ATMEL ATTINY4313-MU

Features
• High Performance, Low Power AVR® 8-Bit Microcontroller
• Advanced RISC Architecture
•
•
•
•
•
•
•
•
– 120 Powerful Instructions – Most Single Clock Cycle Execution
– 32 x 8 General Purpose Working Registers
– Fully Static Operation
– Up to 20 MIPS Throughput at 20 MHz
Data and Non-volatile Program and Data Memories
– 2/4K Bytes of In-System Self Programmable Flash
• Endurance 10,000 Write/Erase Cycles
– 128/256 Bytes In-System Programmable EEPROM
• Endurance: 100,000 Write/Erase Cycles
– 128/256 Bytes Internal SRAM
– Programming Lock for Flash Program and EEPROM Data Security
Peripheral Features
– One 8-bit Timer/Counter with Separate Prescaler and Compare Mode
– One 16-bit Timer/Counter with Separate Prescaler, Compare and Capture Modes
– Four PWM Channels
– On-chip Analog Comparator
– Programmable Watchdog Timer with On-chip Oscillator
– USI – Universal Serial Interface
– Full Duplex USART
Special Microcontroller Features
– debugWIRE On-chip Debugging
– In-System Programmable via SPI Port
– External and Internal Interrupt Sources
– Low-power Idle, Power-down, and Standby Modes
– Enhanced Power-on Reset Circuit
– Programmable Brown-out Detection Circuit
– Internal Calibrated Oscillator
I/O and Packages
– 18 Programmable I/O Lines
– 20-pin PDIP, 20-pin SOIC, 20-pad MLF/VQFN
Operating Voltage
– 1.8 – 5.5V
Speed Grades
– 0 – 4 MHz @ 1.8 – 5.5V
– 0 – 10 MHz @ 2.7 – 5.5V
– 0 – 20 MHz @ 4.5 – 5.5V
Industrial Temperature Range: -40°C to +85°C
Low Power Consumption
– Active Mode
• 190 µA at 1.8V and 1MHz
– Idle Mode
• 24 µA at 1.8V and 1MHz
– Power-down Mode
• 0.1 µA at 1.8V and +25°C
8-bit
Microcontroller
with 2/4K Bytes
In-System
Programmable
Flash
ATtiny2313A
ATtiny4313
Preliminary
Summary
Rev. 8246AS–AVR–11/09
1. Pin Configurations
Figure 1-1.
Pinout ATtiny2313A/4313
PDIP/SOIC
(PCINT10/RESET/dW) PA2
(PCINT11/RXD) PD0
(PCINT12/TXD) PD1
(PCINT9/XTAL2) PA1
(PCINT8/CLKI/XTAL1) PA0
(PCINT13/CKOUT/XCK/INT0) PD2
(PCINT14/INT1) PD3
(PCINT15/T0) PD4
(PCINT16/OC0B/T1) PD5
GND
1
2
3
4
5
6
7
8
9
10
VCC
PB7 (USCK/SCL/SCK/PCINT7)
PB6 (MISO/DO/PCINT6)
PB5 (MOSI/DI/SDA/PCINT5)
PB4 (OC1B/PCINT4)
PB3 (OC1A/PCINT3)
PB2 (OC0A/PCINT2)
PB1 (AIN1/PCINT1)
PB0 (AIN0/PCINT0)
PD6 (ICPI/PCINT17)
20
19
18
17
16
15
14
13
12
11
PD0 (RXD/PCINT11)
PA2 (RESET/dW/PCINT10)
VCC
PB7 (USCK/SCL/SCK/PCINT7)
PB6 (MISO/DO/PCINT6)
20
19
18
17
16
MLF/VQFN
PB2 (OC0A/PCINT2)
(PCINT14/INT1) PD3
5
11
PB1 (AIN1/PCINT1)
10
12
(AIN0/PCINT0) PB0
4
9
PB3 (OC1A/PCINT3)
(PCINT13/CKOUT/XCK/INT0) PD2
(PCINT17/ICPI) PD6
13
8
3
GND
PB4 (OC1B/PCINT4)
(PCINT8/CLKI/XTAL1) PA0
7
PB5 (MOSI/DI/SDA/PCINT5)
14
6
15
2
(PCINT15/T0) PD4
1
(PCINT16/OC0B/T1) PD5
(PCINT12/TXD) PD1
(PCINT9/XTAL2) PA1
NOTE: Bottom pad should be soldered to ground.
1.1
1.1.1
Pin Descriptions
VCC
Digital supply voltage.
1.1.2
GND
Ground.
1.1.3
2
Port A (PA2..PA0)
Port A is a 3-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port A output buffers have symmetrical drive characteristics with both high sink and source
capability, except PA2 which has the RESET capability. To use pin PA2 as I/O pin, instead of
RESET pin, program (“0”) RSTDISBL fuse. As inputs, Port A pins that are externally pulled low
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a
reset condition becomes active, even if the clock is not running.
