TOSHIBA TPD1038F

TPD1038F
Toshiba Intelligent Power Device Silicon Monolithic Power MOS Integrated circuit
TPD1038F
Motor, Solenoid, Lamp Drivers
High Side Power Switch
TPD1038F is a monolithic power IC for high-side switches. The
IC has a vertical MOS FET output which can be directly driven
from a CMOS or TTL logic circuit (eg, an MPU). The device offers
intelligent self-protection and diagnostic functions.
Features
•
A monolithic power IC with a structure combining a control
block (Bi-CMOS) and a vertical power MOS FET on a single
chip.
•
One side of load can be grounded to a high-side switch.
•
Can directly drive a power load from a microprocessor.
•
Built-in protection against overheating and load short
circuiting.
•
Incorporates a diagnosis function that allows diagnosis output to be read externally at load short-circuiting,
opening, or overheating.
•
Up to -(50-VDD)~ -(60-VDD) of counterelectromotive force from an L load can be applied.
•
Low on Resistance : RDS(ON)=120mΩ(max) ( @ VDD = 12 V、Ta = 25℃、Io = 2 A)
•
8-pin SOP package for surface mounting can be packed in tape.
Pin Assignment
Marking
OUT
1
8
VDD
GND
2
7
VDD
DIAG
3
6
VDD
4
5
VDD
IN
(TOP VIEW)
SOP8-P-1.27A
Weight:0.08g(typ.)
Product No.
TPD1038
※
F
(●) on lower left of the marking indicates Pin1.
※Lot Number
Weekly code : (Three digits)
Week of manufacture
(01 for first of year, continues up to 52 or 53)
Year of manufacture
(One low-order digits of calendar year)
That because of its MOS structure, this product is sensitive to static electrocity.
1
2004-01-22
TPD1038F
Block Diagram
Bandgap
VDD
5V regulator
charge pump
IN
MOSFET
(π-MOSⅤ)
driver
current detection
overheat detection
DIAG
OUT
GND
Pin Description
Pin No.
Symbol
Function
1
OUT
Output pin. When the load is short circuited and current in excessof the detection current (3A min)
flows to the output pin , the output automatically turns on or off.
2
GND
Ground pin.
3
DIAG
Self-diagnosis detection pin.Goes low when overheating is detected or when output is short circuit
with input on (high). N-channel open drain.
4
IN
Input pin. Input is CMOS compatible, with pull down resistor connected. Even if the input is open,
output will not accidentally turn on.
5,6,7,8
VDD
Power pin.
2
2004-01-22
TPD1038F
Timing Chart
Hysteresis
5℃ (typ.)
Input signal
Overcurrent detection
Tch
Overheating detection 150℃(min)
Channel temperature
Load open
Output current
Output signal
Diagnostic output
Thermal shutdown
Load open detection
Current limit
Normal
Truth Table
Input signal
Diagnosis
output
Output signal
Output state
H
H
H
on
L
L
L
off
H
L
L
current limit
(switching)
L
L
L
off
H
L
L
off
L
L
L
off
H
H
H
on
L
H
H
off
H
L
L
off
L
H
H
off
Operating state
Normal
Load Short
Overheating
Load open
Overheating and
load open
3
2004-01-22
TPD1038F
Maximum Ratings (Ta = 25°C)
Characteristics
Symbol
Rating
Unit
VDS
60
V
DC
VDD(1)
25
V
Pulse
VDD(2)
60(RS=1Ω,τ=250ms)
V
DC
VIN(1)
-0.5~12
V
Pulse
VIN(2)
VDD(1)+1.5(t=100ms)
V
VDIAG
-0.5~25
V
Output Current
IO
Internally Limited
A
Input current
IIN
±10
mA
IDIAG
5
mA
PD(1)
1.1
W
PD(2)
0.425
W
Operating temperature
Topr
-40~110
°C
Channel temperature
Tch
150
°C
Storage temperature
Tstg
-55~150
°C
Symbol
Rating
Unit
Drain-Source Voltage
Supply Voltage
Input Voltage
Diagnosis Output Voltage
Diagnosis current
Power Dissipation
(Note 1-a)
Power Dissipation
(Note 1-b)
Thermal Resistance
Characteristic
Thermal Resistance
Rth(ch-a)
Note 1:
1-a : Mounted on glass epoxy board (a)
113.5 (Note1-a)
294.0 (Note1-b)
°C /W
1-b : Mounted on glass epoxy board (b)
FR-4
25.4×25.4×0.8
(Unit:mm)
FR-4
25.4×25.4×0.8
(Unit:mm)
4
2004-01-22
TPD1038F
Electrical characteristics (Ta=25°C)
Symbol
Test
circuit
Test condition
VDD(OPR)
-
-
Current dissipation
IDD
-
VDD=12V, VIN=0V, RL=10Ω
H-level input voltage
Characteristics
Operating supply voltage
min
typ.
