 0402 Murata 2 18 pF C4, C9 COG capacitor 0402 Murata 2 100 nF C1 COG capacitor 0403 Murata 1 39 pF C5, C8 COG capacitor 0402 Murata 2 22 pF C12 GJM1555C1HR70WB01 capacitor 0402 Murata 1 0.8 pF C13 GJM1555C1HR30WB01 capacitor 0402 Murata 1 0.3 pF C11 NC L2, L8 NC TR1 TC1-1-43A+ LO transformer AT224 – 1A Mini-circuits 1 resistor 0402 Murata 4 I/Q modulator HVQFN24 (SOT616 – 3) NXP R5, R8, R10, R13, R14 NC U1 BGX7100 0Ω 1 AN11014 6 of 51 © NXP B.V. 2012. All rights reserved. BGX7100 evaluation board application note Rev. 1.0 — 13 April 2012 All information provided in this document is subject to legal disclaimers. CAV1 R4, R7, R9, R12 NXP Semiconductors AN11014 Application note Bill Of Material (BOM) of BGX7100 EVB – LO differential Reference Part Description Package Vendors Qty Values Multi Contact 2 Emerson/Johnson 6 T1, T2 2 mm 200 – 52 Banana Plug supply connector RX1, RX2, RX3, RX4, RX5, RX6 142-0701-851 SMA connector, 50 Ω L7 BLM18SG700TN1D ferrite bead 0603 Murata 1 capacitor 0805 Murata 1 Samtec 1 Murata 2 12 pF C10 4.7 µF / 16 V 2.54 mm header 2 ways Poff drive C7, C11 COG capacitor 0402 C4, C9 COG capacitor 0402 Murata 2 100 nF C1 COG capacitor 0402 Murata 1 39 pF C5, C8 COG capacitor 0402 Murata 2 22 pF C12 GJM1555C1HR70WB01 capacitor 0402 Murata 1 0.8 pF L2 NC inductor 0402 Murata 1 resistor 0402 Murata 6 I/Q modulator HVQFN24 (SOT616 – 3) NXP C13 NC TR1 NC R4, R7, R9, R12, R14, C6 R5, R8, R10, R13 NC U1 BGX7100 0Ω 1 AN11014 7 of 51 © NXP B.V. 2012. All rights reserved. BGX7100 evaluation board application note Rev. 1.0 — 13 April 2012 All information provided in this document is subject to legal disclaimers. CAV1 L8 NXP Semiconductors AN11014 Application note Bill Of Material (BOM) of BGX7100 EVB – LO single Reference Part AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 4. AN11014 Application note Evaluation board component placement All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 8 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 5. AN11014 Application note Evaluation board top layer PCB layout All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 9 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 6. AN11014 Application note Evaluation board inner layer_1 PCB layout All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 10 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 7. AN11014 Application note Evaluation board inner layer_2 PCB layout All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 11 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 8. Evaluation board bottom layer PCB layout (1) Etching class: Class5 standard. (2) Minimum copper conductor with: 150 µm. (3) Minimum conductor spacing: 150 µm. (4) Ni-Au (Cobalt) finishing: 3 µm - 25 µm of nickel and 0.1 µm – 1.5 µm of gold. (5) Board dimension: 45.5 mm x 28.75 mm. (6) Solder mask both sides green color. (7) Silkscreen on top layer white color. (8) Finished thickness: 1 mm +/- 10 %. (9) Top layer 460 µm traces are controlled impedance, 50 Ω lines. Fig 9. AN11014 Application note Evaluation board PCB technology All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 12 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 4. Test Setup Fig 10. Test setup block diagram 5. Quick Start The BGX7100 EVB kit is fully assembled and factory tested. Test Equipment Required Fig 10 shows the equipment required to verify the operation of the BGX7100 EVB kit. It is intended as a guide only, and some substitutions are possible. Connections This section provides a step-by-step guide to testing the basic functionality of the EVB kit. As a general precaution to prevent damaging the outputs by driving high-VSWR loads, do not turn on DC power or RF signal generators until all connections are made: AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 13 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 1. Connect 3 dB pads to the DUT ends of each RF signal generators and SMA cables (RF OUT / LO IN). This padding improves VSWR, and reduces the errors due to mismatch. 2. Measure loss in 3 dB pads and cables. Use this loss as an offset in all output power/gain calculations. 3. Disable all RF signal sources. 4. Connect the signal sources to the appropriate SMA inputs. 5. Set the LO and IF signal generators according to the following: • • IF AWG signal source: 1 V (p-p) differential into DUT at 5 MHz LO signal source: 0 dBm into DUT at 1960 MHz (fRF = 1965 MHz) 6. Set the DC supply to +5.0 V and set a current limit around 250 mA. Connect supplies to the EVB kit through the ammeter. Turn on the supply. Readjust the supply to get +5.0 V at the EVB kit. There will be a voltage drop across the ammeter when the mixer is drawing current. 7. Enable the LO and the IF sources. 