Port A also serves the functions of various special features of the ATtiny2313A/4313 as listed on
page 61.
1.1.4
Port B (PB7..PB0)
Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port B output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port B pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port B also serves the functions of various special features of the ATtiny2313A/4313 as listed on
page 62.
1.1.5
Port D (PD6..PD0)
Port D is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATtiny2313A/4313 as listed on
page 66.
1.1.6
RESET
Reset input. A low level on this pin for longer than the minimum pulse length will generate a
reset, even if the clock is not running and provided that the reset pin has not been disabled. The
minimum pulse length is given in Table 21-3 on page 198. Shorter pulses are not guaranteed to
generate a reset. The Reset Input is an alternate function for PA2 and dW.
The reset pin can also be used as a (weak) I/O pin.
1.1.7
XTAL1
Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. XTAL1
is an alternate function for PA0.
1.1.8
XTAL2
Output from the inverting Oscillator amplifier. XTAL2 is an alternate function for PA1.
3
8246AS–AVR–11/09
2. Overview
The ATtiny2313A/4313 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced
RISC architecture. By executing powerful instructions in a single clock cycle, the
ATtiny2313A/4313 achieves throughputs approaching 1 MIPS per MHz allowing the system
designer to optimize power consumption versus processing speed.
2.1
Block Diagram
Figure 2-1.
Block Diagram
XTAL1
XTAL2
PA0 - PA2
PORTA DRIVERS
DATA DIR.
REG. PORTA
DATA REGISTER
PORTA
VCC
8-BIT DATA BUS
INTERNAL
CALIBRATED
OSCILLATOR
INTERNAL
OSCILLATOR
OSCILLATOR
WATCHDOG
TIMER
TIMING AND
CONTROL
GND
PROGRAM
COUNTER
STACK
POINTER
PROGRAM
FLASH
SRAM
MCU CONTROL
REGISTER
ON-CHIP
DEBUGGER
MCU STATUS
REGISTER
INSTRUCTION
REGISTER
GENERAL
PURPOSE
REGISTER
INSTRUCTION
DECODER
RESET
TIMER/
COUNTERS
INTERRUPT
UNIT
EEPROM
CONTROL
LINES
ALU
USI
STATUS
REGISTER
ANALOG
COMPARATOR
PROGRAMMING
LOGIC
4
SPI
DATA REGISTER
PORTB
USART
DATA DIR.
REG. PORTB
DATA REGISTER
PORTD
DATA DIR.
REG. PORTD
PORTB DRIVERS
PORTD DRIVERS
PB0 - PB7
PD0 - PD6
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
The AVR core combines a rich instruction set with 32 general purpose working registers. All the
32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent
registers to be accessed in one single instruction executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.
The ATtiny2313A/4313 provides the following features: 2/4K bytes of In-System Programmable
Flash, 128/256 bytes EEPROM, 128/256 bytes SRAM, 18 general purpose I/O lines, 32 general
purpose working registers, a single-wire Interface for On-chip Debugging, two flexible
Timer/Counters with compare modes, internal and external interrupts, a serial programmable
USART, Universal Serial Interface with Start Condition Detector, a programmable Watchdog
Timer with internal Oscillator, and three software selectable power saving modes. The Idle mode
stops the CPU while allowing the SRAM, Timer/Counters, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling
all other chip functions until the next interrupt or hardware reset. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast
start-up combined with low-power consumption.
The device is manufactured using Atmel’s high density non-volatile memory technology. The
On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI
serial interface, or by a conventional non-volatile memory programmer. By combining an 8-bit
RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel
ATtiny2313A/4313 is a powerful microcontroller that provides a highly flexible and cost effective
solution to many embedded control applications.
The ATtiny2313A/4313 AVR is supported with a full suite of program and system development
tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits.
2.2
Comparison Between ATtiny2313A and ATtiny4313
The ATtiny2313A and ATtiny4313 differ only in memory sizes. Table 2-1 summarizes the different memory sizes for the two devices.
Table 2-1.
Memory Size Summary
Device
Flash
EEPROM
RAM
ATtiny2313A
2K Bytes
128 Bytes
128 Bytes
ATtiny4313
4K Bytes
256 Bytes
256 Bytes
5
8246AS–AVR–11/09
3. About
3.1
Resources
A comprehensive set of drivers, application notes, data sheets and descriptions on development
tools are available for download at http://www.atmel.com/avr.
3.2
Code Examples
This documentation contains simple code examples that briefly show how to use various parts of
the device. These code examples assume that the part specific header file is included before
compilation. Be aware that not all C compiler vendors include bit definitions in the header files
and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details.
For I/O Registers located in the extended I/O map, “IN”, “OUT”, “SBIS”, “SBIC”, “CBI”, and “SBI”
instructions must be replaced with instructions that allow access to extended I/O. Typically, this
means “LDS” and “STS” combined with “SBRS”, “SBRC”, “SBR”, and “CBR”. Note that not all
AVR devices include an extended I/O map.
