PRELIMINARY Am79C901A HomePHY™ Single-Chip 1/10 Mbps Home Networking PHY DISTINCTIVE CHARACTERISTICS n Fully integrated 1 Mbps HomePNA Physical Layer (PHY) as defined by Home Phoneline Networking Alliance (HomePNA) specification 1.1 — Optimized for home networking applications over existing telephone wire — Media Independent Interface (MII)-compatible for connecting external Media Access Controller (MAC) — In-band control features: Adjustable power and speed levels 32 bits of reserved in-band messaging piggybacked on Ethernet packet — Register programmable features: Power control Speed control Performance registers Optional control of Squelch algorithm Major frame timing parameters programmable: ISBI, AID ISBI, pulse width, inter-symbol time — any1Home™ link detection: Indicates to the MAC that a valid home networking node has been detected Detects a network failure and allows the upper layer protocol to take corrective action n Fully integrated 10 Mbps Ethernet transceiver — Comprehensive Auto-Negotiation implementation — IEEE 802.3u-compliant MII — Full-duplex operation supported on the MII port with independent Transmit (TX) and Receive (RX) channels — Optimized for 10BASE-T applications n Compliant with HomePNA specification 1.1 n General Purpose Serial Interface (GPSI)/Serial Peripheral Interface (SPI) n Extensive programmable internal/external loopback capabilities n Extensive LED status support n IEEE 1149.1-compliant JTAG Boundary Scan test access port interface n Very low power consumption n +3.3 V power supply along with 5 V tolerant I/Os enable broad system compatibility — XTAL1 supports 3.3 V I/O only — XTAL2 supports 1.0 V I/O only n Available in 68-pin PLCC and 80-pin TQFP packages n Industrial Temperature Support (-40ºC to +85ºC) GENERAL DESCRIPTION The Am79C901A HomePHY is a single-chip device that contains both a physical layer (PHY) for 1 Mbps data networking over existing residential telephone wiring based on the specification published by HomePNA and a physical layer for supporting the IEEE 802.3 standard for 10BASE-T. The HomePHY is targeted at embedded applications and has both GPSI and MII-compatible interfaces. The integrated HomePNA transceiver is a physical layer device that enables data networking at speeds up to 1 Mbps over existing residential phone wiring regardless of topology and without disrupting telephone (POTS) service. The integrated Ethernet transceiver is a physical layer device supporting the IEEE 802.3 standard for 10BASE-T. It provides all of the PHY layer functions required to support 10 Mbps data transfer speeds. A compliant IEEE 1149.1 JTAG test interface for board level testing is provided. The Am79C901A PHY also provides on-chip LED drivers for collision, link integrity, speed, activity, and power output. The Am79C901A PHY is fabricated in an advanced low power 3.3 V CMOS process to provide low operating current for power sensitive applications. T he A m79C901A P H Y is avai lable in the commercial temperature range (0ºC to +70ºC) in 68-pin PLCC and 80-pin TQFP packages. The Am79C901A also suppor ts the industrial temperature range (-40ºC to +85ºC) in the 80-pin TQFP package. The industrial temperature range is well suited to environments with enclosures with restricted air flow or outdoor equipment. Publication# 22304 Rev: C Amendment/0 Issue Date: July 2000 Refer to AMD’s Website (www.amd.com) for the latest information. P R E L I M I N A R Y TDO TDI TCLK TMS SPEED POWER COL ACT LINK BLOCK DIAGRAM 1Mbps HomePNA PHY LED Interface JTAG Port Control Link Control PHY_SEL MDC, MDIO or SCLK, SDI, SDO, CS Drive Control Data Interface PHY_AD ISOLATE MII/GPSI GM_MODE HRTXRXP/N Receive State Machine MII/GPSI Interface 10BASE-T PHY CONTROL CONTROL DATA CONTROL Link Control Transmit State Machine TX± Receive State Machine RX± Data Interface PHY Control & Registers XCLK/XTAL XTAL2 Clock Reference XTAL1 Analog Front End PHY Control & Registers DATA RXDAT, RXCLK, RXCRS, CLS, TXDAT, TXCLK, TXEN or RXD[3:0], TXD[3:0], CRS, COL, RX_DV, TX_EN, TX_CLK, RX_CLK, RX_ER Transmit State Machine 22304B-1 2 Am79C901A P R E L I M I N A R Y TABLE OF CONTENTS AM79C901A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 CONNECTION DIAGRAM (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 CONNECTION DIAGRAM (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 PIN DESIGNATIONS (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Listed By Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 PIN DESIGNATIONS (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Listed By Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 PIN DESIGNATIONS (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Listed By Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 PIN DESIGNATIONS (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Listed By Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 PIN DESIGNATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Listed By Driver Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Standard Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Configuration Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Board Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 GPSI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SPI Interface (Slave Mode Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 IEEE 1149.1 (JTAG) Test Access Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Ethernet Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 HomePNA PHY Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 BASIC FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 PHY Data Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 H_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 S_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DETAILED FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 GPSI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Serial Peripheral Interface (SPI-Slave) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 MII-Compatible Interface for HomePNA PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 MII-Compliant Interface for 10BASE-T PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1 Mbps HomePNA PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 HomePNA PHY Medium Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 HomePNA PHY Symbol Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Time Interval Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 JAM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Access ID Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Silence Interval (AID symbol 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Data Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Mode Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1 Mbps HomePNA PHY Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 any1Home Link Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 10BASE-T PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Twisted Pair Transmit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Twisted Pair Receive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Twisted Pair Interface Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Collision Detect Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Am79C901A 3 P R E L I M I N A R Y Reverse Polarity Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Soft Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LED Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IEEE 1149.1 (JTAG) Test Access Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TAP Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supported Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Register and Decoding Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Other Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Boundary Scan Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . USER ACCESSIBLE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA PHY Management Registers (HPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR0: HomePNA PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR1: HomePNA PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR2 and HPR3: HomePNA PHY ID Registers (Registers 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . . . . . . . . . . . HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register (Register 5). . . . . . . . . . . . . . . . . HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . . . . . . . . . . . HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) . . . . . . . . . . . . . . . . . . . . . . . Reserved Registers: HPR8 - HPR15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR16: HomePNA PHY Control Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR17: HomePNA PHY Status/Control Register (Register 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) . . . . . . . . . . . . . . . . . . HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) . . . . . . . . . . . . . . . . . . HPR22: HomePNA PHY AID Register (Register 22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR23: HomePNA PHY Noise Control Register (Register 23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR24: HomePNA PHY Noise Control 2 Register (Register 24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR25: HomePNA PHY Noise Statistics Register (Register 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR26: HomePNA PHY Event Status Register (Register 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR27: HomePNA PHY AID Control Register (Register 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR28: HomePNA PHY ISBI Control Register (Register 28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR29: HomePNA PHY TX Control Register (Register 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR30: HomePNA PHY Drive Level Control Register (Register 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . . HPR31: HomePNA PHY Analog Control Register (Register 31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T PHY Management Registers (TBRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR0: 10BASE-T PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR1: 10BASE-T Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR2 and TBR3: 10BASE-T PHY Identifier Register (Registers 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . . . . . . . . . . . . . . . TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) . . . . . . . . . . . . . . . . . . . . . TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7). . . . . . . . . . . . . . . . . . . . . . . . . . . . Reserved Registers (Registers 8-15, 18, 20-23, and 25-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR16: 10BASE-T Status and Enable Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR17: 10BASE-T PHY Control/Status Register (Register 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBR19: 10BASE-T PHY Management Extension Register (Register 19) . . . . . . . . . . . . . . . . . . . . . . . . TBR24: 10BASE-T Summary Status Register (Register 24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SWITCHING TEST CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GPSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Transmit Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Receive Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Am79C901A 39 39 40 40 40 40 40 40 40 41 41 41 41 43 43 44 45 46 47 48 49 49 49 50 51 51 52 52 52 53 53 54 54 55 55 55 56 56 57 58 59 60 61 62 62 62 63 64 65 65 66 66 67 68 68 68 69 69 69 70 71 71 72 P R E L I M I N A R Y 1 Mbps HomePNA Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Transmit Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Receive Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Transmit Clock Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T Receive Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Receive Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Clock Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MDC/MDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10BASE-T PMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Mbps HomePNA Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock (XTAL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PHYSICAL DIMENSIONS*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PL 068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PQT 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Am79C901A 73 74 75 75 76 78 78 79 80 81 82 83 84 85 86 87 87 88 88 89 5 P R E L I M I N A R Y LIST OF FIGURES Figure 1. Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Figure 2. RXPKT - RXCRS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Figure 3. RXPKT - RXCRS Cleared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Figure 4. TXPKT - TXEN Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 5. TXPKT - RXCLK Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Figure 6. TXPKT - TXEN Cleared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Figure 7. TXPKT - CLS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Figure 8. RXPKT - CLS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Figure 9. Operation of the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Figure 10. SPI Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Figure 11. Aborted Operation of the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Figure 12. First Operation Following an Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Figure 13. Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Figure 14. MII Start of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Figure 15. MII End of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Figure 16. HomePNA PHY Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Figure 17. AID Symbol Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Figure 18. AID Symbol Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Figure 19. Transmit Data Symbol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Figure 20. Receive Symbol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Figure 21. RLL 25 Coding Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Figure 22. 10BASE-T Transmit and Receive Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Figure 23. Normal and Tri-State Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 Figure 24. 10 Mbps Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 Figure 25. 10 Mbps Receive Start of Packet Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71 Figure 26. 10 Mbps Receive End of Packet Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 27. 10 Mbps Transmit and Receive Clock Timing (GPSI). . . . . . . . . . . . . . . . . . . . . . . . . 72 Figure 28. 1 Mbps HomePNA Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Figure 29. 1 Mbps HomePNA Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Figure 30. 1 Mbps HomePNA Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Figure 31. 10 Mbps Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 Figure 32. 10 Mbps Receive Start of Packet Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 Figure 33. 10 Mbps Receive End of Packet Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Figure 34. 10 Mbps Transmit and Receive Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . .79 Figure 35. 1 Mbps HomePNA Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80 Figure 36. 1 Mbps HomePNA Receive Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Figure 37. 1 Mbps HomePNA Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Figure 38. MII Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Figure 39. SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84 Figure 40. 10 Mbps Transmit (TX±) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Figure 41. 10 Mbps Receive (RX±) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 Figure 42. HomePNA PHY AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Figure 43. JTAG (IEEE 1149.1) Test Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Figure 44. External Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 6 Am79C901A P R E L I M I N A R Y LIST OF TABLES Table 1. Clock Source Selection 21 Table 2. GPSI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Table 3. SPI Op Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Table 4. MII-Compatible Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 5. MII Control Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Table 6. HomePNA PHY Pulse Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Table 7. Access ID Symbol Pulse Positions and Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Table 8. Blanking Interval Speed Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Table 9. Master Station Control Word Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Table 10. Auto-Negotiation Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Table 11. LED Default Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Table 12. IEEE 1149.1 Supported Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 13. BSR Mode Of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 14. Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 15. Boundary Scan Ring Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Table 16. 1 Mbps HomePNA PHY Management Registers (HPRs) . . . . . . . . . . . . . . . . . . . . . . .43 Table 17. HPR0: HomePNA PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . .44 Table 18. HPR1: HomePNA PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . .45 Table 19. HPR2: HomePNA PHY ID Register (Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 20. HPR3: HomePNA PHY ID Register (Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 Table 21. HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) . . . . . .47 Table 22. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register Base Page Format (Register 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 23. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register Next Page Format (Register 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48 Table 24. HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) . . . . . . . . .49 Table 25. HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) . . . . . . . . .49 Table 26. HPR16: HomePNA PHY Control Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . .50 Table 27. HPR17: HomePNA PHY Status/Control Register (Register 17) . . . . . . . . . . . . . . . . . .51 Table 28. HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) . . . .52 Table 29. HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) . . . .52 Table 30. HPR22: HomePNA PHY AID Register (Register 22) . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Table 31. HPR23: HomePNA PHY Noise Control Register (Register 23) . . . . . . . . . . . . . . . . . . 53 Table 32. HPR24: HomePNA PHY Noise Control 2 Register (Register 24) . . . . . . . . . . . . . . . . .53 Table 33. HPR25: HomePNA PHY Noise Statistics Register (Register 25) . . . . . . . . . . . . . . . . .54 Table 34. HPR26: HomePNA PHY Event Status Register (Register 26) . . . . . . . . . . . . . . . . . . .54 Table 35. HPR27: HomePNA PHY AID Control Register (Register 27) . . . . . . . . . . . . . . . . . . . .55 Table 36. HPR28: HomePNA PHY ISBI Control Register (Register 28) . . . . . . . . . . . . . . . . . . . 55 Table 37. HPR29: HomePNA PHY TX Control Register (Register 29) . . . . . . . . . . . . . . . . . . . . .55 Table 38. HPR30: HomePNA PHY Drive Level Control Register (Register 30) . . . . . . . . . . . . . .56 Table 39. HPR31: HomePNA PHY Analog Control Register (Register 31) . . . . . . . . . . . . . . . . .56 Table 40. 10BASE-T PHY Management Registers (TBRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57 Table 41. TBR0: 10BASE-T PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . .58 Table 42. TBR1: 10BASE-T PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . .59 Table 43. TBR2: 10BASE-T PHY Identifier Register (Register 2) . . . . . . . . . . . . . . . . . . . . . . . . .60 Table 44. TBR3: 10BASE-T PHY Identifier Register (Register 3) . . . . . . . . . . . . . . . . . . . . . . . . .60 Table 45. TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . 61 Table 46. TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) Base Page Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Table 47. TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) Next Page Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Table 48. TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . .63 Table 49. TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7) . . . . . . . . . . . . . .63 Table 50. TBR16: 10BASE-T Status and Enable Register (Register 16). . . . . . . . . . . . . . . . . . . 64 Table 51. TBR17: 10BASE-T PHY Control/Status Register (Register 17) . . . . . . . . . . . . . . . . . 65 Table 52. TBR19: 10BASE-T PHY Management Extension Register (Register 19) . . . . . . . . . . .66 Table 53. TBR24: 10BASE-T Summary Status Register (Register 24) . . . . . . . . . . . . . . . . . . . .66 Am79C901A 7 P R E L I M I N A R Y LED_LINK 2 1 68 67 66 65 64 63 62 61 RESET LED_COL 3 TEN LED_ACTIVITY 4 MII/GPSI DVDD 5 PHY_AD LED_POWER 6 ISOLATE LED_SPEED 7 MDIO/SDO DVSS 8 DVSS RXD3 9 MDC/SCLK RXD2 CONNECTION DIAGRAM (PL 068) RXD1 10 60 NC RXD0/RXDAT 11 59 RX- DVSS 12 58 AVDD RX_DV 13 57 RX+ DVDD 14 56 AVSS RX_CLK/RXCLK 15 55 TX- AVDD 16 54 AVDD PHY_SEL 17 53 TX+ 52 AVSS 51 IREF DVDD 18 RX_ER 19 Am79C901A HomePHY DVSS 20 50 AVDD GM_MODE 21 49 HRTXRXP TX_CLK/TXCLK 22 48 AVDD TX_EN/TXEN 23 47 HRTXRXN TXD0/TXDAT 24 46 AVSS TXD1/SDI 25 45 AVSS NC 26 44 AVDD 8 Am79C901A NC AVDD XTAL1 XTAL2 XCLK/XTAL TDI TCK Note: NC pins are reserved and should be left unconnected. TMS TDO DVDD DVDD CRS/RXCRS DVSS COL/CLS DVSS TXD3/CS TXD2 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 22304B-2 P R E L I M I N A R Y CONNECTION DIAGRAM (PQT 80) NC 61 67 62 68 NC ISOLATE 69 63 MDIO/SDO 70 64 DVSS 71 TEN MDC/SCLK 72 RESET LED_LINK 73 65 LED_COL 74 66 LED_ACTIVITY 75 PHY_AD DVDD MH/GPSI LED_POWER 76 78 77 RXD3 79 DVSS RXD2 80 LED_SPEED NC NC 1 60 NC NC 2 59 NC RX01 3 58 RX- RXD0/RXOAT 4 57 AVDD DVSS 5 56 RX+ RX_DV 6 55 AVSS DVDD 7 54 TX- RX_CLK/RXCLK 8 53 AVDD AVDD 9 52 TX+ 51 AVSS PHY_SEL 10 Am79C901A HomePHY 36 37 38 39 40 XTAL2 XTAL1 AVDD NC NC TXD3/CS TXD2 NC NC 35 NC XCLK/XTAL 41 34 20 TDI NC NC 33 AVDD 42 TMS 43 19 32 18 NC TDK TXD1/SDI 31 AVSS TDO AVSS 44 30 45 17 DVDD 16 TXD0/TXDAT 29 TX_EN/TXEN DVDD HRTXRXN 28 46 CRS/RXCRS 15 27 AVDD TX_CLK/TXCLK DVSS 47 26 14 COL/CLS HRTXRXP GM_MODE 25 DVSS 48 DVSS AVDD 13 24 IREF 49 23 50 12 22 11 21 DVDD RX_ER Note: NC pins are reserved and should be left unconnected. Am79C901A 22304B- 9 P R E L I M I N A R Y PIN DESIGNATIONS (PL 068) Listed By Pin Number Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin Name 1 LED_LINK 18 DVDD 35 TDO 52 AVSS 2 LED_COL 19 RX_ER 36 TCK 53 TX+ 3 LED_ACTIVITY 20 DVSS 37 TMS 54 AVDD 4 DVDD 21 GM_MODE 38 TDI 55 TX- 5 LED_POWER 22 TX_CLK/TXCLK 39 XCLK/XTAL 56 AVSS 6 LED_SPEED 23 TX_EN/TXEN 40 XTAL2 57 RX+ 7 DVSS 24 TXD0/TXDAT 41 XTAL1 58 AVDD 8 RXD3 25 TXD1/SDI 42 AVDD 59 RX- 9 RXD2 26 NC 43 NC 60 NC 10 RXD1 27 TXD2 44 AVDD 61 RESET 11 RXD0/RXDAT 28 TXD3/CS 45 AVSS 62 TEN 12 DVSS 29 DVSS 46 AVSS 63 MII/GPSI 13 RX_DV 30 COL/CLS 47 HRTXRXN 64 PHY_AD 14 DVDD 31 DVSS 48 AVDD 65 ISOLATE 15 RX_CLK/RXCLK 32 CRS/RXCRS 49 HRTXRXP 66 MDIO/SDO 16 AVDD 33 DVDD 50 AVDD 67 DVSS 17 PHY_SEL 34 DVDD 51 IREF 68 MDC/SCLK Note: NC pins are reserved and should be left unconnected. 10 Pin No. Am79C901A P R E L I M I N A R Y PIN DESIGNATIONS (PQT 80) Listed By Pin Number Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name Pin No. Pin Name 1 NC 21 NC 41 NC 61 NC 2 NC 22 NC 42 NC 62 NC 3 RXD1 23 TXD2 43 AVDD 63 RESET 4 RXD0/RXDAT 24 TXD3/CS 44 AVSS 64 TEN 5 DVSS 25 DVSS 45 AVSS 65 MII/GPSI 6 RX_DV 26 COL/CLS 46 HRTXRXN 66 PHY_AD 7 DVDD 27 DVSS 47 AVDD 67 ISOLATE 8 RX_CLK/RXCLK 28 CRS/RXCRS 48 HRTXRXP 68 MDIO/SDO 9 AVDD 29 DVDD 49 AVDD 69 DVSS 10 PHY_SEL 30 DVDD 50 IREF 70 MDC/SCLK 11 DVDD 31 TDO 51 AVSS 71 LED_LINK 12 RX_ER 32 TCK 52 TX+ 72 LED_COL 13 DVSS 33 TMS 53 AVDD 73 LED_ACTIVITY 14 GM_MODE 34 TDI 54 TX- 74 DVDD 15 TX_CLK/TXCLK 35 XCLK/XTAL 55 AVSS 75 LED_POWER 16 TX_EN/TXEN 36 XTAL2 56 RX+ 76 LED_SPEED 17 TXD0/TXDAT 37 XTAL1 57 AVDD 77 DVSS 18 TXD1/SDI 38 AVDD 58 RX- 78 RXD3 19 NC 39 NC 59 NC 79 RXD2 20 NC 40 NC 60 NC 80 NC Note: NC pins are reserved and should be left unconnected. Am79C901A 11 P R E L I M I N A R Y PIN DESIGNATIONS (PL 068) Listed By Group Pin Name Pin Function Type Driver Type Number of Pins Configuration MII/GPSI Selects MII or GPSI mode I – 1 GM_MODE Selects MDC/MDIO and GPSI data I – 1 ISOLATE Isolates device if register isolate bit is set = 1 I – 1 PHY_SEL Defines default PHY I – 1 PHY_AD Defines bit 2 of the PHY address I – 1 RESET RESET I – 1 XCLK/XTAL Oscillator/Crystal Select I – 1 XTAL1 Crystal Input (20 MHz XTAL/60 MHz CLK) I – 1 XTAL2 Crystal Output (20 MHz XTAL) O XTAL 1 IREF Tied to GND via a 12.1 kΩ 1% resistor I – 1 LED_COL Collision Indication O LED 1 LED_ACTIVITY Activity Indication O LED 1 LED_LINK Link Valid Indication O LED 1 LED_SPEED High Speed Indication O LED 1 LED_POWER High Power Indication O LED 1 I/O – 2 Board Interface 1 Mbps HomePNA PHY Network Ports HRTXRXP/N Receive/Transmit Data 10BASE-T PHY Network Ports TX± Serial Transmit Data O – 2 RX± Serial Receive Data I – 2 TX_CLK MII Transmit Clock O OMII 1 TXD[3:0] MII Transmit Data I – 4 TX_EN MII Transmit Enable I – 1 RX_CLK MII Receive Clock O OMII 1 RXD[3:0] MII Receive Data O OMII 4 RX_ER MII Receive Error O OMII 1 RX_DV MII Receive Data Valid O OMII 1 MDC MII Management Data Clock I – 1 MDIO MII Management Data Input/Output I/O TSMII 1 CRS Carrier Sense O OMII 1 COL Collision O OMII 1 MII Interface 12 Am79C901A P R E L I M I N A R Y Pin Name Pin Function Type Driver Type Number of Pins GPSI Interface TXCLK GPSI Transmit Clock O OMII 1 TXDAT GPSI Transmit Data I – 1 TXEN GPSI Transmit Enable I – 1 RXCLK GPSI Receive Clock O OMII 1 RXDAT GPSI Receive Data O OMII 1 RXCRS Carrier Sense O OMII 1 CLS Collision O OMII 1 SCLK SPI Clock I – 1 SDI SPI Data In I – 1 SDO SPI Data Out O TSMII 1 CS Chip Select I – 1 SPI Interface IEEE 1149.1 (JTAG) Test Access Port Interface TCK Test Clock I – 1 TMS Test Mode Select I – 1 TDI Test Data In I – 1 TDO Test Data Out O TS 1 DVDD Digital Power P – 6 AVDD Analog Power P – 6 DVSS Digital Ground G – 7 AVSS Analog Ground G – 3 Test Enable I – 1 Power Supply Test Interface TEN Am79C901A 13 P R E L I M I N A R Y PIN DESIGNATIONS (PQT 80) Listed By Group Pin Name Pin Function Type Driver Type Number of Pins Configuration MII/GPSI Selects MII or GPSI mode I – 1 GM_MODE Selects MDC/MDIO and GPSI data I – 1 ISOLATE Isolates device if register isolate bit is set = 1 I – 1 PHY_SEL Defines default PHY I – 1 PHY_AD Defines bit 2 of the PHY address I – 1 RESET RESET