Features • • • • • • • • • • • • • • • 16 Mbit SRAM Multi Chip Module Allows 32-, 16- or 8-bit access configuration Operating Voltage: 3.3V + 0.3V Access Time – 20 ns, 18 ns for AT68166F Power Consumption – Active: 620 mW per byte (Max) @ 18ns - 415 mW per byte (Max) @ 50ns (1) – Standby: 13 mW (Typ) Military Temperature Range: -55 to +125°C TTL-Compatible Inputs and Outputs Asynchronous Die manufactured on Atmel 0.25 µm Radiation Hardened Process No Single Event Latch Up below LET Threshold of 80 MeV/mg/cm2 Tested up to a Total Dose of 300 krads (Si) according to MIL-STD-883 Method 1019 ESD Better than 4000V Quality Grades: – QML-Q or V with SMD 5962-06229 – ESCC 950 Mils Wide MQFP 68 Package Mass : 8.5 grams Note: Rad Hard 16 MegaBit 3.3V SRAM MultiChip Module AT68166F 1. Only for AT68166F-18. 450mW for AT68166F-20. Description The AT68166F is a 16Mbit SRAM packaged in a hermetic Multi Chip Module (MCM) for space applications. The AT68166F MCM incorporates four 4Mbit AT60142FT SRAM dice. It can be organized as either one bank of 512Kx8, two banks of 512Kx16 or four banks of 512Kx8. It combines rad-hard capabilities, a latch-up threshold of 80MeV.cm²/mg, a Multiple Bit Upset immunity and a total dose tolerance of 300Krads, with a fast access time. The MCM packaging technology allows a reduction of the PCB area by 50% with a weight savings of 75% compared to four 4Mbit packages. Thanks to the small size of the 4Mbit SRAM die, Atmel has been able to accommodate the assembly of the four dice on one side of the package which facilitates the power dissipation. The compatibility with other products allows designers to easily migrate to the Atmel AT68166F memory. The AT68166F is powered at 3.3V. The AT68166F is processed according to the test methods of the latest revision of the MIL-PRF-38535 or the ESCC 9000. 7747B–AERO–04/09 Block Diagram A[18:0] Figure 1. AT68166F Block Diagram CS3 WE3 CS2 WE2 CS1 WE1 CS0 WE0 OE BANK3 BANK2 BANK1 BANK0 512k x 8 512k x 8 512k x 8 512k x 8 I/O[31:24] or I/O2[31:16] or I/O3[7:0] I/O[23:16] or I/O2[15:0] or I/O2[7:0] I/O[15:8] or I/O1[31:16] or I/O1[7:0] I/O[7:0] or I/O1[15:0] or I/O[7:0] Figure 2. 512K x 8 Banks Block Diagram (AT60142F) A0 A10 I/Ox0 I/Ox7 CSx WEx OE Packages AT68166F and AT68166G are packed in MQFP68. Access Time AT68166F 20 ns 18 ns YM YS AT68166G <18 ns YS The pin assignment depends on the access time. There are 2 versions: 2 – YM package where 3 pins are not connected. – YS package where the 3 above pins are connected to GND or VCC. AT68166F 7747B–AERO–04/09 AT68166F Pin Configuration Table 1. AT68166F pin assignment in YS package Lead Signal Lead Signal Lead Signal Lead Signal 1 I/O0[0] 18 VCC 35 I/O3[7] 52 VCC 2 I/O0[1] 19 A11 36 I/O3[6] 53 A10 3 I/O0[2] 20 A12 37 I/O3[5] 54 A9 4 I/O0[3] 21 A13 38 I/O3[4] 55 A8 5 I/O0[4] 22 A14 39 I/O3[3] 56 A7 6 I/O0[5] 23 A15 40 I/O3[2] 57 A6 7 I/O0[6] 24 A16 41 I/O3[1] 58 WE0 8 I/O0[7] 25 CS0 42 I/O3[0] 59 CS3 9 GND 26 OE 43 GND 60 GND 10 I/O1[0] 27 CS1 44 I/O2[7] 61 CS2 11 I/O1[1] 28 A17 45 I/O2[6] 62 A5 12 I/O1[2] 29 WE1 46 I/O2[5] 63 A4 13 I/O1[3] 30 WE2 47 I/O2[4] 64 A3 14 I/O1[4] 31 WE3 48 I/O2[3] 65 A2 15 I/O1[5] 32 A18 49 I/O2[2] 66 A1 16 I/O1[6] 33 GND 50 I/O2[1] 67 A0 17 I/O1[7] 34 VCC 51 I/O2[0] 68 VCC Notes: 1. In YM package leads 33, 34 and 68 are not connected. 