TPD1038F Toshiba Intelligent Power Device Silicon Monolithic Power MOS Integrated circuit TPD1038F Motor, Solenoid, Lamp Drivers High Side Power Switch TPD1038F is a monolithic power IC for high-side switches. The IC has a vertical MOS FET output which can be directly driven from a CMOS or TTL logic circuit (eg, an MPU). The device offers intelligent self-protection and diagnostic functions. Features • A monolithic power IC with a structure combining a control block (Bi-CMOS) and a vertical power MOS FET on a single chip. • One side of load can be grounded to a high-side switch. • Can directly drive a power load from a microprocessor. • Built-in protection against overheating and load short circuiting. • Incorporates a diagnosis function that allows diagnosis output to be read externally at load short-circuiting, opening, or overheating. • Up to -(50-VDD)~ -(60-VDD) of counterelectromotive force from an L load can be applied. • Low on Resistance : RDS(ON)=120mΩ(max) ( @ VDD = 12 V、Ta = 25℃、Io = 2 A) • 8-pin SOP package for surface mounting can be packed in tape. Pin Assignment Marking OUT 1 8 VDD GND 2 7 VDD DIAG 3 6 VDD 4 5 VDD IN (TOP VIEW) SOP8-P-1.27A Weight:0.08g(typ.) Product No. TPD1038 ※ F (●) on lower left of the marking indicates Pin1. ※Lot Number Weekly code : (Three digits) Week of manufacture (01 for first of year, continues up to 52 or 53) Year of manufacture (One low-order digits of calendar year) That because of its MOS structure, this product is sensitive to static electrocity. 1 2004-01-22 TPD1038F Block Diagram Bandgap VDD 5V regulator charge pump IN MOSFET (π-MOSⅤ) driver current detection overheat detection DIAG OUT GND Pin Description Pin No. Symbol Function 1 OUT Output pin. When the load is short circuited and current in excessof the detection current (3A min) flows to the output pin , the output automatically turns on or off. 2 GND Ground pin. 3 DIAG Self-diagnosis detection pin.Goes low when overheating is detected or when output is short circuit with input on (high). N-channel open drain. 4 IN Input pin. Input is CMOS compatible, with pull down resistor connected. Even if the input is open, output will not accidentally turn on. 5,6,7,8 VDD Power pin. 2 2004-01-22 TPD1038F Timing Chart Hysteresis 5℃ (typ.) Input signal Overcurrent detection Tch Overheating detection 150℃(min) Channel temperature Load open Output current Output signal Diagnostic output Thermal shutdown Load open detection Current limit Normal Truth Table Input signal Diagnosis output Output signal Output state H H H on L L L off H L L current limit (switching) L L L off H L L off L L L off H H H on L H H off H L L off L H H off Operating state Normal Load Short Overheating Load open Overheating and load open 3 2004-01-22 TPD1038F Maximum Ratings (Ta = 25°C) Characteristics Symbol Rating Unit VDS 60 V DC VDD(1) 25 V Pulse VDD(2) 60(RS=1Ω,τ=250ms) V DC VIN(1) -0.5~12 V Pulse VIN(2) VDD(1)+1.5(t=100ms) V VDIAG -0.5~25 V Output Current IO Internally Limited A Input current IIN ±10 mA IDIAG 5 mA PD(1) 1.1 W PD(2) 0.425 W Operating temperature Topr -40~110 °C Channel temperature Tch 150 °C Storage temperature Tstg -55~150 °C Symbol Rating Unit Drain-Source Voltage Supply Voltage Input