I – 1 XCLK/XTAL Oscillator/Crystal Select I – 1 XTAL1 Crystal Input (20 MHz XTAL/60 MHz CLK) I – 1 XTAL2 Crystal Output (20 MHz XTAL) O XTAL 1 IREF Tied to GND via a 12.1 kΩ 1% resistor I – 1 LED_COL Collision Indication O LED 1 LED_ACTIVITY Activity Indication O LED 1 LED_LINK Link Valid Indication O LED 1 LED_SPEED High Speed Indication O LED 1 LED_POWER High Power Indication O LED 1 I/O – 2 Board Interface 1 Mbps HomePNA PHY Network Ports HRTXRXP/N Receive/Transmit Data 10BASE-T PHY Network Ports TX± Serial Transmit Data O – 2 RX± Serial Receive Data I – 2 TX_CLK MII Transmit Clock O OMII 1 TXD[3:0] MII Transmit Data I – 4 TX_EN MII Transmit Enable I – 1 RX_CLK MII Receive Clock O OMII 1 RXD[3:0] MII Receive Data O OMII 4 RX_ER MII Receive Error O OMII 1 RX_DV MII Receive Data Valid O OMII 1 MDC MII Management Data Clock I – 1 MDIO MII Management Data Input/Output I/O TSMII 1 CRS Carrier Sense O OMII 1 COL Collision O OMII 1 MII Interface 14 Am79C901A P R E L I M I N A R Y Pin Name Pin Function Type Driver Type Number of Pins GPSI Interface TXCLK GPSI Transmit Clock O OMII 1 TXDAT GPSI Transmit Data I – 1 TXEN GPSI Transmit Enable I – 1 RXCLK GPSI Receive Clock O OMII 1 RXDAT GPSI Receive Data O OMII 1 RXCRS Carrier Sense O OMII 1 CLS Collision O OMII 1 SCLK SPI Clock I – 1 SDI SPI Data In I – 1 SDO SPI Data Out O TSMII 1 CS Chip Select I – 1 SPI Interface IEEE 1149.1 (JTAG) Test Access Port Interface TCK Test Clock I – 1 TMS Test Mode Select I – 1 TDI Test Data In I – 1 TDO Test Data Out O TS 1 DVDD Digital Power P – 6 AVDD Analog Power P – 6 DVSS Digital Ground G – 7 AVSS Analog Ground G – 3 Test Enable I – 1 Power Supply Test Interface TEN Am79C901A 15 P R E L I M I N A R Y PIN DESIGNATIONS Listed By Driver Type The following table describes the various types of output drivers used in the Am79C901A PHY. All IOL and IOH values shown in the table apply to 3.3 V signaling. A sustained tri-state signal is an active-low signal that is driven high for one clock period before it is left floating. TX± is a differential output driver. Its characteristics and those of the XTAL2 output are described in the DC Characteristics section. Driver Name Type IOL (mA) IOH (mA) Load (pF) LED LED 12 0.4 50 TS Tri-State 6 2 50 OMII Tri-State 4 4 50 TSMII Tri-State 4 4 150 Note: For reference only. See DC specification for actual limits. 16 Am79C901A P R E L I M I N A R Y ORDERING INFORMATION Standard Products AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below. Am79C901A J\V C\I \T ALTERNATE PACKAGING OPTION \T = Tape and Reel TEMPERATURE RANGE C = Commercial (0°C to +70°C) I = Industrial (–40°C to +85°C) PACKAGE TYPE J = Plastic Leaded Chip Carrier (PL 068) V = Thin Plastic Quad Flat Pack (PQT 80) SPEED OPTION Not applicable DEVICE NUMBER/DESCRIPTION Am79C901A HomePHY Single-Chip 1/10 Mbps Home Networking PHY Valid Combinations Am79C901A JC, JC\T VC, VI Valid Combinations Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations. Am79C901A 17 P R E L I M I N A R Y PIN DESCRIPTIONS Configuration Pins MII/GPSI MII/GPSI Input MII/GPSI selects between the MII and the GPSI interface. This pin must be connected to either VDD or VSS. Changing the state of this pin is prohibited. GM_MODE GM_MODE the MII or the SPI command and control interface (external control mode), this pin selects which PHY data and status signals will be driven onto the interface. When set to a LOW, the HomePNA PHY data and status signals will be driven onto the interface. When set to a HIGH, the 10BASE-T PHY data and status signals will be driven onto the interface. This pin functions in conjunction with the ISOLATE pin. LOW = 1 Mbps HomePNA PHY Input This input pin selects between the MDC/MDIO command and control interface and the SPI interface normally available in the GPSI mode. This pin must be connected to either VDD or VSS. Changing the state of this pin is prohibited. GM_MODE MII/GPSI Data Interface Command and Control Interface 0 1 MII MDC/MDIO 0 0 GPSI SPI 1 X GPSI MDC/MDIO Note: GM_MODE = 1 overrides the value on the MII/GPSI configuration pin. HIGH = 10BASE-T PHY HPR0 Bit 10 TBR0 Bit 10 PHY_SEL ISOLATE Interface Source Managed Mode 1 1 0 1 Hi Z 0 1 0 1 1 Mbps HomePNA 1 0 0 1 10BASE-T 0 0 0 1 Non Valid External Control Mode 1 1 1 0 10BASE-T 1 1 0 0 1 Mbps HomePNA 1 1 Don’t Care 1 Hi Z PHY_AD PHY Address Input Sets bit 2 of the PHY Address field. The PHYs have default MII address of 0x00 (0000b) for the 1 Mbps HomePNA PHY and 0x01 (0001b) for the 10BASE-T PHY. If this bit is set, the address for the HomePNA PHY is 0x02 (00010b) and 0x03 (00011b) for the 10BASE-T PHY. ISOLATE Isolate Input In an environment that utilizes the MII or the SPI command and control interface (managed mode), this pin must be held HIGH. In an environment that does not use the MII or the SPI command and control interface (external control mode), this pin enables the data interface when set to a LOW, and forces the interface into a high impedance state when held HIGH. This pin functions in conjunction with the PHY_SEL pin and HPR0, bit 10, and TBR0, bit 10. Input In an environment that utilizes the MII or the SPI command and control interface (managed mode), this pin must be held LOW. In an environment that does not use 18 LED_COL Output This output is designed to directly drive an LED. COL low indicates that a collision has been detected on the currently active PHY. An internal pulse stretching circuit will ensure that the minimum output pulse is approximately 100 ms. LED_ACTIVITY LED_ACTIVITY Output This output is designed to directly drive an LED. ACTIVITY low indicates that there is receive or transmit activity on the network of the currently active PHY. An internal pulse stretching circuit will ensure that the minimum output pulse is approximately 100 ms. LED_LINK PHY_SEL PHY Select Board Interface LED_COL LED_LINK Output This output is designed to directly drive an LED. LINK low indicates that a valid link has been detected on the currently active PHY. Am79C901A P R E L I M I N A R Y LED_SPEED LED_SPEED TXCLK Output This output is designed to directly drive an LED. SPEED low indicates that the HomePNA PHY is currently in the high-speed mode. When operating in the 10BASE-T mode this output will be held high. LED_POWER LED_POWER RESET Input The RESET is an active-low, asynchronous RESET signal. This signal must be held low for a minimum of 5 µs and requires 60 µs for recovery after the rising edge of RESET. GPSI Interface RXDAT Receive Data Output RXDAT is the serial data received from the selected port. Data on RXDAT is driven on the falling edge of RXCLK. RXCLK Receive Data Clock Output RXCLK provides the timing reference for transfer of the receive data. RXCLK is driven by the device and operates at a maximum frequency of 10 MHz. RXCRS Receive Carrier Sense Output The RXCRS pin is active during receive or transmit activity for the HomePNA PHY or during receive (based on TBR17, bit 2) for the 10BASE-T PHY. CLS Collision Output This signal is asserted whenever a collision is detected on the transmit and receive path of the selected port. This signal will also be asserted for ~1 µs within 40 µs after the negation of the TXEN signal in support of the SQE test. The SQE functionality may be controlled via TBR17, bit 11, and HPR16, bit 12. TXDAT Transmit Data Input TXDAT is the serial data driven from the MAC. Data on TXDAT is latched on the falling edge of TXCLK. Output TXCLK provides the timing reference for transfer of the transmitted data. TXCLK is driven by the device and operates at a maximum frequency of 10 MHz. TXEN Transmit Enable Output This output is designed to directly drive an LED. POWER low indicates that the HomePNA PHY is currently in high-power mode. When operating in the 10BASE-T mode this output will be held high. RESET Transmit Data Clock Input TXEN indicates when the MAC device is presenting valid transmit data on the TXDAT pin. TXEN must be asserted with the first bit of preamble and remain asserted throughout the duration of the packet until it is deasserted prior to the first TXCLK following the final bit of the frame. TXEN transitions are synchronous to TXCLK. SPI Interface (Slave Mode Only) SCLK SPI Clock Input SCLK is driven from the controlling device as a timing reference for transfer of information on the SDI and SDO signals. The maximum clock frequency is 2.5 MHz. CS SPI Chip Select Input This pin is used to enable the Am79C901A for slave mode transfers. When this pin is inactive (HIGH), the device ignores SCLK and SDI inputs and holds SDO in high-impedance. SDI SPI Serial Data In Input This data line provides input data from the master device to the Am79C901A. The data presented on this pin is latched on the rising edge of SCLK. SDO SPI Serial Data Out Output T hi s d a ta l in e pr ovi d e s ou t pu t d a ta f ro m th e Am79C901A to the master device. To provide for a robust interface, this data is driven on the rising edge of SCLK. MII Interface RX_CLK Receive Clock Output RX_CLK is a clock input that provides the timing reference for the transfer of the RX_DV, RXD[3:0], and R X_ER signal s from th e Am 79C901 A device. RX_CLK will provide a nibble rate clock. It operates at a maximum frequency of 2.5 MHz. Am79C901A 19 P R E L I M I N A R Y RXD[3:0] Receive Data TXD[3:0] Output RXD[3:0] is the nibble-wide receive data bus. Data o n RX D [3 : 0] i s d r i ve n o n t h e fa l l i n g e d g e o f RX_CLK. RXD[3:0] should be ignored while RX_DV is deasserted. RX_DV Receive Data Valid Output Transmit Data Input TXD[3:0] is the nibble-wide data bus. Valid data is generated on TXD[3:0] on every rising edge of TX_CLK while TX_EN is asserted. While TX_EN is deasserted, TXD[3:0] values are ignored. TXD[3:0] transitions are latched on the falling edge of TX_CLK. TX_EN RX_DV is an output used to indicate that valid received data is being presented on the RXD[3:0] pins and RX_CLK is synchronous to the receive data. RX_DV will be asserted prior to the RX_CLK rising edge, when the first nibble of the Start of Frame Delimiter (SFD) is driven on RXD[3:0], and will remain asserted until after the rising edge of RX_CLK, when the last nibble of the CRC is driven on RXD[3:0]. RX_DV will be deasserted prior to the RX_CLK rising edge which follows this final nibble. RX_DV transitions are driven on the falling edge of RX_CLK. Transmit Enable CRS MDC is the non-continuous clock input that provides a timing reference for bits on the MDIO pin. During MII management port operations, MDC runs at a nominal frequency of 2.5 MHz. Carrier Sense Output The CRS pin is active during receive or transmit activity for the HomePNA PHY or during receive (based on TBR17, bit 2) for the 10BASE-T PHY. Collision Output This signal is asserted whenever a collision is detected on the transmit and receive path of the selected port. This signal will also be asserted for ~1 µs within 40 µs after the negation of the TXEN signal in support of the SQE test. The SQE functionality may be controlled via TBR17, bit 11, and HPR16, bit 12. RX_ER Receive Error Output RX_ER is an output for the 10BASE-T PHY that indicates that the transceiver device has detected a coding error in the receive data frame currently being transferred on the RXD[3:0] pins. RX_ER is ignored while RX_DV is deasserted. Special code groups generated on RXD while RX_DV is deasserted are ignored (e.g., bad SSD in TX and idle in T4). RX_ER transitions are synchronous to RX_CLK. TX_CLK Transmit Clock Output TX_CLK is a clock output that provides the timing reference for the transfer of the TXD[3:0] and TX_ER signals from the Am79C901A device. TX_CLK provides a nibble rate clock. 