AVX W3A4YC104K4T2A

Capacitor Array
Capacitor Array (IPC)
BENEFITS OF USING CAPACITOR
ARRAYS
AVX capacitor arrays offer designers the opportunity to
lower placement costs, increase assembly line output
through lower component count per board and to reduce
real estate requirements.
Reduced Costs
Placement costs are greatly reduced by effectively placing
one device instead of four or two. This results in increased
throughput and translates into savings on machine time.
Inventory levels are lowered and further savings are made
on solder materials, etc.
Space Saving
Space savings can be quite dramatic when compared to
the use of discrete chip capacitors. As an example, the
0508 4-element array offers a space reduction of >40% vs.
4 x 0402 discrete capacitors and of >70% vs. 4 x 0603
discrete capacitors. (This calculation is dependent on the
spacing of the discrete components.)
Increased Throughput
Assuming that there are 220 passive components placed in
a mobile phone:
A reduction in the passive count to 200 (by replacing
discrete components with arrays) results in an increase in
throughput of approximately 9%.
A reduction of 40 placements increases throughput by 18%.
For high volume users of cap arrays using the very latest
placement equipment capable of placing 10 components
per second, the increase in throughput can be very significant and can have the overall effect of reducing the number
of placement machines required to mount components:
If 120 million 2-element arrays or 40 million 4-element arrays
were placed in a year, the requirement for placement
equipment would be reduced by one machine.
During a 20Hr operational day a machine places 720K
components. Over a working year of 167 days the machine
can place approximately 120 million. If 2-element arrays are
mounted instead of discrete components, then the number
of placements is reduced by a factor of two and in the
scenario where 120 million 2-element arrays are placed
there is a saving of one pick and place machine.
Smaller volume users can also benefit from replacing
discrete components with arrays. The total number of
placements is reduced thus creating spare capacity on
placement machines. This in turn generates the opportunity
to increase overall production output without further investment in new equipment.
W2A (0508) Capacitor Arrays
4 pcs 0402 Capacitors
=
1 pc 0508 Array
1.88
(0.074)
1.0
1.4
(0.055) (0.039)
5.0 (0.197)
AREA = 7.0mm2 (0.276 in2)
2.1 (0.083)
AREA = 3.95mm2 (0.156 in2)
The 0508 4-element capacitor array gives a PCB space saving of over 40%
vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.
W3A (0612) Capacitor Arrays
4 pcs 0603 Capacitors
=
1 pc 0612 Array
2.0
(0.079)
2.3
1.5
(0.091) (0.059)
6.0 (0.236)
AREA = 13.8mm2 (0.543 in2)
3.2 (0.126)
AREA = 6.4mm2 (0.252 in2)
The 0612 4-element capacitor array gives a PCB space saving of over 50%
vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.
48
Capacitor Array
Capacitor Array (IPC)
GENERAL DESCRIPTION
0405 - 2 Element
0508 - 4 Element
0508 - 2 Element
0612 - 4 Element
AVX is the market leader in the development and manufacture of
capacitor arrays. The smallest array option available from AVX, the
0405 2-element device, has been an enormous success in the
Telecommunications market. The array family of products also
includes the 0612 4-element device as well as 0508 2-element and
4-element series, all of which have received widespread acceptance
in the marketplace.
AVX capacitor arrays are available in X5R, X7R and NP0 (C0G)
ceramic dielectrics to cover a broad range of capacitance values.
Voltage ratings from 6.3 Volts up to 100 Volts are offered. AVX
also now offers a range of automotive capacitor arrays qualified to
AEC-Q200 (see separate table).
Key markets for capacitor arrays are Mobile and Cordless Phones,
Digital Set Top Boxes, Computer Motherboards and Peripherals
as well as Automotive applications, RF Modems, Networking
Products, etc.
