ONSEMI MC14046BDWR2G

MC14046B
Phase Locked Loop
The MC14046B phase locked loop contains two phase comparators,
a voltage−controlled oscillator (VCO), source follower, and zener
diode. The comparators have two common signal inputs, PCAin and
PCBin. Input PCAin can be used directly coupled to large voltage
signals, or indirectly coupled (with a series capacitor) to small voltage
signals. The self−bias circuit adjusts small voltage signals in the linear
region of the amplifier. Phase comparator 1 (an exclusive OR gate)
provides a digital error signal PC1out, and maintains 90° phase shift at
the center frequency between PCAin and PCBin signals (both at 50%
duty cycle). Phase comparator 2 (with leading edge sensing logic)
provides digital error signals, PC2 out and LD, and maintains a 0°
phase shift between PCA in and PCBin signals (duty cycle is
immaterial). The linear VCO produces an output signal VCO out
whose frequency is determined by the voltage of input VCO in and the
capacitor and resistors connected to pins C1A, C1B, R1, and R2. The
source−follower output SFout with an external resistor is used where
the VCO in signal is needed but no loading can be tolerated. The inhibit
input Inh, when high, disables the VCO and source follower to
minimize standby power consumption. The zener diode can be used to
assist in power supply regulation.
Applications include FM and FSK modulation and demodulation,
frequency synthesis and multiplication, frequency discrimination,
tone decoding, data synchronization and conditioning,
voltage−to−frequency conversion and motor speed control.
http://onsemi.com
MARKING
DIAGRAMS
PDIP−16
P SUFFIX
CASE 648
•
MC14046BCP
AWLYYWWG
1
16
SOIC−16
DW SUFFIX
CASE 751G
14046BG
AWLYYWW
1
16
SOEIAJ−16
F SUFFIX
CASE 966
Features
•
•
•
•
•
•
16
MC14046B
ALYWG
1
Buffered Outputs Compatible with MHTL and Low−Power TTL
Diode Protection on All Inputs
Supply Voltage Range = 3.0 to 18 V
Pin−for−Pin Replacement for CD4046B
Phase Comparator 1 is an Exclusive OR Gate and is Duty Cycle Limited
Phase Comparator 2 Switches on Rising Edges and is not Duty Cycle
Limited
Pb−Free Packages are Available*
A
WL, L
YY, Y
WW, W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Indicator
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 4 of this data sheet.
MAXIMUM RATINGS (Voltages Referenced to VSS)
Symbol
Parameter
VDD
DC Supply Voltage Range
Vin
Input Voltage Range (All Inputs)
Value
Unit
−0.5 to +18.0
V
−0.5 to VDD + 0.5
V
Iin
DC Input Current, per Pin
± 10
mA
PD
Power Dissipation, per Package
(Note 1)
500
mW
TA
Operating Temperature Range
−55 to +125
°C
Tstg
Storage Temperature Range
−65 to +150
°C
Maximum ratings are those values beyond which device damage can occur.
Maximum ratings applied to the device are individual stress limit values (not
normal operating conditions) and are not valid simultaneously. If these limits are
exceeded, device functional operation is not implied, damage may occur and
reliability may be affected.
1. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
© Semiconductor Components Industries, LLC, 2005
August, 2005 − Rev. 10
1
This device contains protection circuitry to guard
against damage due to high static voltages or electric
fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range
VSS v (Vin or Vout) v VDD.
Unused inputs must always be tied to an appropriate
logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.
*For additional information on our Pb−Free strategy
and soldering details, please download the
ON Semiconductor Soldering and Mounting
Techniques Reference Manual, SOLDERRM/D.