20 TX_EN indicates that the MAC device is presenting valid transmit data on the TXD[3:0] bus. TX_EN must be asserted with the first nibble of preamble and remains asserted throughout the duration of the packet until it is deasserted prior to the first TX_CLK following the final nibble of the frame. TX_EN transitions are latched on the falling edge of TX_CLK. MDC Management Data Clock Input MDIO Management Data Input/Output COL Input Input/Output MDIO is a bidirectional MII management port data pin. MDIO is an input during the header portion of the management frame transfers and during the data portion of write operations. MDIO is an output during the data portion of read operations. The MDIO pin should be externally pulled up to VDD with a 1.5 kΩ ±5% resistor. IEEE 1149.1 (JTAG) Test Access Port Interface TCK Test Clock Input TCK is the clock input for the boundary scan test mode operation. It can operate at a frequency of up to 10 MHz. TCK has an internal pull-up resistor. TDI Test Data In Input TDI is the test data input path to the Am79C901A PHY. The pin has an internal pull-up resistor. TDO Test Data Out Output TDO is the test data output path from the Am79C901A PHY. The pin is tri-stated when the JTAG port is inactive. Am79C901A P R E L I M I N A R Y TMS XTAL1 Test Mode Select Input A serial input bit stream on the TMS pin is used to define the specific boundary scan test to be executed. The pin has an internal pull-up resistor. Ethernet Network Interfaces TX± Output These pins carry the transmit output data and are connected to the transmit side of the magnetics module. RX± Serial Receive Data Input These pins accept the receive input data from the magnetics module. IREF Internal Current Reference Input This pin serves as a current reference for the integrated 1/10 PHY. It must be connected to GND through a 12.1 kΩ resistor (1%). HomePNA PHY Network Interface HRTXRXP/HRTXRXN Input/Output These pins accept the receive input data from the magnetics module and carry the transmit output data. A 102-Ω resistor should be placed between these pins. Clock Interface XCLK/XTAL The internal clock generator utilizes either a 20-MHz crystal that is attached to pins XTAL1 and XTAL2 or a 60-MHz clock source connected to XTAL1. This pin is not 5 V tolerant, and the 60 MHz clock source should be from a 3.3 V source. Crystal Oscillator Out Output The internal clock generator utilizes a 20-MHz crystal that is attached to pins XTAL1 and XTAL2. In XCLK mode, this pin should be left unconnected. Power Supply DVDD Digital Power (5 Pins) +3.3 V Power These pins are the power supply pins that are used to provide power to the digital portions of the design. All DVDD pins must be connected to a +3.3 V supply. AVDD Analog Power (7 Pins) +3.3 V Power These pins are the power supply pins that are used to provide power to the analog portions of the design. All AVDD pins must be connected to a +3.3 V supply. DVSS Digital Ground (6 Pins) Ground These pins are the ground connections for the digital portions of the design. AVSS External Clock/Crystal Select Input When HIGH, an external 60-MHz clock source is selected bypassing the crystal circuit and clock trippler. When LOW, a 20-MHz crystal is used instead. Table 1 illustrates how this pin works. Table 1. Input XTAL2 Serial Transmit Data Serial Receive Data Crystal Oscillator In Analog Ground (4 Pins) These pins are the ground connections for the analog portion of the design. Scan Test Interface TEN Test Enable Clock Source Selection Input Pin Output Pin XCLK/XTAL Clock Source XTAL1 XTAL2 0 20-MHz Crystal XTAL1 NC 1 60-MHz Oscillator/ External CLK Source Ground Input The test enable pin is for factory use only. It must be connected to VSS for normal operation. Am79C901A 21 P R E L I M I N A R Y BASIC FUNCTIONS Network Interfaces H_RESET or S_RESET. The following is a description of each type of RESET operation. The Am79C901A PHY contains an integrated 1 Mbps home networking PHY and a 10BASE-T PHY. This device is compliant with the HomePNA specification 1.0 and IEEE 802.3 specification. The integrated HomePNA transceiver is a physical layer device that enables data networking at speeds up to 1 Mbps over existing residential phone wiring regardless of topology and without disrupting telephone (POTS) service. H_RESET Hardware Reset (H_RESET) is a reset operation that has been initiated by the proper assertion of the RESET pin of the Am79C901A device. When the minimum pulse width timing as specified in the RESET pin description has been satisfied, an internal reset operation will be performed. H_RESET will program all of the registers to their default value. The integrated Ethernet transceiver is a physical layer device suppor ting the IEEE 802.3 standard for 10BASE-T. It provides all of the PHY layer functions required to support 10 Mbps data transfer speeds. The 10BASE-T PHY suppor ts both half-duplex and full-duplex operation. S_RESET PHY Data Interfaces DETAILED FUNCTIONS GPSI Interface The Am79C901A PHY has both GPSI and MII-compatible data interfaces. In addition, a special mode, GM_MODE, allows access to the MDC/MDIO command and control interface while in the GPSI mode. For more information, see the Pin Descriptions and the Detailed Functions sections. Reset There are two different types of RESET operations that may be perfor med on the Am79C901A device, In a software reset (S_RESET), programming bit 15 of HPR0 to 1 will reset all the registers in the 1 Mbps HomePNA PHY (HPRs), and programming bit 15 of TBR0 to 1 will reset TBR4, TBR7, TBR17, and TBR24 in the 10BASE-T PHY. These bits are self-clearing. The seven signals that comprise the GPSI are TXCLK, TXEN, TXDAT, RXCLK, RXCRS, RXDAT, and CLS. Of these, only TXEN and TXDAT are inputs to the PHY; the other five are outputs from the PHY. These signals behave differently depending on which operation is currently happening in the PHY. The operations of the PHY are as follows: Idle (no activity in either direction), RXPKT (receiving data), and TXPKT (transmitting data). The subsequent subsections analyze each GPSI-related state of the PHY in detail. TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-3 Note: RXCLK and TXCLK are synchronized to the same phase. All other signals are inactive. The two clock signals toggle for an overall period of 583.3ns (about 1.7 MHz). Figure 1. 22 Idle State Am79C901A P R E L I M I N A R Y TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-4 Note: RXCLK becomes disabled as soon as RXCRS is asserted. Figure 2. RXPKT - RXCRS Asserted TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-5 Note: RXCLK and TXCLK are unrelated to each other during this time. When a symbol has been received and decoded, RXCLK toggles in order to shift out the three to six bits encoded in the symbol. The middle portion of this diagram shows the end of the preamble, followed by an SFD and the beginning of the data. RXCRS will fall after the last received symbol. Once RXCRS falls, RXCLK and TXCLK are toggled continuously for 96 cycles, after which the PHY returns to the Idle state. Figure 3. RXPKT - RXCRS Cleared Am79C901A 23 P R E L I M I N A R Y TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS Note: Once TXEN is asserted, the PHY stops RXCLK, asserts RXCRS, and toggles TXCLK. Figure 4. 22304B-6 TXPKT - TXEN Asserted TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-7 Note: TXCLK continues to toggle until the SFD is observed, as shown in the first section of the above diagram. At this point, TXCLK is disabled (low) until the AID header has been transmitted on the wire (or until a CLS has been detected). At this time RXCLK starts toggling, thereby, shifting 32 bits of preamble and SFD back to the MAC. Sometime later, the TXCLK restarts as symbols get sent onto the wire in an analogous manner as RXCLK during packet reception. Figure 5. 24 TXPKT - RXCLK Active Am79C901A P R E L I M I N A R Y TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-8 Note: Once TXEN is cleared, the last symbol gets encoded and transmitted, the looped-back data is presented back to the MAC, and RXCRS falls. Once RXCRS falls, TXCLK and RXCLK toggle for 96 clocks, after which the system returns to the Idle state. Figure 6. TXPKT - TXEN Cleared TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-9 Note: CLS will be asserted some time after the preamble and SFD have been clocked in. TXCLK and RXCLK are then clocked until RXCRS drops. TXEN drops about 32 clocks after CLS was asserted. RXCRS and CLS are dropped together after more than 500 clocks (about 120 µs). TXCLK and RXCLK keep toggling for approximately another 100 clock cycles, when the system returns to the Idle state. Figure 7. TXPKT - CLS Asserted Am79C901A 25 P R E L I M I N A R Y TXCLK TXEN TXDAT RXCLK RXCRS RXDAT CLS 22304B-10 Note: CLS may be asserted up to 120 µs after RXCRS has been asserted. Once CLS has been asserted, TXCLK and RXCLK run until 96 cycles after CLS and RXCRS are cleared. It can take a maximum of approximately 60 µs for RXCRS to clear. Figure 8. Table 2. Condition RXPKT - CLS Asserted GPSI Timing CLK Period CLK Frequency Idle (excluding IPG time) 583.3 ns 1.7 MHz Preamble (first 64 bits of TX MAC frame) 233.3 ns 4.3 MHz Data (throughout the data phase) 100 ns 10 µs 1.0 MHz avg. IPG (96 bit times following CRS ↓) 233.3 ns 4.3 MHz opcode, followed by an 10-bit register address and 2 bits of end delimiter. If the operation is a write, the data bits are written into the desired register. If the operation is a read, then these data bits are ignored. The SDO pin will shift out 16 data bits representing the contents of the register referenced by the address field for read operations. All commands must be initiated with a high-to-low transition on the CS pin. Only one command can be sent in one CS cycle. For assistance in debugging access to the SPI interface, an error code is driven onto the SDO. If there is less than 32 bits of SCLK during the time that CS is asserted, the error code field of SDO on the next command will indicate AAAA. When there is an incorrect opcode in the command on SDI AAAA will be immediately driven out on SDO until CS deasserts. If there are more than 32 clock cycles while CS is low, the first 32 are assumed to contain the data, and the additional clock bits and associated data are ignored. In this case, the SDO might generate AAAA under the additional clock bits. See Figure 9. Note: During the AID interval, TXCLK and RXCLK stop for up to 140 µs. Serial Peripheral Interface (SPI-Slave) Mode When MII/GPSI is set to 0, the device is in “SPI” mode. The device acts as an SPI slave peripheral in this mode of operation. Commands are issued to the device by asserting the CS signal (active low), shifting in an 4-bit SCLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31 32 CS SDI SDO Op Codes Address Error Code Data In Data Out 22304B-11 Figure 9. 26 Operation of the SPI Interface Am79C901A P R E L I M I N A R Y Table 3. SPI Op Codes SDI Op Codes Address Data In ST OP PHYADD REGADD ED READ 01 10 AAAAA RRRRR 10 Don’t Care WRITE 01 01 AAAAA RRRRR 10 D15………D0 SDO Error Code Data Out READ 0000 = No Error/AAAA = Error Detected D15...D0 WRITE 0000 = No Error/AAAA = Error Detected Don’t Care Start Frame Read Command End Delimiter CS SCLK 1 2 3 4 15 16 17 18 31 32 SDI SDO SCLK 1 2 3 4 5 Last Data Bit First Data Bit Figure 10. 22304B-12 SPI Read Operation 6 7 8 9 10 11 12 13 CS SDI Op Codes SDO 1 2 3 4 22304B-13 Error Code = 0 Figure 11. SCLK Address 5 6 7 Aborted Operation of the SPI Interface 8 9 10 11 12 13 14 15 16 17 18 19 30 31 32 CS SDI SDO Op Codes Address Error Code = AAAA Data In Data Out 22304B-14 Figure 12. First Operation Following an Abort Am79C901A 27 P R E L I M I N A R Y 1 SCLK 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 30 31 32 CS SDI Op Codes Address SDO Data In Error Code = 0 Data Out 22304B-15 Figure 13. Normal Operation MII-Compatible Interface for HomePNA PHY The control and data signals that are utilized in the MIIcompatible interface of the 1 Mbps HomePNA PHY function in an manner that is identical to that as defined in the 802.3u specification. The signals RX_CLK and TX_CLK function in a slightly different manner in that they operate at a reduced data rate and that these clock signals do not run at a constant rate due to the RLL25™ encoding scheme. See Table 4. Table 4. MII-Compatible Timing CLK Frequency Idle (excluding IPG time) 2333.34 ns 428.6 kHz Preamble (first 64 bits of TX MAC frame) 933.33 ns 1.07 MHz Data (throughout the data phase) 400 ns - 40 µs 250 kHz avg. 933.33 ns 1.07 MHz IPG (96 bit times following CRS↓) Note: During the AID interval, TX_CLK and RX_CLK stop for up to 140 µs. Figure 14 and Figure 15 represent the signal relationships when the MII-compatible data interface is utilized. Table 5. 28 When the TX_EN signal is deasserted to indicate the ending of a transmission, TX_CLK is halted until the RXDATA path detects the end of the packet. At this time, the clock rate is increased to the IPG data rate for 96 bit times and then returns to the Idle state. MII-Compliant Interface for 10BASE-T PHY CLK Period Condition The signals TX_CLK and RX_CLK will toggle at a rate of approximately 428 kHz during idle time. When the TX_EN signal is asserted to indicate the beginning of a transmission, the clock rate will enter the preamble phase. Once the SFD has been detected and the HomePNA PHY has begun the transmission of the HomePNA header, the clock enters the data phase. The MII interface is fully IEEE 802.3u-compliant when the 10BASE-T PHY is selected. The management interface specified in Clause 22 of the IEEE 802.3u standard provides for a simple two wire, serial interface to connect a management entity and a managed PHY for the purpose of controlling the PHY and gathering status information. The two lines are Management Data Input/Output (MDIO) and Management Data Clock (MDC). A station management entity, which is attached to multiple PHY entities, must have prior knowledge of the appropriate PHY address for each PHY entity. The management interface physically transports management information across the MII. The information is encapsulated in a frame format as specified in Clause 22 of the IEEE 802.3u standard and is shown in Table 5. MII Control Frame Format PRE ST OP PHYADD REGADD TA DATA IDLE READ 1...1 01 10 AAAAA RRRRR Z0 D15………D0 Z WRITE 1...1 01 01 AAAAA RRRRR 10 D15………D0 Z Am79C901A P R E L I M I N A R Y The operation field (OP) follows the start field (ST). The OP indicates whether the operation is a read or a write operation. The PHY address (PHYADD) and the register address (REGADD) that were programmed follow this. A bus turnaround field (TA) follows the REGADD field. During the read operation, the bus TA field is used to determine if the PHY is responding properly to the read request. The final field is the idle field, and it is required to allow the drivers to turn off. Idle The PHYADD field, which is five bits wide, allows 32 unique PHY addresses. The managed PHY layer device that is connected to a station management entity via the MII interface has to respond to transactions addressed to the PHY’s address. A station management entity attached to multiple PHYs is required to have prior knowledge of the appropriate PHY address. For more information, see the IEEE 802.3 specification and the MII pin descriptions. Preamble Data TX_CLK TX_EN 55 TXD D CRS RX_CLK RX_DV RXD 55 55 55 D 2 COL 22304B-16 Figure 14. MII Start of Transmission Am79C901A 29 P R E L I M I N A R Y IPG Idle TX_CLK 96 Bit Times TX_EN TXD data CRS RX_CLK RX_DV RXD data data 55 55 COL If SEQ is enabled 22304B-17 Figure 15. 