3 7747B–AERO–04/09 AT68166F (top view) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 I/O2[0] I/O2[1] I/O2[2] I/O2[3] I/O2[4] I/O2[5] I/O2[6] I/O2[7] GND I/O3[0] I/O3[1] I/O3[2] I/O3[3] I/O3[4] I/O3[5] I/O3[6] I/O3[7] VCC A11 A12 A13 A14 A15 A16 CS0 0E CS1 A17 WE1 WE2 WE3 A18 NC NC I/O0[0] I/O0[1] I/O0[2] I/O0[3] I/O0[4] I/O0[5] I/O0[6] I/O0[7] GND I/O1[0] I/O1[1] I/O1[2] I/O1[3] I/O1[4] I/O1[5] I/O1[6] I/O1[7] 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 NC A0 A1 A2 A3 A4 A5 CS2 GND CS3 WE0 A6 A7 A8 A9 A10 VCC Figure 3. AT68166F pin assignment in YM package AT68166F (top view) 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 I/O2[0] I/O2[1] I/O2[2] I/O2[3] I/O2[4] I/O2[5] I/O2[6] I/O2[7] GND I/O3[0] I/O3[1] I/O3[2] I/O3[3] I/O3[4] I/O3[5] I/O3[6] I/O3[7] VCC A11 A12 A13 A14 A15 A16 CS0 0E CS1 A17 WE1 WE2 WE3 A18 GND VCC I/O0[0] I/O0[1] I/O0[2] I/O0[3] I/O0[4] I/O0[5] I/O0[6] I/O0[7] GND I/O1[0] I/O1[1] I/O1[2] I/O1[3] I/O1[4] I/O1[5] I/O1[6] I/O1[7] 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 VCC A0 A1 A2 A3 A4 A5 CS2 GND CS3 WE0 A6 A7 A8 A9 A10 VCC Figure 4. AT68166F pin assignment in YS package 4 AT68166F 7747B–AERO–04/09 AT68166F Pin Description Table 2. Pin Names Name Description A0 - A18 Address Inputs I/O0 - I/O31 Data Input/Output CS0 - CS3 Chip Select WE0 - WE3 Write Enable OE Output Enable VCC Power Supply GND(1) Ground Note: 1. The package lid is connected to GND Table 3. Truth Table(1) CSx WEx OE Inputs/Outputs Mode H X X Z Standby L H L Data Out Read L L X Data In Write L H H Z Output Disable Note: 1. L=low, H=high, X= H or L, L=high impedance. 5 7747B–AERO–04/09 Electrical Characteristics Absolute Maximum Ratings* Supply Voltage to GND Potential: ....................... -0.5V + 4.6V *NOTE: Voltage range on any input: ...................... GND -0.5V to 4.6V Voltage range on any ouput: ..................... GND -0.5V to 4.6V Storage Temperature: ................................. -65°C to + 150°C Output Current from Output Pins: ................................ 20 mA Electrostatic Discharge Voltage: ............................... > 4000V (MIL STD 883D Method 3015.3) Stresses beyond those listed under "Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure between recommended DC operating and absolute maximum rating conditions for extended periods may affect device reliability. Military Operating Range Operating Voltage Operating Temperature 3.3 + 0.3V -55°C to + 125°C Recommended DC Operating Conditions Parameter Description Vcc Supply voltage GND Ground Min Typ Max Unit 3 3.3 3.6 V 0.0 0.0 0.0 V VIL Input low voltage GND - 0.3 0.0 0.8 V VIH Input high voltage 2.2 – VCC + 0.3 V Description Min Typ Max Unit Capacitance Parameter Cin(1) (OE and Ax) Input capacitance – – 48 pF Cin(1) (CSx and WEx) Input capacitance – – 12 pF I/O capacitance – – 12 pF Cio(1) Note: 6 1. Guaranteed but not tested. AT68166F 7747B–AERO–04/09 AT68166F DC Parameters Parameter Notes: Description Minimum Typical Maximum Unit IIX(1) Input leakage current -1 – 1 μA IOZ(1) Output leakage current -1 – 1 μA VOL(2) Output low voltage – – 0.4 V VOH(3) Output high voltage 2.4 – – V 1. GND < VIN < VCC, GND < VOUT < VCC Output Disabled. 2. VCC min. IOL = 8 mA 3. VCC min. IOH = -4 mA Consumption TAVAV/TAVAW Test Condition AT68166F-20 Symbol Description ICCSB(1) Standby Supply Current – 10 ICCSB1(2) Standby Supply Current – AT68166F-18 Unit Value 7 mA max 8 6 mA max ICCOP(3) Read per byte Dynamic Operating Current 18 ns 20 ns 50 ns 1 µs – 170 85 15 170 165 80 12 mA max ICCOP(4) Write per byte Dynamic Operating Current 18 ns 20 ns 50 ns 1 µs – 150 125 110 145 140 115 105 mA max Notes: 1. 2. 3. 4. All CSx >VIH All CSx > VCC - 0.3V F = 1/TAVAV, Iout = 0 mA, WEx = OE = VIH, VIN = GND/VCC, VCC max. F = 1/TAVAW, Iout = 0 mA, WEx = VIL, OE = VIH , VIN = GND/VCC, VCC max. 7 7747B–AERO–04/09 Data Retention Mode Atmel CMOS RAM's are designed with battery backup in mind. Data retention voltage and supply current are guaranteed over temperature. The following rules insure data retention: 1. During data retention chip select CSx must be held high within VCC to VCC -0.2V. 2. Output Enable (OE) should be held high to keep the RAM outputs high impedance, minimizing power dissipation. 