Features • High Performance, Low Power AVR® 8-Bit Microcontroller • Advanced RISC Architecture • • • • • • • • – 123 Powerful Instructions – Most Single Clock Cycle Execution – 32 x 8 General Purpose Working Registers – Fully Static Operation High Endurance Non-volatile Memory Segments – 4K/8K Bytes of In-System Self-Programmable Flash program memory(ATtiny48/88) – 64/64 Bytes EEPROM (ATtiny48/88) – 256/512 Bytes Internal SRAM (ATtiny48/88) – Write/Erase Cycles: 10,000 Flash/100,000 EEPROM – Data retention: 20 years at 85°C / 100 years at 25°C – Programming Lock for Software Security Peripheral Features – One 8-bit Timer/Counter with Separate Prescaler and Compare Mode – One 16-bit Timer/Counter with Prescaler, and Compare and Capture Modes – 8-channel 10-bit ADC in 32-lead TQFP and 32-pad QFN/MLF package – 6-channel 10-bit ADC in 28-pin PDIP and 28-pad QFN/MLF package – Master/Slave SPI Serial Interface – Byte-oriented 2-wire Serial Interface (Philips I2C Compatible) – Programmable Watchdog Timer with Separate On-chip Oscillator – On-chip Analog Comparator – Interrupt and Wake-up on Pin Change Special Microcontroller Features – debugWIRE On-chip Debug System – In-System Programmable via SPI Port – Power-on Reset and Programmable Brown-out Detection – Internal Calibrated Oscillator – External and Internal Interrupt Sources – Three Sleep Modes: Idle, ADC Noise Reduction and Power-down I/O and Packages – 28 Programmable I/O Lines in 32-lead TQFP and 32-pad QFN/MLF package – 24 Programmable I/O Lines in 28-pin PDIP and 28-pad QFN/MLF package – 28-pin PDIP, 32-lead TQFP, 28-pad QFN/MLF and 32-pad QFN/MLF Operating Voltage: – 1.8 – 5.5V Temperature Range: – -40°C to +85°C Speed Grade: – 0 – 4 MHz @ 1.8 – 5.5V – 0 – 8 MHz @ 2.7 – 5.5V – 0 – 12 MHz @ 4.5 – 5.5V Low Power Consumption – Active Mode: 1 MHz, 1.8V: 240µA – Power-down Mode: 0.1µA at 1.8V 8-bit Microcontroller with 4/8K Bytes In-System Programmable Flash ATtiny48/88 Preliminary Summary Rev. 8008CS–AVR–03/09 ATtiny48/88 1. Pin Configurations Figure 1-1. Pinout of ATtiny48/88 PD2 (INT0/PCINT18) PD1 (PCINT17) PD0 (PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) TQFP Top View 32 31 30 29 28 27 26 25 PDIP 24 23 22 21 20 19 18 17 1 2 3 4 5 6 7 8 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) PA1 (ADC7/PCINT25) GND PC7 (PCINT15) PA0 (ADC6/PCINT24) AVCC PB5 (SCK/PCINT5) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND PC7 (PCINT15) AVCC PB5 (SCK/PCINT5) PB4 (MISO/PCINT4) PB3 (MOSI/PCINT3) PB2 (SS/OC1B/PCINT2) PB1 (OC1A/PCINT1) 24 23 22 21 20 19 18 17 PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) PA1 (ADC7/PCINT25) GND PC7 (PCINT15) PA0 (ADC6/PCINT24) AVCC PB5 (SCK/PCINT5) (PCINT21/T1) PD5 (PCINT22/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/MOSI) PB3 (PCINT4/MISO) PB4 9 10 11 12 13 14 15 16 (PCINT19/INT1) PD3 (PCINT20/T0) PD4 (PCINT26) PA2 VCC GND (PCINT27) PA3 (PCINT6/CLKI) PB6 (PCINT7) PB7 (PCINT14/RESET) PC6 (PCINT16) PD0 (PCINT17) PD1 (PCINT18/INT0) PD2 (PCINT19/INT1) PD3 (PCINT20/T0) PD4 VCC GND (PCINT6/CLKI) PB6 (PCINT7) PB7 (PCINT21/T1) PD5 (PCINT22/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 32 MLF Top View 28 27 26 25 24 23 22 32 31 30 29 28 27 26 25 PD2 (INT0/PCINT18) PD1 (PCINT17) PD0 (PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PD2 (INT0/PCINT18) PD1 (PCINT17) PD0 (PCINT16) PC6 (RESET/PCINT14) PC5 (ADC5/SCL/PCINT13) PC4 (ADC4/SDA/PCINT12) PC3 (ADC3/PCINT11) PC2 (ADC2/PCINT10) 28 MLF Top View PC2 (ADC2/PCINT10) PC1 (ADC1/PCINT9) PC0 (ADC0/PCINT8) GND PC7 (PCI NT15) AVCC PB5 (SCK/PCINT5) (PCINT19/INT1) PD3 (PCINT20/T0) PD4 (PCINT26) PA2 VCC GND (PCINT27) PA3 (PCINT6/CLKI) PB6 (PCINT7) PB7 1 2 3 4 5 6 7 8 (PCINT22/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3//MOSI) PB3 (PCINT4/MISO) PB4 NOTE: Bottom pad should be soldered to ground. 