Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch DESCRIPTION Monolithic temperature and overload protected power switch based on MOSFET technology in a 5 pin plastic envelope, configured as a single high side switch. BUK201-50Y QUICK REFERENCE DATA SYMBOL PARAMETER IL Nominal load current (ISO) SYMBOL PARAMETER VBG IL Tj RON Continuous off-state supply voltage Continuous load current Continuous junction temperature On-state resistance MIN. UNIT 6 A MAX. UNIT 50 15 150 60 V A ˚C mΩ APPLICATIONS General controller for driving lamps, motors, solenoids, heaters. FEATURES Vertical power DMOS switch Low on-state resistance 5 V logic compatible input Overtemperature protection self resets with hysteresis Overload protection against short circuit load with output current limiting; latched - reset by input High supply voltage load protection Supply undervoltage lock out Status indication for overload protection activated Diagnostic status indication of open circuit load Very low quiescent current Voltage clamping for turn off of inductive loads ESD protection on all pins Reverse battery and overvoltage protection PINNING - SOT263 PIN FUNCTIONAL BLOCK DIAGRAM BATT STATUS POWER MOSFET INPUT CONTROL & PROTECTION CIRCUITS LOAD RG GROUND Fig.1. Elements of the TOPFET HSS with internal ground resistor. PIN CONFIGURATION SYMBOL DESCRIPTION tab 1 Ground 2 Input I 3 Battery (+ve supply) S 4 Status 5 Load L G 1 2345 leadform 263-01 Fig. 2. tab B TOPFET HSS Fig. 3. connected to pin 3 July 1996 1 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y LIMITING VALUES Limiting values in accordance with the Absolute Maximum System (IEC 134) SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT VBG Battery voltages Continuous off-state supply voltage 0 50 V -VBG Reverse battery voltages1 Repetitive peak supply voltage External resistors: RI = RS ≥ 4.7 kΩ, δ ≤ 0.1 - 32 V -VBG Continuous reverse supply voltage RI = RS ≥ 4.7 kΩ - 16 V IL PD Continuous load current Total power dissipation Tmb ≤ 115 ˚C Tmb ≤ 25 ˚C - 15 83.3 A W Tstg Tj Storage temperature Continuous junction temperature2 -55 - 175 150 ˚C ˚C Tsold Lead temperature - 250 ˚C II Input and status Continuous input current - -5 5 mA IS Continuous status current - -5 5 mA II IS Repetitive peak input current Repetitive peak status current δ ≤ 0.1 δ ≤ 0.1 -20 -20 20 20 mA mA - 1.2 J MIN. MAX. UNIT - 2 kV - during soldering Inductive load clamping EBL Non-repetitive clamping energy Tmb = 150 ˚C prior to turn-off ESD LIMITING VALUE SYMBOL PARAMETER CONDITIONS VC Electrostatic discharge capacitor voltage Human body model; C = 250 pF; R = 1.5 kΩ THERMAL CHARACTERISTICS SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT - 1.2 1.5 K/W - 60 75 K/W 3 Thermal resistance Rth j-mb Junction to mounting base Rth j-a Junction to ambient in free air 1 Reverse battery voltage is allowed only with external input and status resistors to limit the currents to a safe value. 2 For normal continuous operation. A higher Tj is allowed as an overload condition but at the threshold Tj(TO) the over temperature trip operates to protect the switch. 