30 MII End of Transmission Am79C901A P R E L I M I N A R Y 1 Mbps HomePNA PHY The integrated HomePNA transceiver is a physical layer device supporting HomePNA specification 1.0 for home phoneline networking. It provides all of the PHY layer functions required to support 1 Mbps data transfer speeds over existing residential phone wiring. All data bits are encoded into the relative time position of a pulse with respect to the previous one. The waveform on the wire consists of a 7.5 MHz carrier sinusoid enclosed within an exponential (bell shaped) envelope. The waveform is produced by generating four 7.5 MHz square wave cycles and passing them through an external bandpass filter. The HomePNA PHY frame consists of a HomePNA header that replaces the normal Ethernet 64-bit preamble and delimiter. The frame header is prepended to a standard Ethernet packet starting with the destination address and ending with the CRC. Only the PHY layer and its parameters are modified from that of the standard Ethernet implementation. The HomePNA PHY layer is designed to operate with a standard Ethernet MAC layer controller implementing all the CSMA/CD protocol features. The frame begins with a characteristic SYNC interval that delineates the beginning of a HomePNA frame followed by an Access ID (AID) which encodes 8 bits of AID and 4 bits of control word. The AID is used to detect collisions and is dynamically assigned, while the control word carries speed and power information. The data symbol interval is variable. The arriving bit stream is blocked into from 3-bit to 6-bit blocks according to a proprietary (RLL25) algorithm. The bits in each block are then used to encode a data symbol. Each symbol consists of a Data Inter Symbol Blanking Interval (DISBI) and then a pulse at one of 25 possible positions. The bits in the data block determine the pulse position. Immediately after the pulse a new symbol interval begins. During the DISBI the receiver ignores all incoming pulses to allow network reflections to die out. Any station may be programmed to assume the role of a PHY master and remotely command, via the control word, the rest of the units on the network to change their transmit speed or power level. Many of the framing parameters are programmable in the HomePNA PHY and will allow modifications to transmission speed center frequency as well as noise and reflection rejection algorithms. Two default speeds are provided, low at 0.7 Mbps and high at 1 Mbps. HomePNA PHY Medium Interface Framing The HomePNA frame on the phone wire network consists of a header generated in the PHY prepended to an IEEE 802.3 Ethernet data packet received from the MAC layer. See Figure 16. The AID is followed by a silence interval, then 32 bits of data reserved for PHY layer communication. These bits are accessible via internal registers and are for future use. When transmitting on the phone wire pair, the HomePNA PHY first receives an Ethernet MAC frame from the MAC. The 8 octets of preamble and delimiter are stripped off and replaced with the HomePNA PHY header described below, then transmitted on the home network with the LSB of each symbol being transmitted first. Data encoding consists of two symbol types: an AID symbol and a data symbol. The AID symbol is always transmitted at the same speed and encodes 2 bits that determine the pulse position (one of four) relative to the previous pulse. These bits are transmitted LSB first. The access symbol interval is fixed. During a receive operation, the reverse process is executed. When a HomePNA PHY frame is received by the PHY, the header is stripped off and replaced with the 4 octets of preamble and delimiter of the IEEE 802.3 Ethernet MAC frame specification and then passed on to the MAC layer. Am79C901A 31 P R E L I M I N A R Y Ethernet Packet HomePNA Header SYNC interval Access ID AID blanking interval Fixed 14.93 µs AID blanking interval 01 Silence AID blanking interval 11 AID blanking interval 10 AID blanking interval 00 PCOM 4 Destination Source Length 6 6 2 AID blanking interval 01 ETHERNET MAC and DATA max 1500 Silence interval 00 32 bits PCOM 60 tics 20 tics 66 tics potential pulse position pulse 129 tics 129 tics 129 tics 129 tics 129 tics 129 tics 129 tics 129 tics SYNC Symbol 0 ACCESS ID Symbol 1 ACCESS ID Symbol 2 ACCESS ID Symbol 3 ACCESS ID Symbol 4 ACCESS ID Symbol 5 ACCESS ID Symbol 6 ACCESS ID Symbol 7 ACCESS ID interval Fixed 120.39 µs CRC 4 Ethernet Packet Data symbols 30.75 µs @ 1 Mbps Example Access ID of 01110100 and control word 0100 HomePNA PHY Header 151.14 µs @ 1 Mbps 1 Tic = 116.6667 ns = receiver blanking interval 22304B-18 Note: Using default configurations. Figure 16. HomePNA PHY Framing HomePNA PHY Symbol Waveform These symbols are described in the following sections. All HomePNA PHY symbols are composed at the transmitter of a silence interval and a pulse formed of an integer number of cycles (TX_PULSE_CYCLES_P/N in HPR29) of a square wave of frequency (CENTER_FREQUENCY TX_PULSE_WIDTH in HPR29) that has been filtered with an external bandpass filter. Data is encoded in the time interval from the preceding pulse. Symbol 0 (SYNC interval) Table 6. HomePNA PHY Pulse Parameters Parameter Value Tolerance Unit CENTER_FREQUENCY 7.5 500 PPM MHz CYCLES_PER_PULSE 4 – Cycles Time Interval Unit HomePNA PHY time intervals are expressed in Time Interval Clock (TIC) units. One TIC is defined as 7/60E6 seconds or approximately 116.7 ns. Access ID Intervals A HomePNA frame begins with an Access ID (AID) interval which is composed of eight equally spaced subintervals termed AID symbols 0 through 7 as shown in Figure 17. An AID symbol is 129 TICs long. Transmit timing is shown in Figure 17; receive timing in Figure 18. Timing starts at the beginning of each AID symbol at TIC = 0 and ends at TIC = 129. 32 SYNC Transmit Timing: The SYNC interval (AID symbol 0) delineates the beginning of a HomePNA PHY frame and is composed of a SYNC_START pulse, followed by a SYNC_END pulse, after a fixed silence interval as shown in Figure 17. Timing for this (AID symbol 0) starts (TIC = 0) at the beginning of the SYNC_START pulse. The SYNC_END pulse starts at TIC = 126. At TIC = 129, this AID symbol 0 ends and the next AID symbol begins, with the symbol timing reference reset to TIC = 0. No information bits are coded in the SYNC (AID symbol 0 interval). SYNC Receive Timing: As soon as the SYNC_START pulse is detected the receiver disables (blanks) further detection until time TIC = 61, after which detection is re-enabled for the next received pulse. The receiver allows for jitter by establishing a window around each legal pulse position. This asymmetrical window is two TICS wide on one side of the position and one TIC wide on the other. A SYNC_END pulse that arrives outside the window of the legal TIC = 126 is considered a noise event which is used in setting the adaptive squelch level, aborts the packet, and sets the receiver in search of a new SYNC_START pulse and SYNC interval. If it is a transmitting station, the COLLISION event is asserted as described in the Collisions section. Am79C901A P R E L I M I N A R Y Transmitter AID Symbol 0 AID Symbol 1 pulse 0 AID Symbol 2 pulse 2 shown in position 1 pulse 1 TIC=129 and TIC=0 SYNC_START TIC=0 TIC=129 and TIC=0 AID_Position_0 TIC=66 SYNC_END TIC=126 AID_Position_1 TIC=86 AID_Position_2 TIC=106 AID_Position_3 TIC=126 22304B-19 Figure 17. AID Symbol Transmit Timing Receiver D slice threshold AID Symbol 1 AID Symbol 0 pulse 0 pulse 2 shown in position 1 pulse 1 Detected envelope AID Symbol 2 END_RCV_BLANK TIC=129 and TIC=0 SYNC_START TIC=0 AID_Position_0 TIC=66 AID_GUARD_INTERVAL TIC=129 and TIC=0 AID_Position_1 TIC=86 AID_Position_2 TIC=106 SYNC_END TIC=126 AID_Position_3 TIC=126 22304B-20 Figure 18. AID Symbol Receive Timing The SYNC interval is followed by six AID symbols (symbols 1 through 6). Transmit timing is shown in Figure 17; receive timing in Figure 18. Data is encoded in the relative position of each pulse with respect to the previous one. A pulse may occur at one, and only one, of the four possible positions within an AID symbol yielding two bits of data coded per AID symbol. Table 7. Access ID Symbol Pulse Positions and Encoding Pulse Position TICs from Beginning of AID Symbol Bit Encoding The decoded bits from the AID symbols 1 to 4 produce eight bits of Access ID which is used to identify individual HomePNA stations and to detect collisions. The MSB is encoded in AID Symbol 1 and is the leftmost bit in Table 7. Am79C901A 1 66 00 2 86 01 3 106 10 4 126 11 33 P R E L I M I N A R Y The next two AID symbols (5 and 6) encode four bits of control word information. The MSB is encoded in AID Symbol 5. Control word messages are described further in the Mode Interface section. AID Transmit Timing: The transmitter encodes the Access ID in a pulse position in each 129 TIC interval. Each AID symbol interval must have only one pulse. Pulse transmission must start in only one of the four possible positions (measured from the beginning of the Access ID symbol) defined in Table 7. AID Receive Timing: The receiver allows for jitter by establishing a window around each legal pulse position. This asymmetrical window is two TICS wide on one side of the position and one TIC wide on the other. A pulse that arrives outside of the legal AID positions is considered a COLLISION event. Collisions A Collision is detected only during Access ID and silent intervals (AID symbols 0 through 7). In general during a collision, a transmitting station will read back an AID value that does not match its own, recognize the event as a collision, and alert other stations with a JAM signal. Non-transmitting stations may also detect some collisions by interpreting received non-conforming AID pulses as collisions. With two transmitters colliding, each transmitter normally blanks its receive input immediately after transmitting (and simultaneously receiving) a pulse. Therefore, only when a transmitting station receives pulses in a position earlier than the position it transmitted will it recognize it as a pulse transmitted by another station and signal a collision. For this reason, guaranteed collision detection is possible only as long as the spacing between successive possible pulse positions in an AID symbol (20 TICs or 2.3 µs) is greater than the roundtrip delay between the colliding nodes. At approximately 1.5 ns propagation delay per foot, the maximum distance between two HomePNA units must not be greater than 500 feet for collision detection purposes (1.5 µs roundtrip delay plus margin). The following criteria must be met to guarantee reliable collision detection: At least one HomePNA station of a colliding group must always detect a collision when the delay between the beginning of its transmitted packet and the beginning of the received colliding packet is between -1.5 µs and +1.5 µs. a collision, it emits a JAM signal to alert all other stations to the collision. The following conditions signify a COLLISION event: 1. A HomePNA station receives an AID that does not match the one being sent. 2. A HomePNA station receives a pulse outside the AID_GUARD INTERVAL in AID intervals 0 to 7. 