PHILIPS BUK201-50Y

Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
DESCRIPTION
Monolithic temperature and
overload protected power switch
based on MOSFET technology in a
5 pin plastic envelope, configured
as a single high side switch.
BUK201-50Y
QUICK REFERENCE DATA
SYMBOL
PARAMETER
IL
Nominal load current (ISO)
SYMBOL
PARAMETER
VBG
IL
Tj
RON
Continuous off-state supply voltage
Continuous load current
Continuous junction temperature
On-state resistance
MIN.
UNIT
6
A
MAX.
UNIT
50
15
150
60
V
A
˚C
mΩ
APPLICATIONS
General controller for driving
lamps, motors, solenoids, heaters.
FEATURES
Vertical power DMOS switch
Low on-state resistance
5 V logic compatible input
Overtemperature protection self resets with hysteresis
Overload protection against
short circuit load with
output current limiting;
latched - reset by input
High supply voltage load
protection
Supply undervoltage lock out
Status indication for overload
protection activated
Diagnostic status indication
of open circuit load
Very low quiescent current
Voltage clamping for turn off of
inductive loads
ESD protection on all pins
Reverse battery and
overvoltage protection
PINNING - SOT263
PIN
FUNCTIONAL BLOCK DIAGRAM
BATT
STATUS
POWER
MOSFET
INPUT
CONTROL &
PROTECTION
CIRCUITS
LOAD
RG
GROUND
Fig.1. Elements of the TOPFET HSS with internal ground resistor.
PIN CONFIGURATION
SYMBOL
DESCRIPTION
tab
1
Ground
2
Input
I
3
Battery (+ve supply)
S
4
Status
5
Load
L
G
1 2345
leadform
263-01
Fig. 2.
tab
B
TOPFET
HSS
Fig. 3.
connected to pin 3
July 1996
1
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134)
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VBG
Battery voltages
Continuous off-state supply voltage
0
50
V
-VBG
Reverse battery voltages1
Repetitive peak supply voltage
External resistors:
RI = RS ≥ 4.7 kΩ, δ ≤ 0.1
-
32
V
-VBG
Continuous reverse supply voltage
RI = RS ≥ 4.7 kΩ
-
16
V
IL
PD
Continuous load current
Total power dissipation
Tmb ≤ 115 ˚C
Tmb ≤ 25 ˚C
-
15
83.3
A
W
Tstg
Tj
Storage temperature
Continuous junction temperature2
-55
-
175
150
˚C
˚C
Tsold
Lead temperature
-
250
˚C
II
Input and status
Continuous input current
-
-5
5
mA
IS
Continuous status current
-
-5
5
mA
II
IS
Repetitive peak input current
Repetitive peak status current
δ ≤ 0.1
δ ≤ 0.1
-20
-20
20
20
mA
mA
-
1.2
J
MIN.
MAX.
UNIT
-
2
kV
-
during soldering
Inductive load clamping
EBL
Non-repetitive clamping energy
Tmb = 150 ˚C prior to turn-off
ESD LIMITING VALUE
SYMBOL
PARAMETER
CONDITIONS
VC
Electrostatic discharge capacitor
voltage
Human body model;
C = 250 pF; R = 1.5 kΩ
THERMAL CHARACTERISTICS
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
-
1.2
1.5
K/W
-
60
75
K/W
3
Thermal resistance
Rth j-mb
Junction to mounting base
Rth j-a
Junction to ambient
in free air
1 Reverse battery voltage is allowed only with external input and status resistors to limit the currents to a safe value.
2 For normal continuous operation. A higher Tj is allowed as an overload condition but at the threshold Tj(TO) the over temperature trip operates
to protect the switch.
3 Of the output Power MOS transistor.
July 1996
2
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
STATIC CHARACTERISTICS
Tmb = 25 ˚C unless otherwise stated
SYMBOL
PARAMETER
CONDITIONS
VBG
Clamping voltages
Battery to ground
VBL
-VLG
Battery to load
Negative load to ground
VBG
Supply voltage
Operating range1
MIN.
TYP.
MAX.