3 Of the output Power MOS transistor. July 1996 2 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y STATIC CHARACTERISTICS Tmb = 25 ˚C unless otherwise stated SYMBOL PARAMETER CONDITIONS VBG Clamping voltages Battery to ground VBL -VLG Battery to load Negative load to ground VBG Supply voltage Operating range1 MIN. TYP. MAX. UNIT IG = 1 mA 50 55 65 V IL = IG = 1 mA IL = 1 mA 50 12 55 17 65 21 V V 5 - 40 V 6 - 0.1 2 A µA 1.5 - 2.2 0.1 4 1 mA µA battery to ground - Currents VBG = 13 V 2 IL IB Nominal load current Quiescent current3 VBL = 0.5 V; Tmb = 85 ˚C VIG = 0 V; VLG = 0 V IG IL Operating current4 Off-state load current5 VIG = 5 V; IL = 0 A VBL = 13 V; VIG = 0 V RON Resistances On-state resistance6 VBG = 13 V; IL = 7.5 A; tp = 300 µs - 45 60 mΩ RON RG On-state resistance Internal ground resistance VBG = 5 V; IL = 1.5 A; tp = 300 µs IG = 10 mA - 70 150 90 - mΩ Ω MIN. TYP. MAX. UNIT 35 6 60 7.5 100 8.5 µA V 1.5 2.1 2 2.7 - V V INPUT CHARACTERISTICS Tmb = 25 ˚C; VBG = 13 V SYMBOL PARAMETER CONDITIONS II VIG Input current Input clamping voltage VIG = 5 V II = 200 µA VIG(ON) VIG(OFF) Input turn-on threshold voltage Input turn-off threshold voltage 1 On-state resistance is increased if the supply voltage is less than 9 V. Refer to figure 8. 2 Defined as in ISO 10483-1. 3 This is the continuous current drawn from the battery when the input is low and includes leakage current to the load. 4 This is the continuous current drawn from the battery with no load connected, but with the input high. 5 The measured current is in the load pin only. 6 The supply and input voltage for the RON tests are continuous. The specified pulse duration tp refers only to the applied load current. July 1996 3 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y PROTECTION FUNCTIONS AND STATUS INDICATIONS Truth table for normal, open-circuit load and overload conditions and abnormal supply voltages. FUNCTIONS SYMBOL THRESHOLD INPUT STATUS OUTPUT Normal on-state 1 1 1 Normal off-state 0 1 0 Open circuit load1 1 0 1 Open circuit load 0 1 0 Over temperature2 1 0 0 Over temperature3 0 0 0 Short circuit load4 1 0 0 Short circuit load 0 1 0 VBG(TO) Low supply voltage5 X 1 VBG(LP) High supply voltage6 X 1 IL(OC) Tj(TO) VBL(TO) CONDITION TRUTH TABLE MIN. TYP. MAX. UNIT 100 350 600 mA 150 175 - ˚C 9 10.5 12 V 0 3 4 5 V 0 40 45 50 V For input ‘0’ equals low, ‘1’ equals high, ‘X’ equals don’t care. For status ‘0’ equals low, ‘1’ equals open or high. For output switch ‘0’ equals off, ‘1’ equals on. STATUS CHARACTERISTICS Tmb = 25 ˚C. The status output is an open drain transistor, and requires an external pull-up circuit to indicate a logic high. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT VSG VSG Status clamping voltage Status low voltage IS = 100 µA; VIG = 0 V IS = 50 µA; VBG = 13 V; VIG = 5 V 6 - 7 0.7 8 0.8 V V IS IS Status leakage current Status saturation current7 VSG = 5 V VSS = 5 V; RS = 0 Ω; VBG = 13 V - 0.1 5 1 - µA mA RS Application information External pull-up resistor8 VSS = 5 V - 100 - kΩ 1 In the on-state, the switch detects whether the load current is less than the quoted open load threshold current. This is for status indication only. Typical hysteresis equals 140 mA. The thresholds are specified for supply voltage within the normal working range. 2 After cooling below the reset temperature the switch will resume normal operation. The reset temperature is lower than the trip temperature by typically 10 ˚C. 3 If the overtemperature protection has operated, status remains low to indicate the overtemperature condition even if the input is taken low, providing the device has not cooled below the reset temperature. 