AVX Capacitor Array - W2A41A***K
S21 Magnitude
0
-5
-10
S21 mag. (dB)
-15
-20
-25
-30
5pF
10pF
15pF
22pF
33pF
39pF
68pF
-35
-40
0.01
0.1
1
10
Frequency (GHz)
HOW TO ORDER
W
Style
2
A
4
Case Array Number
Size
of Caps
1 = 0405
2 = 0508
3 = 0612
3
Voltage
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
C
103
Dielectric Capacitance
Code
A = NP0
C = X7R 2 Sig Digits +
Number of
D = X5R
Zeros
M
A
T
Capacitance
Failure
Termination
Tolerance
Rate
Code
J = ±5% A = Commercial T = Plated Ni
and Sn**
K = ±10% 4 = Automotive
Z = FLEXITERM™**
M = ±20%
B = 5% min lead
X = FLEXITERM™
with 5% min lead
2A
Packaging &
Quantity
Code
2A = 7" Reel (4000)
4A = 13" Reel (10000)
2F = 7" Reel (1000)
**RoHS compliant
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
49
Capacitor Array
Capacitance Range – NP0/C0G
SIZE
# Elements
0405
2
0508
2
0508
4
0612
4
Soldering
Packaging
Reflow Only
All Paper
1.00 ± 0.15
(0.039 ± 0.006)
1.37 ± 0.15
(0.054 ± 0.006)
0.66
(0.026)
Reflow/Wave
All Paper
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.60 ± 0.150
(0.063 ± 0.006)
3.20 ± 0.20
(0.126 ± 0.008)
1.35
(0.053)
Length
Width
MM
(in.)
MM
(in.)
MM
(in.)
Max.
Thickness
WVDC
1R0
Cap 1.0
1R2
(pF) 1.2
1R5
1.5
1R8
1.8
2R2
2.2
2R7
2.7
3R3
3.3
3R9
3.9
4R7
4.7
5R6
5.6
6R8
6.8
8R2
8.2
100
10
120
12
150
15
180
18
220
22
270
27
330
33
390
39
470
47
560
56
680
68
820
82
101
100
121
120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
50
16
25
50
16
25
50
100
16
25
50
100
16
25
50
100
Capacitor Array
Capacitance Range – X7R/X5R
SIZE
# Elements
0306
4
0405
2
0508
2
0508
4
0612
4
Soldering
Packaging
Reflow Only
All Paper
1.60 ± 0.15
(0.063 ± 0.006)
0.81 ± 0.15
(0.032 ± 0.006)
0.50
(0.020)
6 10
16 25
Reflow Only
All Paper
1.00 ± 0.15
(0.039 ± 0.006)
1.37 ± 0.15
(0.054 ± 0.006)
0.66
(0.026)
10 16 25
Reflow/Wave
All Paper
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.30 ± 0.15
(0.051 ± 0.006)
2.10 ± 0.15
(0.083 ± 0.006)
0.94
(0.037)
Reflow/Wave
Paper/Embossed
1.60 ± 0.150
(0.063 ± 0.006)
3.20 ± 0.20
(0.126 ± 0.008)
1.35
(0.053)
Length
Width
Max.
Thickness
WVDC
101 Cap
121 (µF)
151
181
221
271
331
391
471
561
681
821
102
122
152
182
222
272
332
392
472
562
682
822
103 Cap
123 (µF)
153
183
223
273
333
393
473
563
683
823
104
124
154
184
224
274
334
474
564
684
824
105
125
155
185
225
335
475
106
226
476
107
MM
(in.)
MM
(in.)
MM
(in.)
6
50
6
10
16
25
50
100
6
10
16
25
50
100
6
10
16
25
50
100
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
0.010
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.10
0.12
0.15
0.18
0.22
0.27
0.33
0.47
0.56
0.68
0.82
1.0
1.2
1.5
1.8
2.2
3.3
4.7
10
22
47
100
= Currently available X7R
= Currently available X5R
= Under development X7R, contact factory for advance samples
= Under development X5R, contact factory for advance samples
51
Automotive Capacitor Array (IPC)
As the market leader in the development and manufacture of capacitor
arrays AVX is pleased to offer a range of AEC-Q200 qualified arrays to
compliment our product offering to the Automotive industry. Both the
AVX 0612 and 0508 4-element capacitor array styles are qualified to the
AEC-Q200 automotive specifications.
AEC-Q200 is the Automotive Industry qualification standard and a
detailed qualification package is available on request.
All AVX automotive capacitor array production facilities are certified to
ISO/TS 16949:2002.