UNIT
IG = 1 mA
50
55
65
V
IL = IG = 1 mA
IL = 1 mA
50
12
55
17
65
21
V
V
5
-
40
V
6
-
0.1
2
A
µA
1.5
-
2.2
0.1
4
1
mA
µA
battery to ground
-
Currents
VBG = 13 V
2
IL
IB
Nominal load current
Quiescent current3
VBL = 0.5 V; Tmb = 85 ˚C
VIG = 0 V; VLG = 0 V
IG
IL
Operating current4
Off-state load current5
VIG = 5 V; IL = 0 A
VBL = 13 V; VIG = 0 V
RON
Resistances
On-state resistance6
VBG = 13 V; IL = 7.5 A; tp = 300 µs
-
45
60
mΩ
RON
RG
On-state resistance
Internal ground resistance
VBG = 5 V; IL = 1.5 A; tp = 300 µs
IG = 10 mA
-
70
150
90
-
mΩ
Ω
MIN.
TYP.
MAX.
UNIT
35
6
60
7.5
100
8.5
µA
V
1.5
2.1
2
2.7
-
V
V
INPUT CHARACTERISTICS
Tmb = 25 ˚C; VBG = 13 V
SYMBOL
PARAMETER
CONDITIONS
II
VIG
Input current
Input clamping voltage
VIG = 5 V
II = 200 µA
VIG(ON)
VIG(OFF)
Input turn-on threshold voltage
Input turn-off threshold voltage
1 On-state resistance is increased if the supply voltage is less than 9 V. Refer to figure 8.
2 Defined as in ISO 10483-1.
3 This is the continuous current drawn from the battery when the input is low and includes leakage current to the load.
4 This is the continuous current drawn from the battery with no load connected, but with the input high.
5 The measured current is in the load pin only.
6 The supply and input voltage for the RON tests are continuous. The specified pulse duration tp refers only to the applied load current.
July 1996
3
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
PROTECTION FUNCTIONS AND STATUS INDICATIONS
Truth table for normal, open-circuit load and overload conditions and abnormal supply voltages.
FUNCTIONS
SYMBOL
THRESHOLD
INPUT
STATUS
OUTPUT
Normal on-state
1
1
1
Normal off-state
0
1
0
Open circuit load1
1
0
1
Open circuit load
0
1
0
Over temperature2
1
0
0
Over temperature3
0
0
0
Short circuit load4
1
0
0
Short circuit load
0
1
0
VBG(TO)
Low supply voltage5
X
1
VBG(LP)
High supply voltage6
X
1
IL(OC)
Tj(TO)
VBL(TO)
CONDITION
TRUTH TABLE
MIN.
TYP.
MAX.
UNIT
100
350
600
mA
150
175
-
˚C
9
10.5
12
V
0
3
4
5
V
0
40
45
50
V
For input ‘0’ equals low, ‘1’ equals high, ‘X’ equals don’t care.
For status ‘0’ equals low, ‘1’ equals open or high.
For output switch ‘0’ equals off, ‘1’ equals on.
STATUS CHARACTERISTICS
Tmb = 25 ˚C.
The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
VSG
VSG
Status clamping voltage
Status low voltage
IS = 100 µA; VIG = 0 V
IS = 50 µA; VBG = 13 V; VIG = 5 V
6
-
7
0.7
8
0.8
V
V
IS
IS
Status leakage current
Status saturation current7
VSG = 5 V
VSS = 5 V; RS = 0 Ω; VBG = 13 V
-
0.1
5
1
-
µA
mA
RS
Application information
External pull-up resistor8
VSS = 5 V
-
100
-
kΩ
1 In the on-state, the switch detects whether the load current is less than the quoted open load threshold current. This is for status indication
only. Typical hysteresis equals 140 mA. The thresholds are specified for supply voltage within the normal working range.
2 After cooling below the reset temperature the switch will resume normal operation. The reset temperature is lower than the trip temperature by
typically 10 ˚C.
3 If the overtemperature protection has operated, status remains low to indicate the overtemperature condition even if the input is taken low,
providing the device has not cooled below the reset temperature.
4 After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation.
5 Undervoltage sensor causes the device to switch off. Typical hysteresis equals 0.7 V.
6 Overvoltage sensor causes the device to switch off to protect the load. Typical hysteresis equals 1.3 V.
7 In a fault condition with the pull-up resistor short circuited while the status transistor is conducting.
8 The pull-up resistor also protects the status pin during reverse battery conditions.
July 1996
4
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
DYNAMIC CHARACTERISTICS
Tmb = 25 ˚C; VBG = 13 V
SYMBOL
PARAMETER
CONDITIONS
-VLG
Inductive load turn-off
Negative load voltage1
VIG = 0 V; IL = 7.5 A; tp = 300 µs
VIG = 5 V; RL ≤ 10 mΩ
td sc
Short circuit load protection2
Response time
IL
Load current prior to turn-off
t < td sc
IL(lim)
Overload protection3
Load current limiting
VBL = 9 V; tp = 300 µs
MIN.