3.3
Data Retention
Reliability Qualification results show that the projected data retention failure rate is much less
than 1 PPM over 20 years at 85°C or 100 years at 25°C.
3.4
Disclaimer
Typical values contained in this datasheet are based on simulations and characterization of
other AVR microcontrollers manufactured on the same process technology. Min and Max values
will be available after the device has been characterized.
6
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
4. Register Summary
Address
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Page
0x3F (0x5F)
SREG
I
T
H
S
V
N
Z
C
8
0x3E (0x5E)
Reserved
–
–
–
–
–
–
–
–
0x3D (0x5D)
SPL
SP7
SP6
SP5
SP4
SP3
SP2
SP1
SP0
0x3C (0x5C)
OCR0B
0x3B (0x5B)
GIMSK
INT1
INT0
PCIE0
PCIE2
PCIE1
–
–
–
0x3A (0x5A)
GIFR
INTF1
INTF0
PCIF0
PCIF2
PCIF1
–
–
–
51
0x39 (0x59)
TIMSK
TOIE1
OCIE1A
OCIE1B
–
ICIE1
OCIE0B
TOIE0
OCIE0A
86, 115
0x38 (0x58)
TIFR
TOV1
–
ICF1
OCF0B
TOV0
OCF0A
86, 115
SPMCSR
–
OCF1A
–
OCF1B
0x37 (0x57)
RSIG
CTPB
RFLB
PGWRT
PGERS
SPMEN
176
0x36 (0x56)
OCR0A
0x35 (0x55)
MCUCR
ISC11
ISC10
ISC01
ISC00
36, 50, 68
Timer/Counter0 – Compare Register B
Timer/Counter0 – Compare Register A
PUD
SM1
SE
SM0
11
85
50
85
0x34 (0x54)
MCUSR
–
–
–
–
WDRF
BORF
EXTRF
PORF
44
0x33 (0x53)
TCCR0B
FOC0A
FOC0B
–
–
WGM02
CS02
CS01
CS00
84
0x32 (0x52)
TCNT0
0x31 (0x51)
OSCCAL
–
CAL6
CAL5
CAL4
Timer/Counter0 (8-bit)
CAL3
CAL2
CAL1
CAL0
85
0x30 (0x50)
TCCR0A
COM0A1
COM0A0
COM0B1
COM0B0
–
–
WGM01
WGM00
81
0x2F (0x4F)
TCCR1A
COM1A1
COM1A0
COM1B1
COM1B0
–
–
WGM11
WGM10
110
ICNC1
ICES1
–
WGM13
WGM12
CS12
CS11
CS10
112
30
0x2E (0x4E)
TCCR1B
0x2D (0x4D)
TCNT1H
Timer/Counter1 – Counter Register High Byte
114
0x2C (0x4C)
TCNT1L
Timer/Counter1 – Counter Register Low Byte
114
0x2B (0x4B)
OCR1AH
Timer/Counter1 – Compare Register A High Byte
114
0x2A (0x4A)
OCR1AL
Timer/Counter1 – Compare Register A Low Byte
114
0x29 (0x49)
OCR1BH
Timer/Counter1 – Compare Register B High Byte
114
0x28 (0x48)
OCR1BL
Timer/Counter1 – Compare Register B Low Byte
0x27 (0x47)
Reserved
–
–
–
0x26 (0x46)
CLKPR
CLKPCE
–
–
0x25 (0x45)
ICR1H
114
–
–
–
–
–
–
CLKPS3
CLKPS2
CLKPS1
CLKPS0
Timer/Counter1 - Input Capture Register High Byte
0x24 (0x44)
ICR1L
0x23 (0x43)
GTCCR
–
–
Timer/Counter1 - Input Capture Register Low Byte
–
–
–
–
30
114
114
–
PSR10
118
0x22 (ox42)
TCCR1C
FOC1A
FOC1B
–
–
–
–
–
–
113
0x21 (0x41)
WDTCSR
WDIF
WDIE
WDP3
WDCE
WDE
WDP2
WDP1
WDP0
44
0x20 (0x40)
PCMSK0
PCINT7
PCINT6
PCINT5
PCINT4
PCINT3
PCINT2
PCINT1
PCINT0
53
0x1F (0x3F)
Reserved
–
–
–
–
–
–
–
–
–
0x1E (0x3E)
EEAR
0x1D (0x3D)
EEDR
EEPROM Address Register
22
0x1C (0x3C)
EECR
–
–
EEPM1
EEPM0
EERIE
EEMPE
EEPE
EERE
0x1B (0x3B)
PORTA
–
–
–
–
–
PORTA2
PORTA1
PORTA0
68
0x1A (0x3A)
DDRA