Publication Order Number:
MC14046B/D
MC14046B
PIN ASSIGNMENT
BLOCK DIAGRAM
SELF BIAS
CIRCUIT
PCAin 14
PCBin 3
VCOin 9
VDD = PIN 16
VSS = PIN 8
PHASE
COMPARATOR 1
2PC1 out
PHASE
COMPARATOR 2
13PC2 out
1LD
VOLTAGE
CONTROLLED
OSCILLATOR
(VCO)
4VCO out
11R1
12R2
6C1 A
7C1 B
SOURCE FOLLOWER
INH 5
LD
1
16
VDD
PC1out
2
15
ZENER
PCBin
3
14
PCAin
VCOout
4
13
PC2out
INH
5
12
R2
C1A
6
11
R1
C1B
7
10
SFout
VSS
8
9
VCOin
10SF out
VSS
15ZENER
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS)
Characteristic
Symbol
− 55_C
25_C
125_C
VDD
Vdc
Min
Max
Min
Typ
Max
Min
Max
Unit
“0” Level
VOL
5.0
10
15
−
−
−
0.05
0.05
0.05
−
−
−
0
0
0
0.05
0.05
0.05
−
−
−
0.05
0.05
0.05
Vdc
“1” Level
VOH
5.0
10
15
4.95
9.95
14.95
−
−
−
4.95
9.95
14.95
5.0
10
15
−
−
−
4.95
9.95
14.95
−
−
−
Vdc
Input Voltage (Note 2)
(VO = 4.5 or 0.5 Vdc)
(VO = 9.0 or 1.0 Vdc)
(VO = 13.5 or 1.5 Vdc)
“0” Level
VIL
5.0
10
15
−
−
−
1.5
3.0
4.0
−
−
−
2.25
4.50
6.75
1.5
3.0
4.0
−
−
−
1.5
3.0
4.0
(VO = 0.5 or 4.5 Vdc)
(VO = 1.0 or 9.0 Vdc)
(VO = 1.5 or 13.5 Vdc)
“1” Level
5.0
10
15
3.5
7.0
11
−
−
−
3.5
7.0
11
2.75
5.50
8.25
−
−
−
3.5
7.0
11
−
−
−
5.0
5.0
10
15
– 1.2
– 0.25
– 0.62
– 1.8
−
−
−
−
– 1.0
– 0.2
– 0.5
– 1.5
– 1.7
– 0.36
– 0.9
– 3.5
−
−
−
−
– 0.7
– 0.14
– 0.35
– 1.1
−
−
−
−
IOL
5.0
10
15
0.64
1.6
4.2
−
−
−
0.51
1.3
3.4
0.88
2.25
8.8
−
−
−
0.36
0.9
2.4
−
−
−
mAdc
Iin
15
−
± 0.1
−
± 0.00001
± 0.1
−
± 1.0
mAdc
Output Voltage
Vin = VDD or 0
Vin = 0 or VDD
VIH
Vdc
IOH
Output Drive Current
(VOH = 2.5 Vdc)
(VOH = 4.6 Vdc)
(VOH = 9.5 Vdc)
(VOH = 13.5 Vdc)
Source
(VOL = 0.4 Vdc)
(VOL = 0.5 Vdc)
(VOL = 1.5 Vdc)
Sink
Input Current
Vdc
mAdc
Input Capacitance
Cin
−
−
−
−
5.0
7.5
−
−
pF
Quiescent Current
(Per Package) Inh = PCAin = VDD,
Zener = VCOin = 0 V, PCBin = VDD
or 0 V, Iout = 0 mA
IDD
5.0
10
15
−
−
−
5.0
10
20
−
−
−
0.005
0.010
0.015
5.0
10
20
−
−
−
150
300
600
mAdc
Total Supply Current (Note 3)
(Inh = “0”, fo = 10 kHz, CL = 50 pF,
R1 = 1.0 MW, R2 = R RSF = ∞,
and 50% Duty Cycle)