4 After short circuit protection has operated, the input voltage must be toggled low for the switch to resume normal operation. 5 Undervoltage sensor causes the device to switch off. Typical hysteresis equals 0.7 V. 6 Overvoltage sensor causes the device to switch off to protect the load. Typical hysteresis equals 1.3 V. 7 In a fault condition with the pull-up resistor short circuited while the status transistor is conducting. 8 The pull-up resistor also protects the status pin during reverse battery conditions. July 1996 4 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y DYNAMIC CHARACTERISTICS Tmb = 25 ˚C; VBG = 13 V SYMBOL PARAMETER CONDITIONS -VLG Inductive load turn-off Negative load voltage1 VIG = 0 V; IL = 7.5 A; tp = 300 µs VIG = 5 V; RL ≤ 10 mΩ td sc Short circuit load protection2 Response time IL Load current prior to turn-off t < td sc IL(lim) Overload protection3 Load current limiting VBL = 9 V; tp = 300 µs MIN. TYP. MAX. UNIT 15 20 25 V - 90 - µs - 42 - A 28 40 52 A MIN. TYP. MAX. UNIT SWITCHING CHARACTERISTICS Tmb = 25 ˚C, VBG = 13 V, for resistive load RL = 13 Ω. SYMBOL PARAMETER CONDITIONS During turn-on to VIG = 5 V td on dV/dton Delay time Rate of rise of load voltage to 10% VL - 16 1 2.5 µs V/µs t on Total switching time to 90% VL - 40 - µs td off During turn-off Delay time to VIG = 0 V to 90% VL - 30 - µs dV/dtoff t off Rate of fall of load voltage Total switching time to 10% VL - 1.2 50 2.5 - V/µs µs MIN. TYP. MAX. UNIT CAPACITANCES Tmb = 25 ˚C; f = 1 MHz; VIG = 0 V SYMBOL PARAMETER CONDITIONS Cig Input capacitance VBG = 13 V - 15 20 pF Cbl Output capacitance VBL = VBG = 13 V - 415 580 pF Csg Status capacitance VSG = 5 V - 11 15 pF 1 For a high side switch, the load pin voltage goes negative with respect to ground during the turn-off of an inductive load. This negative voltage is clamped by the device. 2 The load current is self-limited during the response time for short circuit load protection. Response time is measured from when input goes high. 3 If the load resistance is low, but not a complete short circuit, such that the on-state voltage remains less than VBL(TO), the device remains in current limiting until the overtemperature protection operates. July 1996 5 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y 40 IL / A BUK201-50Y VBG / V = 13 VBL IB II I VBG IS S TOPFET HSS RS 20 VLG G VSG 6 IL L IG 5 LOAD VIG 10 0 Normalised Power Derating PD% 100 110 90 100 90 80 0.5 1 VBL / V 1.5 2 RON / mOhm BUK201-50Y 70 80 70 60 60 50 50 40 40 30 30 20 20 10 10 0 0 20 40 60 80 100 Tmb / C 120 0 140 Fig.5. Normalised limiting power dissipation. PD% = 100⋅PD/PD(25 ˚C) = f(Tmb) 20 0 Fig.7. Typical on-state characteristics, Tj = 25 ˚C. IL = f(VBL); parameter VBG; tp = 250 µs Fig.4. High side switch measurements schematic. (current and voltage conventions) 120 7 30 B IL / A 1 10 VBG / V 100 Fig.8. Typical on-state resistance, Tj = 25 ˚C. RON = f(VBG); conditions: IL = 7.5 A; tp = 300 µs BUK201-50Y 150 RON / mOhm BUK201-50Y VBG = 15 5V 100 13 V 10 50 typ. 5 0 0 0 50 Tmb / C 100 150 -20 20 60 100 140 180 Tmb / C Fig.9. Typical on-state resistance, tp = 300 µs. RON = f(Tj); parameter VBG; condition IL = 1.5 A Fig.6. Limiting continuous on-state load current. IL = f(Tmb); conditions: VIG = 5 V, VBG = 13 V July 1996 -60 6 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch 5 BUK201-50Y BUK201-50Y IG / mA 100 uA IL BUK201-50Y CLAMPING 10 uA 4 1 uA 3 OPERATING VIG = 3 V 2 100 nA HIGH VOLTAGE 1 10 nA QUIESCENT VIG = 0 V 0 1 nA 0 20 10 30 VBG / V 40 60 50 -60 IG / mA 20 60 Tj / C 100 140 180 Fig.13. Typical off-state leakage current. IL = f(Tj); conditions: VBL = 13 V = VBG; VIG = 0 V. Fig.10. Typical supply characteristics, 25 ˚C. IG = f(VBG); parameter VIG 3 -20 BUK201-50Y 200 II / uA BUK201-50Y VBG / V = 150 VBG / V = 5 2 7 13 100 13 1 50 50 0 0 -60 -20 20 60 Tj / C 100 140 180 0 Fig.11. Typical operating supply current. IG = f(Tj); parameter VBG; condition VIG = 5 V 100 uA IB 2 4 VIG / V 6 8 Fig.14. Typical input characteristics, Tj = 25 ˚C. II = f(VIG); parameter VBG BUK201-50Y 100 II / uA BUK201-50Y 80 10 uA 60 1 uA 40 100 nA 20 0 10 nA -60 -20 20 60 Tj / C 100 140 180 0 30 20 50 40 VBG / V Fig.12. Typical supply quiescent current. IB = f(Tj); condition VBG = 13 V, VIG = 0 V, VLG = 0 V July 1996 10 Fig.15. Typical input current, Tj = 25 ˚C. II = f(VBG); condition VIG = 5 V 7 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y VIG / V 3.0 BUK201-50Y IS 10 uA BUK201-50Y 2.5 1 uA VIG(ON) 2.0 100 nA VIG(OFF) 1.5 10 nA 1.0 -60 -20 20 60 Tj / C 100 140 -60 180 VIG / V 20 60 Tj / C 100 140 180 Fig.19. Typical status leakage current. IS = f(Tj); conditions VSG = 5 V, VIG = VBG = 0 V Fig.16. Typical input threshold voltages. VIG = f(Tj); conditions VBG = 13 V, IL = 80 mA 8.0 -20 BUK201-50Y 500 IS / uA BUK201-50Y 400 7.5 300 200 7.0 100 0 6.5 -60 -20 20 60 Tj / C 100 140 0 180 IS / mA 0.4 0.6 0.8 1 1.2 VSG / V 1.4 1.6 1.8 2 Fig.20. Typical status low characteristic, Tj = 25 ˚C. IS = f(VSG); conditions VIG = 5 V, VBG = 13 V, IL = 0 A Fig.17. Typical input clamping voltage. VIG = f(Tj); conditions II = 200 µA, VBG = 13 V 20 0.2 BUK201-50Y 1 VSG / V BUK201-50Y 0.8 15 0.6 10 0.4 5 0.2 0 0 0 2 4 6 8 10 -60 VSG / V Fig.18. Typical status characteristic, Tj = 25 ˚C. IS = f(VSG); conditions VIG = VBG = 0 V July 1996 -20 20 60 Tj / C 100 140 180 Fig.21. Typical status low voltage, VSG = f(Tj). conditions IS = 50 µA, VIG = 5 V, VBG = 13 V, IL = 0 A 8 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y VSG / V 8.0 BUK201-50Y VBG(LP) / V 47 BUK201-50Y 46 VIG / V = off 5 7.5 45 0 7.0 on 44 43 6.5 -60 -20 20 60 Tj / C 100 140 -60 180 IL(OC) / mA BUK201-50Y 700 20 60 Tj / C 100 140 180 Fig.25. Supply typical overvoltage thresholds. VBG(LP) = f(Tj); conditions VIG = 5 V; IL = 80 mA Fig.22. Typical status clamping voltage, VSG = f(Tj). parameter VIG; conditions IS = 100 µA, VBG = 13 V 800 -20 VBG / V 65 BUK201-50Y max. 600 60 500 IG = 1 mA typ. 400 10 uA 300 55 200 min. 100 50 0 -50 0 50 100 150 200 -60 -20 20 60 Tj / C Tmb / C Fig.23. Low load current detection threshold. IL(OC) = f(Tj); conditions VIG = 5 V; VBG = 13 V 5 VBG(TO) / V 100 140 180 Fig.26. Typical battery to ground clamping voltage. VBG = f(Tj); parameter IG BUK201-50Y 30 IL / A BUK201-50Y 25 4 on 20 3 off 15 2 10 1 5 0 -60 -20 20 60 Tj / C 100 140 0 -25 180 -15 -10 -5 0 VLG / V Fig.24. Supply typical undervoltage thresholds. VBG(TO) = f(Tj); conditions