3. During power-up and power-down transitions CSx and OE must be kept between VCC + 0.3V and 70% of VCC. 4. The RAM can begin operation > tR ns after VCC reaches the minimum operation voltages (3V). Figure 5. Data Retention Timing vcc CSx Data Retention Characteristics Parameter Description Min Typ TA = 25°C Max Unit VCCDR VCC for data retention 2.0 – – V tCDR Chip deselect to data retention time 0.0 – – ns tR Operation recovery time – – ns ICCDR (2) Data retention current 1. 2. 8 tAVAV – (1) 3 6 (AT68166F-20) 4.5 (AT68166F-18) mA TAVAV = Read cycle time. All CSx = VCC, VIN = GND/VCC. AT68166F 7747B–AERO–04/09 AT68166F AC Characteristics Temperature Range:................................................ -55 +125°C Supply Voltage: ....................................................... 3.3 +0.3V Input Pulse Levels: .................................................. GND to 3.0V Input Rise and Fall Times:....................................... 3ns (10 - 90%) Input and Output Timing Reference Levels: ............ 1.5V Output Loading IOL/IOH:............................................ See Figure 3 Figure 6. AC Test Loads Waveforms General Specific (TWLQZ, TWHQX, TELQX, TEHQZ TGLQX, TGHQZ) Write Cycle Table 4. Write cycle timings(1) Notes: AT68166F-20 AT68166F-18 min max min max Unit Symbol Parameter TAVAW Write cycle time 20 - 18 - ns TAVWL Address set-up time 2 - 2 - ns TAVWH Address valid to end of write 14 - 11 - ns TDVWH Data set-up time 9 - 8 - ns TELWH CS low to write end 12 - 12 - ns - 10 - 8 ns (2) TWLQZ Write low to high Z TWLWH Write pulse width 12 - 9 - ns TWHAX Address hold from end of write 0 - 0 - ns TWHDX Data hold time 2 - 1 - ns TWHQX Write high to low Z(2) 5 - 3 - ns 1. Timings figures applicable for 8-bit, 16-bit and 32-bit mode. 2. Parameters guaranteed, not tested, with output loading 5 pF. (See “AC Test Loads Waveforms” on page 9.) 9 7747B–AERO–04/09 Figure 7. Write Cycle 1. WE Controlled, OE High During Write ADDRESS CSx E WEx E OE I/Os Figure 8. Write Cycle 2. WE Controlled, OE Low ADDRESS CSx WEx E E I/Os Figure 9. Write Cycle 3. CS Controlled ADDRESS CSx WEx E I/Os The internal write time of the memory is defined by the overlap of CS Low and WE LOW. Both signals must be activated to initiate a write and either signal can terminate a write by going in active mode. The data input setup and hold timing should be referenced to the active edge of the signal that terminates the write. Data out is high impedance if OE= VIH. 10 AT68166F 7747B–AERO–04/09 AT68166F Read Cycle Table 5. Read cycle timings(1) Notes: AT68166F-20 AT68166F-18 min max min max Unit 20 - 18 - ns Symbol Parameter TAVAV Read cycle time TAVQV Address access time - 20 - 18 ns TAVQX Address valid to low Z 5 - 5 - ns TELQV Chip-select access time - 20 - 18 ns TELQX CS low to low Z(2) 5 - 5 - ns TEHQZ CS high to high Z(2) - 9 - 8 ns TGLQV Output Enable access time - 11 - 8 ns TGLQX OE low to low Z(2) 2 - 2 - ns TGHQZ OE high to high Z (2) - 9 - 8 ns 1. Timings figures applicable for 8-bit, 16-bit and 32-bit mode. 2. Parameters guaranteed, not tested, with output loading 5 pF. (See “AC Test Loads Waveforms” on page 9.) Figure 10. Read Cycle nb 1: Address Controlled (CS = OE = VIL, WE = VIH) ADDRESS DOUT 11 7747B–AERO–04/09 Figure 11. Read Cycle nb 2: Chip Select Controlled (WE = VIH) CSx OE DOUT 12 AT68166F 7747B–AERO–04/09 AT68166F Typical Applications This section presents some standard implementations of the AT68166F in application. 32-bit mode application When used on a 32-bit (word) application, the module shall be connected as follow : • The 32 lines of data are connected to distinct data lines • The four CSx are connected together and linked to a single host CS output • Each one of the four WEx is connected to a dedicated WE line on the host to allow byte, half word and word format write. Figure 12. 