9 10 11 12 13 14 15 16 NOTE: Bottom pad should be soldered to ground. (PCINT21/T1) PD5 (PCINT22/AIN0) PD6 (PCINT23/AIN1) PD7 (PCINT0/CLKO/ICP1) PB0 (PCINT1/OC1A) PB1 (PCINT2/SS/OC1B) PB2 (PCINT3/MOSI) PB3 (PCINT4/MISO) PB4 21 20 19 18 17 16 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (PCINT19/INT1) PD3 (PCINT20/T0) PD4 VCC GND (PCINT6/CLKI) PB6 (PCINT7) PB7 (PCINT21/T1) PD5 2 8008CS–AVR–03/09 ATtiny48/88 1.1 1.1.1 Pin Descriptions VCC Digital supply voltage. 1.1.2 GND Ground. 1.1.3 Port A (PA3:0) (in 32-lead TQFP and 32-pad QFN/MLF packages, only) Port A is a 4-bit bi-directional I/O port with internal pull-up resistors (selected for each bit) in 32lead TQFP and 32-pad QFN/MLF package. The PA3..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tristated when a reset condition becomes active, even if the clock is not running. 1.1.4 Port B (PB7:0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Depending on the clock selection fuse settings, PB6 can be used as input to the internal clock operating circuit. The various special features of Port B are elaborated in “Alternate Functions of Port B” on page 64 and “System Clock and Clock Options” on page 25. 1.1.5 Port C (PC7, PC5:0) Port C is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PC7 and PC5..0 output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. 1.1.6 PC6/RESET If the RSTDISBL Fuse is programmed, PC6 is used as an I/O pin. Note that the electrical characteristics of PC6 differ from those of the other pins of Port C. If the RSTDISBL Fuse is unprogrammed, PC6 is used as a reset input. A low level on this pin for longer than the minimum pulse width will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 21-3 on page 204. Shorter pulses are not guaranteed to generate a reset. The various special features of Port C are elaborated in “Alternate Functions of Port C” on page 67. 1.1.7 Port D (PD7:0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The PD7..4 output buffers have symmetrical drive characteristics with both high sink and source capabilities, while the PD3..0 output buffers have stronger sink capabilities. As inputs, Port D 3 8008CS–AVR–03/09 ATtiny48/88 pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. The various special features of Port D are elaborated in “Alternate Functions of Port D” on page 70. 1.1.8 AVCC AVCC is the supply voltage pin for the A/D converter and a selection of I/O pins. This pin should be externally connected to VCC even if the ADC is not used. If the ADC is used, it is recommended this pin is connected to VCC through a low-pass filter, as described in “Analog Noise Canceling Techniques” on page 166. The following pins receive their supply voltage from AVCC: PC7, PC5:0 and (in 32-lead packages) PA1:0. All other I/O pins take their supply voltage from VCC. 4 8008CS–AVR–03/09 ATtiny48/88 2. Overview The ATtiny48/88 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATtiny48/88 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Block Diagram GND Figure 2-1. VCC 2.1 Watchdog Timer Watchdog Oscillator Power Supervision POR / BOD & RESET debugWIRE Flash SRAM Oscillator Circuits / Clock Generation Program Logic CPU EEPROM 8bit T/C 0 16bit T/C 1 A/D Conv. DATABUS 2 6 Internal Bandgap Analog Comp. PORT D (8) SPI PORT B (8) TWI PORT C (8) PORT A (4) RESET CLKI PD[0..7] PB[0..7] PC[0..7] PA[0..3] (in TQFP and MLF) The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. 