6. Typical Operating Characteristics 6.1 RF measurements: VCC = 5 V, PRF = - 10 dBm, Pi(lo) = 0 dBm, TC = +25 °C. (1) Matching optimized for 2 GHz frequency range. Fig 11. LO port input matching single ended AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 14 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Matching optimized for 2 GHz frequency range. Fig 12. LO port input matching differential Fig 13. RF port output matching AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 15 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 14. I/Q input signal AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 16 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (8) Temperature = 80 °C. Fig 15. Current consumption AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 17 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (8) Temperature = 80 °C. Fig 16. Voltage gain versus temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 18 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Vi(cm) I/Q = 0.5 V. (2) V i(cm) I/Q = 1.7 V. (3) V i(cm) I/Q = 2.5 V. Small dependency with input common mode voltage on I/Q inputs. Power level collected with a spectrum analyzer, which explains the variations. Fig 17. Voltage gain versus common mode AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 19 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 40 °C. (6) Temperature = 60 °C. (7) Temperature = 80 °C. I/Q = 5 MHz +/- 0.5 MHz. Fig 18. Output IP3O versus temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 20 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) V i(cm) = 0.5 V. (2) V i(cm) = 1.7 V. (3) V i(cm) = 2.5V. IP3O identical for different V i(cm) voltages. Improved compared to last design. I/Q = 5 MHz +/- 0.5 MHz. Fig 19. Output IP3O versus common mode Fig 20. 1 dB compression point AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 21 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Q path. (2) I path. (3) First order model. RF generator on each I/Q baseband lines is used so that we can reach high frequencies. This explains some ups and downs on the attenuation curves. I/Q lines are well matched. Estimated first order cut-off frequency around 800 MHz. Fig 21. I/Q frequency response Fig 22. Harmonic emissions – one tone at 2 GHz AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 22 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) F1 level (dBm) = -2000 – 6.2. (2) F2 level (dBm) = -2000 – 6.2. (3) LO + F1 + F2 level (dBm) = -2000 – 6.2. (4) LO – (F2 – F1 level (dBm) = -2000 – 6.2. (5) LO – (F1 – F2 level (dBm) = -2000 – 6.2. (6) LO – F1 – F2 level (dBm) = -2000 – 6.2. (7) LO – 2F2 level (dBm) = -2000 – 6.2. (8) LO – 2F1 level (dBm) = -2000 – 6.2. Fig 23. Po and IM2 at 2 GHz AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 23 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) LO + F1 + F2 level (dBm) -0.2 - -10. (2) LO + F1 + F2 level (dBm) -3.2 - -10. (3) LO + F1 + F2 level (dBm) -6.2 - -10. (4) LO + F1 + F2 level (dBm) -9.2 - -10. (5) F1 level (dBm) -0.2 - -10. (6) F1 level (dBm) -3.2 - -10. (7) F1 level (dBm) -6.2 - -10. (8) F1 level (dBm) -9.2 - -10. Fig 24. IM2 versus Pi(lo) on all frequency band AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 24 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (8) Temperature = 80 °C. Fig 25. Unadjusted sideband suppression versus Pi(lo) and temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 25 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (8) Temperature = 80 °C. Fig 26. Unadjusted sideband suppression versus frequency and temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 26 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (8) Temperature = 80 °C. Fig 27. Unadjusted carrier suppression versus frequency and temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 27 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Temperature = -40 °C. (2) Temperature = -20 °C. (3) Temperature = 0 °C. (4) Temperature = 20 °C. (5) Temperature = 25 °C. (6) Temperature = 40 °C. (7) Temperature = 60 °C. (1) Temperature = 80 °C. Fig 28. Unadjusted carrier suppression versus Pi(lo) and temperature AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 28 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Device number = 5. (2) Device number = 15. (3) Device number = 70. (4) Device number = 75. (5) Device number = 69. Fig 29. Adjusted sideband suppression (1) Device number = 5. (2) Device number = 15. (3) Device number = 70. (4) Device number = 75. (5) Device number = 69. Fig 30. Adjusted carrier suppression AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 29 of 51 NXP Semiconductors AN11014 Application note DC offset, phase and gain unbalance and on different devices after adjustment Frequency (MHz) 2000 Device Optimal I/Q Optimal I/Q mismatch phase