ATMEL AT24HC02B_0701

Features
• Write Protect Pin for Hardware Data Protection
– Utilizes Different Array Protection Compared to the AT24C02B
• Medium-voltage and Standard-voltage Operation
– 2.5 (VCC = 2.5V to 5.5V)
Automotive Temperature Range –40°C to 125°C
Internally Organized 256 x 8 (2K)
Two-wire Serial Interface
Schmitt Trigger, Filtered Inputs for Noise Suppression
Bidirectional Data Transfer Protocol
400 kHz (2.5V) Compatibility
Write Protect Pin for Hardware Data Protection
8-byte Page Write Modes
Partial Page Writes are Allowed
Self-timed Write Cycle (5 ms max)
High-reliability
– Endurance: 1 Million Write Cycles
– Data Retention: 100 Years
• 8-lead JEDEC SOIC and 8-lead TSSOP Packages
•
•
•
•
•
•
•
•
•
•
•
Two-wire
Automotive
Temperature
Serial EEPROM
2K (256 x 8)
Description
The AT24HC02B provides 2048 bits of serial electrically erasable and programmable
read-only memory (EEPROM) organized as 256 words of 8 bits each. The device is
optimized for use in many automotive applications where low-power and low-voltage
operation are essential. The AT24HC02B is available in space-saving 8-lead JEDEC
SOIC and 8-lead TSSOP packages and is accessed via a two-wire serial interface. In
addition, the entire family is available in 2.5V (2.5V to 5.5V) versions.
AT24HC02B
Preliminary
Table 1. Pin Configurations
Pin Name
Function
A0 − A2
Address Inputs
SDA
Serial Data
SCL
Serial Clock Input
WP
Write Protect
NC
No Connect
8-lead SOIC
A0
A1
A2
GND
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
8-lead TSSOP
A0
A1
A2
GND
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
5192A–SEEPR–1/07
1
Absolute Maximum Ratings
Operating Temperature......................................−55°C to +125°C
Storage Temperature .........................................−65°C to +150°C
Voltage on Any Pin
with Respect to Ground ........................................ −1.0V to +7.0V
Maximum Operating Voltage .......................................... 6.25V
DC Output Current........................................................ 5.0 mA
*NOTICE:
Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability.
Figure 1. Block Diagram
Pin Description
SERIAL CLOCK (SCL): The SCL input is used to positive edge clock data into each
EEPROM device and negative edge clock data out of each device.
SERIAL DATA (SDA): The SDA pin is bi-directional for serial data transfer. This pin is
open-drain driven and may be wire-ORed with any number of other open-drain or opencollector devices.
DEVICE/PAGE ADDRESSES (A2, A1, A0): The A2, A1 and A0 pins are device
address inputs that are hard wired for the AT24HC02B. As many as eight 2K devices
may be addressed on a single bus system (device addressing is discussed in detail
under the Device Addressing section).
WRITE PROTECT (WP): The AT24HC02B has a Write Protect pin that provides hardware data protection. The Write Protect pin allows normal read/write operations when
2
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
connected to ground (GND). When the Write Protect pin is connected to VCC, the write
protection feature is enabled and operates as shown in the following table.
Table 2. Write Protect
WP Pin
Status
At VCC
At GND
Memory Organization
Part of the Array Protected
24HC02B
Upper Half (1K) Array
Normal Read/Write Operations
AT24HC02B, 2K SERIAL EEPROM: Internally organized with 32 pages of 8 bytes
each, the 2K requires an 8-bit data word address for random word addressing.