IT
5.0
10
15
IT = (1.46 mA/kHz) f + IDD
IT = (2.91 mA/kHz) f + IDD
IT = (4.37 mA/kHz) f + IDD
2. Noise immunity specified for worst−case input combination.
Noise Margin for both “1” and “0” level =
1.0 Vdc min @ VDD = 5.0 Vdc
2.0 Vdc min @ VDD = 10 Vdc
2.5 Vdc min @ VDD = 15 Vdc
3. To Calculate Total Current in General:
VCOin – 1.65
VDD − 1.35 3/4
VCOin – 1.65 3/4
IT [ 2.2 x VDD
+
+ 1.6 x
+ 1 x 10−3 (CL + 9) VDD f +
R1
R2
RSF
ǒ
1 x 10−1 VDD2
Ǔ
ǒ100% Duty Cycle of PCAin Ǔ + IQ
100
ǒ
Ǔ
where: IT in mA, CL in pF, VCOin, VDD in Vdc, f in kHz, and
R1, R2, RSF in MW, CL on VCOout.
http://onsemi.com
2
mAdc
MC14046B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (Note 4) (CL = 50 pF, TA = 25°C)
Characteristic
Symbol
Output Rise Time
tTLH = (3.0 ns/pF) CL + 30 ns
tTLH = (1.5 ns/pF) CL + 15 ns
tTLH = (1.1 ns/pF) CL + 10 ns
tTLH
Output Fall Time
tTHL = (1.5 ns/pF) CL + 25 ns
tTHL = (0.75 ns/pF) CL + 12.5 ns
tTHL = (0.55 ns/pF) CL + 9.5 ns
tTHL
VDD
Vdc
Minimum
Maximum
Device
Typical
Device
5.0
10
15
−
−
−
180
90
65
350
150
110
5.0
10
15
−
−
−
100
50
37
175
75
55
Units
ns
ns
PHASE COMPARATORS 1 and 2
Input Resistance − PCAin
Rin
5.0
10
15
1.0
0.2
0.1
2.0
0.4
0.2
−
−
−
MW
− PCBin
Rin
15
150
1500
−
MW
Vin
5.0
10
15
−
−
−
200
400
700
300
600
1050
mV p–p
−
5 to 15
fmax
5.0
10
15
0.5
1.0
1.4
0.7
1.4
1.9
−
−
−
MHz
Temperature − Frequency Stability
(R2 = ∞ )
−
5.0
10
15
−
−
−
0.12
0.04
0.015
−
−
−
%/_C
Linearity (R2 = ∞ )
(VCOin = 2.5 V ± 0.3 V, R1 > 10 kW)
(VCOin = 5.0 V ± 2.5 V, R1 > 400 kW)
(VCOin = 7.5 V ± 5.0 V, R1 ≥ 1000 kW)
−
5.0
10
15
−
−
−
1.0
1.0
1.0
−
−
−
Output Duty Cycle
−
5 to 15
−
50
−
%
Rin
15
150
1500
−
MW
Offset Voltage
(VCOin minus SFout, RSF > 500 kW)
−
5.0
10
15
−
−
−
1.65
1.65
1.65
2.2
2.2
2.2
V
Linearity
(VCOin = 2.5 V ± 0.3 V, RSF > 50 kW)
(VCOin = 5.0 V ± 2.5 V, RSF > 50 kW)
(VCOin = 7.5 V ± 5.0 V, RSF > 50 kW)
−
5.0
10
15
−
−
−
0.1
0.6
0.8
−
−
−
Minimum Input Se−sitivity
AC Coupled — PCAin
C series = 1000 pF, f = 50 kHz
DC Coupled − PCAin, PCBin
See Noise Immunity
VOLTAGE CONTROLLED OSCILLATOR (VCO)
Maximum Frequency
(VCOin = VDD, C1 = 50 pF
R1 = 5.0 kW, and R2 = ∞)
Input Resistance − VCOin
%
SOURCE−FOLLOWER
%
ZENER DIODE
Zener Voltage (Iz = 50 mA)
VZ
−
6.7
7.0
7.3
V
Dynamic Resistance (Iz = 1.0 mA)
