ATMEL ATMEGA16U2-MU

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
– 125 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 16 MIPS Throughput at 16 MHz
• Non-volatile Program and Data Memories
– 8K/16K/32K Bytes of In-System Self-Programmable Flash
– 512/512/1024 EEPROM
– 512/512/1024 Internal SRAM
– Write/Erase Cycles: 10,000 Flash/ 100,000 EEPROM
– Data retention: 20 years at 85C/ 100 years at 25C(1)
– Optional Boot Code Section with Independent Lock Bits
In-System Programming by on-chip Boot Program hardware-activated after
reset
True Read-While-Write Operation
– Programming Lock for Software Security
• USB 2.0 Full-speed Device Module with Interrupt on Transfer Completion
– Complies fully with Universal Serial Bus Specification REV 2.0
– 48 MHz PLL for Full-speed Bus Operation : data transfer rates at 12 Mbit/s
– Fully independant 176 bytes USB DPRAM for endpoint memory allocation
– Endpoint 0 for Control Transfers: from 8 up to 64-bytes
– 4 Programmable Endpoints:
IN or Out Directions
Bulk, Interrupt and IsochronousTransfers
Programmable maximum packet size from 8 to 64 bytes
Programmable single or double buffer
– Suspend/Resume Interrupts
– Microcontroller reset on USB Bus Reset without detach
– USB Bus Disconnection on Microcontroller Request
• Peripheral Features
– One 8-bit Timer/Counters with Separate Prescaler and Compare Mode (two 8-bit
PWM channels)
– One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Mode
(three 8-bit PWM channels)
– USART with SPI master only mode and hardware flow control (RTS/CTS)
– Master/Slave SPI Serial Interface
– Programmable Watchdog Timer with Separate On-chip Oscillator
– On-chip Analog Comparator
– Interrupt and Wake-up on Pin Change
• On Chip Debug Interface (debugWIRE)
• Special Microcontroller Features
– Power-On Reset and Programmable Brown-out Detection
– Internal Calibrated Oscillator
– External and Internal Interrupt Sources
– Five Sleep Modes: Idle, Power-save, Power-down, Standby, and Extended Standby
• I/O and Packages
– 22 Programmable I/O Lines
– QFN32 (5x5mm) / TQFP32 packages
• Operating Voltages
– 2.7 - 5.5V
• Operating temperature
– Industrial (-40°C to +85°C)
• Maximum Frequency
– 8 MHz at 2.7V - Industrial range
– 16 MHz at 4.5V - Industrial range
Note:
1. See “Data Retention” on page 6 for details.
8-bit
Microcontroller
with
8/16/32K Bytes
of ISP Flash
and USB
Controller
ATmega8U2
ATmega16U2
ATmega32U2
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
1. Pin Configurations
PC5 ( PCINT9/ OC.1B)
UGND
UCAP
PC4 (PCINT10)
D+
Pinout
AVCC
UVCC
D-
Figure 1-1.
32 31 30 29 28 27 26 25
(AIN0 / INT1) PD1
(RXD1 / AIN1 / INT2) PD2
24
23
22
21
20
19
18
17
QFN32
Reset (PC1 / dW)
PC6 (OC.1A / PCINT8)
PC7 (INT4 / ICP1 / CLKO)
PB7 (PCINT7 / OC.0A / OC.1C)
PB6 (PCINT6)
PB5 (PCINT5)
PB4 (T1 / PCINT4)
PB3 (PDO / MISO / PCINT3)
UGND
D+
AVCC
UVCC
D-
(SCLK / PCINT1) PB1
(PDI / MOSI / PCINT2) PB2
(RTS / AIN5 / INT6) PD6
(CTS / HWB / AIN6 / T0 / INT7) PD7
(SS / PCINT0) PB0
(INT5/ AIN3) PD4
(XCK / AIN4 / PCINT12) PD5
(TXD1 / INT3) PD3
9 10 11 12 13 14 15 16
PC5 ( PCINT9/ OC.1B)
VCC
(PCINT11 / AIN2 ) PC2
(OC.0B / INT0) PD0
1
2
3
4
5
6
7
8
UCAP
PC4 (PCINT10)
XTAL1
(PC0) XTAL2
GND
32 31 30 29 28 27 26 25
XTAL1
(PC0) XTAL2
GND
VCC
(PCINT11 /AIN2 ) PC2
(OC.0B / INT0) PD0
(AIN0 / INT1) PD1
(RXD1 / AIN1 / INT2) PD2
1
2
3
4
5
6
7
8
24
23
22
21
20
19
18
17
TQFP32
Reset (PC1 / dW)
PC6 (OC.1A / PCINT8)
PC7 (INT4 / ICP1 / CLKO)
PB7 (PCINT7 / OC.0A / OC.1C)
PB6 (PCINT6)
PB5 (PCINT5)
PB4 (T1 / PCINT4)
PB3 (PDO / MISO / PCINT3)
Note:
1.1
(SCLK / PCINT1) PB1
(PDI / MOSI / PCINT2) PB2
(INT5/ AIN3) PD4
(XCK AIN4 / PCINT12) PD5
(RTS / AIN5 / INT6) PD6
/ HWB / AIN6 / T0 / INT7) PD7
(SS / PCINT0) PB0
(TXD1 / INT3) PD3
9 10 11 12 13 14 15 16
The large center pad underneath the QFN package should be soldered to ground on the board to
ensure good mechanical stability.
Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device is characterized.
2
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
2. Overview
The ATmega8U2/16U2/32U2 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture.
By executing powerful instructions in a single clock cycle, the ATmega8U2/16U2/32U2 achieves throughputs approaching
1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.
Block Diagram
PD7 - PD0
PORTC DRIVERS
ANALOG
COMPARATOR
+
-
PORTD DRIVERS
DATA REGISTER
PORTD
PB7 - PB0
PC7 - PC0
DATA DIR.
REG. PORTD
DATA REGISTER
PORTC
RESET
Block Diagram
XTAL2
Figure 2-1.
XTAL1
2.1
PORTB DRIVERS
DATA DIR.
REG. PORTC
DATA REGISTER
PORTB
DATA DIR.
REG. PORTB
8-BIT DA TA BUS
VCC
POR - BOD
RESET
GND
PROGRAM
COUNTER
STACK
POINTER
ON-CHIP DEBUG
PROGRAM
FLASH
SRAM
PROGRAMMING
LOGIC
INSTRUCTION
REGISTER
Debug-Wire
GENERAL
PURPOSE
REGISTERS
INTERNAL
OSCILLATOR
WATCHDOG
TIMER
MCU CONTROL
REGISTER
CALIB. OSC
OSCILLATOR
TIMING AND
CONTROL
TIMER/
COUNTERS
UVcc
X
INSTRUCTION
DECODER
CONTROL
LINES
Y
Z
ALU
INTERRUPT
UNIT
ON-CHIP
3.3V
REGULATOR
UCap
1uF
EEPROM
PLL
STATUS
REGISTER
USB
USART1
SPI
D+/SCK
D-/SDATA
PS/2
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
3
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATmega8U2/16U2/32U2 provides the following features: 8K/16K/32K Bytes of In-System
Programmable Flash with Read-While-Write capabilities, 512/512/1024 Bytes EEPROM,
512/512/1024 SRAM, 22 general purpose I/O lines, 32 general purpose working registers, two
flexible Timer/Counters with compare modes and PWM, one USART, a programmable Watchdog Timer with Internal Oscillator, an SPI serial port, debugWIRE interface, also used for
accessing the On-chip Debug system and programming and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port,
and interrupt system to continue functioning. The Power-down mode saves the register contents
but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware
Reset. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device
is sleeping. This allows very fast start-up combined with low power consumption. In Extended
Standby mode, the main Oscillator continues to run.
The device is manufactured using Atmel’s high-density nonvolatile memory technology. The onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial
interface, by a conventional nonvolatile memory programmer, or by an on-chip Boot program
running on the AVR core. The boot program can use any interface to download the application
program in the application Flash memory. Software in the Boot Flash section will continue to run
while the Application Flash section is updated, providing true Read-While-Write operation. By
combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip,
the Atmel ATmega8U2/16U2/32U2 is a powerful microcontroller that provides a highly flexible
and cost effective solution to many embedded control applications.
The ATmega8U2/16U2/32U2 are supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit
emulators, and evaluation kits.
2.2
2.2.1
Pin Descriptions
VCC
Digital supply voltage.
2.2.2
GND
Ground.
2.2.3
AVCC
AVCC is the supply voltage pin (input) for all analog features (Analog Comparator, PLL). It
should be externally connected to VCC through a low-pass filter.
2.2.4
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATmega8U2/16U2/32U2 as
listed on page 74.
4
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
2.2.5
Port C (PC7..PC0)
Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port C output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of various special features of the ATmega8U2/16U2/32U2 as
listed on page 77.
2.2.6
Port D (PD7..PD0)
Port D serves as analog inputs to the analog comparator.
Port D also serves as an 8-bit bi-directional I/O port, if the analog comparator is not used (concerns PD2/PD1 pins). Port pins can provide internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
2.2.7
DUSB Full Speed Negative Data Upstream Port
2.2.8
D+
USB Full Speed Positive Data Upstream Port
2.2.9
UGND
USB Ground.
2.2.10
UVCC
USB Pads Internal Regulator Input supply voltage.
2.2.11
UCAP
USB Pads Internal Regulator Output supply voltage. Should be connected to an external capacitor (1μF).
2.2.12
RESET/PC1/dW
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running. The minimum pulse length is given in “System Control and
Reset” on page 47. Shorter pulses are not guaranteed to generate a reset. This pin alternatively
serves as debugWire channel or as generic I/O. The configuration depends on the fuses RSTDISBL and DWEN.
2.2.13
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.2.14
XTAL2/PC0
Output from the inverting Oscillator amplifier if enabled by Fuse. Also serves as a generic I/O.
5
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
3. Resources
A comprehensive set of development tools, application notes and datasheets are available for
download on http://www.atmel.com/avr.
4. Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
These code examples assume that the part specific header file is included before compilation.
For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI"
instructions must be replaced with instructions that allow access to extended I/O. Typically
"LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR".
5. Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
6
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
6. Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xFF)
Reserved
-
-
-
-
-
-
-
-
(0xFE)
Reserved
-
-
-
-
-
-
-
-
(0xFD)
Reserved
-
-
-
-
-
-
-
-
(0xFC)
Reserved
-
-
-
-
-
-
-
-
(0xFB)
UPOE
UPWE1
UPWE0
UPDRV1
UPDRV0
SCKI
DATAI
DPI
DMI
(0xFA)
Reserved
-
-
-
-
-
-
-
-
(0xF9)
Reserved
-
-
-
-
-
-
-
-
(0xF8)
Reserved
-
-
-
-
-
-
-
-
(0xF7)
Reserved
-
-
-
-
-
-
-
-
(0xF6)
Reserved
-
-
-
-
-
-
-
-
(0xF5)
Reserved
-
-
-
-
-
-
-
-
(0xF4)
UEINT
-
-
(0xF3)
Reserved
-
-
-
-
-
EPINT4:0
-
-
-
(0xF2)
UEBCLX
BYCT7:0
(0xF1)
UEDATX
DAT7:0
(0xF0)
UEIENX
FLERRE
NAKINE
-
NAKOUTE
RXSTPE
RXOUTE
(0xEF)
UESTA1X
-
-
-
-
-
CTRLDIR
OVERFI
UNDERFI
-
Page
page 195
page 222
page 221
page 221
STALLEDE
TXINE
CURRBK1:0
page 220
page 218
(0xEE)
UESTA0X
CFGOK
(0xED)
UECFG1X
-
(0xEC)
UECFG0X
(0xEB)
UECONX
-
(0xEA)
UERST
-
(0xE9)
UENUM
(0xE8)
(0xE7)
(0xE6)
(0xE5)
(0xE4)
UDFNUML
(0xE3)
UDADDR
ADDEN
(0xE2)
UDIEN
-
UPRSME
EORSME
WAKEUPE
EORSTE
SOFE
-
SUSPE
page 211
(0xE1)
UDINT
-
UPRSMI
EORSMI
WAKEUPI
EORSTI
SOFI
-
SUSPI
page 210
(0xE0)
UDCON
-
-
-
RPUTX
-
RSTCPU
RMWKUP
DETACH
page 209
(0xDF)
Reserved
-
-
-
-
-
-
-
-
DTSEQ1:0
EPSIZE2:0
EPTYPE1:0
NBUSYBK1:0
EPBK1:0
page 217
ALLOC
-
page 216
-
-
EPDIR
page 215
-
-
EPEN
page 214
-
-
-
-
STALLRQ
STALLRQC
RSTDT
-
-
-
-
-
-
-
UEINTX
FIFOCON
NAKINI
RWAL
NAKOUTI
RXSTPI
RXOUTI
STALLEDI
TXINI
Reserved
-
-
-
-
-
-
-
-
UDMFN
-
-
-
FNCERR
-
-
-
-
UDFNUMH
-
-
-
-
-
EPRST4:0
page 214
EPNUM2:0
page 214
FNUM10:8
page 219
page 213
page 213
FNUM7:0
page 213
UADD6:0
page 212
(0xDE)
Reserved
-
-
-
-
-
-
-
-
(0xDD)
Reserved
-
-
-
-
-
-
-
-
(0xDC)
Reserved
-
-
-
-
-
-
-
-
(0xDB)
Reserved
-
-
-
-
-
-
-
-
(0xDA)
Reserved
-
-
-
-
-
-
-
-
(0xD9)
Reserved
-
-
-
-
-
-
-
-
(0xD8)
USBCON
USBE
-
FRZCLK
-
-
-
-
-
(0xD7)
Reserved
-
-
-
-
-
-
-
-
(0xD6)
Reserved
-
-
-
-
-
-
-
-
(0xD5)
Reserved
-
-
-
-
-
-
-
-
(0xD4)
Reserved
-
-
-
-
-
-
-
-
(0xD3)
Reserved
-
-
-
-
-
-
-
-
(0xD2)
CLKSTA
-
-
-
-
-
-
RCON
EXTON
page 38
(0xD1)
CLKSEL1
RCCKSEL3
RCCKSEL2
RCCKSEL1
RCCKSEL0
EXCKSEL3
EXCKSEL2
EXCKSEL1
EXCKSEL0
page 38
(0xD0)
CLKSEL0
RCSUT1
RCSUT0
EXSUT1
EXSUT0
RCE
EXTE
-
CLKS
page 37
(0xCF)
Reserved
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CTSEN
RTSEN
page 171
(0xCE)
UDR1
(0xCD)
UBRR1H
USART1 I/O Data Register
-
page 195
page 167
USART1 Baud Rate Register High Byte
page 171
(0xCC)
UBRR1L
(0xCB)
UCSR1D
-
-
USART1 Baud Rate Register Low Byte
page 171
(0xCA)
UCSR1C
UMSEL11
UMSEL10
UPM11
UPM10
USBS1
UCSZ11
UCSZ10
UCPOL1
page 169
(0xC9)
UCSR1B
RXCIE1
TXCIE1
UDRIE1
RXEN1
TXEN1
UCSZ12
RXB81
TXB81
page 168
(0xC8)
UCSR1A
RXC1
TXC1
UDRE1
FE1
DOR1
PE1
U2X1
MPCM1
page 167
(0xC7)
Reserved
-
-
-
-
-
-
-
-
(0xC6)
Reserved
-
-
-
-
-
-
-
-
(0xC5)
Reserved
-
-
-
-
-
-
-
-
(0xC4)
Reserved
-
-
-
-
-
-
-
-
(0xC3)
