IRF IRFB9N60

PD - 91811
IRFB9N60A
HEXFET® Power MOSFET
l
l
l
l
l
Dynamic dv/dt Rating
Repetitive Avalanche Rated
Fast Switching
Ease of Paraleling
Simple Drive Requirements
D
VDSS = 600V
RDS(on) = 0.75Ω
G
ID = 9.2A
S
Description
Third Generation HEXFETs from International Rectifier provide the designer
with the best combination of fast switching, ruggedized device design, low onresistance and cost-effectiveness.
The TO-220 package is universally preferred for all commercial-industrial
applications at power dissipation levels to approximately 50 watts. The low
thermal resistance and low package cost of the TO-220 contribute to its wide
acceptance throughout the industry.
TO-220AB
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torque, 6-32 or M3 srew
Max.
Units
9.2
5.8
37
170
1.3
± 30
290
9.2
17
5.0
-55 to + 150
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
Typ.
Max.
Units
–––
0.50
–––
0.75
–––
62
°C/W
1
10/7/98
IRFB9N60A
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
IDSS
Drain-to-Source Leakage Current
V(BR)DSS
∆V(BR)DSS/∆TJ
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
LD
Internal Drain Inductance
LS
Internal Source Inductance
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance …
IGSS
Min. Typ. Max. Units
Conditions
600 ––– –––
V
VGS = 0V, I D = 250µA
––– 0.66 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 0.75
Ω
VGS = 10V, I D = 5.5A „
2.0
––– 4.0
V
VDS = VGS, ID = 250µA
5.5
––– –––
S
VDS = 25V, ID = 5.5A
––– ––– 25
VDS = 600V, VGS = 0V
µA
––– ––– 250
VDS = 480V, VGS = 0V, T J = 150°C
––– ––– 100
VGS = 30V
nA
––– ––– -100
VGS = -30V
––– ––– 49
ID = 9.2A
––– ––– 13
nC
VDS = 400V
––– ––– 20
VGS = 10V, See Fig. 6 and 13 „
–––
13 –––
VDD = 300V
–––
25 –––
ID = 9.2A
ns
–––
30 –––
RG = 9.1Ω
–––
22 –––
RD = 35.5Ω,See Fig. 10 „
D
Between lead,
4.5 –––
–––
6mm (0.25in.)
nH
G
from package
–––
7.5 –––
and center of die contact
S
––– 1400 –––
VGS = 0V
––– 180 –––
VDS = 25V
–––
7.1 –––
pF
ƒ = 1.0MHz, See Fig. 5
––– 1957 –––
VGS = 0V, V DS = 1.0V, ƒ = 1.0MHz
–––
49 –––
VGS = 0V, V DS = 480V, ƒ = 1.0MHz
–––
96 –––
VGS = 0V, V DS = 0V to 480V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 9.2
showing the
A
G
integral reverse
––– –––
37
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 9.2A, VGS = 0V „
––– 530 800
ns
TJ = 25°C, IF = 9.2A
––– 3.0 4.4
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
‚ Starting TJ = 25°C, L = 6.8mH
RG = 25Ω, IAS = 9.2A. (See Figure 12)
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
… Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
ƒ ISD ≤ 9.2A, di/dt ≤ 50A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 150°C
2
www.irf.com
IRFB9N60A
100
100
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.7V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
10
1
4.7V
20µs PULSE WIDTH
TJ = 25 °C
0.1
0.1
1
10
10
4.7V
20µs PULSE WIDTH
TJ = 150 °C
1
1
100
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
100
TJ = 150 ° C
TJ = 25 ° C
1
0.1
4.0
V DS = 50V
20µs PULSE WIDTH
5.0
6.0
7.0
8.0
9.0
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
10
10
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
10.0
ID = 9.2A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 10V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRFB9N60A
20
V GS
C is s
C rss
C o ss
2000
=
=
=
=
0V,
f = 1M H z
C g s + C g d , Cd s S H O R TE D
C gd
C ds + C gd
VGS , Gate-to-Source Voltage (V)
2400
C , Capacitance (pF )
C iss
1600
C oss
1200
800
C rss
400
0
10
100
400V
VDS = 480V
VDS = 300V
VDS = 120V
16
12
8
4
FOR TEST CIRCUIT
SEE FIGURE 13
0
A
1
ID = 9.2A
0
1000
10
20
30
40
50
Q G , Total Gate Charge (nC)
V D S , D rain-to-S ource V oltage (V )
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
100
100
10
TJ = 150 ° C
1
TJ = 25 ° C
10us
10
100us
1ms
1
10ms
0.1
0.2
V GS = 0 V
0.5
0.7
1.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
BY RDS(on)
1.2
0.1
TC = 25 ° C
TJ = 150 ° C
Single Pulse
10
100
1000
10000
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFB9N60A
10.0
RD
VDS
VGS
I D , Drain Current (A)
8.0
D.U.T.