RZ
−
−
100
−
W
4. The formula given is for the typical characteristics only.
http://onsemi.com
3
MC14046B
ORDERING INFORMATION
Package
Shipping †
MC14046BCP
PDIP−16
500 Units / Rail
MC14046BCPG
PDIP−16
(Pb−Free)
500 Units / Rail
MC14046BDW
SOIC−16 WB
47 Units / Rail
MC14046BDWG
SOIC−16 WB
(Pb−Free)
47 Units / Rail
MC14046BDWR2
SOIC−16 WB
1000 Units / Tape & Reel
MC14046BDWR2G
SOIC−16 WB
(Pb−Free)
1000 Units / Tape & Reel
MC14046BF
SOEIAJ−16
50 Units / Rail
MC14046BFEL
SOEIAJ−16
2000 Units / Tape & Reel
MC14046BFELG
SOEIAJ−16
(Pb−Free)
2000 Units / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
http://onsemi.com
4
MC14046B
PHASE COMPARATOR 1
Input Stage
00
01
11
10
XX
PCAin
PCBin
PC1out
0
1
PHASE COMPARATOR 2
Input Stage
XX
PCAin
00
01
PCBin
00
10
10
00
01
01
10
11
11
11
PC2out
0
3−State
Output Disconnected
1
LD (Lock Detect)
0
1
0
Refer to Waveforms in Figure 3.
Figure 1. Phase Comparators State Diagrams
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Characteristic
Using Phase Comparator 1
Using Phase Comparator 2
No signal on input PCAin.
VCO in PLL system adjusts to center
frequency (f0).
VCO in PLL system adjusts to minimum
frequency (fmin).
Phase angle between PCAin and PCBin.
90° at center frequency (f0), approaching
0_ and 180° at ends of lock range (2fL)
Always 0_ in lock (positive rising edges).
Locks on harmonics of center frequency.
Yes
No
Signal input noise rejection.
High
Low
Lock frequency range (2fL).
The frequency range of the input signal on which the loop will stay locked if it was
initially in lock; 2fL = full VCO frequency range = fmax – fmin.
Capture frequency range (2fC).
The frequency range of the input signal on which the loop will lock if it was initially
out of lock.
Depends on low−pass filter characteristics
(see Figure 3). fC v fL
Center frequency (f0).
VCO output frequency (f).
Note: These equations are intended to be
a design guide. Since calculated component
values may be in error by as much as a
factor of 4, laboratory experimentation may
be required for fixed designs. Part to part
frequency variation with identical passive
components is typically less than ± 20%.
The frequency of VCOout, when VCOin = 1/2 VDD
fmin =
fmax =
1
(VCO input = VSS)
R2(C1 + 32 pF)
1
R1(C1 + 32 pF)
+ fmin
Where: 10K v R1 v 1 M
10K v R2 v 1 M
100pF v C1 v .01 mF
Figure 2. Design Information
http://onsemi.com
5
(VCO input = VDD)
fC = fL
MC14046B
9
SOURCE
FOLLOWER
VCOin
PCAin
@ FREQUENCY f′
PCBin
14
3
EXTERNAL
LOW−PASS
FILTER
PHASE
2 OR 13
COMPARATOR PC1out
OR
PC2out
9
11
R1
12
VCO
6
R2
SFout
10
RSF
VCOout
@ FREQUENCY Nf′ = f
4
7
CIA
CIB
CI
EXTERNAL
÷N
COUNTER
Typical Low−Pass Filters
(a)
INPUT
R3
C2
OUTPUT
2fC [ 1
p
(a)
INPUT
Ǹ
2 p fL
R3 C2
Typically:
R3
N
R4 C2 + 6N –
fmax 2 p D f
(R3 ) 3, 000W) C2 + 100NDf – R4 C2
fmax2
OUTPUT
R4
C2
D f = fmax − fmin
NOTE: Sometimes R3 is split into two series resistors each R3 ÷ 2. A capacitor CC is then placed from the midpoint to ground. The value for
CC should be such that the corner frequency of this network does not significantly affect Wn. In Figure B, the ratio of R3 to R4 sets
the damping, R4 ^ (0.1)(R3) for optimum results.