Reserved
-
-
-
-
-
-
-
-
(0xC2)
Reserved
-
-
-
-
-
-
-
-
(0xC1)
Reserved
-
-
-
-
-
-
-
-
(0xC0)
Reserved
-
-
-
-
-
-
-
-
(0xBF)
Reserved
-
-
-
-
-
-
-
-
7
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0xBE)
Reserved
-
-
-
-
-
-
-
-
(0xBD)
Reserved
-
-
-
-
-
-
-
-
(0xBC)
Reserved
-
-
-
-
-
-
-
-
(0xBB)
Reserved
-
-
-
-
-
-
-
-
(0xBA)
Reserved
-
-
-
-
-
-
-
-
(0xB9)
Reserved
-
-
-
-
-
-
-
-
(0xB8)
Reserved
-
-
-
-
-
-
-
-
(0xB7)
Reserved
-
-
-
-
-
-
-
-
(0xB6)
Reserved
-
-
-
-
-
-
-
-
(0xB5)
Reserved
-
-
-
-
-
-
-
-
(0xB4)
Reserved
-
-
-
-
-
-
-
-
(0xB3)
Reserved
-
-
-
-
-
-
-
-
(0xB2)
Reserved
-
-
-
-
-
-
-
-
(0xB1)
Reserved
-
-
-
-
-
-
-
-
(0xB0)
Reserved
-
-
-
-
-
-
-
-
(0xAF)
Reserved
-
-
-
-
-
-
-
-
(0xAE)
Reserved
-
-
-
-
-
-
-
-
(0xAD)
Reserved
-
-
-
-
-
-
-
-
(0xAC)
Reserved
-
-
-
-
-
-
-
-
(0xAB)
Reserved
-
-
-
-
-
-
-
-
(0xAA)
Reserved
-
-
-
-
-
-
-
-
(0xA9)
Reserved
-
-
-
-
-
-
-
-
(0xA8)
Reserved
-
-
-
-
-
-
-
-
(0xA7)
Reserved
-
-
-
-
-
-
-
-
(0xA6)
Reserved
-
-
-
-
-
-
-
-
(0xA5)
Reserved
-
-
-
-
-
-
-
-
(0xA4)
Reserved
-
-
-
-
-
-
-
-
(0xA3)
Reserved
-
-
-
-
-
-
-
-
(0xA2)
Reserved
-
-
-
-
-
-
-
-
(0xA1)
Reserved
-
-
-
-
-
-
-
-
(0xA0)
Reserved
-
-
-
-
-
-
-
-
(0x9F)
Reserved
-
-
-
-
-
-
-
-
(0x9E)
Reserved
-
-
-
-
-
-
-
-
(0x9D)
Reserved
-
-
-
-
-
-
-
-
(0x9C)
Reserved
-
-
-
-
-
-
-
-
(0x9B)
Reserved
-
-
-
-
-
-
-
-
(0x9A)
Reserved
-
-
-
-
-
-
-
-
(0x99)
Reserved
-
-
-
-
-
-
-
-
(0x98)
Reserved
-
-
-
-
-
-
-
-
(0x97)
Reserved
-
-
-
-
-
-
-
-
(0x96)
Reserved
-
-
-
-
-
-
-
-
(0x95)
Reserved
-
-
-
-
-
-
-
-
(0x94)
Reserved
-
-
-
-
-
-
-
-
(0x93)
Reserved
-
-
-
-
-
-
-
-
(0x92)
Reserved
-
-
-
-
-
-
-
-
(0x91)
Reserved
-
-
-
-
-
-
-
-
(0x90)
Reserved
-
-
-
-
-
-
-
-
(0x8F)
Reserved
-
-
-
-
-
-
-
-
(0x8E)
Reserved
-
-
-
-
-
-
-
-
(0x8D)
OCR1CH
Timer/Counter1 - Output Compare Register C High Byte
page 135
(0x8C)
OCR1CL
Timer/Counter1 - Output Compare Register C Low Byte
page 135
(0x8B)
OCR1BH
Timer/Counter1 - Output Compare Register B High Byte
page 135
(0x8A)
OCR1BL
Timer/Counter1 - Output Compare Register B Low Byte
page 135
(0x89)
OCR1AH
Timer/Counter1 - Output Compare Register A High Byte
page 135
(0x88)
OCR1AL
Timer/Counter1 - Output Compare Register A Low Byte
page 135
(0x87)
ICR1H
Timer/Counter1 - Input Capture Register High Byte
page 135
(0x86)
ICR1L
Timer/Counter1 - Input Capture Register Low Byte
page 135
(0x85)
TCNT1H
Timer/Counter1 - Counter Register High Byte
page 134
(0x84)
TCNT1L
Timer/Counter1 - Counter Register Low Byte
(0x83)
Reserved
-
-
-
(0x82)
TCCR1C
FOC1A
FOC1B
FOC1C
-
-
-
-
-
page 134
(0x81)
TCCR1B
ICNC1
ICES1
-
WGM13
WGM12
CS12
CS11
CS10
page 133
(0x80)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
COM1C1
COM1C0
WGM11
WGM10
page 129
(0x7F)
DIDR1
-
AIN6D
AIN5D
AIN4D
AIN3D
AIN2D
AIN1D
AIN0D
page 225
(0x7E)
Reserved
-
-
-
-
-
-
-
-
(0x7D)