32-bit typical application ( 1 SRAM bank) A AT68166F RAMS0* RAMOE0* RWE[3:0]* CS[3:0] OE WE[3:0] A[17:0] I/O[31:0] AT697E D[31:0] A[19:2] A[27:0] D[31:0] D[31:0] 16-bit mode application D A[19:2] When used on a 16-bit (half word) application, the module can be connected as presented in the following figure. This allows use of a single AT68166F part for two SRAM memory banks. All input controls of the AT68166F not used in the application shall be pulled-up. Figure 13. 16-bit typical application (two SRAM banks) RAMOE[1:0]* AT68166F RAMS1* RWE0* CS[3:2] WE[3:2] RAMS0* RWE0* CS[1:0] WE[1:0] AT697E A[27:0] D[31:0] 8-bit mode application OE A A[17:0] I/O[31:16] I/O[15:0] A[18:1] D D[31:16] D[31:16] A[18:1] D[31:0] When used on a 8-bit (byte) application, the module can be connected as presented in the following figure. This allows use of a single AT68166F part for up to four SRAM memory banks. All input controls of the AT68166F not used in the application shall be pulled-up. 13 7747B–AERO–04/09 Figure 14. 8-bit typical application (two SRAM banks) RAMOE[1:0]* AT697E RAMS2* RWE0* RAMS2* RWE0* CS[2] WE[2] RAMS1* RWE0* CS[1] WE[1] RAMS0* RWE0* CS[0] WE[0] A[27:0] D[31:0] 14 OE CS[3] WE[3] AT68166F A[17:0] I/O[31:24] I/O[23:16] I/O[15:8] I/O[7:0] A A[17:0] D D[31:24] D[31:24] D[31:24] D[31:24] A[17:0] D[31:0] AT68166F 7747B–AERO–04/09 AT68166F Ordering Information Part Number Temperature Range Speed Package Flow AT68166F-YM20-E 25°C 20 ns MQFP68 Engineering Samples 5962-0622902QXC -55° to +125°C 20 ns MQFP68 QML Q AT68166F 5962-0622902VXC -55° to +125°C 20 ns MQFP68 QML V 5962R0622902VXC -55° to +125°C 20 ns MQFP68 QML V RHA AT68166F-YM20-SCC -55° to +125°C 20 ns MQFP68 ESCC AT68166F-YS18-E 25°C 18 ns MQFP68 Engineering Samples 5962-0622904QYC -55° to +125°C 18 ns MQFP68 QML Q 5962-0622904VYC -55° to +125°C 18 ns MQFP68 QML V -55° to +125°C 18 ns MQFP68 QML V RHA -55° to +125°C 18 ns MQFP68 ESCC 5962R0622904VYC AT68166F-YS18-SCC (1) Note: 1. Will be replaced by SMD part number when available. 15 7747B–AERO–04/09 Package Drawings 68-lead Quad Flat Pack (950 Mils) with non conductive tie bar Note: 1. Lid is connected to Ground. 2. YM and YS package drawings are identical. 16 AT68166F 7747B–AERO–04/09 AT68166F Document Revision History Changes from Rev. A to Rev. B 1. Suppression of version AT68166G 2. Update of Absolute Maximum Ratings section 17 7747B–AERO–04/09 Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Regional Headquarters Europe Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500 Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369 Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Atmel Operations Memory 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 RF/Automotive Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340 Microcontrollers 2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314 La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60 ASIC/ASSP/Smart Cards 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Biometrics/Imaging/Hi‐Rel MPU/ High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80 Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01 1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759 Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743 Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’sAtmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. ©2007 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, and Everywhere You Are ® are the trademarks or registered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. Printed on recycled paper. 7747B–AERO–04/09