3
5192A–SEEPR–1/07
Table 3. Pin Capacitance(1)
Applicable over recommended operating range from TA = 25°C, f = 1.0 MHz, VCC = +2.5V
Symbol
Test Condition
CI/O
CIN
Note:
Max
Units
Conditions
Input/Output Capacitance (SDA)
8
pF
VI/O = 0V
Input Capacitance (A0, A1, A2, SCL)
6
pF
VIN = 0V
1. This parameter is characterized and is not 100% tested.
Table 4. DC Characteristics
Applicable over recommended operating range from: TA = −40°C to +125°C, VCC = +2.5V to +5.5V (unless otherwise noted)
Symbol
Parameter
Max
Units
VCC1
Supply Voltage
5.5
V
ICC
Supply Current VCC = 5.0V
Read at 100 kHz
0.4
1.0
mA
ICC
Supply Current VCC = 5.0V
Write at 100 kHz
2.0
3.0
mA
ISB1
Standby Current VCC = 2.5V
VIN = VCC or VSS
1.6
4.0
µA
ISB2
Standby Current VCC = 5.0V
VIN = VCC or VSS
8.0
18.0
µA
ILI
Input Leakage Current
VIN = VCC or VSS
0.10
3.0
µA
ILO
Output Leakage Current
VOUT = VCC or VSS
0.05
3.0
µA
−0.6
VCC x 0.3
V
VCC x 0.7
VCC + 0.5
V
VIL
Input Low Level
Test Condition
Min
Typ
2.5
(1)
(1)
VIH
Input High Level
VOL2
Output Low Level VCC = 3.0V
IOL = 2.1 mA
0.4
V
VOL1
Output Low Level VCC = 1.8V
IOL = 0.15 mA
0.2
V
Note:
4
1. VIL min and VIH max are reference only and are not tested.
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Table 5. AC Characteristics
Applicable over recommended operating range from TA = −40°C to +125°C, VCC = +2.5V to +5.5V, CL = 1 TTL Gate and
100 pF (unless otherwise noted)
AT24HC02B
Symbol
Parameter
Min
fSCL
Clock Frequency, SCL
tLOW
Clock Pulse Width Low
tHIGH
Clock Pulse Width High
Max
Units
400
kHz
1.2
µs
0.6
µs
(1)
tI
Noise Suppression Time
tAA
Clock Low to Data Out Valid
0.1
tBUF
Time the bus must be free before
a new transmission can start(2)
1.2
µs
tHD.STA
Start Hold Time
0.6
µs
tSU.STA
Start Set-up Time
0.6
µs
tHD.DAT
Data In Hold Time
0
µs
tSU.DAT
Data In Set-up Time
100
ns
tR
Inputs Rise Time(2)
(2)
50
ns
0.9
µs
300
ns
300
ns
tF
Inputs Fall Time
tSU.STO
Stop Set-up Time
0.6
µs
tDH
Data Out Hold Time
50
ns
Write Cycle Time
tWR
(2)
Endurance
Notes:
5.0V, 25°C, Page Mode
5
1M
ms
Write Cycles
1. This parameter is characterized and is not 100% tested (TA = 25°C).
2. This parameter is characterized.
Device Operation
CLOCK and DATA TRANSITIONS: The SDA pin is normally pulled high with an external device. Data on the SDA pin may change only during SCL low time periods (see to
Figure 5 on page 7). Data changes during SCL high periods will indicate a start or stop
condition as defined below.
START CONDITION: A high-to-low transition of SDA with SCL high is a start condition
which must precede any other command (see to Figure 6 on page 7).
STOP CONDITION: A low-to-high transition of SDA with SCL high is a stop condition.
After a read sequence, the stop command will place the EEPROM in a standby power
mode (see Figure 6 on page 7).
ACKNOWLEDGE: All addresses and data words are serially transmitted to and from
the EEPROM in 8-bit words. The EEPROM sends a “0” to acknowledge that it has
received each word. This happens during the ninth clock cycle.
STANDBY MODE: The AT24HC02B features a low-power standby mode which is
enabled: (a) upon power-up and (b) after the receipt of the STOP bit and the completion
of any internal operations.
5
5192A–SEEPR–1/07
SOFTWARE RESET: After an interruption in protocol, power loss or system reset, any
two-wire part can be protocol reset by following these steps (a) Create a start bit condition. (b) Clock nine cycles. (c) Create another start bit followed by stop bit condition as
shown below. The device is ready for next communication after above steps have been
completed.