ACMUX
-
-
-
-
-
CMUX2
CMUX1
CMUX0
-
-
Page
page 134
-
-
-
page 225
8
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
(0x7C)
Reserved
-
-
-
-
-
-
-
-
(0x7B)
Reserved
-
-
-
-
-
-
-
-
(0x7A)
Reserved
-
-
-
-
-
-
-
-
(0x79)
Reserved
-
-
-
-
-
-
-
-
(0x78)
Reserved
-
-
-
-
-
-
-
-
(0x77)
Reserved
-
-
-
-
-
-
-
-
(0x76)
Reserved
-
-
-
-
-
-
-
-
(0x75)
Reserved
-
-
-
-
-
-
-
-
(0x74)
Reserved
-
-
-
-
-
-
-
-
(0x73)
Reserved
-
-
-
-
-
-
-
-
(0x72)
Reserved
-
-
-
-
-
-
-
-
(0x71)
Reserved
-
-
-
-
-
-
-
-
(0x70)
Reserved
-
-
-
-
-
-
-
-
(0x6F)
TIMSK1
-
-
ICIE1
-
OCIE1C
OCIE1B
OCIE1A
TOIE1
page 135
(0x6E)
TIMSK0
-
-
-
-
-
OCIE0B
OCIE0A
TOIE0
page 106
(0x6D)
Reserved
-
-
-
-
-
-
-
-
(0x6C)
PCMSK1
-
-
-
PCINT12
PCINT11
PCINT10
PCINT9
PCINT8
page 87
(0x6B)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
page 87
(0x6A)
EICRB
ISC71
ISC70
ISC61
ISC60
ISC51
ISC50
ISC41
ISC40
page 85
(0x69)
EICRA
ISC31
ISC30
ISC21
ISC20
ISC11
ISC10
ISC01
ISC00
page 84
(0x68)
PCICR
-
-
-
-
-
-
PCIE1
PCIE0
page 86
(0x67)
Reserved
-
-
-
-
-
-
-
-
(0x66)
OSCCAL
(0x65)
PRR1
PRUSB
-
-
-
-
-
-
PRUSART1
page 46
(0x64)
PRR0
-
-
PRTIM0
-
PRTIM1
PRSPI
-
-
page 46
Oscillator Calibration Register
Page
page 38
(0x63)
REGCR
-
-
-
-
-
-
-
REGDIS
page 196
(0x62)
WDTCKD
-
-
WDEWIFCM
WCLKD2
WDEWIF
WDEWIE
WCLKD1
WCLKD0
page 57
(0x61)
CLKPR
CLKPCE
-
-
-
CLKPS3
CLKPS2
CLKPS1
CLKPS0
page 39
(0x60)
WDTCSR
WDIF
WDIE
WDP3
WDCE
WDE
WDP2
WDP1
WDP0
page 56
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
page 9
0x3E (0x5E)
SPH
SP15
SP14
SP13
SP12
SP11
SP10
SP9
SP8
page 12
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
page 12
0x3C (0x5C)
Reserved
-
-
-
-
-
-
-
-
0x3B (0x5B)
Reserved
-
-
-
-
-
-
-
-
0x3A (0x5A)
Reserved
-
-
-
-
-
-
-
-
0x39 (0x59)
Reserved
-
-
-
-
-
-
-
-
0x38 (0x58)
Reserved
-
-
-
-
-
-
-
-
0x37 (0x57)
SPMCSR
SPMIE
RWWSB
SIGRD
RWWSRE
BLBSET
PGWRT
PGERS
SPMEN
0x36 (0x56)
Reserved
-
-
-
-
-
-
-
-
0x35 (0x55)
MCUCR
-
-
-
-
-
-
IVSEL
IVCE
page 65, 82
0x34 (0x54)
MCUSR
-
-
USBRF
-
WDRF
BORF
EXTRF
PORF
page 55
0x33 (0x53)
SMCR
-
-
-
-
SM2
SM1
SM0
SE
page 45
0x32 (0x52)
Reserved
-
-
-
-
-
-
-
-
0x31 (0x51)
DWDR
0x30 (0x50)
ACSR
ACD
ACBG
ACO
ACI
ACIE
ACIC
ACIS1
ACIS0
0x2F (0x4F)
Reserved
-
-
-
-
-
-
-
-
0x2E (0x4E)
SPDR
0x2D (0x4D)
SPSR
SPIF
WCOL
-
-
-
-
-
SPI2X
page 146
0x2C (0x4C)
SPCR
SPIE
SPE
DORD
MSTR
CPOL
CPHA
SPR1
SPR0
page 145
0x2B (0x4B)
GPIOR2
General Purpose I/O Register 2
0x2A (0x4A)
GPIOR1
General Purpose I/O Register 1
0x29 (0x49)
PLLCSR
0x28 (0x48)
OCR0B
Timer/Counter0 Output Compare Register B
page 106
0x27 (0x47)
OCR0A
Timer/Counter0 Output Compare Register A
page 106
0x26 (0x46)
TCNT0
Timer/Counter0 (8 Bit)
0x25 (0x45)
TCCR0B
FOC0A
FOC0B
-
-
WGM02
CS02
CS01
CS00
page 105
0x24 (0x44)
TCCR0A
COM0A1
COM0A0
COM0B1
COM0B0
-
-
WGM01
WGM00
page 105
0x23 (0x43)
GTCCR
TSM
-
-
-
-
-
PSRASY
PSRSYNC
page 89