–
–
–
–
–
DDA2
DDA1
DDA0
68
EEPROM Data Register
22
22
0x19 (0x39)
PINA
–
–
–
–
–
PINA2
PINA1
PINA0
69
0x18 (0x38)
PORTB
PORTB7
PORTB6
PORTB5
PORTB4
PORTB3
PORTB2
PORTB1
PORTB0
69
0x17 (0x37)
DDRB
DDB7
DDB6
DDB5
DDB4
DDB3
DDB2
DDB1
DDB0
69
0x16 (0x36)
PINB
PINB7
PINB6
PINB5
PINB4
PINB3
PINB2
PINB1
PINB0
0x15 (0x35)
GPIOR2
General Purpose I/O Register 2
23
0x14 (0x34)
GPIOR1
General Purpose I/O Register 1
23
0x13 (0x33)
GPIOR0
General Purpose I/O Register 0
0x12 (0x32)
PORTD
–
0x11 (0x31)
DDRD
–
DDD6
DDD5
DDD4
DDD3
DDD2
DDD1
DDD0
69
0x10 (0x30)
PIND
–
PIND6
PIND5
PIND4
PIND3
PIND2
PIND1
PIND0
69
PORTD6
PORTD5
PORTD4
PORTD3
69
23
PORTD2
PORTD1
PORTD0
USI Data Register
69
0x0F (0x2F)
USIDR
0x0E (0x2E)
USISR
USISIF
USIOIF
USIPF
USIDC
USICNT3
USICNT2
USICNT1
USICNT0
164
165
0x0D (0x2D)
USICR
USISIE
USIOIE
USIWM1
USIWM0
USICS1
USICS0
USICLK
USITC
162
0x0C (0x2C)
UDR
0x0B (0x2B)
UCSRA
RXC
TXC
UDRE
FE
UPE
U2X
MPCM
137
0x0A (0x2A)
UCSRB
RXCIE
TXCIE
UDRIE
RXEN
UCSZ2
RXB8
TXB8
138
0x09 (0x29)
UBRRL
0x08 (0x28)
ACSR
ACD
ACBG
ACO
ACI
ACIC
ACIS1
ACIS0
167
UART Data Register (8-bit)
DOR
TXEN
UBRRH[7:0]
ACIE
136
140
0x07 (0x27)
BODCR
–
–
–
–
–
–
BODS
BODSE
37
0x06 (0x26)
PRR
–
–
–
–
PRTIM1
PRTIM0
PRUSI
PRUSART
36
0x05 (0x25)
PCMSK2
–
PCINT17
PCINT16
PCINT15
PCINT14
PCINT13
PCINT12
PCINT11
52
0x04 (0x24)
PCMSK1
–
–
–
–
–
PCINT10
PCINT9
PCINT8
52
0x03 (0x23)
UCSRC
UMSEL1
UMSEL0
UPM1
UPM0
USBS
UCPOL
139
0x02 (0x22)
UBRRH
–
–
–
–
UCSZ1
UCSZ0
UBRRH[11:8]
0x01 (0x21)
DIDR
–
–
–
AIN0D
168
0x00 (0x20)
USIBR
–
–
USI Buffer Register
–
AIN1D
140
166
7
8246AS–AVR–11/09
Notes:
1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses
should never be written.
2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these
registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI
instructions will only operate on the specified bit, and can therefore be used on registers containing such status flags. The
CBI and SBI instructions work with registers 0x00 to 0x1F only.
4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O
Registers as data space using LD and ST instructions, 0x20 must be added to these addresses.
8
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
5. Instruction Set Summary
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS
ADD
Rd, Rr
Add two Registers
Rd ← Rd + Rr
Z,C,N,V,H
ADC
Rd, Rr
Add with Carry two Registers
Rd ← Rd + Rr + C
Z,C,N,V,H
1
ADIW
Rdl,K
Add Immediate to Word
Rdh:Rdl ← Rdh:Rdl + K
Z,C,N,V,S
2
SUB
Rd, Rr
Subtract two Registers
Rd ← Rd - Rr
Z,C,N,V,H
1
SUBI
Rd, K
Subtract Constant from Register
Rd ← Rd - K
Z,C,N,V,H
1
SBC
Rd, Rr
Subtract with Carry two Registers
Rd ← Rd - Rr - C
Z,C,N,V,H
1
1
SBCI
Rd, K
Subtract with Carry Constant from Reg.