3. A HomePNA station receives a pulse inside the SILENT_INTERVAL (AID symbol 7). As in all cases, pulses received during a blanking interval are ignored. Passive stations (stations not actively transmitting during the collision) cannot reliably detect collisions. Therefore, once a collision is detected by a transmitting station, the station must inform the rest of the stations of the collision with a JAM pattern described below. Only a transmitting station emits a JAM signal. Once a collision is detected, the COLLISION signal to the MAC interface is asserted and is not reset until the MAC deactivates the TXEN signal. JAM Signal A JAM pattern consists of 1 pulse every 32 TICs and continues until at least the end of the AID intervals. After the AID interval, the JAM pattern will continue until TXEN from the MAC is deactivated. Access ID Values The access ID values for stations are randomly picked by each individual station from the set of AID numbers described in the management section. During operation, each HomePNA station monitors HomePNA frames received on the wire. If it detects another HomePNA station using the same AID, it will select a new random AID. Silence Interval (AID symbol 7) The Access ID symbols are followed by a fixed silence interval of 129 TICs. The receive blanking interval is the same as that of the AID symbols (1 through 6). Any pulses detected in the silence interval are considered a COLLISION event for transmitting stations and are handled as described in the Collisions section. Data Symbols Data symbols encode data for a much higher transmission rate, and they do not allow collision detection. In general, any received pulse at a HomePNA station that does not conform to the pulse position requirements of AID symbols 0 through 7 shall indicate a collision on the wire. When a transmitting station senses 34 Am79C901A P R E L I M I N A R Y Data Transmit Timing When a pulse begins transmission, the previous symbol interval ends and a new one begins immediately. A data symbol interval begins with the start of transmission of a pulse as shown in Figure 19. Transmit Symbol timing (in TICs) is measured from this point (TIC = 0). Table 8. Depending on the data code, the next pulse may begin at any PULSE_POSITION_N where N = 0 to 24. Each position is separated from the previous one by one TIC. PULSE_POSITION_0 occurs at a value defined in Table 8 which determines the transmission speed. Blanking Interval Speed Settings Speed Setting Nominal Data Rate PULSE_POSITION_0 Value (in TICs) LOW_SPEED 0.7 Mbps 44 HIGH_SPEED 1.0 Mbps 28 Transmitter Symbol 1 Pulse 0 START_TX_PULSE TIC=0 Symbol 2 Data Blanking interval (DISBI) END_TX_PULSE time Pulse 1 PULSE_POSITION_0 time Position 1 1 TIC Position n1 n=0-24 Position 0 Position 1 Pulse 2 Position n2 22304B-21 Figure 19. Transmit Data Symbol Timing Data Receive Timing The receiver is then re-enabled for pulse detection. Upon reception of the next pulse, the receiver measures the elapsed time from the previous pulse. This value is then placed in the nearest pulse position bin (one of 25) where pulse position 0 is at PULSE_POSITION_0 and each subsequent position is spaced one TIC from the previous one as defined in the Data Transmit Timing section. Data symbol intervals are therefore variable and depend on the encoded data. The incoming waveform is formed from the transmitted pulse along with any distortions and reflections that occur in the wiring network. The receiver detects the point at which the envelope of the received waveform crosses a set threshold. See Figure 20. Immediately after the threshold crossing, the receiver disables any further detection for a period ISBI-3 TICs (HPR28, ISBI_SLOW or ISBI_FAST) starting with the detection of the pulse peak. Receiver Symbol 1 Data slice threshold Symbol 2 Pulse 0 Pulse 1 Pulse 2 Detected Envelope END_DATA_BLANK egin of receive anking interval Position 0 Position 1 Position n1 Position 0 Position 1 Position n2 22304B-22 Figure 20. Receive Symbol Timing Am79C901A 35 P R E L I M I N A R Y Data Symbol RLL25 Encoding 3. If bit A is a zero, bit B is a zero, and bit C is a one, the next three bits (D, E, and F) select which one of the eight positions 17-24 is transmitted. The encoding process then continues at the root node. The RLL25 code is the version of TM32 that was developed for the HomePNA PHY. It produces the highest bit rate for a given value of ISBI and TIC size. In a manner similar to run length limited disk coding, RLL25 encodes data bits in groups of varying sizes, specifically: 3, 4, 5, and 6 bits. Pulse positions are assigned to the encoded bit groups in a manner, which causes more data bits to be encoded in positions that are farther apart. This keeps both the average and minimum bit rates higher. 4. Finally, if bits A, B, and C are all zeros, position 0 is transmitted. The encoding process then continues at the root node. As a result, Symbol 0 encodes the 3-bit data pattern 000, positions 1-8 encode the 4-bit data pattern 1BCD, positions 9-16 encode the 5-bit data pattern 01CDE, and positions 17-24 encode the 6-bit data pattern 001DEF. If the data encoded is random, 50% of the positions used will be for 4-bit patterns, 25% will be for 5bit patterns, 12.5% will be for 6-bit patterns, and 12.5% will be for 3-bit patterns. Data symbol RLL25 codes data by traversing a tree as illustrated in Figure 21. Assuming that successive data bits are encoded and labeled A, B, C, D,…, etc., the encoding process begins at the root node and proceeds as follows: Mode Interface 1. If the first bit (bit A) is a one, the next three bits (B, C, and D) select which one of the eight positions 1-8 is transmitted. The encoding process then continues at the root node. The HomePNA PHY may be managed from either of two interfaces (the managed parameters vary depending on the interface): 1. Remote Control-Word management commands embedded in the HomePNA AID header on the wire network. 2. If bit A is a zero and bit B is a one, the next three bits (C, D, and E) select which one of the eight positions 9-16 is transmitted. The encoding process then continues at the root node. 2. Management messages from a local management entity. Data stream from MAC controller Start: Examine the next bits to be encoded A Encoded and sent A=? 1 Send symbol 1-8 1 Send symbol 9-16 1 Send symbol 17-24 1 Send symbol 0 0 B=? C D E F Awaiting coding and transmission 1 B C D These select position 1 - 8 0 1 0 C=? B C D E These select position 9 - 16 0 0 0 1 D E F These select position 17- 24 0 0 0 22304B-23 Figure 21. 36 RLL 25 Coding Tree Am79C901A P R E L I M I N A R Y Header AID Remote Control Word Commands Table 9. Stations may be configured either as master stations or as slave stations. Only one master may exist on a given HomePNA segment or network over which the HomePNA PHY header is preserved. AID Bit No. 5 LSB 5 MSB 6 LSB 6 MSB The master station may send commands embedded in the HomePNA header control word to remotely set various parameters of the remote slave stations. Stations are identified via the AID as follows: 1. The master station is identified on the HomePNA wire network with an AID of FFh. 2. A slave is identified with an AID of 00h to EFh. 3. AID values of F0h to FEh are reserved for future use. Once a command has been transmitted, the master station will revert to a slave AID, so that subsequent control words are not interpreted by the slave stations as new commands. Master mode is entered by writing to the PHY control register (HPR16, bits 8 to 11) and is exited upon the completion of the command sequence. A valid master remote command consists of three HomePNA frames with an AID of FFh. Since the HomePNA PHY header is prepended to packets received from the MAC, as well as any1Home packets, packets from the master station may be separated by intervals during which other (slave) stations may transmit their frames. A remote master Control Word command will be recognized and executed by a HomePNA PHY when it receives three consecutive valid HomePNA frames with an AID of FFh. Valid commands are as follows: 1. SET_POWER: Commands slave stations to set their transmit level to a prescribed level until another master command is received. 2. SET_SPEED: Commands slave stations to set their transmit speed to a prescribed value until another master command is received. The control word bit encoding and possible values are described in Table 9. Master Station Control Word Functions Command Function 0 = version 0 0 = Set to low-power transmit mode. 1 = Set to high-power transmit mode. 0 = Set to low-speed transmit mode. 1 = Set to high-speed transmit mode. Reserved Slave stations transmit the following status messages in the HomePNA header control word of all outgoing frames: 1. VERSION_STATUS: The HomePNA PHY version of the slave station. The receiving station must revert to this version to interpret the packet. 2. POWER_STATUS: The transmit power level of the transmitting slave station for the current frame. All HomePNA units support both LOW_POWER and HIGH_POWER modes of operation. 3. SPEED_STATUS: The transmit speed of the slave station for the current frame. Receiving stations will adjust their receiver parameters to correctly interpret this frame. The slave control word bit encoding is identical to the master control word format. 1 Mbps HomePNA PHY Loopback The HomePNA PHY is capable of supporting internal loopback only. Internal Loopback In internal loopback, the transmitted data is returned to the receive data bus without transmitting data on the network. The MAC must be programmed to support full-duplex operation and is responsible for comparing the transmitted data to that received. Internal loopback is accomplished by setting the “enable loopback mode” in HPR0, bit 14, to 1. any1Home Link Detection While consuming minimal network resources, AMD’s innovative any1Home Link Detection Packet provides a means to indicate to the MAC, and thus the upper layers of the system protocol, that a valid network (as defined by HomePNA) has been detected. The Link Detection Packet is also capable of detecting a network failure and allows the upper layer protocol to take corrective action. Thus, the any1Home Packet provides link indication that the MAC requires for compliance to the Microsoft PC98, PC99, and HomePNA revision 1.1 requirements without utilizing resources from the upper layers of the system protocol Am79C901A 37 P R E L I M I N A R Y The any1Home link packet consists of valid AID and PCOM fields followed by four bytes of data. The receiving node’s MAC will interpret this packet as a runt frame and will not forward the frame to upper layers, thus ensuring that no system resources are required. Clock Data Manchester Encoder T h e A m 79 C 9 0 1A Ho m e P HY wi l l t ra n sm it t h e any1Home Link Packet as a result of not transmitting a normal Data packet within the last 400 ms time period. Similarly, the HomePHY will determine that it is not connected to a valid network (a link down state) after not receiving any Data or Link packets for a period greater than four seconds. The any1Home Link detection status is reported via the LED_LINK output pin and in the HomePNA PHY Status Register (HPR1, bit 2). See Table 18. Clock Data Manchester Decoder Squelch Circuit 10BASE-T PHY The 10BASE-T transceiver incorporates the physical layer function, including both clock recovery (ENDEC) and transceiver function. Data transmission over the 10BASE-T medium requires an integrated 10BASE-T MAU. The transceiver meets the electrical requirements for 10BASE-T as specified in IEEE 802.3i. The transmit signal is filtered on the transceiver to reduce harmonic content per IEEE 802.3i. Since filtering is performed in silicon, external filtering modules are not needed. The 10BASE-T PHY transceiver receives 10 Mbps data from the MAC across the MII at 2.5 million nibbles per second (parallel), or 10 million bits per second (serial) for 10BASE-T. It then Manchester encodes the data before transmission to the network. The 10BASE-T block consists of the following sub-blocks: — Transmit Process — Receive Process — Interface Status — Collision Detect Function TX Driver RX Driver TX± RX± 22304B-24 Figure 22. 10BASE-T Transmit and Receive Data Paths Twisted Pair Transmit Function Data transmission over the 10BASE-T medium requires use of the integrated 10BASE-T MAU and uses the differential driver circuitry on the TX± pins. TX± is a differential twisted-pair driver. When properly terminated, TX± will meet the transmitter electrical requirements for 10BASE-T transmitters as specified in IEEE 802.3, Section 14.3.1.2. The load is a twisted pair cable that meets IEEE 802.3, Section 14.4. Twisted Pair Receive Function — Jabber Function — Reverse Polarity Detect Refer to Figure 22 for the 10BASE-T block diagram. The RX+ port is a differential twisted-pair receiver. When properly terminated, the RX+ port will meet the electrical requirements for 10BASE-T receivers as specified in IEEE 802.3, Section 14.3.1.3. The receiver has internal filtering and does not require external filter modules or common mode chokes. Signals appearing at the RX± differential input pair are routed to the internal decoder. The receiver function meets the propagation delays and jitter requirements specified by the 10BASE-T standard. The receiver squelch level drops to half its threshold value after unsquelch to allow reception of minimum amplitude signals and to mitigate carrier fade in the event of worst case signal attenuation and crosstalk noise conditions. 