mismatch gain Optimal I/Q Optimal I/Q mismatch DC I mismatch DC Q Carrier level Image suppression Tx output power (deg) (dB) (mV) (mV) (dBm) (dB) (dBm) 5 2.684 -0.229 -2 -0.9 -75.1 80.6 -1.1 15 0.269 -0.013 -4.5 -1.6 -79.1 85.3 -1 70 0.892 -0.005 -4.4 -1.3 -74.1 81.4 -1 75 -0.146 0.007 -4.2 -2.5 -86.3 89.1 -1 69 0.343 -0.008 -2.9 -1.6 -74.4 76.2 -1 Frequency (MHz ) Optimal I/Q mismatch phase Optimal I/Q mismatch gain Optimal I/Q Optimal I/Q mismatch DC I mismatch DC Q Carrier level Image suppression Tx output power (Deg) (dB) (mV) (mV) (dBm) (dB) (dBm) 900 -0.36 0.004 -0.3 -0.7 -81.9 79.6 -1.1 1000 -0.27 0.004 -0.4 -0.9 -78.4 77.5 -1 1800 0.608 -0.003 -2.3 -1.6 -74.8 80.2 -1.2 1900 2000 0.513 -0.007 -2.5 -1.6 -77.8 84.6 -1.1 0.343 -0.008 -2.9 -1.6 -75.4 76.2 -1 2600 -0.15 -0.021 -3.7 -1.9 -76 81.8 -1 3300 -0.377 -0.02 -3.7 -4 -80.7 78 -1.2 AN11014 30 of 51 © NXP B.V. 2012. All rights reserved. BGX7100 evaluation board application note Rev. 1.0 — 13 April 2012 All information provided in this document is subject to legal disclaimers. DC offset, phase and gain unbalance at different frequency for the same device Device 69 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Device number = 15. (2) Device number = 75. (3) Device number = 69. Fig 31. Noise floor without signal – offset = 5 MHz (1) LO power = -3 dBm. (2) LO power = 0 dBm. (3) LO power = 3 dBm. (4) LO power = 6 dBm. Fig 32. Noise floor with signal – frequency = 1960 MHz - offset = 10 MHz AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 31 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 33. IP3O, IM3, noise floor and output power Fig 34. Power OFF functionality AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 32 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 35. Power OFF functionality Fig 36. Power OFF functionality The device could be used in a frequency band extension down to 400 MHz and up to 4 GHz with small degradation on sideband suppression. AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 33 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.2 Comparison between differential and single ended LO input: (1) dB(S11): POFF_P = shutdown disabled. (2) dB(S11): POFF_P = shutdown enabled. Fig 37. Power OFF/ON behavior single ended LO port input matching AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 34 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) dB(S11): POFF_P = shutdown disabled. (2) dB(S11): POFF_P = shutdown enabled. Fig 38. Power OFF/ON behavior differential LO port input matching AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 35 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) Differential LO input. (2) Single ended LO input. Main difference seen at high frequency: differential input is better for Image Rejection but worse for LO Leakage. Fig 39. Sideband and carrier suppression versus single ended and differential LO input matching 3 IM2 products measured: LO + F1 + F2; LO – F1 – F2; LO + F2 – F1. Differential LO input gives significantly less IM2 power (especially at high frequency). Fig 40. IM2 versus single ended and differential LO input matching AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 36 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.3 System measurement: 6.3.1 One carrier GMSK Fig 41. One carrier GMSK Po = 0dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 37 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 42. One carrier GMSK Po = -5dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 38 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.3.2 One carrier Edge Fig 43. One carrier EDGE Po = -1.5dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 39 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note Fig 44. One carrier EDGE Po = -5dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 40 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.3.3 Six carriers GMSK Fig 45. Six carrier GMSK Po = -10dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 41 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.3.4 One carrier WCDMA Fig 46. One carrier WCDMA Po = -8dBm AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 42 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) ACLR_5M; Pi(lo) = 2 – 3 dBm; VCC = 5 V; PO = -8 dB. (2) ACLR_10M; Pi(lo) = 2 – 3 dBm; VCC = 5 V; PO = -8 dB. Fig 47. One carrier WCDMA - ACLR (1) Pi(lo) = 2 – 3 dBm; VCC = 5 V; PO = -8 dB; PXA measurement. (2) Pi(lo) = 2 – 3 dBm; VCC = 5 V; PO = -8 dB; FSQ measurement. Fig 48. One carrier WCDMA - EVM AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 43 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 6.3.5 Two carriers WCDMA Fig 49. Two carriers WCDMA AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 44 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note (1) ACLR_5M; Pi(lo) = 2 dB – 3 dB; VCC = 5 V; Po = -11 dBm per carrier. (2) ACLR_10M; Pi(lo) = 2 dB – 3 dB; VCC = 5 V; Po = -11 dBm per carrier. Fig 50. Two carriers WCDMA ACLR (1) Pi(lo) = 2 dBm – 3 dBm; VCC = 5 V; Po = -11 dBm per carrier. Fig 51. Two carriers WCDMA EVM 7. DC Interface between DAC1408D650 or DAC1627D1G25 and BGX7100 DAC1408D650/750 is a high speed 14-bit dual channel Digital-to-Analog Converter (DAC) with selectable 2x, 4x, 8x interpolating. Its serial interface “JESD204A” feature simplifies the baseband/FPGA to DAC interface and enables the high density integration, easy PCB layout, lower radiated noise and spurs, lower pin count, self-synchronous link, skew compensation. Because of its digital on-chip complex modulator, the AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 45 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note DAC1408D650/750 allows the complex pattern provided through lane0, lane1, lane2, lane3, to be converted from baseband to IF. The mixing frequency is adjusted via a Serial Peripheral Interface (SPI) with 32-bit Numerically Controlled Oscillator (NCO) and the phase is controlled by a 16-bit register. The Multiple Device Synchronization (MDS) guarantees a maximum skew of one output clock period between several DAC devices. MDS incorporates the modes Master/slave or All slave modes. The DAC1627D1G25 is a 16-bit dual-channel digital-to-analog converter (DAC) with selectable 2x, 4x and 8x interpolating filters optimized for multi-carrier and broad band wireless transmitters at sample rates up to 1.25 Gsps. Supplied from 3.3 V and 1.8 V power sources, it integrates a differential scalable output current up to 31.8 mA. The mixer frequency is set by a high resolution 40-bit Numerically Controlled Oscillator (NCO). High resolution internal gain, phase and offset control provide outstanding image and LO rejection at the system analog modulator output. An inverse (sin x)/x function ensures controlled flatness at the DAC output. The LVDS DDR receiver interface allows a high data bandwidth (312.5 Msps) at the input. When the system operation requires to keep the DC component of the complex spectrum which is the case for the zero-IF (direct up conversion) transmitters, the interface between DAC1408D650 or DAC1627D1G25 and BGX7100 must be DC coupled. In that case, the offset compensation for LO cancellation can be handled by making use of the digital offset control in the DAC without using AUXDAC outputs. However, if the complete dynamic range of the signal path of the DAC is preferred to be preserved only for the transmitted signal dynamic but not for the offset control, in that case the AUXDAC outputs are available for this purpose. 7.1 DC Interface without AUXDAC utilization (1) IOUTnP/IOUTnN (with n = A or B); Vo(cm) = 2.3 V; Vo(diff)(p-p) = 1 V. (1) BBP/BBN; Vi(cm) = 2.3 V; Vo(diff)(p-p) = 1 V; offset correction via signal path (IOUTnP/IOUTnN (with n = A or B)). Fig 52. Example of DC interface with Vi(cm) of 2.3V AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 46 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 7.2 DC Interface with AUXDAC utilization for DC offset compensation (1) IOUTnP/IOUTnN (with n = A or B); Vo(cm) = 2.59 V; Vo(diff)(p-p) = 1 V. (2) BBP/BBN; Vi(cm) = 2.59 V; Vo(diff)(p-p) = 1 V; offset correction up to 42 mV. Fig 53. Example of DC interface with Vi(cm) of 2.59 V with DC offset compensation up to 42 mV via AUXDAC 7.3 Recommendations about DC interface network: In this chapter two different types of interface networks were proposed above as the examples. As well as the JESD204A serial interface feature of the DAC1408D650, the flexibility of the BGX7100 in terms of common mode I,Q input dc voltage levels (0.5 V ~3.3 V) and its finite input impedance (200 Ω) simplifies the complete transmit chain application and enables the further integration. Depending on the preference to control the common mode dc offset, there are two different possibilities. The first possibility is to use the digital offset control in the DAC (through the signal/modulation chain) which needs only a pull-up resistor (100 Ω)) per DAC output (Fig.52). In that case, a small amount of DAC dynamic should be reserved for the offset control purpose. The second possibility is to use the AUXDAC outputs directly for differential offset control (LO cancellation) and combine these outputs with the DAC outputs in a proper way as proposed in Fig.53. AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 47 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 8. Legal information 8.1 Definitions Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information. 8.2 Disclaimers Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors. Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer’s own risk. Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or AN11014 Application note customer product design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer’s applications and products planned, as well as for the planned application and use of customer’s third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer’s applications or products, or the application or use by customer’s third party customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer’s third party customer(s). NXP does not accept any liability in this respect. Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities. Evaluation products — This product is provided on an “as is” and “with all faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates and their suppliers expressly disclaim all warranties, whether express, implied or statutory, including but not limited to the implied warranties of noninfringement, merchantability and fitness for a particular purpose. The entire risk as to the quality, or arising out of the use or performance, of this product remains with customer. In no event shall NXP Semiconductors, its affiliates or their suppliers be liable to customer for any special, indirect, consequential, punitive or incidental damages (including without limitation damages for loss of business, business interruption, loss of use, loss of data or information, and the like) arising out the use of or inability to use the product, whether or not based on tort (including negligence), strict liability, breach of contract, breach of warranty or any other theory, even if advised of the possibility of such damages. Notwithstanding any damages that customer might incur for any reason whatsoever (including without limitation, all damages referenced above and all direct or general damages), the entire liability of NXP Semiconductors, its affiliates and their suppliers and customer’s exclusive remedy for all of the foregoing shall be limited to actual damages incurred by customer based on reasonable reliance up to the greater of the amount actually paid by customer for the product or five dollars (US$5.00). The foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by applicable law, even if any remedy fails of its essential purpose. 8.3 Trademarks Notice: All referenced brands, product names, service names and trademarks are property of their respective owners. All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 48 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 9. List of figures Fig 1. Fig 2. Fig 3. Fig 4. Fig 5. Fig 6. Fig 7. Fig 8. Fig 9. Fig 10. Fig 11. Fig 12. Fig 13. Fig 14. Fig 15. Fig 16. Fig 17. Fig 18. Fig 19. Fig 20. Fig 21. Fig 22. Fig 23. Fig 24. Fig 25. Fig 26. Fig 27. Fig 28. Fig 29. Fig 30. Fig 31. Fig 32. Fig 33. Fig 34. Fig 35. Fig 36. Fig 37. Fig 38. Fig 39. Pin description .................................................. 3 Evaluation board ............................................... 4 Evaluation board schematic .............................. 5 Evaluation board component placement ........... 8 Evaluation board top layer PCB layout ............. 9 Evaluation board inner layer_1 PCB layout..... 10 Evaluation board inner layer_2 PCB layout..... 11 Evaluation board bottom layer PCB layout...... 12 Evaluation board PCB technology .................. 12 Test setup block diagram ................................ 13 LO port input matching single ended .............. 14 LO port input matching differential .................. 15 RF port output matching ................................. 15 I/Q input signal ................................................ 16 Current consumption....................................... 17 Voltage gain versus temperature .................... 18 Voltage gain versus common mode ................ 19 Output IP3O versus temperature ..................... 20 Output IP3O versus common mode ................. 21 1 dB compression point .................................. 21 I/Q frequency response ................................... 22 Harmonic emissions – one tone at 2 GHz ....... 22 Po and IM2 at 2 GHz ....................................... 23 IM2 versus Pi(lo) on all frequency band ............ 24 Unadjusted sideband suppression versus Pi(lo) and temperature.............................................. 25 Unadjusted sideband suppression versus frequency and temperature ............................. 26 Unadjusted carrier suppression versus frequency and temperature ............................. 27 Unadjusted carrier suppression versus Pi(lo) and temperature..................................................... 28 Adjusted sideband suppression ...................... 29 Adjusted carrier suppression........................... 29 Noise floor without signal – offset = 5 MHz ..... 