0x22 (0x42)
EEARH
-
-
-
-
0x21 (0x41)
EEARL
EEPROM Address Register Low Byte
0x20 (0x40)
EEDR
EEPROM Data Register
0x1F (0x3F)
EECR
debugWIRE Data Register
page 245
SPI Data Register
-
-
-
-
-
EEPM1
PLLP2
EEPM0
page 242
page 224
page 147
PLLP1
page 24
page 24
PLLP0
PLLE
PLOCK
page 40
page 106
EEPROM Address Register High Byte
EERIE
page 20
page 20
page 20
EEMPE
EEPE
EERE
General Purpose I/O Register 0
page 21
0x1E (0x3E)
GPIOR0
0x1D (0x3D)
EIMSK
INT7
INT6
INT5
INT4
INT3
INT2
INT1
INT0
page 25
page 86
0x1C (0x3C)
EIFR
INTF7
INTF6
INTF5
INTF4
INTF3
INTF2
INTF1
INTF0
page 86
0x1B (0x3B)
PCIFR
-
-
-
-
-
-
PCIF1
PCIF0
page 86
9
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0x1A (0x3A)
Reserved
-
-
-
-
-
-
-
-
0x19 (0x39)
Reserved
-
-
-
-
-
-
-
-
0x18 (0x38)
Reserved
-
-
-
-
-
-
-
-
0x17 (0x37)
Reserved
-
-
-
-
-
-
-
-
0x16 (0x36)
TIFR1
-
-
ICF1
-
OCF1C
OCF1B
OCF1A
TOV1
page 136
0x15 (0x35)
TIFR0
-
-
-
-
-
OCF0B
OCF0A
TOV0
page 107
0x14 (0x34)
Reserved
-
-
-
-
-
-
-
-
0x13 (0x33)
Reserved
-
-
-
-
-
-
-
-
0x12 (0x32)
Reserved
-
-
-
-
-
-
-
-
0x11 (0x31)
Reserved
-
-
-
-
-
-
-
-
0x10 (0x30)
Reserved
-
-
-
-
-
-
-
-
0x0F (0x2F)
Reserved
-
-
-
-
-
-
-
-
0x0E (0x2E)
Reserved
-
-
-
-
-
-
-
-
0x0D (0x2D)
Reserved
-
-
-
-
-
-
-
-
0x0C (0x2C)
Reserved
-
-
-
-
-
-
-
-
0x0B (0x2B)
PORTD
PORTD7
PORTD6
PORTD5
PORTD4
PORTD3
PORTD2
PORTD1
PORTD0
page 83
0x0A (0x2A)
DDRD
DDD7
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
page 83
0x09 (0x29)
PIND
PIND7
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
page 83
0x08 (0x28)
PORTC
PORTC7
PORTC6
PORTC5
PORTC4
-
PORTC2
PORTC1
PORTC0
page 82
0x07 (0x27)
DDRC
DDC7
DDC6
DDC5
DDC4
-
DDC2
DDC1
DDC0
page 82
0x06 (0x26)
PINC
PINC7
PINC6
PINC5
PINC4
-
PINC2
PINC1
PINC0
page 82
0x05 (0x25)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
page 82
0x04 (0x24)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
page 82
0x03 (0x23)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
page 82
0x02 (0x22)
Reserved
-
-
-
-
-
-
-
-
0x01 (0x21)
Reserved
-
-
-
-
-
-
-
-
0x00 (0x20)
Reserved
-
-
-
-
-
-
-
-
Note:
Page
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Moreover reserved bits are not
guaranteed to be read as “0”. Reserved I/O memory addresses should never be written.
2. I/O registers within the address range $00 - $1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on
all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions
work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses $00 - $3F must be used. When addressing I/O registers as data space using LD and ST instructions, $20 must be added to these addresses. The ATmega8U2/16U2/32U2 is
a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for
the IN and OUT instructions. For the Extended I/O space from $60 - $1FF in SRAM, only the ST/STS/STD and LD/LDS/LDD
instructions can be used.