TYP.
MAX.
UNIT
15
20
25
V
-
90
-
µs
-
42
-
A
28
40
52
A
MIN.
TYP.
MAX.
UNIT
SWITCHING CHARACTERISTICS
Tmb = 25 ˚C, VBG = 13 V, for resistive load RL = 13 Ω.
SYMBOL
PARAMETER
CONDITIONS
During turn-on
to VIG = 5 V
td on
dV/dton
Delay time
Rate of rise of load voltage
to 10% VL
-
16
1
2.5
µs
V/µs
t on
Total switching time
to 90% VL
-
40
-
µs
td off
During turn-off
Delay time
to VIG = 0 V
to 90% VL
-
30
-
µs
dV/dtoff
t off
Rate of fall of load voltage
Total switching time
to 10% VL
-
1.2
50
2.5
-
V/µs
µs
MIN.
TYP.
MAX.
UNIT
CAPACITANCES
Tmb = 25 ˚C; f = 1 MHz; VIG = 0 V
SYMBOL
PARAMETER
CONDITIONS
Cig
Input capacitance
VBG = 13 V
-
15
20
pF
Cbl
Output capacitance
VBL = VBG = 13 V
-
415
580
pF
Csg
Status capacitance
VSG = 5 V
-
11
15
pF
1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load. This negative voltage
is clamped by the device.
2 The load current is self-limited during the response time for short circuit load protection. Response time is measured from when input goes
high.
3 If the load resistance is low, but not a complete short circuit, such that the on-state voltage remains less than VBL(TO), the device remains in
current limiting until the overtemperature protection operates.
July 1996
5
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
40
IL / A
BUK201-50Y
VBG / V =
13
VBL
IB
II
I
VBG
IS
S
TOPFET
HSS
RS
20
VLG
G
VSG
6
IL
L
IG
5
LOAD
VIG
10
0
Normalised Power Derating
PD%
100
110
90
100
90
80
0.5
1
VBL / V
1.5
2
RON / mOhm
BUK201-50Y
70
80
70
60
60
50
50
40
40
30
30
20
20
10
10
0
0
20
40
60
80
100
Tmb / C
120
0
140
Fig.5. Normalised limiting power dissipation.
PD% = 100⋅PD/PD(25 ˚C) = f(Tmb)
20
0
Fig.7. Typical on-state characteristics, Tj = 25 ˚C.
IL = f(VBL); parameter VBG; tp = 250 µs
Fig.4. High side switch measurements schematic.
(current and voltage conventions)
120
7
30
B
IL / A
1
10
VBG / V
100
Fig.8. Typical on-state resistance, Tj = 25 ˚C.
RON = f(VBG); conditions: IL = 7.5 A; tp = 300 µs
BUK201-50Y
150
RON / mOhm
BUK201-50Y
VBG =
15
5V
100
13 V
10
50
typ.
5
0
0
0
50
Tmb / C
100
150
-20
20
60
100
140
180
Tmb / C
Fig.9. Typical on-state resistance, tp = 300 µs.
RON = f(Tj); parameter VBG; condition IL = 1.5 A
Fig.6. Limiting continuous on-state load current.
IL = f(Tmb); conditions: VIG = 5 V, VBG = 13 V
July 1996
-60
6
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
5
BUK201-50Y
BUK201-50Y
IG / mA
100 uA
IL
BUK201-50Y
CLAMPING
10 uA
4
1 uA
3
OPERATING
VIG = 3 V
2
100 nA
HIGH VOLTAGE
1
10 nA
QUIESCENT
VIG = 0 V
0
1 nA
0
20
10
30
VBG / V
40
60
50
-60
IG / mA
20
60
Tj / C
100
140
180
Fig.13. Typical off-state leakage current.
IL = f(Tj); conditions: VBL = 13 V = VBG; VIG = 0 V.
Fig.10. Typical supply characteristics, 25 ˚C.