31 Noise floor with signal – frequency = 1960 MHz - offset = 10 MHz............................................. 31 IP3O, IM3, noise floor and output power.......... 32 Power OFF functionality .................................. 32 Power OFF functionality .................................. 33 Power OFF functionality .................................. 33 Power OFF/ON behavior single ended LO port input matching................................................. 34 Power OFF/ON behavior differential LO port input matching................................................. 35 Sideband and carrier suppression versus single ended and differential LO input matching ....... 36 AN11014 Application note Fig 40. Fig 41. Fig 42. Fig 43. Fig 44. Fig 45. Fig 46. Fig 47. Fig 48. Fig 49. Fig 50. Fig 51. Fig 52. Fig 53. IM2 versus single ended and differential LO input matching .................................................36 One carrier GMSK Po = 0dBm.........................37 One carrier GMSK Po = -5dBm .......................38 One carrier EDGE Po = -1.5dBm .....................39 One carrier EDGE Po = -5dBm ........................40 Six carrier GMSK Po = -10dBm .......................41 One carrier WCDMA Po = -8dBm ....................42 One carrier WCDMA - ACLR...........................43 One carrier WCDMA - EVM ............................43 Two carriers WCDMA......................................44 Two carriers WCDMA ACLR ...........................45 Two carriers WCDMA EVM .............................45 Example of DC interface with Vi(cm) of 2.3V .....46 Example of DC interface with Vi(cm) of 2.59 V with DC offset compensation up to 42 mV via AUXDAC .........................................................47 All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 49 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 10. List of tables Bill Of Material (BOM) of BGX7100 EVB – LO differential .. 6 Bill Of Material (BOM) of BGX7100 EVB – LO single ......... 7 DC offset, phase and gain unbalance and on different devices after adjustment ................................. 30 DC offset, phase and gain unbalance at different frequency for the same device......................................... 30 AN11014 Application note All information provided in this document is subject to legal disclaimers. Rev. 1.0 — 13 April 2012 © NXP B.V. 2012. All rights reserved. 50 of 51 AN11014 NXP Semiconductors BGX7100 evaluation board application note 11. Contents 1. 2. 3. 4. 5. 6. 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 7. 7.1 7.2 7.3 8. 8.1 8.2 8.3 9. 10. 11. Introduction ......................................................... 3 Product Description ............................................ 3 EVB Circuit Description ...................................... 3 Test Setup .......................................................... 13 Quick Start ......................................................... 13 Typical Operating Characteristics ................... 14 RF measurements:........................................... 14 Comparison between differential and single ended LO input:................................................ 34 System measurement: ..................................... 37 One carrier GMSK ............................................ 37 One carrier Edge .............................................. 39 Six carriers GMSK ............................................ 41 One carrier WCDMA ........................................ 42 Two carriers WCDMA ...................................... 44 DC Interface between DAC1408D650 or DAC1627D1G25 and BGX7100 ......................... 45 DC Interface without AUXDAC utilization ......... 46 DC Interface with AUXDAC utilization for DC offset compensation ......................................... 47 Recommendations about DC interface network: ......................................................................... 47 Legal information .............................................. 48 Definitions ........................................................ 48 Disclaimers....................................................... 48 Trademarks ...................................................... 48 List of figures..................................................... 49 List of tables ...................................................... 50 Contents ............................................................. 51 Please be aware that important notices concerning this document and the product(s) described herein, have been included in the section 'Legal information'. © NXP B.V. 2012. All rights reserved. For more information, visit: http://www.nxp.com For sales office addresses, please send an email to: [email protected] Date of release: 13 April 2012 Document identifier: AN11014