Voltage Diagnosis Output Voltage Diagnosis current Power Dissipation (Note 1-a) Power Dissipation (Note 1-b) Thermal Resistance Characteristic Thermal Resistance Rth(ch-a) Note 1: 1-a : Mounted on glass epoxy board (a) 113.5 (Note1-a) 294.0 (Note1-b) °C /W 1-b : Mounted on glass epoxy board (b) FR-4 25.4×25.4×0.8 (Unit:mm) FR-4 25.4×25.4×0.8 (Unit:mm) 4 2004-01-22 TPD1038F Electrical characteristics (Ta=25°C) Symbol Test circuit Test condition VDD(OPR) - - Current dissipation IDD - VDD=12V, VIN=0V, RL=10Ω H-level input voltage Characteristics Operating supply voltage min typ. max Unit 6 12 18 V - - 3 mA - V VIH - VDD=12V 3.5 - L-level input voltage VIL - VDD=12V - - 1.5 V H-level input current IIH - VDD=12V, VIN=5V - - 200 μA RDS(ON) - VDD=12V, IO=2A - - 0.12 Ω IOL - VDD=12V - - 1 mA - - 0.4 V - - 10 μA 3 - 9 A - - 10 A 150 - 200 ℃ 5 17 - kΩ - - 100 μs On resistance Output leakage current Diagnosis output voltage “L”-level VDL - VDD=12V, VIN=0V, IDL=1mA Diagnosis output current “H”-level IDH - VDD=12V, VIN=5V, RL=10Ω, IOC(1)(Note2) 1、2 IOC(2)(Note3) 3 VDD=12V, RL=0.1Ω TOT - VDD=12V Load open detection (Note4) Rop - VDD=12V, VIN=0V Switching time ton Over current detection Overheating detection 4 toff tDLH Diagnosis delay time tDHL Vclamp Output clamp voltage RL=10Ω VDH=12V VDD=12V VDD=12V, RL=10Ω 5 VDD=12V, RL=10Ω - VDD=12V, VIN=0V, IO=1A, L=10mH - - 40 μs - 70 - μs - 22 - μs -(60VDD) - -(50VDD) V (Note 2) Over current detection (Note 3) Peak current @ current limit function (Note 4) Load open detection function : VDD = 8 ~ 18V Test circuit 1 Over current detection IOC(1) 5V :Over current detection when load current is increased while VIN = "H" VDD=12V 2.5kΩ VDIAG OUT DIAG 5V VIN TPD1038F IOC(1) IO 0 5V IO RL VDIAG 0V 5 <0.4V VDL 2004-01-22 TPD1038F Test circuit 2 Over current detection IOC(1) :Over current detection when load is short circuit and VIN = "L" → "H" 5V VDD=12V 2.5kΩ OUT VDIAG DIAG TPD1038F 0 5V IO RL VIN P.G IOC(1) IO VDIAG <0.4V 0V VDL Test circuit 3 Over current detection IOC(2) 5V VDD=12V VIN 2.5kΩ OUT VDIAG DIAG P.G TPD1038F IOC(2) IO RL=0.1Ω VIN IO Test circuit 4 Switching time ton, toff ≦0.1μs VDD=12V 90% VIN OUT DIAG TPD1038F P.G 5V 90% 10% 10% VOUT ≒12V 90% VOUT RL=10Ω VIN ≦0.1μs 10% ton toff Test circuit 5 Diagnosis delay time tDLH, tDHL 5V ≦0.1μs VDD=12V 10% OUT VDIAG P.G 90% VIN 5kΩ ≦0.1μs 5V 90% 10% TPD1038F VIN 5V VDIAG RL=10Ω 50% 50% 0V tDLH 6 tDHL 2004-01-22 TPD1038F VDD IDDIDD - V–DD VDS(ON)- –IOIO V DS(ON) 0.4 Tch=25°C 2 VDD =12V DS(ON) (V) ON (V) ONVOLTAGE VOLTAGE V DS(ON) CURRENT DISSIPATION (mA) CURRENT DISSIPATION IDDIDD(mA) 2.5 LOAD OPEN,VIN =5V 1.5 R L=10Ω,VIN =0V 1 LOAD OPEN,VIN =0V 0.5 0 0.35 Tch=25°C 0.3 0.25 0.2 0.15 0.1 0.05 0 0 4 8 12 16 20 0 0.5 1 RDS(ON) Tch RDS(ON) - T–ch 2.5 3 3.5 4 RDS(ON)- V – DD VDD RDS(ON) VDD=12V DS(ON) ON ONRESISTANCE RESISTANCE RR (Ω) DS(ON)(Ω) ON RESISTANCE (Ω) DS(ON) (Ω) ON RESISTANCE RRDS(ON) 2 0.2 0.2 IO=2A 0.16 0.12 0.08 0.04 0 -80 IO=2A Tch=25°C 0.16 0.12 0.08 0.04 0 -40 0 40 80 120 160 0 OPERATING TEMPERATURE Tch CHANNEL TEMPERATURE (°C) ch (°C) 4 8 12 16 20 SUPPLYVOLTAGE VOLTAGE V VDD (V) SUPPLY DD (V) VDD V IHVIH - V–DD VDD V ILV-ILV–DD 5 5 Tch=25°C IL (V) L-LEVELINPUT INPUTVOLTAGE VOLTAGE V