Rd ← Rd - K - C
Z,C,N,V,H
1
SBIW
Rdl,K
Subtract Immediate from Word
Rdh:Rdl ← Rdh:Rdl - K
Z,C,N,V,S
2
1
AND
Rd, Rr
Logical AND Registers
Rd ← Rd • Rr
Z,N,V
ANDI
Rd, K
Logical AND Register and Constant
Rd ← Rd • K
Z,N,V
1
OR
Rd, Rr
Logical OR Registers
Rd ← Rd v Rr
Z,N,V
1
ORI
Rd, K
Logical OR Register and Constant
Rd ← Rd v K
Z,N,V
1
EOR
Rd, Rr
Exclusive OR Registers
Rd ← Rd ⊕ Rr
Z,N,V
1
COM
Rd
One’s Complement
Rd ← 0xFF − Rd
Z,C,N,V
1
NEG
Rd
Two’s Complement
Rd ← 0x00 − Rd
Z,C,N,V,H
1
SBR
Rd,K
Set Bit(s) in Register
Rd ← Rd v K
Z,N,V
1
CBR
Rd,K
Clear Bit(s) in Register
Rd ← Rd • (0xFF - K)
Z,N,V
1
INC
Rd
Increment
Rd ← Rd + 1
Z,N,V
1
DEC
Rd
Decrement
Rd ← Rd − 1
Z,N,V
1
TST
Rd
Test for Zero or Minus
Rd ← Rd • Rd
Z,N,V
1
CLR
Rd
Clear Register
Rd ← Rd ⊕ Rd
Z,N,V
1
SER
Rd
Set Register
Rd ← 0xFF
None
1
Relative Jump
PC ← PC + k + 1
None
2
Indirect Jump to (Z)
PC ← Z
None
2
BRANCH INSTRUCTIONS
RJMP
k
IJMP
Relative Subroutine Call
PC ← PC + k + 1
None
3
ICALL
Indirect Call to (Z)
PC ← Z
None
3
RET
Subroutine Return
PC ← STACK
None
4
RETI
Interrupt Return
PC ← STACK
I
if (Rd = Rr) PC ← PC + 2 or 3
None
RCALL
k
4
CPSE
Rd,Rr
Compare, Skip if Equal
1/2/3
CP
Rd,Rr
Compare
Rd − Rr
Z, N,V,C,H
1
CPC
Rd,Rr
Compare with Carry
Rd − Rr − C
Z, N,V,C,H
1
CPI
Rd,K
Compare Register with Immediate
Rd − K
Z, N,V,C,H
SBRC
Rr, b
Skip if Bit in Register Cleared
if (Rr(b)=0) PC ← PC + 2 or 3
None
1
1/2/3
SBRS
Rr, b
Skip if Bit in Register is Set
if (Rr(b)=1) PC ← PC + 2 or 3
None
1/2/3
SBIC
P, b
Skip if Bit in I/O Register Cleared
if (P(b)=0) PC ← PC + 2 or 3
None
1/2/3
SBIS
P, b
Skip if Bit in I/O Register is Set
if (P(b)=1) PC ← PC + 2 or 3
None
1/2/3
BRBS
s, k
Branch if Status Flag Set
if (SREG(s) = 1) then PC←PC+k + 1
None
1/2
BRBC
s, k
Branch if Status Flag Cleared
if (SREG(s) = 0) then PC←PC+k + 1
None
1/2
BREQ
k
Branch if Equal
if (Z = 1) then PC ← PC + k + 1
None
1/2
BRNE
k
Branch if Not Equal
if (Z = 0) then PC ← PC + k + 1
None
1/2
BRCS
k
Branch if Carry Set
if (C = 1) then PC ← PC + k + 1
None
1/2
BRCC
k
Branch if Carry Cleared
if (C = 0) then PC ← PC + k + 1
None
1/2
BRSH
k
Branch if Same or Higher
if (C = 0) then PC ← PC + k + 1
None
1/2
BRLO
k
Branch if Lower
if (C = 1) then PC ← PC + k + 1
None
1/2
BRMI
k
Branch if Minus
if (N = 1) then PC ← PC + k + 1
None
1/2
BRPL
k
Branch if Plus
if (N = 0) then PC ← PC + k + 1
None
1/2
BRGE
k
Branch if Greater or Equal, Signed
if (N ⊕ V= 0) then PC ← PC + k + 1
None
1/2
BRLT
k
Branch if Less Than Zero, Signed
if (N ⊕ V= 1) then PC ← PC + k + 1
None
1/2
BRHS
k
Branch if Half Carry Flag Set
if (H = 1) then PC ← PC + k + 1
None
1/2
BRHC
k
Branch if Half Carry Flag Cleared
if (H = 0) then PC ← PC + k + 1
None
1/2
BRTS
k
Branch if T Flag Set
if (T = 1) then PC ← PC + k + 1
None
1/2
BRTC
k
Branch if T Flag Cleared
if (T = 0) then PC ← PC + k + 1
None
1/2
BRVS
k
Branch if Overflow Flag is Set
if (V = 1) then PC ← PC + k + 1
None
1/2
BRVC
k
Branch if Overflow Flag is Cleared