0508 - 4 Element
0612 - 4 Element
HOW TO ORDER
W
3
A
Style
Case
Size
2 = 0508
3 = 0612
Y
C
104
K
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
Dielectric
A = NP0
C = X7R
Capacitance
Code (In pF)
Significant
Digits +
Number of
Zeros
e.g. 10µF=106
Capacitance
Tolerance
*J = ±5%
*K = ±10%
M = ±20%
4
Array Number
of Caps
4
T
2A
Failure Rate
Terminations
4 = Automotive T = Plated Ni and Sn**
Z = FLEXITERM™**
B = 5% min lead
X = FLEXITERM™
with 5% min lead
**RoHS compliant
Packaging
& Quantity
Code
2A = 7" Reel
(4000)
4A = 13" Reel
(10000)
2F = 7" Reel
(1000)
*Contact factory for availability by part number for K = ±10% and J = ±5% tolerance.
NP0/C0G
SIZE
No. of Elements
WVDC
1R0
Cap 1.0
1R2
(pF) 1.2
1R5
1.5
1R8
1.8
2R2
2.2
2R7
2.7
3R3
3.3
3R9
3.9
4R7
4.7
5R6
5.6
6R8
6.8
8R2
8.2
100
10
120
12
150
15
180
18
220
22
270
27
330
33
390
39
470
47
560
56
680
68
820
82
101
100
121
120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
= NP0/COG
52
0508
2
100
16
25
X7R
0508
0612
SIZE
0508
0508
4
4
No. of Elements
WVDC
101
Cap 100
121
(pF) 120
151
150
181
180
221
220
271
270
331
330
391
390
471
470
561
560
681
680
821
820
102
1000
122
1200
152
1500
182
1800
222
2200
272
2700
332
3300
392
3900
472
4700
562
5600
682
6800
822
8200
103 Cap 0.010
123
(µF) 0.012
153
0.015
183
0.018
223
0.022
273
0.027
333
0.033
393
0.039
473
0.047
563
0.056
683
0.068
823
0.082
104
0.10
124
0.12
154
0.15
2
4
50
100
16
25
50
100
= X7R
16
25
50
100
16
25
0612
4
50
100
10
16
25
50
100
Capacitor Array
Multi-Value Capacitor Array (IPC)
GENERAL DESCRIPTION
ADVANTAGES OF THE MULTI-VALUE
CAPACITOR ARRAYS
A recent addition to the array product range is the MultiValue Capacitor Array. These devices combine two different
capacitance values in standard ‘Cap Array’ packages and
are available with a maximum ratio between the two capacitance values of 100:1. The multi-value array is currently
available in the 0405 and 0508 2-element styles and also in
the 0612 4-element style.
Whereas to date AVX capacitor arrays have been suited to
applications where multiple capacitors of the same value are
used, the multi-value array introduces a new flexibility to the
range. The multi-value array can replace discrete capacitors
of different values and can be used for broadband decoupling applications. The 0508 x 2 element multi-value array
would be particularly recommended in this application.
Another application is filtering the 900/1800 or 1900MHz
noise in mobile phones. The 0405 2-element, low capacitance value NP0, (C0G) device would be suited to this
application, in view of the space saving requirements of
mobile phone manufacturers.
Enhanced Performance Due to Reduced Parasitic
Inductance
When connected in parallel, not only do discrete capacitors
of different values give the desired self-resonance, but an
additional unwanted parallel resonance also results. This
parallel resonance is induced between each capacitor's
self-resonant frequencies and produces a peak in impedance response. For decoupling and bypassing applications
this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation.
The multi-value capacitor array, combining capacitors in one
unit, virtually eliminates the problematic parallel resonance,
by minimizing parasitic inductance between the capacitors,
thus enhancing the broadband decoupling/filtering performance of the part.
Reduced ESR
An advantage of connecting two capacitors in parallel is a
significant reduction in ESR. However, as stated above,
using discrete components brings with it the unwanted side
effect of parallel resonance. The multi-value cap array is
an excellent alternative as not only does it perform the
same function as parallel capacitors but also it reduces the
uncertainty of the frequency response.
HOW TO ORDER (Multi-Value Capacitor Array - IPC)
W
Style
2
Case
Size
1 = 0405
2 = 0508
3 = 0612
A
Array
2
Y
C
102M
104M
1st Value
2nd Value
Number
of Caps
Voltage
Dielectric Capacitance Capacitance
Z = 10V
A = NP0
Code (In pF)
Tolerance
Y = 16V
C = X7R
2 Sig. Digits +
K = ±10%
3 = 25V
D = X5R
No. of Zeros
M = ±20%
5 = 50V
1 = 100V
NOTE: Contact factory for availability of Termination and Tolerance Options for Specific Part Numbers.
