IRF IRCZ44PBF

PD - 9.529B
IRCZ44
HEXFET® Power MOSFET
l
l
l
l
l
l
Dynamic dv/dt Rating
Current Sense
175°C Operating Temperature
Fast Switching
Ease of Paralleling
Simple Drive Requirements
VDSS = 60V
RDS(on) = 0.028Ω
ID = 50*A
Description
Third Generation HEXFETs from International Rectifier provide the designer with
the best combination of fast switching, ruggedized device, low on-resistance and
cost-effectiveness.
The HEXSense device provides an accurate fraction of the drain current through
the additional two leads to be used for control or protection of the device. These
devices exhibit similar electrical and thermal characteristics as their IRF-series
equivalent part numbers. The provision of a kelvin source connection effectively
eliminates problems of common source inductance when the HEXSence is
used as a fast, high-current switch in non current-sensing applications.
TO-220 HexSense
Absolute Maximum Ratings
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
dv/dt
TJ
TSTG
Parameter
Max.
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy ‚
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
50*
37
210
150
1.0
±20
30
4.5
-55 to + 175
Units
A
W
W/°C
V
mJ
V/ns
°C
300 (1.6mm from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
—
Min.
Typ.
Max.
Units
—
—
—
—
0.50
—
1.0
—
62
°C/W
C-13
IRCZ44
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(ON)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
60
–––
–––
2.0
18
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.060
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
19
120
55
86
LD
Internal Drain Inductance
–––
4.5
–––
LC
Internal Source Inductance
–––
7.5
–––
Ciss
Coss
Crss
r
Coss
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Current Sensing Ratio
Output Capacitance of Sensing Cells
–––
–––
–––
2460
–––
2500
1200
200
–––
9.0
–––
–––
–––
2720
–––
V(BR)DSS
IDSS
IGSS
Drain-to-Source Leakage Current
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
0.028
Ω
VGS = 10V, ID = 31A„
4.0
V
VDS = VGS, ID = 250µA
–––
S
VDS = 25V, ID = 31A
25
VDS = 60V, VGS = 0V
250
VDS = 48V, VGS = 0V, TJ = 150°C
100
VGS = 20V
-100
VGS = -20V
95
ID = 52A
27
nC
VDS = 48V
46
VGS = 10V, See Fig. 6 and 13 „
–––
VDD = 30V
–––
ID = 52A
–––
RG = 9.1Ω
–––
RD = 0.54Ω, See Fig. 10 „
nH
pF
–––
pF
Between lead,
6 mm (0.25in.)
from package
and center of
die contact
VGS = 0V
VDS = 25V
ƒ = 1.0MHz, See Fig. 5
ID = 52A, VGS = 10V
VGS = 0V, VDS = 25V, ƒ = 1.0MHz
Source-Drain Ratings and Characteristics
IS
I SM
V SD
t rr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
–––
–––
50*
–––
–––
210
–––
–––
–––
–––
140
1.2
2.5
300
2.8
A
V
ns
nC
Conditions
MOSFET symbol
showing the
G
integral reverse
p-n junction diode.
TJ = 25°C, IS = 52A, VGS = 0V „
TJ = 25°C, IF = 52A
di/dt = 100A/µs „
max. junction temperature. ( See fig. 11 )
‚ VDD = 25V, starting TJ = 25°C, L = 0.013mH
RG = 25Ω, IAS = 52A. (See Figure 12)
C-14
S
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
D
ƒ ISD ≤ 52A, di/dt ≤ 250A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
ID, Drain Current (Amps)
ID, Drain Current (Amps)
IRCZ44
VDS, Drain-to-Source Voltage (Volts)
Fig. 1 Typical Output Characteristics,
TC=25°C
Fig. 2 Typical Output Characteristics,
TC=175°C
ID, Drain Current (Amps)
RDS(on), Drain to Source On-Resistance
(Normalized)
VDS, Drain-to-Source Voltage (Volts)
VDS, Gate-to-Source Voltage (Volts)
TJ, Junction Temperature (°C)
Fig. 3 Typical Transfer Characteristics
Fig. 4 Normalized On-Resistance vs.
Temperature
C-15
Capacitance (pF)
VGS, Gate-to-Source Voltage (Volts)
IRCZ44
VDS, Drain-to-Source Voltage (Volts)
C-16
Fig. 6 Typical Gate Charge vs. Gate-toSource Voltage
ID Drain Current (Amps)
ISD, Reverse Drain Current (Amps)
Fig. 5 Typical Capacitance vs. Drain-toSource Voltage
QG, Total Gate Charge (nC)
VSD, Source-to-Drain Voltage (Volts)
VDS, Drain-to-Source Voltage (Volts)
Fig. 7 Typical Source-Drain Diode
Forward Voltage
Fig. 8 Maximum Safe Operating Area
ID, Drain Current (Amps)
ID, Drain Current (Amps)
IRCZ44
Starting TJ, Junction Temperature (°C)
Fig. 9 Maximum Drain Current vs.
Case Temperature
Fig. 12c Maximum Avalanche Energy
vs. Drain Current
Thermal Repsonse (ZΘJC)
TC, Case Temperature (°C)
t1, Rectiangular Pulse Duration (seconds)
Fig. 11 Maximum Effective Transient Thermal Impedance, Junction-to-Case
C-17
Sense Ratio (r)
Sense Ratio (r)
IRCZ44
ID, Drain Current (Amps)
Fig. 15 Typical HEXSense Ratio vs.
Junction Temperature
Fig. 16 Typical HEXSense Ratio vs.
Drain Current
Sense Ratio (r)
TJ, Junction Temperature (°C)
Fig. 18 HEXSense Ratio Test Circuit
VGS, Gate-to-Source Voltage (Volts)
Fig. 17 Typical HEXSense Ratio vs.
Gate Voltage
Mechanical drawings, Appendix A
Part marking information, Appendix B
Test Circuit diagrams, Appendix C
C-18
Fig. 19 HEXSense Sensing Cell Output
Capacitance Test Circuit