5 8008CS–AVR–03/09 ATtiny48/88 The ATtiny48/88 provides the following features: 4/8K bytes of In-System Programmable Flash, 64/64 bytes EEPROM, 256/512 bytes SRAM, 24 general purpose I/O lines (28 I/Os in 32-lead TQFP and 32-pad QFN/MLF packages), 32 general purpose working registers, two flexible Timer/Counters with compare modes, internal and external interrupts, a byte-oriented 2-wire serial interface, an SPI serial port, a 6-channel 10-bit ADC (8 channels in 32-lead TQFP and 32pad QFN/MLF packages), a programmable Watchdog Timer with internal oscillator, and three software selectable power saving modes. Idle mode stops the CPU while allowing Timer/Counters, 2-wire serial interface, SPI port, and interrupt system to continue functioning. Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset. ADC Noise Reduction mode stops the CPU and all I/O modules except ADC, and helps to minimize switching noise during ADC conversions. The device is manufactured using Atmel’s high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an on-chip boot program running on the AVR core. The boot program can use any interface to download the application program in the Flash memory. By combining an 8-bit RISC CPU with In-System SelfProgrammable Flash on a monolithic chip, the Atmel ATtiny48/88 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATtiny48/88 AVR is supported by a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators and evaluation kits. 2.2 Comparison Between ATtiny48 and ATtiny88 The ATtiny48 and ATtiny88 differ only in memory sizes. Table 2-1 summarizes the different memory sizes for the two devices. Table 2-1. Memory Size Summary Device Flash EEPROM RAM ATtiny48 4K Bytes 64 Bytes 256 Bytes ATtiny88 8K Bytes 64 Bytes 512 Bytes 6 8008CS–AVR–03/09 ATtiny48/88 3. Additional Information 3.1 Resources A comprehensive set of development tools, application notes and datasheets are available for download at http://www.atmel.com/avr. 3.2 About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. These code examples assume that the part specific header file is included before compilation. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. For I/O Registers located in extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI” instructions must be replaced with instructions that allow access to extended I/O. Typically “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. 3.3 Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85°C or 100 years at 25°C. 3.4 Disclaimer Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized. 7 8008CS–AVR–03/09 ATtiny48/88 4. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xFF) Reserved – – – – – – – – (0xFE) Reserved – – – – – – – – (0xFD) Reserved – – – – – – – – (0xFC) Reserved – – – – – – – – (0xFB) Reserved – – – – – – – – (0xFA) Reserved – – – – – – – – (0xF9) Reserved – – – – – – – – (0xF8) Reserved – – – – – – – – (0xF7) Reserved – – – – – – – – (0xF6) Reserved – – – – – – – – (0xF5) Reserved – – – – – – – – (0xF4) Reserved – – – – – – – – (0xF3) Reserved – – – – – – – – (0xF2) Reserved – – – – – – – – (0xF1) Reserved – – – – – – – – (0xF0) Reserved – – – – – – – – (0xEF) Reserved – – – – – – – – (0xEE) Reserved – – – – – – – – (0xED) Reserved – – – – – – – – (0xEC) Reserved – – – – – – – – (0xEB) Reserved – – – – – – – – (0xEA) Reserved – – – – – – – – (0xE9) Reserved – – – – – – – – (0xE8) Reserved – – – – – – – – (0xE7) Reserved – – – – – – – – (0xE6) Reserved – – – – – – – – (0xE5) Reserved – – – – – – – – (0xE4) Reserved – – – – – – – – (0xE3) Reserved – – – – – – – – (0xE2) Reserved – – – – – – – – (0xE1) Reserved – – – – – – – – (0xE0) Reserved – – – – – – – – (0xDF) Reserved – – – – – – – – (0xDE) Reserved – – – – – – – – (0xDD) Reserved – – – – – – – – (0xDC) Reserved – – – – – – – – (0xDB) Reserved – – – – – – – – (0xDA) Reserved – – – – – – – – (0xD9) Reserved – – – – – – – – (0xD8) Reserved – – – – – – – – (0xD7) Reserved – – – – – – – – (0xD6) Reserved – – – – – – – – (0xD5) Reserved – – – – – – – – (0xD4) Reserved – – – – – – – – (0xD3) Reserved – – – – – – – – (0xD2) Reserved – – – – – – – – (0xD1) Reserved – – – – – – – – (0xD0) Reserved – – – – – – – – (0xCF) Reserved – – – – – – – – (0xCE) Reserved – – – – – – – – (0xCD) Reserved – – – – – – – – (0xCC) Reserved – – – – – – – – (0xCB) Reserved – – – – – – – – (0xCA) Reserved – – – – – – – – (0xC9) Reserved – – – – – – – – (0xC8) Reserved – – – – – – – – (0xC7) Reserved – – – – – – – – (0xC6) Reserved – – – – – – – – (0xC5) Reserved – – – – – – – – (0xC4) Reserved – – – – – – – – (0xC3) Reserved – – – – – – – – (0xC2) Reserved – – – – – – – – (0xC1) Reserved – – – – – – – – (0xC0) Reserved – – – – – – – – (0xBF) Reserved – – – – – – – – Page 8 8008CS–AVR–03/09 ATtiny48/88 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0xBE) TWHSR – – – – – – – TWHS 154 (0xBD) TWAMR TWAM6 TWAM5 TWAM4 TWAM3 TWAM2 TWAM1 TWAM0 – 154 (0xBC) TWCR TWINT TWEA TWSTA TWSTO TWWC TWEN – TWIE 151 (0xBB) TWDR (0xBA) TWAR TWA6 TWA5 TWA4 TWS7 TWS6 TWS5 2-wire Serial Interface Data Register 153 TWA3 TWA2 TWA1 TWA0 TWGCE 153 TWS4 TWS3 – TWPS1 TWPS0 152 (0xB9) TWSR (0xB8) TWBR (0xB7) Reserved – – – – – – – – (0xB6) Reserved – – – – – – – – (0xB5) Reserved – – – – – – – – (0xB4) Reserved – – – – – – – – (0xB3) Reserved – – – – – – – – (0xB2) Reserved – – – – – – – – (0xB1) Reserved – – – – – – – – (0xB0) Reserved – – – – – – – – (0xAF) Reserved – – – – – – – – (0xAE) Reserved – – – – – – – – (0xAD) Reserved – – – – – – – – (0xAC) Reserved – – – – – – – – (0xAB) Reserved – – – – – – – – (0xAA) Reserved – – – – – – – – (0xA9) Reserved – – – – – – – – (0xA8) Reserved – – – – – – – – (0xA7) Reserved – – – – – – – – (0xA6) Reserved – – – – – – – – (0xA5) Reserved – – – – – – – – (0xA4) Reserved – – – – – – – – (0xA3) Reserved – – – – – – – – (0xA2) Reserved – – – – – – – – (0xA1) Reserved – – – – – – – – (0xA0) Reserved – – – – – – – – (0x9F) Reserved – – – – – – – – (0x9E) Reserved – – – – – – – – (0x9D) Reserved – – – – – – – – (0x9C) Reserved – – – – – – – – (0x9B) Reserved – – – – – – – – (0x9A) Reserved – – – – – – – – (0x99) Reserved – – – – – – – – (0x98) Reserved – – – – – – – – (0x97) Reserved – – – – – – – – (0x96) Reserved – – – – – – – – (0x95) Reserved – – – – – – – – (0x94) Reserved – – – – – – – – (0x93) Reserved – – – – – – – – (0x92) Reserved – – – – – – – – (0x91) Reserved – – – – – – – – (0x90) Reserved – – – – – – – – (0x8F) Reserved – – – – – – – – (0x8E) Reserved – – – – – – – – (0x8D) Reserved – – – – – – – – (0x8C) Reserved – – – – – – – – (0x8B) OCR1BH (0x8A) OCR1BL (0x89) OCR1AH (0x88) OCR1AL (0x87) ICR1H (0x86) ICR1L (0x85) TCNT1H 2-wire Serial Interface Bit Rate Register 151 – Output Compare Register B High Byte Timer/Counter1 – Output Compare Register B Low Byte Timer/Counter1 – Output Compare Register A High Byte Timer/Counter1 – Output Compare Register A Low Byte Timer/Counter1 – Input Capture Register High Byte Timer/Counter1 – Input Capture Register Low Byte Timer/Counter1 – Counter Register High Byte Timer/Counter1 – Counter Register Low Byte 109 Timer/Counter1 109 109 109 109 109 108 (0x84) TCNT1L (0x83) Reserved – – – (0x82) TCCR1C FOC1A FOC1B – – – – – – (0x81) TCCR1B ICNC1 ICES1 – WGM13 WGM12 CS12 CS11 CS10 107 (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 – WGM11 WGM10 105 – – – 108 – – 108 (0x7F) DIDR1 – – – – – – – AIN1D AIN0D 157 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 174 (0x7D) Reserved – – – – – – – – 9 8008CS–AVR–03/09 ATtiny48/88 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page (0x7C) ADMUX – REFS0 ADLAR – MUX3 MUX2 MUX1 MUX0 170 (0x7B) ADCSRB – ACME – – – ADTS2 ADTS1 ADTS0 173 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 (0x79) ADCH ADC Data Register High byte 171 173 (0x78) ADCL (0x77) Reserved – – – ADC Data Register Low byte – – – – – 173 (0x76) Reserved – – – – – – – – (0x75) Reserved – – – – – – – – (0x74) Reserved – – – – – – – – (0x73) Reserved – – – – – – – – (0x72) Reserved – – – – – – – – (0x71) Reserved – – – – – – – – (0x70) Reserved – – – – – – – – (0x6F) TIMSK1 – – ICIE1 – – OCIE1B OCIE1A TOIE1 (0x6E) TIMSK0 – – – – – OCIE0B OCIE0A TOIE0 82 (0x6D) PCMSK2 PCINT23 PCINT22 PCINT21 PCINT20 PCINT19 PCINT18 PCINT17 PCINT16 54 (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 54 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT2 PCMSK3 – – - - PCINT26 PCINT1 PCINT25 PCINT0 PCINT24 54 (0x6A) PCINT3 PCINT27 (0x69) EICRA – – – – ISC11 ISC10 ISC01 ISC00 50 (0x68) PCICR – – – – PCIE3 PCIE2 PCIE1 PCIE0 52 (0x67) Reserved – – – – – – – – Oscillator Calibration Register 109 54 (0x66) OSCCAL (0x65) Reserved – – – – – – – – 31 (0x64) PRR PRTWI – PRTIM0 – PRTIM1 PRSPI – PRADC (0x63) Reserved – – – – – – – – (0x62) Reserved – – – – – – – – (0x61) CLKPR CLKPCE – – – CLKPS3 CLKPS2 CLKPS1 CLKPS0 31 (0x60) WDTCSR WDIF WDIE WDP3 WDCE WDE WDP2 WDP1 WDP0 44 9 37 0x3F (0x5F) SREG I T H S V N Z C 0x3E (0x5E) Reserved – – – – – – – – 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 0x3C (0x5C) Reserved – – – – – – – – 0x3B (0x5B) Reserved – – – – – – – – 0x3A (0x5A) Reserved – – – – – – – – 0x39 (0x59) Reserved – – – – – – – – 0x38 (0x58) Reserved – – – – – – – – 0x37 (0x57) SPMCSR – RWWSB – CTPB RFLB PGWRT PGERS SELFPRGEN 0x36 (0x56) Reserved – – – – – 0x35 (0x55) MCUCR – BPDS BPDSE PUD – – – – 0x34 (0x54) MCUSR – – – – WDRF BORF EXTRF PORF 44 0x33 (0x53) SMCR – – – – – SM1 SM0 SE 36 0x32 (0x52) Reserved – – – – – – 0x31 (0x51) DWDR 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 – – – – – – – – – – debugWire Data Register 12 182 176 156 0x2F (0x4F) Reserved 0x2E (0x4E) SPDR 0x2D (0x4D) SPSR SPIF WCOL – 0x2C (0x4C) SPCR SPIE SPE DORD 0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 0x29 (0x49) Reserved 0x28 (0x48) OCR0B Timer/Counter0 Output Compare Register B 0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 81 0x26 (0x46) TCNT0 Timer/Counter0 (8-bit) 81 SPI Data Register – – – 123 – – – – SPI2X 122 MSTR CPOL CPHA SPR1 SPR0 121 – 24 24 – – – – 82 0x25 (0x45) TCCR0A – – – – CTC0 CS02 CS01 CS00 0x24 (0x44) Reserved – – – – – – – – 0x23 (0x43) GTCCR TSM – – – – – – PSRSYNC 0x22 (0x42) Reserved – – – – – – – – 0x21 (0x41) EEARL EEPROM Address Register Low Byte 22 0x20 (0x40) EEDR EEPROM Data Register 22 0x1F (0x3F) EECR 0x1E (0x3E) GPIOR0 – – EEPM1 EEPM0 EERIE 0x1D (0x3D) EIMSK – – – – 0x1C (0x3C) EIFR – – – – – – 0x1B (0x3B) PCIFR – – – – PCIF3 PCIF2 113 EEMPE EEPE EERE 22 – INT1 INT0 51 INTF1 INTF0 51 PCIF1 PCIF0 52 General Purpose I/O Register 0 – 80 24 10 8008CS–AVR–03/09 ATtiny48/88 Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x1A (0x3A) Reserved – – – – – – – – Page 0x19 (0x39) Reserved – – – – – – – – 0x18 (0x38) Reserved – – – – – – – – 0x17 (0x37) Reserved – – – – – – – – 0x16 (0x36) TIFR1 – – ICF1 – – OCF1B OCF1A TOV1 110 0x15 (0x35) TIFR0 – – – – – OCF0B OCF0A TOV0 82 0x14 (0x34) Reserved – – – – – – – – 0x13 (0x33) Reserved – – – – – – – – 0x12 (0x32) PORTCR BBMD BBMC BBMB BBMA PUDD PUDC PUDB PUDA 0x11 (0x31) Reserved – – – – – – – – – 72 0x10 (0x30) Reserved – – – – – – – 0x0F (0x2F) Reserved – – – – – – – – 0x0E (0x2E) PORTA – – – – PORTA3 PORTA2 PORTA1 PORTA0 74 0x0D (0x2D) DDRA – – – – DDA3 DDA2 DDA1 DDA0 0x0C (0x2C) PINA – – – – PINA3 PINA2 PINA1 PINA0 74 74 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 74 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 74 74 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 73 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 73 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 74 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 73 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 73 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 73 0x02 (0x22) Reserved – – – – – – – – 0x01 (0x21) Reserved – – – – – – – – 0x00 (0x20) Reserved – – – – – – – – Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 – 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 – 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATtiny48/88 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 – 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 11 8008CS–AVR–03/09 ATtiny48/88 5. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd ← Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd ← Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd ← Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd ← Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1 1 COM Rd One’s Complement Rd ← 0xFF − Rd Z,C,N,V 1 NEG Rd Two’s Complement Rd ← 0x00 − Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd ← Rd • (0xFF - K) Z,N,V 1 INC Rd Increment Rd ← Rd + 1 Z,N,V 1 DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1 CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1 SER Rd Set Register Rd ← 0xFF None 1 2 BRANCH INSTRUCTIONS RJMP k IJMP RCALL k Relative Jump PC ← PC + k + 1 None Indirect Jump to (Z) PC ← Z None 2 Relative Subroutine Call PC ← PC + k + 1 None 3 3 ICALL Indirect Call to (Z) PC ← Z None RET Subroutine Return PC ← STACK None 4 RETI Interrupt Return PC ← STACK I 4 CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None CP Rd,Rr Compare Rd − Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd − Rr − C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd − K Z, N,V,C,H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1/2/3 1/2/3 1 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC ← PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC ← PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC←PC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC←PC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2 BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC ← PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC ← PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 None 2 LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0) Z,C,N,V 1 12 8008CS–AVR–03/09 ATtiny48/88 Mnemonics Operands Description Operation Flags #Clocks ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0) None 1 BSET s Flag Set SREG(s) ← 1 SREG(s) 1 BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T ← Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) ← T None 1 SEC Set Carry C←1 C 1 CLC Clear Carry C←0 C 1 SEN Set Negative Flag N←1 N 1 CLN Clear Negative Flag N←0 N 1 SEZ Set Zero Flag Z←1 Z 1 CLZ Clear Zero Flag Z←0 Z 1 SEI Global Interrupt Enable I←1 I 1 CLI Global Interrupt Disable I←0 I 1 SES Set Signed Test Flag S←1 S 1 CLS Clear Signed Test Flag S←0 S 1 SEV Set Twos Complement Overflow. V←1 V 1 CLV Clear Twos Complement Overflow V←0 V 1 SET Set T in SREG T←1 T 1 CLT Clear T in SREG T←0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H←1 