if (V = 0) then PC ← PC + k + 1
None
1/2
BRIE
k
Branch if Interrupt Enabled
if ( I = 1) then PC ← PC + k + 1
None
1/2
BRID
k
Branch if Interrupt Disabled
if ( I = 0) then PC ← PC + k + 1
None
1/2
BIT AND BIT-TEST INSTRUCTIONS
SBI
P,b
Set Bit in I/O Register
I/O(P,b) ← 1
None
2
CBI
P,b
Clear Bit in I/O Register
I/O(P,b) ← 0
None
2
LSL
Rd
Logical Shift Left
Rd(n+1) ← Rd(n), Rd(0) ← 0
Z,C,N,V
1
LSR
Rd
Logical Shift Right
Rd(n) ← Rd(n+1), Rd(7) ← 0
Z,C,N,V
1
ROL
Rd
Rotate Left Through Carry
Rd(0)←C,Rd(n+1)← Rd(n),C←Rd(7)
Z,C,N,V
1
9
8246AS–AVR–11/09
Mnemonics
Operands
Description
Operation
Flags
#Clocks
ROR
Rd
Rotate Right Through Carry
Rd(7)←C,Rd(n)← Rd(n+1),C←Rd(0)
Z,C,N,V
1
ASR
Rd
Arithmetic Shift Right
Rd(n) ← Rd(n+1), n=0..6
Z,C,N,V
1
SWAP
Rd
Swap Nibbles
Rd(3..0)←Rd(7..4),Rd(7..4)←Rd(3..0)
None
1
BSET
s
Flag Set
SREG(s) ← 1
SREG(s)
1
BCLR
s
Flag Clear
SREG(s) ← 0
SREG(s)
1
BST
Rr, b
Bit Store from Register to T
T ← Rr(b)
T
1
BLD
Rd, b
Bit load from T to Register
Rd(b) ← T
None
1
1
SEC
Set Carry
C←1
C
CLC
Clear Carry
C←0
C
1
SEN
Set Negative Flag
N←1
N
1
CLN
Clear Negative Flag
N←0
N
1
SEZ
Set Zero Flag
Z←1
Z
1
CLZ
Clear Zero Flag
Z←0
Z
1
SEI
Global Interrupt Enable
I←1
I
1
CLI
Global Interrupt Disable
I←0
I
1
1
SES
Set Signed Test Flag
S←1
S
CLS
Clear Signed Test Flag
S←0
S
1
SEV
Set Twos Complement Overflow.
V←1
V
1
CLV
Clear Twos Complement Overflow
V←0
V
1
SET
Set T in SREG
T←1
T
1
CLT
Clear T in SREG
T←0
T
1
SEH
CLH
Set Half Carry Flag in SREG
Clear Half Carry Flag in SREG
H←1
H←0
H
H
1
1
None
1
None
1
DATA TRANSFER INSTRUCTIONS
MOV
Rd, Rr
Move Between Registers
MOVW
Rd, Rr
Copy Register Word
Rd ← Rr
Rd+1:Rd ← Rr+1:Rr
LDI
Rd, K
Load Immediate
Rd ← K
None
1
LD
Rd, X
Load Indirect
Rd ← (X)
None
2
LD
Rd, X+
Load Indirect and Post-Inc.
Rd ← (X), X ← X + 1
None
2
LD
Rd, - X
Load Indirect and Pre-Dec.
X ← X - 1, Rd ← (X)
None
2
2
LD
Rd, Y
Load Indirect
Rd ← (Y)
None
LD
Rd, Y+
Load Indirect and Post-Inc.
Rd ← (Y), Y ← Y + 1
None
2
LD
Rd, - Y
Load Indirect and Pre-Dec.
Y ← Y - 1, Rd ← (Y)
None
2
LDD
Rd,Y+q
Load Indirect with Displacement
Rd ← (Y + q)
None
2
LD
Rd, Z
Load Indirect
Rd ← (Z)
None
2
LD
Rd, Z+
Load Indirect and Post-Inc.
Rd ← (Z), Z ← Z+1
None
2
LD
Rd, -Z
Load Indirect and Pre-Dec.
Z ← Z - 1, Rd ← (Z)
None
2
LDD
Rd, Z+q
Load Indirect with Displacement
Rd ← (Z + q)
None
2
2
LDS
Rd, k
Load Direct from SRAM
Rd ← (k)
None
ST
X, Rr
Store Indirect
(X) ← Rr
None
2
ST
X+, Rr
Store Indirect and Post-Inc.
(X) ← Rr, X ← X + 1
None
2
ST
- X, Rr
Store Indirect and Pre-Dec.
X ← X - 1, (X) ← Rr
None
2
ST
Y, Rr
Store Indirect
(Y) ← Rr
None
2
ST
Y+, Rr
Store Indirect and Post-Inc.
(Y) ← Rr, Y ← Y + 1
None
2
ST
- Y, Rr
Store Indirect and Pre-Dec.
Y ← Y - 1, (Y) ← Rr
None
2
STD
Y+q,Rr
Store Indirect with Displacement
(Y + q) ← Rr
None
2
ST
Z, Rr
Store Indirect
(Z) ← Rr
None
2
ST
Z+, Rr
Store Indirect and Post-Inc.
(Z) ← Rr, Z ← Z + 1
None
2
ST
-Z, Rr
Store Indirect and Pre-Dec.