IG = f(VBG); parameter VIG
3
-20
BUK201-50Y
200
II / uA
BUK201-50Y
VBG / V =
150
VBG / V =
5
2
7
13
100
13
1
50
50
0
0
-60
-20
20
60
Tj / C
100
140
180
0
Fig.11. Typical operating supply current.
IG = f(Tj); parameter VBG; condition VIG = 5 V
100 uA
IB
2
4
VIG / V
6
8
Fig.14. Typical input characteristics, Tj = 25 ˚C.
II = f(VIG); parameter VBG
BUK201-50Y
100
II / uA
BUK201-50Y
80
10 uA
60
1 uA
40
100 nA
20
0
10 nA
-60
-20
20
60
Tj / C
100
140
180
0
30
20
50
40
VBG / V
Fig.12. Typical supply quiescent current.
IB = f(Tj); condition VBG = 13 V, VIG = 0 V, VLG = 0 V
July 1996
10
Fig.15. Typical input current, Tj = 25 ˚C.
II = f(VBG); condition VIG = 5 V
7
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
VIG / V
3.0
BUK201-50Y
IS
10 uA
BUK201-50Y
2.5
1 uA
VIG(ON)
2.0
100 nA
VIG(OFF)
1.5
10 nA
1.0
-60
-20
20
60
Tj / C
100
140
-60
180
VIG / V
20
60
Tj / C
100
140
180
Fig.19. Typical status leakage current.
IS = f(Tj); conditions VSG = 5 V, VIG = VBG = 0 V
Fig.16. Typical input threshold voltages.
VIG = f(Tj); conditions VBG = 13 V, IL = 80 mA
8.0
-20
BUK201-50Y
500
IS / uA
BUK201-50Y
400
7.5
300
200
7.0
100
0
6.5
-60
-20
20
60
Tj / C
100
140
0
180
IS / mA
0.4
0.6
0.8
1
1.2
VSG / V
1.4
1.6
1.8
2
Fig.20. Typical status low characteristic, Tj = 25 ˚C.
IS = f(VSG); conditions VIG = 5 V, VBG = 13 V, IL = 0 A
Fig.17. Typical input clamping voltage.
VIG = f(Tj); conditions II = 200 µA, VBG = 13 V
20
0.2
BUK201-50Y
1
VSG / V
BUK201-50Y
0.8
15
0.6
10
0.4
5
0.2
0
0
0
2
4
6
8
10
-60
VSG / V
Fig.18. Typical status characteristic, Tj = 25 ˚C.
IS = f(VSG); conditions VIG = VBG = 0 V
July 1996
-20
20
60
Tj / C
100
140
180
Fig.21. Typical status low voltage, VSG = f(Tj).
conditions IS = 50 µA, VIG = 5 V, VBG = 13 V, IL = 0 A
8
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
VSG / V
8.0
BUK201-50Y
VBG(LP) / V
47
BUK201-50Y
46
VIG / V =
off
5
7.5
45
0
7.0
on
44
43
6.5
-60
-20
20
60
Tj / C
100
140
-60
180
IL(OC) / mA
BUK201-50Y
700
20
60
Tj / C
100
140
180
Fig.25. Supply typical overvoltage thresholds.
VBG(LP) = f(Tj); conditions VIG = 5 V; IL = 80 mA
Fig.22. Typical status clamping voltage, VSG = f(Tj).
parameter VIG; conditions IS = 100 µA, VBG = 13 V
800
-20
VBG / V
65
BUK201-50Y
max.
600
60
500
IG =
1 mA
typ.
400
10 uA
300
55
200
min.
100
50
0
-50
0
50
100
150
200
-60
-20
20
60
Tj / C
Tmb / C
Fig.23. Low load current detection threshold.
IL(OC) = f(Tj); conditions VIG = 5 V; VBG = 13 V
5
VBG(TO) / V
100
140
180
Fig.26. Typical battery to ground clamping voltage.
VBG = f(Tj); parameter IG
BUK201-50Y
30
IL / A
BUK201-50Y
25
4
on
20
3
off
15
2
10
1
5
0
-60
-20
20
60
Tj / C
100
140
0
-25
180
-15
-10
-5
0
VLG / V
Fig.24. Supply typical undervoltage thresholds.