H←0 H H 1 1 Rd ← Rr Rd+1:Rd ← Rr+1:Rr None 1 None 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word LDI Rd, K Load Immediate Rd ← K None LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, - X Load Indirect and Pre-Dec. X ← X - 1, Rd ← (X) None 2 LD Rd, Y Load Indirect Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2 LD Rd, Z Load Indirect Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z ← Z - 1, Rd ← (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (k) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X ← X - 1, (X) ← Rr None 2 ST Y, Rr Store Indirect (Y) ← Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) ← Rr, Y ← Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y ← Y - 1, (Y) ← Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2 ST Z, Rr Store Indirect (Z) ← Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) ← Rr, Z ← Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z ← Z - 1, (Z) ← Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2 STS k, Rr Store Direct to SRAM (k) ← Rr None 2 Load Program Memory R0 ← (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd ← (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd ← (Z), Z ← Z+1 None 3 Store Program Memory (Z) ← R1:R0 None - IN Rd, P In Port Rd ← P None 1 OUT P, Rr Out Port P ← Rr None 1 PUSH Rr Push Register on Stack STACK ← Rr None 2 POP Rd Pop Register from Stack Rd ← STACK None 2 SPM MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR BREAK Watchdog Reset Break (see specific descr. for WDR/timer) For On-chip Debug Only None None 1 N/A 13 8008CS–AVR–03/09 ATtiny48/88 6. Ordering Information 6.1 ATtiny48 Speed (MHz) 12 (3) Note: Power Supply Ordering Code Package(1) 1.8 – 5.5 ATtiny48-AU ATtiny48-MMU ATtiny48-MMH ATtiny48-MU ATtiny48-PU 32A 28M1 28M1 32M1-A 28P3 Operational Range Industrial (-40°C to 85°C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green. 3. Maximum frequency. See Figure 21-1 on page 203. Package Type 32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP) 28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP) 14 8008CS–AVR–03/09 ATtiny48/88 6.2 ATtiny88 Speed (MHz) 12 (3) Note: Power Supply Ordering Code Package(1) 1.8 – 5.5 ATtiny88-AU ATtiny88-MMU ATtiny88-MMH ATtiny88-MU ATtiny88-PU 32A 28M1 28M1 32M1-A 28P3 Operational Range Industrial (-40°C to 85°C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive).Also Halide free and fully Green. 3. Maximum frequency. See Figure 21-1 on page 203. Package Type 32A 32-lead, Thin (1.0 mm) Plastic Quad Flat Package (TQFP) 28M1 28-pad, 4 x 4 x 1.0 body, Lead Pitch 0.45 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 32M1-A 32-pad, 5 x 5 x 1.0 body, Lead Pitch 0.50 mm Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 28P3 28-lead, 0.300” Wide, Plastic Dual Inline Package (PDIP) 15 8008CS–AVR–03/09 ATtiny48/88 7. Packaging Information 7.1 32A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0˚~7˚ A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) Notes: 1. This package conforms to JEDEC reference MS-026, Variation ABA. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. SYMBOL MIN NOM MAX A – – 1.20 A1 0.05 – 0.15 A2 0.95 1.00 1.05 D 8.75 9.00 9.25 D1 6.90 7.00 7.10 E 8.75 9.00 9.25 E1 6.90 7.00 7.10 B 0.30 – 0.45 C 0.09 – 0.20 L 0.45 – 0.75 e NOTE Note 2 Note 2 0.80 TYP 10/5/2001 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 32A, 32-lead, 7 x 7 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 32A B 16 8008CS–AVR–03/09 ATtiny48/88 7.2 28M1 C 1 2 Pin 1 ID 3 E SIDE VIEW A1 TOP VIEW A y D2 K 1 0.45 2 R 0.20 3 E2 b COMMON DIMENSIONS (Unit of Measure = mm) SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 