38 Am79C901A P R E L I M I N A R Y Twisted Pair Interface Status Reverse Polarity Detect The Am79C901A device will power up in the Link Fail state. The Auto-Negotiation algorithm will apply to allow it to enter the Link Pass state. The polarity for 10BASE-T signals is set by reception of Normal Link Pulses (NLP) or packets. Polarity is locked, however, by incoming packets only. The first NLP received when trying to bring the link up will be ignored, but it will set the polarity to the correct state. The reception of two consecutive packets will cause the polarity to be locked, based on the polarity of the End of Transmit Data (ETD). In order to change the polarity once it has been locked, the link must be brought down and back up again. In the Link Pass state, receive activity which passes the pulse width/amplitude requirements of the RX± inputs will cause the PCS Control block to assert the Carrier Sense (CRS) signal at the MII interface. A collision would cause the PCS Control block to assert Carrier Sense (CRS) and Collision (COL) signals at the MII. In the Link Fail state, this block would cause the PCS Control block to deassert Carrier Sense (CRS) and Collision (COL). In jabber detect mode, this block would cause the PCS Control block to assert the COL signal at the MII and allow the PCS Control block to assert or deassert the CRS pin to indicate the current state of the RX± pair. If there is no receive activity on RX±, this block would cause the PCS Control block to assert only the COL pin at the MII. If there is RX± activity, this block would cause the PCS Control block to assert both COL and CRS at the MII. Collision Detect Function Simultaneous activity (presence of valid data signals) from both the internal encoder transmit function and the twisted pair RX± pins constitutes a collision, thereby causing the PCS Control block to assert the COL pin at the MII. Jabber Function The Jabber function inhibits the 10BASE-T twisted pair transmit function of the Am79C901A device if the TX± circuits are active for an excessive period (20-150 ms). This prevents one port from disrupting the network due to a stuck-on or faulty transmitter condition. If the maximum transmit time is exceeded, the data path through the 10BASE-T transmitter circuitry is disabled (although Link Test pulses will continue to be sent). The PCS Control block also asserts the COL signal at the MII and sets the Jabber Detect bit in Register 1 of the active PHY. Once the internal transmit data stream from the MENDEC stops, an unjab time of 250-750 ms will elapse before this block causes the PCS Control block to deassert the COL indication and re-enable the transmit circuitry. When jabber is detected, this block will cause the PCS Control block to assert the COL signal and allow the PCS Control block to assert or deassert the CRS signal to indicate the current state of the RX± pair. If there is no receive activity on RX±, this block causes the PCS Control block to assert only the COL signal at the MII. If there is RX± activity, this block will cause the PCS Control block to assert both COL and CRS on the MII. Auto-Negotiation The object of the Auto-Negotiation function is to determine the abilities of the devices sharing a link. After exchanging abilities, the Am79C901A device and remote link partner device acknowledge each other and make a choice of which advertised abilities to support. The Auto-Negotiation function facilitates an ordered resolution between exchanged abilities. This exchange allows both devices at either end of the link to take maximum advantage of their respective shared abilities. The Auto-Negotiation algorithm uses a burst of link pulses called Fast Link Pulses (FLPs). The burst of link pulses are spaced between 55 and 140 µs so as to be ignored by the standard 10BASE-T algorithm. The FLP burst conveys information about the abilities of the sending device. The receiver can accept and decode an FLP burst to learn the abilities of the sending device. The link pulses transmitted conform to the standard 10BASE-T template. The device can perform Auto-Negotiation with reverse polarity link pulses. The Am79C901A device uses the Auto-Negotiation algorithm to select the type connection to be established according to the following priority: 10BASE-T full duplex, then 10BASE-T half-duplex. See Table 10. The Auto-Negotiation algorithm is initiated by the following events: Auto-Negotiation enable bit is set, hardware reset, soft reset, transition to link fail state (when Auto-Negotiation enable bit is set), or Auto-Negotiation restart bit is set. The result of the Auto-Negotiation process can be read from the status register (Summary Status Register, TBR24). By default, the link partner must be at least 10BASE-T half-duplex capable. The Am79C901A PHY can automatically negotiate with the network and yield the highest performance possible without software support. Table 10. Network Speed 20 Mbps 10 Mbps Am79C901A Auto-Negotiation Capabilities Physical Network Type 10BASE-T, Full Duplex 10BASE-T, Half Duplex 39 P R E L I M I N A R Y Auto-Negotiation goes further by providing a message-based communication scheme called Next Pages before connecting to the Link Partner. Table 11. Driver Mode Pulse Stretch Collision Open Drain - Active Low Enabled LED_ACTIVITY Activity Open Drain - Active Low Enabled LED_LINK Link Open Drain - Active Low Not applicable LED_SPEED Speed Open Drain - Active Low Not applicable LED_POWER Power Open Drain - Active Low Not applicable LED Output Indication LED_COL Soft Reset Function The PHY Control Register (TBR0) incorporates the soft reset function (bit 15). It is a read/write register and is self-clearing. Writing a 1 to this bit causes a soft reset. When read, the register returns a 1 if the soft reset is still being performed; otherwise, it is cleared to zero. Note that the register can be polled to verify that the soft reset has terminated. Under normal operating conditions, soft reset will be finished in 150 clock cycles. Soft reset only resets the 10BASE-T PHY unit registers to default values (some register bits retain their previous values). Soft reset does not reset the management interface. 10BASE-T Loopback The 10BASE-T PHY is capable of supporting two different types of loopback, referred to as internal and external loopback. Internal Loopback In internal loopback, the transmitted data is returned to the receive data bus without transmitted data appearing on the network. The MAC must be programmed to support full-duplex operation and is responsible for comparing the transmitted data to that received. Internal loopback is accomplished by setting the “enable loopback mode” in TBR0, bit 14, to 1. External Loopback External loopback is accomplished by the use of an exter nal shor ti ng plug. In this environm ent, the 10BASE-T PHY is left in through mode (i.e., enable loopback mode in TBR0 = 0), the MAC in full duplex. The transmitted data will then be looped back at the shorting plug into the receive circuitry and driven onto the receive data bus for the MAC to process and verify. LED Support The controller can support up to five LEDs. LED outp u t s L E D _ C O L , L E D _ AC T I V I T Y, L E D _ L I N K , LED_SPEED, and LED_POWER allow for direct connection of an LED and its supporting pull-up device. The outputs are stretched to allow the human eye to recognize even short events that last only several microseconds. The five LED outputs are configured as shown in Table 11. 40 LED Default Configuration IEEE 1149.1 (JTAG) Test Access Port Interface An IEEE 1149.1-compatible boundary scan Test Access Port is provided for board-level continuity test and diagnostics. All digital input, output, and input/output pins are tested. The following paragraphs summarize the IEEE 1149.1-compatible test functions implemented in the controller. Refer to the IEEE 1149.1 Boundary Scan Architecture document for details. Boundary Scan Circuit The boundary scan test circuit requires four pins (TCK, TMS, TDI, and TDO), defined as the Test Access Port (TAP). It includes a finite state machine (FSM), an instruction register, a data register array, and a power-on reset circuit. Internal pull-up resistors are provided for the TDI, TCK, and TMS pins. TAP Finite State Machine The TAP engine is a 16-state FSM driven by the Test Clock (TCK) and the Test Mode Select (TMS) pins. An independent power-on reset circuit is provided to ensure that the FSM is in the TEST_LOGIC_RESET state at power-up. Therefore, the TRST is not provided. The FSM is also reset when TMS and TDI are high for five TCK periods. Supported Instructions In addition to the minimum IEEE 1149.1 requirements (BYPASS, EXTEST, and SAMPLE instructions), two additional instructions (IDCODE and TRI_ST) are provided to further ease board-level testing. All unused instruction codes are reserved. See Table 12 for a summary of supported instructions. Am79C901A P R E L I M I N A R Y Table 12. IEEE 1149.1 Supported Instruction Summary Mode Selected Data Register Test BSR Normal ID REG Normal BSR Normal Bypass Bypass Scan Normal Bypass Instruction Instruction Name Code Description EXTEST 0000 IDCODE 0001 SAMPLE 0010 TRI_ST 0011 BYPASS 1111 TRI_ST BYPASS External Test ID Code Inspection Sample Boundary Force TriState Force TriState 0011 1111 Normal Bypass Scan Normal Bypass Bypass The main purpose of this is board-level testing. See Table 15. To force the output pins, use SAMPLE to load the BSR cells via the TDI pin and EXTEST to force the output. Program the output cells, and set the control cells to enable the output, or clear the control cells to float the output. To sample the chip inputs and outputs, use a SAMPLE command and cell values are shifted out through the TDO pin. Check the values in the input cells. Both input and output pins have input-type cells. Table 15. Boundary Scan Ring Order BSR Cell No. Cell Name Cell Type1 Pin No. 53 XTAL_SEL_L IN 39 Instruction Register and Decoding Logic 52 CRS IN 32 After the TAP FSM is reset, the IDCODE instruction is always invoked. The decoding logic gives signals to control the data flow in the data registers according to the current instruction. 51 CRS OUT 32 50 CRS_COL_OEN CO – 49 COL IN 30 48 COL OUT 30 Boundary Scan Register 47 TXD3_CSN IN 28 Each Boundary Scan Register (BSR) cell has two stages. A flip-flop and a latch are used for the Serial Shift Stage and the Parallel Output Stage, respectively. There are four possible operation modes in the BSR cell shown in Table 13. 46 TXD2 IN 27 Table 13. BSR Mode Of Operation 1 2 3 4 Capture Shift Update System Function Other Data Registers Other data registers are the following: 45 TXD1_SDI IN 25 44 TXD0_TXDAT IN 24 43 TX_EN IN 23 42 TX_CLK_OEN CO – 41 TX_CLK IN 22 40 TX_CLK OUT 22 39 GM_MODE IN 21 38 RX_ER IN 19 37 RX_ER OUT 19 36 PHY_SEL IN 17 35 RX_CLK IN 15 34 RX_CLK OUT 15 33 RX_DV_RXEN IN 13 1. Bypass register (1 bit) 32 RX_DV_RXEN OUT 13 2. Device ID register (32 bits) (Table 14). 31 RXD_OEN CO – 30 RXD0_RXDAT IN 11 29 RXD0_RXDAT OUT 11 28 RXD1 IN 10 10 Table 14. Device ID Register Bits 31-28 Version 27 RXD1 OUT Bits 27-12 Part Number (1001 0000 0001 0000) 26 RXD2 IN 9 25 RXD2 OUT 9 Bits 11-1 Manufacturer ID. The 11-bit manufacturer ID code for AMD is 00000000001 in accordance with JEDEC publication 106-A. 24 RXD3 IN 8 23 RXD3 OUT 8 Bit 0 Always a logic 1 22 LED_SPEED CO 6 Boundary Scan Cells 21 LED_SPEED IN 6 In Boundary Scan, most of the chip input and output latches are linked together to form a scan chain. 20 LED_SPEED OUT 6 19 LED_POWER CO 5 Am79C901A 41 P R E L I M I N A R Y 18 LED_POWER IN 17 5 LED_POWER OUT 5 BSR Cell No. Cell Name Cell Type1 Pin No. 16 LED_ACTIVITY CO 3 15 LED_ACTIVITY IN 3 14 LED_ACTIVITY OUT 3 13 LED_COL CO 2 12 LED_COL IN 2 11 LED_COL OUT 2 10 LED_LINK CO 1 9 LED_LINK IN 1 8 LED_LINK OUT 1 7 MDC_SCLK IN 68 6 MDIO IN 66 5 MDIO OUT 66 4 MDIO_OEN CO – 3 ISOLATE IN 65 2 PHY_AD IN 64 1 MODE_MII IN 63 0 RESET_L IN 61 Notes: 1. IN = input cells, samples the device inputs and internal outputs; OUT = output cells, drives the device outputs and internal inputs; and CO = control cells, controls the output enable. 2. BSR Cell 0 is closest to TDO. 3. Boundary register is 54 bits long. Data path starts from TDI to cell 53, cell 0 to TDO. 42 Am79C901A P R E L I M I N A R Y USER ACCESSIBLE REGISTERS The Am79C901A PHY has two types of user registers: 1 Mbps HomePNA PHY management registers (HPRs) and 10BASE-T PHY management registers (TBRs). Table 16. Register Address Symbol 0 HPR0 1 HPR1 2 3 1 Mbps HomePNA PHY Management Registers (HPRs) The registers of the HomePNA PHY are accessible via the MII or the SPI interface. All reserved registers should not be written to, and reading them will return an undetermined value. Table 16 lists all the registers implemented in the HomePNA PHY. 1 Mbps HomePNA PHY Management Registers (HPRs) Basic/Extended Default Value After H_RESET Control Register B 0400h Status Register B 0841h HPR2 PHY_ID Register E 0000h HPR3 PHY_ID Register E 6B91h 4 HPR4 Auto-Negotiation Register E 0021h 5 HPR5 Auto-Negotiation Register E 0000h 6 HPR6 Auto-Negotiation Register E 0000h 7 HPR7 Auto-Negotiation Register E 0000h 8-15 HPR8-HPR15 Reserved E – 16 HPR16 PHY Control Register E 0005h 17 HPR17 Status/Control Register E 000xh 18 HPR18 PHY TXCOMM Register E 0000h 19 HPR19 PHY TXCOMM Register E 0000h 20 HPR20 PHY RXCOMM Register E 0000h 21 HPR21 PHY RXCOMM Register E 0000h 22 HPR22 PHY AID Register E 0000h 23 HPR23 PHY Noise Control Register E 03FFh 24 HPR24 PHY Noise Control 2 Register E F4xxh 25 HPR25 PHY Noise Statistics Register E 03FFh 26 HPR26 Event Status Register E 0000h 27 HPR27 AID Control Register E 1440h 28 HPR28 ISBI Control Register E 2C1Ch 29 HPR29 TX Control Register E 0444h 30 HPR30 Drive Level Control Register E x549h 31 HPR31 Analog Control Register E C000h Name Am79C901A 43 P R E L I M I N A R Y HPR0: HomePNA PHY Control Register (Register 0) Table 17. Bits HPR0: HomePNA PHY Control Register (Register 0) Name Description Read/ Write Default Value (hex) R/W 0 R/W 0 R 0 R 0 R 0 R/W 1 R 0 R/W 0 R/W 0 R 0 1 = RESET 15 RESET When read, 1= reset in process 0 = Normal operation ** Self Clearing after ~70 µs 14 Enable Loopback Mode 13 Speed Selection 12 Auto-Negotiation Enabled 11 Power Down 1 = Loopback mode enable 0 = Loopback mode disable 0 = 10 Mbps 1 = Enabled 0 = Disabled 1 = Power down 0 = Normal operation (This bit is mirrored in PHY Control bit 4) 10 Isolate 9 Restart Auto-Negotiation 1 = Electrically isolates PHY from the MII/GPSI 0 = Normal operation 1 = Restart Auto-Negotiation 0 = Normal operation ** Self Clearing 8 Duplex Mode 7 Collision Test (Note 1) 6:0 Reserved 1 = Full-Duplex (for Loopback test only) 0 = Half-Duplex 1 = Enable COL test signal 0 = Disable COL test signal Write as 0, ignore on read Notes: 1. For collision test, the “enable loopback mode” bit must also be set to ensure that collision traffic is not imposed on the network. 