VBG(TO) = f(Tj); conditions VIG = 3 V; IL = 80 mA
July 1996
-20
Fig.27. Typical negative load clamping characteristic.
IL = f(VLG); conditions VIG = 0 V, tp = 300 µs, 25 ˚C
9
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
VLG / V
-10
BUK201-50Y
IL / A
0
BUK201-50Y
IL =
-12
-10
1 mA
-14
-20
-16
7.5 A
-18
-30
tp = 300 us
-20
-40
-1.2
-22
-60
-20
20
60
Tj / C
100
140
180
VBL / V
-0.8
-0.6
VLB / V
-0.4
-0.2
0
Fig.31. Typical reverse diode characteristic.
IL = f(VBL); conditions VIG = 0 V, Tj = 25 ˚C
Fig.28. Typical negative load clamping voltage.
VLG = f(Tj); parameter IL; condition VIG = 0 V.
65
-1
BUK201-50Y
10 nF
Cbl
BUK201-50Y
IL =
tp = 300 us
4A
60
1 mA
1 nF
100 uA
55
50
100 pF
-60
-20
20
60
Tj / C
100
140
180
10
20
30
40
50
VBL / V
Fig.32. Typical output capacitance. Tmb = 25 ˚C
Cbl = f(VBL); conditions f = 1 MHz, VIG = 0 V
Fig.29. Typical battery to load clamping voltage.
VBL = f(Tj); parameter IL; condition IG = 5 mA.
0
0
IG / mA
BUK201-50Y
60
IL / A
BUK201-50Y
VBL(TO) typ.
current limiting
50
tp =
40
-50
300 us
30
-100
50 us
i.e. before short
circuit load trip
20
10
-150
-20
-15
-10
VBG / V
-5
0
0
5
10
15
20
25
VBL / V
Fig.30. Typical reverse battery characteristic.
IG = f(VBG); conditions IL = 0 A, Tj = 25 ˚C
July 1996
0
Fig.33. Typical overload characteristic, Tmb = 25 ˚C.
IL = f(VBL); condition VBG = 13 V; parameter tp
10
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
60
BUK201-50Y
IL / A
BUK201-50Y
VBL(TO) / V
15
BUK201-50Y
14
50
13
typ.
40
12
11
10
30
9
20
8
7
10
6
0
-50
5
0
50
100
150
200
-60
-20
20
60
100
Tmb / C
Tmb / C
VBL(TO) / V
180
Fig.36. Typical short circuit load threshold voltage.
VBL(TO) = f(Tmb); condition VBG = 13 V
Fig.34. Typical overload current, VBL = 9 V.
IL = f(Tmb); conditions VBG = 13 V; tp = 300 µs
12
140
BUK201-50Y
10
11
Zth j-mb / (K/W)
BUK201-50Y
D=
1
0.5
10
0.2
0.1
0.1
9
0.05
PD
tp
D=
0.02
0.01
100n
8
0
10
20
VBG / V
30
40
Fig.35. Typical short circuit load threshold voltage.
VBL(TO) = f(VBG); condition Tmb = 25 ˚C
July 1996
T
0
1u
10u
100u
1m
t/s
10m
100m
tp
T
t
1
10
Fig.37. Transient thermal impedance.
Zth j-mb = f(t); parameter D = tp/T
11
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
MECHANICAL DATA
Dimensions in mm
4.5
max
Net Mass: 2 g
10.3
max
1.3
3.6
2.8
5.9
min
mounting
base
15.8
max
5
m
in
2.4
max
R
0.
(2)
3.5 max
not tinned
5.6
9.75
0.
5
0.6
min (4 x)
0.6
R
1 2 3 4 5
in
5
m
0.5
(1)
1.7
2.4
4.5
(4 x)
0.4
(1)
M
0.9 max
8.2
(5 x)
NOTES (1)
(2)
positional accuracy of the terminals
is controlled in this zone only.
terminal dimensions in this zone
are uncontrolled.
Fig.38. SOT263 leadform 263-01;
pin 3 connected to mounting base.
Note
1. Refer to mounting instructions for TO220 envelopes.
2. Epoxy meets UL94 V0 at 1/8".
July 1996
12
Rev 1.000
Philips Semiconductors
Product specification
PowerMOS transistor
TOPFET high side switch
BUK201-50Y
DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
 Philips Electronics N.V. 1996
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
July 1996
13
Rev 1.000