A
T
2A
Failure
Rate
Terminations
T = Plated Ni and Sn**
Z = FLEXITERM™**
B = 5% min lead
X = FLEXITERM™
with 5% min lead
Packaging &
Quantity
Code
2A = 7" Reel (4000)
4A = 13" Reel (10000)
2F = 7" Reel (1000)
**RoHS compliant
IMPEDANCE VS FREQUENCY
Cap (Min/Max)
NP0
X5R/X7R
0612 4-element
100/471
221/104
0508 2-element
100/471
221/104
0405 2-element
100/101
101/103
1
• Max. ratio between the two cap values is 1:100.
• The voltage of the higher capacitance value dictates
the voltage of the multi-value part.
• Only combinations of values within a specific dielectric
range are possible.
Impedance (Ohms)
2xDiscrete Caps (0603)
0.8
0.6
0.4
Multi Value Cap (0508)
0.2
0
1
10
100
1000
Frequency (MHz)
53
Capacitor Array
PART & PAD LAYOUT DIMENSIONS
0405 - 2 Element
PAD LAYOUT
millimeters (inches)
0612 - 4 Element
PAD LAYOUT
W
W
E
E
X
X
P
D
S
P
S
S
D
S
A
A
B
T
C
C
C/L
OF CHIP
BW
B
T
BW
C/L OF CHIP
C
L
C
L
BL L
BL
L
0508 - 2 Element
PAD LAYOUT
0508 - 4 Element
PAD LAYOUT
E
E
W
P
S
D
W
S
D
X
X
A
P
S
S
A
B
B
C
T
T
BW
BW
C/L
OF CHIP
C
C/L OF CHIP
C
L
C
L
BL
L
BL L
PART DIMENSIONS
PAD LAYOUT DIMENSIONS
0405 - 2 Element
L
W
1.00 ± 0.15
1.37 ± 0.15
(0.039 ± 0.006) (0.054 ± 0.006)
0405 - 2 Element
T
0.66 MAX
(0.026 MAX)
BW
BL
0.36 ± 0.10
0.20 ± 0.10
(0.014 ± 0.004) (0.008 ± 0.004)
P
S
0.64 REF
0.32 ± 0.10
(0.025 REF) (0.013 ± 0.004)
W
1.30 ± 0.15
2.10 ± 0.15
(0.051 ± 0.006) (0.083 ± 0.006)
T
0.94 MAX
(0.037 MAX)
BW
BL
0.43 ± 0.10
0.33 ± 0.08
(0.017 ± 0.004) (0.013 ± 0.003)
P
S
1.00 REF
0.50 ± 0.10
(0.039 REF) (0.020 ± 0.004)
W
1.30 ± 0.15
2.10 ± 0.15
(0.051 ± 0.006) (0.083 ± 0.006)
T
0.94 MAX
(0.037 MAX)
BW
BL
0.25 ± 0.06
0.20 ± 0.08
(0.010 ± 0.003) (0.008 ± 0.003)
P
X
S
0.50 REF
0.75 ± 0.10
0.25 ± 0.10
(0.020 REF) (0.030 ± 0.004) (0.010 ± 0.004)
L
W
54
D
E
0.30
(0.012)
0.64
(0.025)
A
B
C
D
E
0.68
(0.027)
1.32
(0.052)
2.00
(0.079)
0.46
(0.018)
1.00
(0.039)
A
B
C
D
E
0.56
(0.022)
1.32
(0.052)
1.88
(0.074)
0.30
(0.012)
0.50
(0.020)
0612 - 4 Element
0612 - 4 Element
1.60 ± 0.20
3.20 ± 0.20
(0.063 ± 0.008) (0.126 ± 0.008)
C
1.20
(0.047)
0508 - 4 Element
0508 - 4 Element
L
B
0.74
(0.029)
0508 - 2 Element
0508 - 2 Element
L
A
0.46
(0.018)
T
1.35 MAX
(0.053 MAX)
BW
BL
+0.25
0.41 ± 0.10
0.18 -0.08
(0.016 ± 0.004) (0.007+0.010 )
-0.003
P
X
S
0.76 REF
1.14 ± 0.10
0.38 ± 0.10
(0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)
A
B
C
D
E
0.89
(0.035)
1.65
(0.065)
2.54
(0.100)
0.46
(0.018)
0.76
(0.030)