max
Unit
6
12
18
V
-
-
3
mA
-
V
VIH
-
VDD=12V
3.5
-
L-level input voltage
VIL
-
VDD=12V
-
-
1.5
V
H-level input current
IIH
-
VDD=12V, VIN=5V
-
-
200
μA
RDS(ON)
-
VDD=12V, IO=2A
-
-
0.12
Ω
IOL
-
VDD=12V
-
-
1
mA
-
-
0.4
V
-
-
10
μA
3
-
9
A
-
-
10
A
150
-
200
℃
5
17
-
kΩ
-
-
100
μs
On resistance
Output leakage current
Diagnosis
output voltage
“L”-level
VDL
-
VDD=12V, VIN=0V, IDL=1mA
Diagnosis
output current
“H”-level
IDH
-
VDD=12V, VIN=5V, RL=10Ω,
IOC(1)(Note2)
1、2
IOC(2)(Note3)
3
VDD=12V, RL=0.1Ω
TOT
-
VDD=12V
Load open detection (Note4)
Rop
-
VDD=12V, VIN=0V
Switching time
ton
Over current detection
Overheating detection
4
toff
tDLH
Diagnosis delay time
tDHL
Vclamp
Output clamp voltage
RL=10Ω
VDH=12V
VDD=12V
VDD=12V, RL=10Ω
5
VDD=12V, RL=10Ω
-
VDD=12V, VIN=0V, IO=1A, L=10mH
-
-
40
μs
-
70
-
μs
-
22
-
μs
-(60VDD)
-
-(50VDD)
V
(Note 2) Over current detection
(Note 3) Peak current @ current limit function
(Note 4) Load open detection function : VDD = 8 ~ 18V
Test circuit 1
Over current detection IOC(1)
5V
:Over current detection when load current is increased while VIN = "H"
VDD=12V
2.5kΩ
VDIAG
OUT
DIAG
5V
VIN
TPD1038F
IOC(1)
IO
0
5V
IO
RL
VDIAG
0V
5
<0.4V
VDL
2004-01-22
TPD1038F
Test circuit 2
Over current detection IOC(1)
:Over current detection when load is short circuit and VIN = "L" → "H"
5V
VDD=12V
2.5kΩ
OUT
VDIAG
DIAG
TPD1038F
0
5V
IO
RL
VIN
P.G
IOC(1)
IO
VDIAG
<0.4V
0V
VDL
Test circuit 3
Over current detection IOC(2)
5V
VDD=12V
VIN
2.5kΩ
OUT
VDIAG
DIAG
P.G
TPD1038F
IOC(2)
IO
RL=0.1Ω
VIN
IO
Test circuit 4
Switching time ton, toff
≦0.1μs
VDD=12V
90%
VIN
OUT
DIAG
TPD1038F
P.G
5V
90%
10%
10%
VOUT
≒12V
90%
VOUT
RL=10Ω
VIN
≦0.1μs
10%
ton
toff
Test circuit 5
Diagnosis delay time tDLH, tDHL
5V
≦0.1μs
VDD=12V
10%
OUT
VDIAG
P.G
90%
VIN
5kΩ
≦0.1μs
5V
90%
10%
TPD1038F
VIN
5V
VDIAG
RL=10Ω
50%
50%
0V
tDLH
6
tDHL
2004-01-22
TPD1038F
VDD
IDDIDD
- V–DD
VDS(ON)- –IOIO
V DS(ON)
0.4
Tch=25°C
2
VDD =12V
DS(ON) (V)