VIL L-LEVEL (V) H-LEVEL (V) H-LEVELINPUT INPUT VOLTAGE VOLTAGE VVIH IH (V) 1.5 OUTPUT CURRENT IO OUTPUT CURRENT (A) O (A) SUPPLY SUPPLY VOLTAGE VOLTAGE VDD DD (V) 4 3 2 1 0 0 4 8 12 16 20 Tch=25°C 4 3 2 1 0 0 SUPPLY SUPPLYVOLTAGE VOLTAGE VVDD (V) DD (V) 4 8 12 16 20 SUPPLY (V) SUPPLYVOLTAGE VOLTAGE VDD DD (V) 7 2004-01-22 TPD1038F IOCIOC - T–chTch VDD=12V 10 IOC(2) 8 6 IOC(1) 4 2 0 -80 -40 0 40 VDL Tch V DL - T–ch 200 DIAGNOSIS OUTPUT VOLTAGE VDL (mV) OVER CURRENT OVER CURRENTDETECTION PROTECTION IIOC (A) (A) 12 80 120 160 VDD=12V 160 120 IDL=2mA 80 IDL=1mA 40 0 -80 Vclamp V clamp - T–chTch 0 80 160 RL=10Ω VIN =0V IO=1A L=10mH -60 -40 -20 Tch=25°C 120 tON 80 40 tOFF 0 -40 0 40 80 120 0 160 OPERATING TEMPERATURE TTch CHANNEL TEMPERATURE (°C) ch(°C) 4 8 12 16 20 SUPPLYVOLTAGE VOLTAGE VDD (V) SUPPLY DD (V) tDLH Tch tDLH -–Tch tDHL- –Tch Tch tDHL 40 DIAGNOSIS (µs) DIAGNOSISDELAY DELAYTIME TIME ttDHL DHL (µs) 200 (µs) RL=10Ω 160 VDD=6V 120 VDD=18V 80 VDD=12V 40 0 -80 120 SWITCHING CHARACTERISTICS SWITCHING CHARACTERISTICS VDD=12V 0 -80 DIAGNOSIS DELAY TIME tDLH 40 160 SWITCHING (µs) SWITCHING TIME TIME (µs) OUTPUT CLAMP VOLTAGE Vclamp (V) -80 -40 CHANNEL TEMPERATURE (°C) OPERATING TEMPERATURE Tch ch (°C) CHANNEL TEMPERATURE (°C) OPERATING TEMPERATURE Tch ch (°C) -40 0 40 80 120 160 RL=10Ω VDD =12V 30 VDD=18V 20 VDD=6V 10 0 -80 -40 0 40 80 120 160 CHANNEL TEMPERATURE OPERATING TEMPERATURE Tch ((°C) °C) OPERATING TEMPERATURE Tch (°C) CHANNEL TEMPERATURE 8 2004-01-22 TPD1038F DIAGNOSISDELAY DELAYTIME TIME (µs) DIAGNOSIS tDLH,tDHL (µs) LOAD LOAD OPEN OPEN DETECTION DETECTION R ROP (kΩ) OP (kΩ) tDLH- ,tDHL – VDD V DD 160 Tch=25°C RL=10Ω (k op R オ ー プ ン 検 出 抵 120 tDLH 80 tDHL 40 0 0 4 8 12 16 RR VV OP- – DD OP DD 100 Tch=25°C R OPH :LOAD OPEN DETECTION RESITANCE 80 R OPL:LOAD OPEN DETECTION RESET RESISTANCE 60 ROPH 40 ROPL 20 0 0 20 4 8 POWER DISSIPATION POWER DISSIPATION PDPD(W)(W) VDD =12V 40 ROPH :LOAD OPEN DETECTION RESITANCE ROPL:LOAD OPEN DETECTION RESET RESISTANCE ROPH 20 10 ROPL -40 0 40 80 120 20 (1)MOUNTED ON GLASS EPOXY BOARD (a) (2)MOUNTED ON GLASS EPOXY BOARD(b) 1.2 (1) 0.8 (2) 0.4 0 -40 160 OPERATING TEMPERATURE TTch (°C) CHANNEL TEMPERATURE ch (°C) 0 40 80 120 160 AMBIENT TEMPERATURE Ta AMBIENT TEMPERATURE Ta (°C) (°C) r th(ch-a) - tW 1000 (1)MOUNTED ON GLASS EPOXY BOARD(a) (2)MOUNTED ON GLASS EPOXY BOARD(b) (2) SINGLE PULSE,Ta=25℃ 100 r th(ch-a) (°C/W) 0 -80 16 PDP-DT–a Ta 1.6 TRANSIENT THERMAL RESISTANCE LOAD OPEN DETECTION (kΩ) LOAD OPEN DETECTION RROP OP (kΩ) ROP- – Tch ROP Tch 50 30 12 SUPPLY VOLTAGE SUPPLY VOLTAGE (V) (V) (V) VDDVVDD DD 電源電圧 SUPPLY VOLTAGE SUPPLY VOLTAGEVDD V DD (V) (V) (1) 10 1 0.1 0.001 0.01 0.1 1 10 100 1000 PULSE WIDTH tw (s) 9 2004-01-22 TPD1038F Package dimensions Weight : 0.08g (typ.) 10 2004-01-22 TPD1038F RESTRICTIONS ON PRODUCT USE 030619EBA • The information contained herein is subject to change without notice. • The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. • TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability Handbook” etc.. • The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer’s own risk. • The products described in this document are subject to the foreign exchange and foreign trade laws. 11 2004-01-22