Z ← Z - 1, (Z) ← Rr
None
2
STD
Z+q,Rr
Store Indirect with Displacement
(Z + q) ← Rr
None
2
STS
k, Rr
Store Direct to SRAM
(k) ← Rr
None
2
Load Program Memory
R0 ← (Z)
None
3
LPM
LPM
Rd, Z
Load Program Memory
Rd ← (Z)
None
3
LPM
Rd, Z+
Load Program Memory and Post-Inc
Rd ← (Z), Z ← Z+1
None
3
Store Program Memory
(Z) ← R1:R0
None
-
In Port
Rd ← P
None
1
SPM
IN
Rd, P
OUT
P, Rr
Out Port
P ← Rr
None
1
PUSH
Rr
Push Register on Stack
STACK ← Rr
None
2
POP
Rd
Pop Register from Stack
Rd ← STACK
None
2
MCU CONTROL INSTRUCTIONS
NOP
No Operation
None
1
SLEEP
Sleep
(see specific descr. for Sleep function)
None
1
WDR
BREAK
Watchdog Reset
Break
(see specific descr. for WDR/timer)
For On-chip Debug Only
None
None
1
N/A
10
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
6. Ordering Information
6.1
ATtiny2313A
Speed (MHz)
Power Supply
20(3)
Notes:
1.8 - 5.5V
Ordering Code(2)
ATtiny2313A-PU
ATtiny2313A-SU
ATtiny2313A-MU
ATtiny2313A-MMH(4)(5)
Package(1)
Operation Range
20P3
20S
20M1
20M2
Industrial
(-40°C to 85°C)
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC, see “Speed Grades” on page 196.
4. NiPdAu finish
5. Topside marking for ATtiny2313A:
– 1st Line: T2313
– 2nd Line: Axx
– 3rd Line: xxx
Package Type
20P3
20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S
20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
20M1
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead / Micro Lead Frame Package (MLF)
20M2
20-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)
11
8246AS–AVR–11/09
6.2
ATtiny4313
Speed (MHz)
Power Supply
(3)
20
Notes:
1.8 - 5.5V
Ordering Code(2)
ATtiny4313-PU
ATtiny4313-SU
ATtiny4313-MU
ATtiny4313-MMH(4)(5)
Package(1)
Operation Range
20P3
20S
20M1
20M2
Industrial
(-40°C to 85°C)
1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information
and minimum quantities.
2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also
Halide free and fully Green.
3. For Speed vs. VCC, see “Speed Grades” on page 196.
4. NiPdAu finish
5. Topside marking for ATtiny4313:
– 1st Line: T4313
– 2nd Line: xx
– 3rd Line: xxx
Package Type
20P3
20-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)
20S
20-lead, 0.300" Wide, Plastic Gull Wing Small Outline Package (SOIC)
20M1
20-pad, 4 x 4 x 0.8 mm Body, Quad Flat No-Lead/Micro Lead Frame Package (MLF)
20M2
20-pad, 3 x 3 x 0.85 mm Body, Very Thin Quad Flat No Lead Package (VQFN)
12
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
7. Packaging Information
7.1
20P3
D
PIN
1
E1
A
SEATING PLANE
A1
L
B
B1
e
E
COMMON DIMENSIONS
(Unit of Measure = mm)
C
eC
eB
Notes:
1. This package conforms to JEDEC reference MS-001, Variation AD.
2. Dimensions D and E1 do not include mold Flash or Protrusion.
Mold Flash or Protrusion shall not exceed 0.25 mm (0.010").
MIN
NOM
MAX
A
–
–
5.334
A1
0.381
–
–
D
25.493
–
25.984
E
7.620
–
8.255
E1
6.096
–
7.112
B
0.356
–
0.559
B1
1.270
–
1.551
L
2.921
–
3.810
C
0.203
–
0.356
eB
–
–
10.922
eC
0.000
–
1.524
SYMBOL
e
NOTE
Note 2
Note 2
2.540 TYP
1/12/04
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
20P3, 20-lead (0.300"/7.62 mm Wide) Plastic Dual
Inline Package (PDIP)
DRAWING NO.
20P3
REV.
C
13
8246AS–AVR–11/09
7.2
14
20S
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
7.3
20M1
D
1
Pin 1 ID
2
SIDE VIEW
E
3
TOP VIEW
A2
D2
A1
A
0.08
1
2
Pin #1
Notch
(0.20 R)
3
COMMON DIMENSIONS
(Unit of Measure = mm)
E2
b
L
e
BOTTOM VIEW
SYMBOL
MIN
NOM
MAX
A
0.70
0.75
0.80
A1
–
0.01
0.05
A2
b
0.18
D
D2
E2
L
0.23
0.30
4.00 BSC
2.45
2.60
2.75
4.00 BSC
2.45
e
Reference JEDEC Standard MO-220, Fig. 1 (SAW Singulation) WGGD-5.
NOTE
0.20 REF
E
Note:
C
2.60
2.75
0.50 BSC
0.35
0.40
0.55
10/27/04
R
2325 Orchard Parkway
San Jose, CA 95131
TITLE
20M1, 20-pad, 4 x 4 x 0.8 mm Body, Lead Pitch 0.50 mm,
2.6 mm Exposed Pad, Micro Lead Frame Package (MLF)
DRAWING NO.