Figure 2. Software Reset Protocol
Start Bit
SCL
Start Bit
Dummy Clock Cycles
1
2
3
8
Stop Bit
9
SDA
Bus Timing
Figure 3. SCL: Serial Clock, SDA: Serial Data I/O
6
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Write Cycle Timing
Figure 4. SCL: Serial Clock, SDA: Serial Data I/O
SCL
SDA
8th BIT
ACK
WORDn
(1)
twr
STOP
CONDITION
Note:
START
CONDITION
1. The write cycle time tWR is the time from a valid stop condition of a write sequence to the end of the internal clear/write cycle.
Figure 5. Data Validity
Figure 6. Start and Stop Definition
7
5192A–SEEPR–1/07
Figure 7. Output Acknowledge
8
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Device Addressing
The 2K EEPROM device requires an 8-bit device address word following a start condition to enable the chip for a read or write operation (see to Figure 8 on page 10).
The device address word consists of a mandatory “1”, “0” sequence for the first four
most significant bits as shown. This is common to all the Serial EEPROM devices.
The next 3 bits are the A2, A1 and A0 device address bits for the 2K EEPROM. These 3
bits must compare to their corresponding hardwired input pins.
The eighth bit of the device address is the read/write operation select bit. A read operation is initiated if this bit is high and a write operation is initiated if this bit is low.
Upon a compare of the device address, the EEPROM will output a “0”. If a compare is
not made, the chip will return to a standby state.
Write Operations
BYTE WRITE: A write operation requires an 8-bit data word address following the
device address word and acknowledgment. Upon receipt of this address, the EEPROM
will again respond with a “0” and then clock in the first 8-bit data word. Following receipt
of the 8-bit data word, the EEPROM will output a “0” and the addressing device, such as
a microcontroller, must terminate the write sequence with a stop condition. At this time
the EEPROM enters an internally timed write cycle, tWR, to the nonvolatile memory. All
inputs are disabled during this write cycle and the EEPROM will not respond until the
write is complete (see Figure 9 on page 10).
PAGE WRITE: The 2K EEPROM is capable of an 8-byte page write.
A page write is initiated the same as a byte write, but the microcontroller does not send
a stop condition after the first data word is clocked in. Instead, after the EEPROM
acknowledges receipt of the first data word, the microcontroller can transmit up to seven
data words. The EEPROM will respond with a “0” after each data word received. The
microcontroller must terminate the page write sequence with a stop condition (see Figure 10 on page 11).
The data word address lower three bits are internally incremented following the receipt
of each data word. The higher data word address bits are not incremented, retaining the
memory page row location. When the word address, internally generated, reaches the
page boundary, the following byte is placed at the beginning of the same page. If more
than eight data words are transmitted to the EEPROM, the data word address will “roll
over” and previous data will be overwritten.
ACKNOWLEDGE POLLING: Once the internally timed write cycle has started and the
EEPROM inputs are disabled, acknowledge polling can be initiated. This involves sending a start condition followed by the device address word. The read/write bit is
representative of the operation desired. Only if the internal write cycle has completed
will the EEPROM respond with a “0”, allowing the read or write sequence to continue.
Read Operations
Read operations are initiated the same way as write operations with the exception that
the read/write select bit in the device address word is set to “1”. There are three read
operations: current address read, random address read and sequential read.
CURRENT ADDRESS READ: The internal data word address counter maintains the
last address accessed during the last read or write operation, incremented by one. This
address stays valid between operations as long as the chip power is maintained. The
address “roll over” during read is from the last byte of the last memory page to the first
byte of the first page. The address “roll over” during write is from the last byte of the current page to the first byte of the same page.
9
5192A–SEEPR–1/07
Once the device address with the read/write select bit set to “1” is clocked in and acknowledged by the EEPROM, the current address data word is serially clocked out. The
microcontroller does not respond with an input “0” but does generate a following stop condition
(see Figure 11 on page 11).
RANDOM READ: A random read requires a “dummy” byte write sequence to load in the data
word address. Once the device address word and data word address are clocked in and
acknowledged by the EEPROM, the microcontroller must generate another start condition.