10
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
7. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
1
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd  Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd  Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl  Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd  Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd  Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd  Rd - Rr - C
Z,C,N,V,H
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd  Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl  Rdh:Rdl - K
Z,C,N,V,S
2
AND
Rd, Rr
Logical AND Registers
Rd Rd  Rr
Z,N,V
1
ANDI
Rd, K
Logical AND Register and Constant
Rd  Rd K
Z,N,V
1
1
OR
Rd, Rr
Logical OR Registers
Rd  Rd v Rr
Z,N,V
ORI
Rd, K
Logical OR Register and Constant
Rd Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd  Rd  Rr
Z,N,V
1
COM
Rd
One’s Complement
Rd  0xFF  Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd  0x00  Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd  Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd  Rd  (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd  Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd  Rd  1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd  Rd  Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd  Rd  Rd
Z,N,V
1
SER
Rd
Set Register
Rd  0xFF
None
1
RJMP
k
Relative Jump
PC PC + k + 1
None
2
Indirect Jump to (Z)
PC  Z
None
2
3
BRANCH INSTRUCTIONS
IJMP
JMP
k
Direct Jump
PC k
None
RCALL
k
Relative Subroutine Call
PC  PC + k + 1
None
4
Indirect Call to (Z)
PC  Z
None
4
ICALL
CALL
k
RET
RETI
CPSE
Rd,Rr
Direct Subroutine Call
PC  k
None
5
Subroutine Return
PC  STACK
None
5
Interrupt Return
PC  STACK
I
5
Compare, Skip if Equal
if (Rd = Rr) PC PC + 2 or 3
None
1/2/3
CP
Rd,Rr
Compare
Rd  Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd  Rr  C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd  K
Z, N,V,C,H
1
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC  PC + 2 or 3
None
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC  PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC  PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC  PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PCPC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PCPC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC  PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC  PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC  PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC  PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC  PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC  PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC  PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC  PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N  V= 0) then PC  PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N  V= 1) then PC  PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC  PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC  PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC  PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC  PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC  PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC  PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC  PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC  PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b)  1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b)  0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1)  Rd(n), Rd(0)  0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n)  Rd(n+1), Rd(7)  0
Z,C,N,V
1
11
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ROL
Rd
Rotate Left Through Carry
Rd(0)C,Rd(n+1) Rd(n),CRd(7)
Z,C,N,V
1
ROR
Rd
Rotate Right Through Carry
Rd(7)C,Rd(n) Rd(n+1),CRd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n)  Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0)
None
1
1
BSET
s
Flag Set
SREG(s)  1
SREG(s)
BCLR
s
Flag Clear
SREG(s)  0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T  Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b)  T
None
1
SEC
Set Carry
C1
C
1
CLC
Clear Carry
C0
C
1
SEN
Set Negative Flag
N1
N
1
CLN
Clear Negative Flag
N0
N
1
SEZ
Set Zero Flag
Z1
Z
1
CLZ
Clear Zero Flag
Z0
Z
1
SEI
Global Interrupt Enable
I1
I
1
CLI
Global Interrupt Disable
I 0
I
1
SES
Set Signed Test Flag
S1
S
1
CLS
Clear Signed Test Flag
S0
S
1
SEV
Set Twos Complement Overflow.
V1
V
1
CLV
Clear Twos Complement Overflow
V0
V
1
SET
Set T in SREG
T1
T
1
CLT
Clear T in SREG
T0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H1
H0
H
H
1
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
1
Rd, Rr
Copy Register Word
Rd  Rr
Rd+1:Rd  Rr+1:Rr
None
MOVW
None
1
LDI
Rd, K
Load Immediate
Rd  K
None
1
LD
Rd, X
Load Indirect
Rd  (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd  (X), X  X + 1
None
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X  X - 1, Rd  (X)
None
2
2
LD
Rd, Y
Load Indirect
Rd  (Y)
None
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd  (Y), Y  Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y  Y - 1, Rd  (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd  (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd  (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd  (Z), Z  Z+1
None
2
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z  Z - 1, Rd  (Z)
None
LDD
Rd, Z+q
Load Indirect with Displacement
Rd  (Z + q)
None
2
LDS
Rd, k
Load Direct from SRAM
Rd  (k)
None
2
2
ST
X, Rr
Store Indirect
(X) Rr
None
ST
X+, Rr
Store Indirect and Post-Inc.
(X) Rr, X  X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X  X - 1, (X)  Rr
None
2
2
ST
Y, Rr
Store Indirect
(Y)  Rr
None
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y)  Rr, Y  Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y  Y - 1, (Y)  Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q)  Rr
None
2
ST
Z, Rr
Store Indirect
(Z)  Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z)  Rr, Z  Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z  Z - 1, (Z)  Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q)  Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k)  Rr
None
2
Load Program Memory
R0  (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd  (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd  (Z), Z  Z+1
None
3
Store Program Memory
(Z)  R1:R0
None
-
In Port
Rd  P
None
1
SPM
IN
Rd, P
OUT
P, Rr
Out Port
P  Rr
None
1
PUSH
Rr
Push Register on Stack
STACK  Rr
None
2
POP
Rd
Pop Register from Stack
Rd  STACK
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
12
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
8. Ordering Information
8.1
ATmega8U2
Speed
Power Supply
16 MHz
2.7 - 5.5V
Ordering Code
Package
ATmega8U2-AU
32A
ATmega8U2-MU
32M1-A
Operational Range
-40C to +85C
Package Type
32A
32-lead, 7 x7 x 1.2 mm, lead pitch 0.8 mm Thin Quad Flat Package
32M1
32-pad, 5 x 5 x 1 mm body, pad pitch 0.50 mm Quad Flat No lead (QFN)
13
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
8.2
ATmega16U2
Speed
Power Supply
16 MHz
2.7 - 5.5V
Ordering Code
Package
ATmega16U2-AU
32A
ATmega16U2-MU
32M1-A
Operational Range
-40C to +85C
Package Type
32A
32-lead, 7 x7 x 1.2 mm, lead pitch 0.8 mm Thin Quad Flat Package
32M1
32-pad, 5 x 5 x 1 mm body, pad pitch 0.50 mm Quad Flat No lead (QFN)
14
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
8.3
ATmega32U2
Speed
Power Supply
16 MHz
2.7 - 5.5V
Ordering Code
Package
ATmega32U2-AU
32A
ATmega32U2-MU
32M1-A
Operational Range
-40C to +85C
Package Type
32A
32-lead, 7 x7 x 1.2 mm, lead pitch 0.8 mm Thin Quad Flat Package
32M1
32-pad, 5 x 5 x 1 mm body, pad pitch 0.50 mm Quad Flat No lead (QFN)
15
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
9. Packaging Information
9.1
QFN32
16
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
9.2
TQFP32
17
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
10. Errata
10.1
Errata ATmega8U2
The revision letter in this section refers to the revision of the ATmega8U2 device.