ON
(V)
ONVOLTAGE
VOLTAGE V DS(ON)
CURRENT
DISSIPATION
(mA)
CURRENT
DISSIPATION
IDDIDD(mA)
2.5
LOAD OPEN,VIN =5V
1.5
R L=10Ω,VIN =0V
1
LOAD OPEN,VIN =0V
0.5
0
0.35
Tch=25°C
0.3
0.25
0.2
0.15
0.1
0.05
0
0
4
8
12
16
20
0
0.5
1
RDS(ON)
Tch
RDS(ON)
- T–ch
2.5
3
3.5
4
RDS(ON)- V
– DD
VDD
RDS(ON)
VDD=12V
DS(ON)
ON
ONRESISTANCE
RESISTANCE RR
(Ω)
DS(ON)(Ω)
ON
RESISTANCE
(Ω)
DS(ON) (Ω)
ON
RESISTANCE RRDS(ON)
2
0.2
0.2
IO=2A
0.16
0.12
0.08
0.04
0
-80
IO=2A
Tch=25°C
0.16
0.12
0.08
0.04
0
-40
0
40
80
120
160
0
OPERATING
TEMPERATURE Tch
CHANNEL
TEMPERATURE
(°C)
ch (°C)
4
8
12
16
20
SUPPLYVOLTAGE
VOLTAGE V
VDD
(V)
SUPPLY
DD (V)
VDD
V IHVIH
- V–DD
VDD
V ILV-ILV–DD
5
5
Tch=25°C
IL (V)
L-LEVELINPUT
INPUTVOLTAGE
VOLTAGE V
VIL
L-LEVEL
(V)
H-LEVEL
(V)
H-LEVELINPUT
INPUT VOLTAGE
VOLTAGE VVIH
IH (V)
1.5
OUTPUT
CURRENT IO
OUTPUT
CURRENT
(A)
O (A)
SUPPLY
SUPPLY VOLTAGE
VOLTAGE VDD
DD (V)
4
3
2
1
0
0
4
8
12
16
20
Tch=25°C
4
3
2
1
0
0
SUPPLY
SUPPLYVOLTAGE
VOLTAGE VVDD
(V)
DD (V)
4
8
12
16
20
SUPPLY
(V)
SUPPLYVOLTAGE
VOLTAGE VDD
DD (V)
7
2004-01-22
TPD1038F
IOCIOC
- T–chTch
VDD=12V
10
IOC(2)
8
6
IOC(1)
4
2
0
-80
-40
0
40
VDL
Tch
V DL
- T–ch
200
DIAGNOSIS OUTPUT VOLTAGE VDL
(mV)
OVER
CURRENT
OVER
CURRENTDETECTION
PROTECTION IIOC
(A)
(A)
12
80
120
160
VDD=12V
160
120
IDL=2mA
80
IDL=1mA
40
0
-80
Vclamp
V clamp
- T–chTch
0
80
160
RL=10Ω
VIN =0V
IO=1A
L=10mH
-60
-40
-20
Tch=25°C
120
tON
80
40
tOFF
0
-40
0
40
80
120
0
160
OPERATING
TEMPERATURE TTch
CHANNEL TEMPERATURE
(°C)
ch(°C)
4
8
12
16
20
SUPPLYVOLTAGE
VOLTAGE VDD
(V)
SUPPLY
DD (V)
tDLH
Tch
tDLH
-–Tch
tDHL- –Tch
Tch
tDHL
40
DIAGNOSIS
(µs)
DIAGNOSISDELAY
DELAYTIME
TIME ttDHL
DHL (µs)
200
(µs)
RL=10Ω
160
VDD=6V
120
VDD=18V
80
VDD=12V
40
0
-80
120
SWITCHING
CHARACTERISTICS
SWITCHING
CHARACTERISTICS
VDD=12V
0
-80
DIAGNOSIS DELAY TIME tDLH
40
160
SWITCHING
(µs)
SWITCHING TIME
TIME (µs)
OUTPUT CLAMP VOLTAGE Vclamp
(V)
-80
-40
CHANNEL
TEMPERATURE
(°C)
OPERATING
TEMPERATURE Tch
ch (°C)