RG
+
-VDD
6.0
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS
90%
0.0
25
50
75
100
TC , Case Temperature
125
150
( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
1
D = 0.50
0.20
0.1
0.10
P DM
0.05
t1
0.02
0.01
0.01
0.00001
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB9N60A
1 5V
L
VDS
D .U .T
RG
IA S
20V
D R IV E R
+
V
- DD
0 .0 1 Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
600
TOP
500
BOTTOM
ID
4.1A
5.8A
9.2A
400
300
200
100
0
25
50
75
100
125
150
Starting TJ , Junction Temperature ( °C)
V (B R )D SS
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
IAS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
10 V
QGS
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
D.U.T.
QGD
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFB9N60A
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
ƒ
+
‚
-
-
„
+

•
•
•
•
RG
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
D=
Period
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFB9N60A
Package Outline
TO-220AB Outline
Dimensions are shown in millimeters (inches)
2.87 (.11 3)
2.62 (.10 3)
10 .5 4 (.415 )
10 .2 9 (.405 )
3.7 8 ( .14 9 )
3.5 4 ( .13 9 )
-A -
-B4 .6 9 (.1 85 )
4 .2 0 (.1 65 )
1.32 (.05 2)
1.22 (.04 8)
6 .4 7 (.2 55 )
6 .1 0 (.2 40 )
4
1 5.24 (.60 0)
1 4.84 (.58 4)
1 .1 5 (.0 4 5)
M IN
1
2
1 4.09 (.55 5)
1 3.47 (.53 0)
4 .0 6 (.160 )
3 .5 5 (.140 )
3X
3X
L E A D A S S IG NM E NT S
1 - GATE
2 - D R A IN
3 - S O U RC E
4 - D R A IN
3
1 .4 0 (.0 55 )
1 .1 5 (.0 45 )
0 .9 3 (.0 37 )
0 .6 9 (.0 27 )
0.36 (.0 14 )
3X
M
B A M
0.55 (.02 2)
0.46 (.01 8)
2.92 (.11 5)
2.64 (.10 4)
2.54 (.10 0)
2X
N O TE S :
1 D IM E N S IO N IN G & TO L E R A N C IN G P E R A N S I Y 14 .5 M , 1 982 .
2 C O N TR O L LIN G D IM E N S IO N : INC H
3 O U TL IN E C O N F O R MS TO J E D E C O U T L IN E TO -2 20 A B .
4 H E A T S IN K & LE A D M E A S U R E M E N T S D O N O T IN C LU DE B U R R S .
Part Marking Information
TO-220AB
E X A M P L E : TH IS IS A N IR F1 0 1 0
W IT H A S S E M B L Y
LOT C ODE 9B1M
A
IN TE R N A TIO N A L
R E C TIF IE R
LOGO
ASSEMBLY
LOT CO DE
PART NU MBER
IR F 10 1 0
9246
9B
1M
D A TE C O D E
(Y Y W W )
YY = YEAR
W W = W EEK
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590
IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111
IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936
http://www.irf.com/
Data and specifications subject to change without notice.
10/98
8
www.irf.com