20M1
REV.
A
15
8246AS–AVR–11/09
7.4
20M2
D
C
y
Pin 1 ID
E
SIDE VIEW
TOP VIEW
A1
A
D2
16
17
18
19
20
COMMON DIMENSIONS
(Unit of Measure = mm)
C0.18 (8X)
15
Pin #1 Chamfer
(C 0.3)
14
2
e
E2 13
3
12
4
11
5
MIN
NOM
MAX
A
0.75
0.80
0.85
A1
0.00
0.02
0.05
b
0.17
0.22
0.27
SYMBOL
1
C
b
10
9
8
7
6
K
L
BOTTOM VIEW
0.3 Ref (4x)
NOTE
0.152
D
2.90
3.00
3.10
D2
1.40
1.55
1.70
E
2.90
3.00
3.10
E2
1.40
1.55
1.70
e
–
0.45
–
L
0.35
0.40
0.45
K
0.20
–
–
y
0.00
–
0.08
10/24/08
Package Drawing Contact:
[email protected]
16
GPC
TITLE
20M2, 20-pad, 3 x 3 x 0.85 mm Body, Lead Pitch 0.45 mm,
ZFC
1.55 x 1.55 mm Exposed Pad, Thermally Enhanced
Plastic Very Thin Quad Flat No Lead Package (VQFN)
DRAWING NO.
REV.
20M2
B
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
8. Errata
The revision letters in this section refer to the revision of the corresponding ATtiny2313A/4313
device.
8.1
8.1.1
ATtiny2313A
Rev. D
No known errata.
8.1.2
Rev. A – C
These device revisions were referred to as ATtiny2313/ATtiny2313V.
8.2
8.2.1
ATtiny4313
Rev. A
No known errata.
17
8246AS–AVR–11/09
9. Datasheet Revision History
9.1
Rev. 8246A – 11/09
1. Initial revision. Created from document 2543_t2313.
2. Updated datasheet template.
3. Added VQFN in the Pinout Figure 1-1 on page 2.
4. Added Section 7.2 “Software BOD Disable” on page 34.
5. Added Section 7.3 “Power Reduction Register” on page 34.
6. Updated Table 7-2, “Sleep Mode Select,” on page 36.
7. Added Section 7.5.3 “BODCR – Brown-Out Detector Control Register” on page 37.
8. Added reset disable function in Figure 8-1 on page 38.
9. Added pin change interrupts PCINT1 and PCINT2 in Table 9-1 on page 47.
10. Added PCINT17..8 and PCMSK2..1 in Section 9.2 “External Interrupts” on page 48.
11. Added Section 9.3.4 “PCMSK2 – Pin Change Mask Register 2” on page 52.
12. Added Section 9.3.5 “PCMSK1 – Pin Change Mask Register 1” on page 52.
13. Updated Section 10.2.1 “Alternate Functions of Port A” on page 61.
14. Updated Section 10.2.2 “Alternate Functions of Port B” on page 62.
15. Updated Section 10.2.3 “Alternate Functions of Port D” on page 66.
16. Added UMSEL1 and UMSEL0 in Section 14.10.4 “UCSRC – USART Control and Status Register C” on page 139.
17. Added Section 15. “USART in SPI Mode” on page 145.
18. Added USI Buffer Register (USIBR) in Section 16.2 “Overview” on page 155 and in Figure 16-1 on page 155.
19. Added Section 16.5.4 “USIBR – USI Buffer Register” on page 166.
20. Updated Section 19.6.3 “Reading Device Signature Imprint Table from Firmware” on
page 175.
21. Updated Section 19.9.1 “SPMCSR – Store Program Memory Control and Status Register” on page 176.
22. Added Section 20.3 “Device Signature Imprint Table” on page 180.
23. Updated Section 20.3.1 “Calibration Byte” on page 181.
24. Changed BS to BS1 in Section 20.6.13 “Reading the Signature Bytes” on page 189.
25. Updated Section 21.2 “DC Characteristics” on page 195.
26. Added Section 22.1 “Effect of Power Reduction” on page 203.
27. Updated characteristic plots in Section 22. “Typical Characteristics” for ATtiny2313A
(pages 204 - 227), and added plots for ATtiny4313 (pages 228 - 251).
28. Updated Section 4. “Register Summary” on page 7 .
29. Updated Section 6. “Ordering Information” on page 11, added the package type 20M2
and the ordering code -MMH (VQFN), and added the topside marking note.
18
ATtiny2313A/4313
8246AS–AVR–11/09
ATtiny2313A/4313
19
8246AS–AVR–11/09
Headquarters
International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-enYvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Technical Support
[email protected]
Sales Contact
www.atmel.com/contacts
Product Contact
Web Site
www.atmel.com
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, AVR® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
8246AS–AVR–11/09