CHANNEL
TEMPERATURE
(°C)
OPERATING
TEMPERATURE Tch
ch (°C)
-40
0
40
80
120
160
RL=10Ω
VDD =12V
30
VDD=18V
20
VDD=6V
10
0
-80
-40
0
40
80
120
160
CHANNEL
TEMPERATURE
OPERATING
TEMPERATURE Tch ((°C)
°C)
OPERATING
TEMPERATURE Tch (°C)
CHANNEL
TEMPERATURE
8
2004-01-22
TPD1038F
DIAGNOSISDELAY
DELAYTIME
TIME (µs)
DIAGNOSIS
tDLH,tDHL (µs)
LOAD
LOAD
OPEN
OPEN
DETECTION
DETECTION R
ROP
(kΩ)
OP (kΩ)
tDLH-
,tDHL
– VDD
V DD
160
Tch=25°C
RL=10Ω
(k
op
R
オ
ー
プ
ン
検
出
抵
120
tDLH
80
tDHL
40
0
0
4
8
12
16
RR
VV
OP- –
DD
OP
DD
100
Tch=25°C
R OPH :LOAD OPEN DETECTION RESITANCE
80
R OPL:LOAD OPEN DETECTION RESET RESISTANCE
60
ROPH
40
ROPL
20
0
0
20
4
8
POWER DISSIPATION
POWER
DISSIPATION PDPD(W)(W)
VDD =12V
40
ROPH :LOAD OPEN DETECTION RESITANCE
ROPL:LOAD OPEN DETECTION RESET RESISTANCE
ROPH
20
10
ROPL
-40
0
40
80
120
20
(1)MOUNTED ON GLASS
EPOXY BOARD (a)
(2)MOUNTED ON GLASS
EPOXY BOARD(b)
1.2
(1)
0.8
(2)
0.4
0
-40
160
OPERATING
TEMPERATURE TTch
(°C)
CHANNEL
TEMPERATURE
ch (°C)
0
40
80
120
160
AMBIENT
TEMPERATURE Ta
AMBIENT
TEMPERATURE
Ta (°C)
(°C)
r th(ch-a) - tW
1000
(1)MOUNTED ON GLASS EPOXY BOARD(a)
(2)MOUNTED ON GLASS EPOXY BOARD(b)
(2)
SINGLE PULSE,Ta=25℃
100
r th(ch-a) (°C/W)
0
-80
16
PDP-DT–a Ta
1.6
TRANSIENT THERMAL RESISTANCE
LOAD
OPEN
DETECTION
(kΩ)
LOAD
OPEN
DETECTION RROP
OP (kΩ)
ROP- –
Tch
ROP
Tch
50
30
12
SUPPLY
VOLTAGE
SUPPLY
VOLTAGE
(V)
(V) (V)
VDDVVDD
DD
電源電圧
SUPPLY
VOLTAGE
SUPPLY
VOLTAGEVDD
V DD (V)
(V)
(1)
10
1
0.1
0.001
0.01
0.1
1
10
100
1000
PULSE WIDTH tw (s)
9
2004-01-22
TPD1038F
Package dimensions
Weight : 0.08g (typ.)
10
2004-01-22
TPD1038F
RESTRICTIONS ON PRODUCT USE
030619EBA
• The information contained herein is subject to change without notice.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
may result from its use. No license is granted by implication or otherwise under any patent or patent rights of
TOSHIBA or others.
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
11
2004-01-22