10.1.1
rev. A and rev B
• Full Swing oscillator
1. Full Swing oscillator
The maximum frequency for the Full Swing Crystal Oscillator is 8MHz. For Crystal frequencies > 8MHz the Full Swing Crystal Oscillator is not guaranteed to operate correctly.
Problem fix/Workaround
If a Crystal with frequency > 8MHz is used, the Low Power Crystal Oscillator option should
be used instead. See table 8-1 for an overview of the Device Clocking Options. Note that the
Low Power Crystal Oscillator will not provide full rail-to-rail swing on the XTAL2 pin. If system clock output is needed to drive other clock inputs while running from the Low Power
Crystal Oscillator, the system clock can be output on PORTC7 by programming the CKOUT
fuse.
10.2
Errata ATmega16U2
The revision letter in this section refers to the revision of the ATmega16U2 device.
10.2.1
rev. A and rev B
• Full Swing oscillator
1. Full Swing oscillator
The maximum frequency for the Full Swing Crystal Oscillator is 8MHz. For Crystal frequencies > 8MHz the Full Swing Crystal Oscillator is not guaranteed to operate correctly.
Problem fix/Workaround
If a Crystal with frequency > 8MHz is used, the Low Power Crystal Oscillator option should
be used instead. See table 8-1 for an overview of the Device Clocking Options. Note that the
Low Power Crystal Oscillator will not provide full rail-to-rail swing on the XTAL2 pin. If system clock output is needed to drive other clock inputs while running from the Low Power
Crystal Oscillator, the system clock can be output on PORTC7 by programming the CKOUT
fuse.
10.3
Errata ATmega32U2
The revision letter in this section refers to the revision of the ATmega32U2 device.
10.3.1
rev. C
No Known Errata
18
7799ES–AVR–09/2012
10.3.2
rev. A and rev B
• Full Swing oscillator
1. Full Swing oscillator
The maximum frequency for the Full Swing Crystal Oscillator is 8MHz. For Crystal frequencies > 8MHz the Full Swing Crystal Oscillator is not guaranteed to operate correctly.
Problem fix/Workaround
If a Crystal with frequency > 8MHz is used, the Low Power Crystal Oscillator option should
be used instead. See table 8-1 for an overview of the Device Clocking Options. Note that the
Low Power Crystal Oscillator will not provide full rail-to-rail swing on the XTAL2 pin. If system clock output is needed to drive other clock inputs while running from the Low Power
Crystal Oscillator, the system clock can be output on PORTC7 by programming the CKOUT
fuse.
19
ATmega8U2/16U2/32U2
7799ES–AVR–09/2012
ATmega8U2/16U2/32U2
11. Datasheet Revision History
Please note that the referring page numbers in this section are referred to this document. The
referring revision in this section are referring to the document revision.
11.1
Rev.7799E – 09/12
1.
2.
11.2
Rev. 7799D – 11/10
1.
2.
3.
4.
5.
6.
7.
8.
11.3
Updated the footnote on page 2. Removed the VQFP from the footnote
Updated Section 20-4 ”Typical Bus powered application with 3.3V I/O” on page 187.
Updated Figure 20-6 on page 188. By connecting UVCC to 3V power-supply.
Updated Table 21-2 on page 215. 10: Bulk Type, and 01: Isochronous Type
Added UVCC limits in Electrical Characteristics
Updated “Electrical Characteristics” on page 264. Added USB D+ Internal Pull-up (streaming
mode)
Updated “Register Summary” on page 7. Added DIDR1 (adress: 0x7F)
Removed Figure 27-26: USB Regulator Consumption with load 75 vs. Vcc
Rev. 7799C – 12/09
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.4
Renamed package name in Figure 1-1 on page 2 from VQFP32 to TQFP32.
Corrected typos.
Updated “Features” on page 1.
Added description of “AVCC” on page 4.
Updated Figure 7-2 on page 18.
Updated Figure 20-3 on page 186 and Figure 20-4 on page 187.
Updated “Fuse Bits” on page 247.
Updated “DC Characteristics” on page 264.
Updated Table 26-3 on page 267, by removing Vrst.
Updated Table 26-4 on page 268.
Updated “Typical Characteristics” on page 273.
Added new “Errata” on page 18.
Rev. 7799B – 06/09
1.
Updated “Typical Characteristics” on page 273.
20
7799ES–AVR–09/2012
11.5
Rev. 7799A – 03/09
1.
21
Initial revision.
ATmega8U2/16U2/32U2
7799ES–AVR–09/2012
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com
Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369
Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
JAPAN
Tel: (+81)(3) 3523-3551
Fax: (+81)(3) 3523-7581
© 2010 Atmel Corporation. All rights reserved.
Atmel ®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries.
Other terms and product names may be trademarks of others.
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
7799ES–AVR–09/2012