0.00 0.02 0.05 b 0.17 0.22 0.27 C L e 0.4 Ref (4x) Note: 0.20 REF D 3.95 4.00 4.05 D2 2.35 2.40 2.45 E 3.95 4.00 4.05 E2 2.35 2.40 2.45 e BOTTOM VIEW The terminal #1 ID is a Laser-marked Feature. NOTE 0.45 L 0.35 0.40 0.45 y 0.00 – 0.08 K 0.20 – – 10/24/08 Package Drawing Contact: [email protected] TITLE 28M1, 28-pad, 4 x 4 x 1.0 mm Body, Lead Pitch 0.45 mm, 2.4 x 2.4 mm Exposed Pad, Thermally Enhanced Plastic Very Thin Quad Flat No Lead Package (VQFN) GPC ZBV DRAWING NO. REV. 28M1 B 17 8008CS–AVR–03/09 ATtiny48/88 7.3 28P3 D PIN 1 E1 A SEATING PLANE L B2 B1 B A1 (4 PLACES) e E 0º ~ 15º C COMMON DIMENSIONS (Unit of Measure = mm) REF SYMBOL eB Note: 1. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010"). A MIN – NOM MAX – 4.5724 A1 0.508 – – D 34.544 – 34.798 E 7.620 – 8.255 E1 7.112 – 7.493 B 0.381 – 0.533 B1 1.143 – 1.397 B2 0.762 – 1.143 L 3.175 – 3.429 C 0.203 – 0.356 eB – – 10.160 e NOTE Note 1 Note 1 2.540 TYP 09/28/01 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 28P3, 28-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP) DRAWING NO. 28P3 REV. B 18 8008CS–AVR–03/09 ATtiny48/88 7.4 32M1-A D D1 1 2 3 0 Pin 1 ID E1 SIDE VIEW E TOP VIEW A3 A2 A1 A K 0.08 C P D2 1 2 3 P Pin #1 Notch (0.20 R) K e SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 – 0.02 0.05 A2 – 0.65 1.00 A3 E2 b COMMON DIMENSIONS (Unit of Measure = mm) L BOTTOM VIEW 0.20 REF b 0.18 0.23 0.30 D 4.90 5.00 5.10 D1 4.70 4.75 4.80 D2 2.95 3.10 3.25 E 4.90 5.00 5.10 E1 4.70 4.75 4.80 E2 2.95 3.10 3.25 e Note: JEDEC Standard MO-220, Fig. 2 (Anvil Singulation), VHHD-2. NOTE 0.50 BSC L 0.30 0.40 0.50 P – – 0.60 o 12 0 – K 0.20 – – – 5/25/06 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 32M1-A, 32-pad, 5 x 5 x 1.0 mm Body, Lead Pitch 0.50 mm, 3.10 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 32M1-A REV. E 19 8008CS–AVR–03/09 ATtiny48/88 8. Errata 8.1 ATtiny48 8.1.1 Rev. C No known errata. 8.1.2 Rev. B Not sampled. 8.1.3 Rev. A Not sampled. 20 8008CS–AVR–03/09 ATtiny48/88 8.2 ATtiny88 8.2.1 Rev. C No known errata. 8.2.2 Rev. B No known errata. 8.2.3 Rev. A Not sampled. 21 8008CS–AVR–03/09 ATtiny48/88 9. Datasheet Revision History Please note that page references in this section refer to the current revision of this document. 9.1 Rev. 8008C - 03/09 1. Updated sections: – “Features” on page 1 – “Reset and Interrupt Handling” on page 13 – “EECR – EEPROM Control Register” on page 22 – “Features” on page 124 – “Bit Rate Generator Unit” on page 130 – “TWBR – TWI Bit Rate Register” on page 151 – “TWHSR – TWI High Speed Register” on page 154 – “Analog Comparator” on page 155 – “Overview” on page 158 – “Operation” on page 159 – “Starting a Conversion” on page 160 – “Programming the Lock Bits” on page 195 – “Absolute Maximum Ratings*” on page 201 – “DC Characteristics” on page 201 – “Speed Grades” on page 203 – “Register Summary” on page 8 2. Added sections – “High-Speed Two-Wire Interface Clock – clkTWIHS” on page 26 – “Analog Comparator Characteristics” on page 205 3. Updated Figure 6-1 on page 25. 4. Updated order codes on page 14 and page 15 to reflect changes in leadframe composition. 9.2 Rev. 8008B - 06/08 1. Updated introduction of “I/O-Ports” on page 55. 2. Updated “DC Characteristics” on page 201. 3. Added “Typical Charateristics” on page 215. 9.3 Rev. 8008A - 06/08 1. Initial revision. 22 8008CS–AVR–03/09 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support [email protected] Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. © 2009 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR ® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others. 8008CS–AVR–03/09