VIG = 3 V; IL = 80 mA July 1996 -20 Fig.27. Typical negative load clamping characteristic. IL = f(VLG); conditions VIG = 0 V, tp = 300 µs, 25 ˚C 9 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y VLG / V -10 BUK201-50Y IL / A 0 BUK201-50Y IL = -12 -10 1 mA -14 -20 -16 7.5 A -18 -30 tp = 300 us -20 -40 -1.2 -22 -60 -20 20 60 Tj / C 100 140 180 VBL / V -0.8 -0.6 VLB / V -0.4 -0.2 0 Fig.31. Typical reverse diode characteristic. IL = f(VBL); conditions VIG = 0 V, Tj = 25 ˚C Fig.28. Typical negative load clamping voltage. VLG = f(Tj); parameter IL; condition VIG = 0 V. 65 -1 BUK201-50Y 10 nF Cbl BUK201-50Y IL = tp = 300 us 4A 60 1 mA 1 nF 100 uA 55 50 100 pF -60 -20 20 60 Tj / C 100 140 180 10 20 30 40 50 VBL / V Fig.32. Typical output capacitance. Tmb = 25 ˚C Cbl = f(VBL); conditions f = 1 MHz, VIG = 0 V Fig.29. Typical battery to load clamping voltage. VBL = f(Tj); parameter IL; condition IG = 5 mA. 0 0 IG / mA BUK201-50Y 60 IL / A BUK201-50Y VBL(TO) typ. current limiting 50 tp = 40 -50 300 us 30 -100 50 us i.e. before short circuit load trip 20 10 -150 -20 -15 -10 VBG / V -5 0 0 5 10 15 20 25 VBL / V Fig.30. Typical reverse battery characteristic. IG = f(VBG); conditions IL = 0 A, Tj = 25 ˚C July 1996 0 Fig.33. Typical overload characteristic, Tmb = 25 ˚C. IL = f(VBL); condition VBG = 13 V; parameter tp 10 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch 60 BUK201-50Y IL / A BUK201-50Y VBL(TO) / V 15 BUK201-50Y 14 50 13 typ. 40 12 11 10 30 9 20 8 7 10 6 0 -50 5 0 50 100 150 200 -60 -20 20 60 100 Tmb / C Tmb / C VBL(TO) / V 180 Fig.36. Typical short circuit load threshold voltage. VBL(TO) = f(Tmb); condition VBG = 13 V Fig.34. Typical overload current, VBL = 9 V. IL = f(Tmb); conditions VBG = 13 V; tp = 300 µs 12 140 BUK201-50Y 10 11 Zth j-mb / (K/W) BUK201-50Y D= 1 0.5 10 0.2 0.1 0.1 9 0.05 PD tp D= 0.02 0.01 100n 8 0 10 20 VBG / V 30 40 Fig.35. Typical short circuit load threshold voltage. VBL(TO) = f(VBG); condition Tmb = 25 ˚C July 1996 T 0 1u 10u 100u 1m t/s 10m 100m tp T t 1 10 Fig.37. Transient thermal impedance. Zth j-mb = f(t); parameter D = tp/T 11 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y MECHANICAL DATA Dimensions in mm 4.5 max Net Mass: 2 g 10.3 max 1.3 3.6 2.8 5.9 min mounting base 15.8 max 5 m in 2.4 max R 0. (2) 3.5 max not tinned 5.6 9.75 0. 5 0.6 min (4 x) 0.6 R 1 2 3 4 5 in 5 m 0.5 (1) 1.7 2.4 4.5 (4 x) 0.4 (1) M 0.9 max 8.2 (5 x) NOTES (1) (2) positional accuracy of the terminals is controlled in this zone only. terminal dimensions in this zone are uncontrolled. Fig.38. SOT263 leadform 263-01; pin 3 connected to mounting base. Note 1. Refer to mounting instructions for TO220 envelopes. 2. Epoxy meets UL94 V0 at 1/8". July 1996 12 Rev 1.000 Philips Semiconductors Product specification PowerMOS transistor TOPFET high side switch BUK201-50Y DEFINITIONS Data sheet status Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications. Limiting values Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Where application information is given, it is advisory and does not form part of the specification. Philips Electronics N.V. 1996 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights. LIFE SUPPORT APPLICATIONS These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale. July 1996 13 Rev 1.000