The microcontroller now initiates a current address read by sending a device address with the
read/write select bit high. The EEPROM acknowledges the device address and serially clocks
out the data word. The microcontroller does not respond with a “0” but does generate a following stop condition (see Figure 11 on page 11).
SEQUENTIAL READ: Sequential reads are initiated by either a current address read or a random address read. After the microcontroller receives a data word, it responds with an
acknowledge. As long as the EEPROM receives an acknowledge, it will continue to increment
the data word address and serially clock out sequential data words. When the memory
address limit is reached, the data word address will “roll over” and the sequential read will continue. The sequential read operation is terminated when the microcontroller does not respond
with a “0” but does generate a following stop condition (see Figure 13 on page 12).
Figure 8. Device Address
MSB
Figure 9. Byte Write
10
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Figure 10. Page Write
Figure 11. Current Address Read
Figure 12. Random Read
Figure 13. Sequential Read
11
5192A–SEEPR–1/07
AT24HC02B Ordering Information
Ordering Code
Package
AT24HC02BN-SP25-B(1)
AT24HC02BN-SP25-T(2)
AT24HC02B-TP25-B(1)
AT24HC02B-TP25-T(2)
8S1
8S1
8A2
8A2
Notes:
Operation Range
Lead-free/Halogen-free/NiPdAu Lead
Finish/Automotive Temperature
(−40°C to 125°C)
1. “-B” denotes bulk.
2. “-T” denotes tape and reel. SOIC = 4K per reel. TSSOP = 5K per reel.
Package Type
8S1
8-lead, 0.150" Wide, Plastic Gull Wing Small Outline (JEDEC SOIC)
8A2
8-lead, 0.170" Wide, Thin Shrink Small Outline Package (TSSOP)
Options
−2.5
12
Low-voltage (2.5V to 5.5V)
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Packaging Information
8S1 – JEDEC SOIC
C
1
E
E1
L
N
∅
Top View
End View
e
B
COMMON DIMENSIONS
(Unit of Measure = mm)
A
A1
D
Side View
SYMBOL
MIN
NOM
MAX
A
1.35
–
1.75
A1
0.10
–
0.25
b
0.31
–
0.51
C
0.17
–
0.25
D
4.80
–
5.00
E1
3.81
–
3.99
E
5.79
–
6.20
e
NOTE
1.27 BSC
L
0.40
–
1.27
∅
0˚
–
8˚
Note: These drawings are for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.
10/7/03
R
1150 E. Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TITLE
8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing
Small Outline (JEDEC SOIC)
DRAWING NO.
8S1
REV.
B
13
5192A–SEEPR–1/07
8A2 – TSSOP
3
2 1
Pin 1 indicator
this corner
E1
E
L1
N
L
Top View
End View
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL
D
A
b
MIN
NOM
MAX
NOTE
2.90
3.00
3.10
2, 5
3, 5
E
e
A2
D
6.40 BSC
E1
4.30
4.40
4.50
A
–
–
1.20
A2
0.80
1.00
1.05
b
0.19
–
0.30
e
Side View
L
0.65 BSC
0.45
L1
Notes:
0.60
0.75
1.00 REF
1. This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances,
datums, etc.
2. Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed
0.15 mm (0.006 in) per side.
3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25 mm
(0.010 in) per side.
4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08 mm total in excess of the
b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between
protrusion and adjacent lead is 0.07 mm.
5. Dimension D and E1 to be determined at Datum Plane H.
5/30/02
R
14
4
2325 Orchard Parkway
San Jose, CA 95131
TITLE
8A2, 8-lead, 4.4 mm Body, Plastic
Thin Shrink Small Outline Package (TSSOP)
DRAWING NO.
8A2
REV.
B
AT24HC02B [Preliminary]
5192A–SEEPR–1/07
AT24HC02B [Preliminary]
Revision History
Doc. Rev.
Date
Comments
5192A
1/2007
Initial document release.
15
5192A–SEEPR–1/07
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, Everywhere You Are ® and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
5192A–SEEPR–1/07