LOW−PASS FILTER
Filter A
Definitions: N = Total division ratio in feedback loop
Kφ = VDD/π for Phase Comparator 1
Kφ = VDD/4 π for Phase Comparator 2
2 p D fVCO
KVCO +
VDD – 2 V
2 p fr
(at phase detector input)
for a typical design Wn ^
10
ζ ^ 0.707
wn +
z+
Ǹ
KfKVCO
NR3C2
Nwn
2KfKVCO
F(s) +
1
R3C2S ) 1
Filter B
wn +
Ǹ
KfKVCO
NC2(R3 ) R4)
z + 0.5 wn (R3C2 )
F(s) +
N
)
KfKVCO
R3C2S ) 1
S(R3C2 ) R4C2) ) 1
Waveforms
Phase Comparator 1
Phase Comparator 2
VDD
PCAin
PCAin
VSS
VOH
PCBin
PCBin
VOL
VOH
PC1out
LD
VOL
VOH
VCOin
PC2out
VOL
VCOin
Note:
(1)
(2)
(3)
(4)
for further information, see:
F. Gardner, “Phase−Lock Techniques”, John Wiley and Son, New York, 1966.
G. S. Moschytz, “Miniature RC Filters Using Phase−Locked Loop”, BSTJ, May, 1965.
Garth Nash, “Phase−Lock Loop Design Fundamentals”, AN−535, Motorola Inc.
A. B. Przedpelski, “Phase−Locked Loop Design Articles”, AR254, reprinted by Motorola Inc.
Figure 3. General Phase−Locked Loop Connections and Waveforms
http://onsemi.com
6
VDD
VSS
VOH
VOL
VOH
VOL
VOH
VOL
VOH
VOL
MC14046B
PACKAGE DIMENSIONS
PDIP−16
P SUFFIX
PLASTIC DIP PACKAGE
CASE 648−08
ISSUE T
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS
WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE
MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
−A−
16
9
1
8
B
F
C
L
S
−T−
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
T A
M
M
DIM
A
B
C
D
F
G
H
J
K
L
M
S
INCHES
MIN
MAX
0.740 0.770
0.250 0.270
0.145 0.175
0.015 0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008 0.015
0.110 0.130
0.295 0.305
0_
10 _
0.020 0.040
MILLIMETERS
MIN
MAX
18.80 19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0_
10 _
0.51
1.01
SOIC−16 WB
DW SUFFIX
PLASTIC SOIC PACKAGE
CASE 751G−03
ISSUE C
A
D
9
1
8
h X 45 _
E
0.25
16X
M
14X
e
T A
S
B
S
L
A
0.25
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM
MATERIAL CONDITION.
MILLIMETERS
DIM MIN
MAX
A
2.35
2.65
A1 0.10
0.25
B
0.35
0.49
C
0.23
0.32
D 10.15 10.45
E
7.40
7.60
e
1.27 BSC
H 10.05 10.55
h
0.25
0.75
L
0.50
0.90
q
0_
7_
B
B
A1
H
8X
M
B
M
16
q
SEATING
PLANE
T
C
http://onsemi.com
7
MC14046B
PACKAGE DIMENSIONS
SOEIAJ−16
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 966−01
ISSUE O
16
LE
9
Q1
M_
E HE
1
8
L
DETAIL P
Z
D
e
VIEW P
A
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
A1
b
0.13 (0.005)
c
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
0.10 (0.004)
MILLIMETERS
MIN
MAX
−−−
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
−−−
0.78
INCHES
MIN
MAX
−−− 0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
−−− 0.031
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
N. American Technical Support: 800−282−9855 Toll Free
Literature Distribution Center for ON Semiconductor
USA/Canada
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada
Phone: 81−3−5773−3850
Email: [email protected]
http://onsemi.com
8
ON Semiconductor Website: http://onsemi.com
Order Literature: http://www.onsemi.com/litorder
For additional information, please contact your
local Sales Representative.
MC14046B/D