2. R/W = Read/Write; R = Read only. 44 Am79C901A P R E L I M I N A R Y HPR1: HomePNA PHY Status Register (Register 1) Table 18. Bits HPR1: HomePNA PHY Status Register (Register 1) Name Description Read/Write Default Value (hex) 15 100BASE-T4 0 = PHY not able to perform 100BASE-T4 R 0 14 100BASE-X Full-Duplex 0 = PHY not able to perform Full-Duplex 100BASE-X R 0 13 100BASE-X Half-Duplex 0 = PHY not able to perform Half-Duplex 100BASE-X R 0 12 10 Mbps Full-Duplex 0 = PHY not able to perform 10 Mbps in Full-Duplex R 0 11 10 Mbps Half-Duplex 1 = PHY able to perform 10 Mbps in Half-Duplex R 1 Reserved Reads will produce undefined results R X R 1 R 0 R 0 R 0 R 0 R 0 R 1 10:7 6 Management Frame Preamble Suppression 5 Auto-Negotiation Complete 4 Remote Fault 3 Auto-Negotiation Ability 1 = PHY will accept management frames with Preamble suppressed 0 = PHY will not accept management frames with Preamble suppressed 1 = Auto-Negotiation completed 0 = Auto-Negotiation not completed 1 = Remote fault detected 0 = Normal operation 1 = PHY is able to perform Auto-Negotiation 0 = PHY is not able to perform Auto-Negotiation 1 = Link is up 2 Link Status 0 = Link is down This bit will be RESET (latched low and re-enabled on Read). 1 Jabber Detect 0 Extended Capability 1 = Jabber condition detected 0 = Normal operation 1 = Extended Register capability 0 = Basic Register Set capability Am79C901A 45 P R E L I M I N A R Y HPR2 and HPR3: HomePNA PHY ID Registers (Registers 2 and 3) Table 19. Bits 15:0 Name PHY_ID MSB (31-16) Table 20. Description Most significant bytes of the PHY_ID (Bits 3-18) Read/ Write Default Value (hex) R 0000 HPR3: HomePNA PHY ID Register (Register 3) Read/ Write Default Value (hex) IEEE Address (Bits 19-24) R 1A PHY_ID LSB (9-4) Manufacturer’s Model Number R 39 PHY_ID LSB (3-0) Revision Number R 1 (rev. A.1) 2 (rev. A.2) 3 (rev. A.3) Bits Name 15:10 PHY_ID LSB (15-10) 9:4 3:0 46 HPR2: HomePNA PHY ID Register (Register 2) Description Am79C901A P R E L I M I N A R Y HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) This register contains the advertised ability of the Am79C901A device. The purpose of this register is to advertise the technology ability to the link partner de- Table 21. Bits HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) Name 15 Next Page 14 Reserved 13 Remote Fault 12:11 vice. When this register is modified, Restart Auto-Negotiation (Register 0, bit 9) must be enabled to guarantee the change is implemented. Description Read/Write Default Value (hex) When set, the device wishes to engage in next page exchange. If cleared, the device does not wish to engage in next page exchange. R 0 R 0 R 0 R 0 R 0 R 0 When set, a remote fault bit is inserted into the base link code word during the Auto-Negotiation process. When cleared, the base link code work will have the bit position for remote fault as cleared. Reserved 10 PAUSE 9 Reserved 8 Full-Duplex 100BASE-TX This bit advertises Full-Duplex capability. When set, Full-Duplex capability is advertised. When cleared, Full-Duplex capability is not advertised. R 0 7 Half-Duplex 100BASE-TX This bit advertises Half-Duplex capability for the Auto-Negotiation process. Setting this bit advertises Half-Duplex capability. Clearing this bit does not advertise Half-Duplex capability. R 0 6 Full-Duplex 10BASE-T This bit advertises Full-Duplex capability. When set, Full-Duplex capability is advertised. When cleared, Full-Duplex capability is not advertised. R 0 5 Half-Duplex 10BASE-T This bit advertises Half-Duplex capability for the Auto-Negotiation process. Setting this bit advertises Half-Duplex capability. Clearing this bit does not advertise Half-Duplex capability. R 1 Selector Field The Am79C901A device is an IEEE 802.3 compliant device. R 01 4:0 This bit should be set if the PAUSE capability is to be advertised. Am79C901A 47 P R E L I M I N A R Y HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register (Register 5) The Auto-Negotiation Link Partner Ability Register is Read Only. The register contains the advertised ability of the link partner. The bit definitions represent the received link code word. This register contains either the base page or the link partner’s next pages. The values Table 22. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register - Base Page Format (Register 5) Bits Name Description Read/Write Default Value (hex) 15 Next Page Link partner next page request R 0 14 Acknowledge Link partner acknowledgment R 0 13 Remote Fault Link partner remote fault request R 0 12:5 Technology Ability Link partner technology ability field R 0 4:0 Selector Field Link partner selector field R 0 Table 23. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register - Next Page Format (Register 5) Bits Name Description Read/Write Default Value (hex) 15 Next Page Link partner next page request R 0 14 Acknowledge Link partner acknowledgment R 0 13 Message Page Link partner message page request R 0 12 Acknowledge 2 R 0 11 Toggle Link partner toggle bit R 0 Message Field Link partner’s message code R 0 10:0 48 contained in these registers are only valid once AutoNegotiation has successfully completed, as indicated by bit 5 in HPR1, or if the Next Page exchange is used, after the Page Received (bit 1 of HPR6) has been set to logic one. 1 = Link partner can comply with the request 0 = Link partner cannot comply with the request Am79C901A P R E L I M I N A R Y HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) The Auto-Negotiation Expansion Register provides additional information that aids the Auto-Negotiation Table 24. Bits 15:5 process. The Auto-Negotiation Expansion Register bits are Read Only. HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) Name Description Reserved 4 Parallel Detection Fault 1 = Parallel detection fault 3 Link Partner Next Page Able 1 = Link partner is next page able 2 Next Page Able 1 Page Received 0 Link Partner AutoNegotiation Able 0 = No parallel detection fault 0 = Link partner is not next page able 1 = Am79C901A device channel is next page able 0 = Am79C901A device channel is not next page able 1 = A new page has been received 0 = A new page has not been received 1 = Link partner is Auto-Negotiation able 0 = Link partner is not Auto-Negotiation able Read/Write Default Value (hex) R 0 R 0 R 0 R 0 R 0 R 0 HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) The Auto-Negotiation Next Page Register contains the next page link code word to be transmitted. On Table 25. Bits power-up the default value of 0x2001 represents a message page with the message code set to null. HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) Name Description Am79C901A device channel next page request Read/Write Default Value (hex) R 0 R 0 R 0 15 Next Page 14 Reserved 13 Message Page 12 Acknowledge 2 0 = Am79C901A device channel cannot comply with the request R 0 11 Toggle Am79C901A device channel toggle bit R 0 Message Field Message code field R 000 Am79C901A device channel message page request 1 = Am79C901A device channel can comply with the request 10:0 Reserved Registers: HPR8 - HPR15 These registers should be ignored when read and should not be written to at any time. Am79C901A 49 P R E L I M I N A R Y HPR16: HomePNA PHY Control Register (Register 16) Table 26. Bits 15 14:13 HPR16: HomePNA PHY Control Register (Register 16) Name Remote Command Reserved Description 1 = Ignore Remote Commands 0 = Normal operation Reads will produce undefined results. Should be written as 0. Read/ Write Default Value (hex) R/W 0 R/W XX R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R 0 R X R/W 1 R/W 0 R/W X 1 = Disables the SQE heartbeat which occurs after each transmission. 12 SQE_TEST Disable 11 Command Low Power 10 Command High Power 9 Command Low Speed 8 Command High Speed 7 Disable AID Negotiation 6 Clear PHY-Event Counter 0 = The heartbeat assertion occurs on the COL pin approximately 1-5 µs after transmission and for a duration of 1 µs. 1 = Command low power 0 = Normal operation 1 = Command high power 0 = Normal operation 1 = Command low speed 0 = Normal operation 1 = Command high speed 0 = Normal operation 1 = Disable AID negotiation 0 = Normal operation 1 = Clear PHY event counter 0 = Normal operation **Self clearing after ~100 ns 5 Disable Squelch adaptation 4 Power Down 1 = Disable Squelch adaptation 0 = Normal operation 1 = Power down 0 = Normal operation (This bit is controlled by the HPR0, bit 11) 3 Reserved 2 High Speed 1 High Power 0 Reserved Reads will produce undefined results 1 = Device is currently in High speed 0 = Device is currently in Low speed 1 = Device is currently in High power 0 = Device is currently in Low power Reads will produce undefined results Note: Writes to bits 1 and 2 will affect speed and power on node only. 50 Am79C901A P R E L I M I N A R Y HPR17: HomePNA PHY Status/Control Register (Register 17) The HomePNA PHY Status/Control Register provides information regarding the global aspects of the operation of the PHY. Table 27. Name Bits 15:13 12 HPR17: HomePNA PHY Status/Control Register (Register 17) Description Test control bits. Reads will produce undefined results. Should be written as 0. Reserved any1Home_ Disable 1 = any1Home Link packet disabled 0 = any1Home Link packet enabled Read/Write Default Value (hex) R 00 R/W 0 11:8 Reserved Test control bits. Reads will produce undefined results. Should be written as 0. R 3 7 Reserved Test control bit. Reads will produce undefined results. Should be written as 0. R 0 6 Received_Power R 0 5 Received_Speed R 0 4 Received_Ver R 0 R X 3:0 1 = Last packet received, was sent at High Power 0 = Last packet received, was sent at Low Power 1 = Last packet received, was sent at High Speed 0 = Last packet received, was sent at Low Speed 1 = Last packet received, was sent at Version XX 0 = Last packet received, was sent at Version 0 Test control bits. Reads will produce undefined results. Should be written as 0. Reserved HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) Table 28. HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) Bits Name 15:0 PHY_TX_COMM (4) Description Read/Write Default Value (hex) The 32-bit preamble transmitted on the HomePNA PHY. HPR18 contains the high word and HPR19 the low word. R/W 0000 The 32-bit transmitted data field is to be used for outof-band communication between PHY management entities. No protocol for out-of-band management has been defined. Accessing the low word causes the PHY to send all-0 PCOMs until the high word has been accessed. Once accessed, the next transmitted packet will cause this register’s contents to be shifted out in the PCOM field of the transmitted packet. Upon transmission, this register will read back as all 0s. A non-null transmitted PCOM will set the TxPCOM Ready bit in the Event Status Register (HPR26). An access to any of the two TxPCOM words will clear the TxPCOM Ready bit in the ISTAT register. Am79C901A 51 P R E L I M I N A R Y HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) Table 29. HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) Bits Name 15:0 PHY_RX_COMM (4) Description Read/Write Default Value (hex) The 32-bit preamble received by the HomePNA PHY. HPR20 contains the high word and HPR21 the low word. R 0000 The 32-bit received data field to be used for out-ofband communication between PHY management entities. No protocol for out-of-band management has been defined. Accessing the low word of the register is sufficient to ensure that subsequently received packets will not overwrite the register contents. A non-null received PCOM will set the RxPCOM Valid bit of the Event Status Register (HPR26). Accessing the high word of the register clears this bit and allows overwriting of the register by subsequent received packets. HPR22: HomePNA PHY AID Register (Register 22) Table 30. Bits HPR22: HomePNA PHY AID Register (Register 22) Name Description Read/Write Default Value (hex) R/W 00 R/W 00 The Access ID of this PHY. 15:8 PHY_AID 7:0 Noise Events If PHY_Control Disable AID Negotiation is set, then writes to this bit will have no effect. An 8-bit counter that records the number of noise events detected. Overflows are held as FFh. Can be cleared by setting bit 6 of HPR16. The PHY’s AID address is used for collision detection. Unless bit 7 of the CONTROL register is set, the PHY is assured to select a unique AID address. Addresses above EFh are reserved. Address FFh is defined to indicate a remote command. HPR23: HomePNA PHY Noise Control Register (Register 23) Table 31. Read/ Write Default Value (hex) Noise Floor If the input NOISE measurement (HPR25, bits 15:8) exceeds the PEAK measurement (HPR25, bits 7:0), this value is loaded into the NOISE Level register HPR25, bits 15:8. R/W 03 Noise Ceiling If the input NOISE measurement (HPR25, bits 15:8) exceeds the PEAK measurement (HPR25, bits 7:0), this value is loaded into the NOISE Level register HPR25, bits 7:0. R/W FF Bits 15:8 7:0 52 HPR23: HomePNA PHY Noise Control Register (Register 23) Name Description Am79C901A P R E L I M I N A R Y HPR24: HomePNA PHY Noise Control 2 Register (Register 24) Table 32. Bits Name HPR24: HomePNA PHY Noise Control 2 Register (Register 24) Description 15:8 Noise Attack Sets the attack characteristics of the NOISE algorithm. High nibble sets number of noise events needed to raise the NOISE level immediately, while the low nibble is the number of noise events needed to raise the level at the end of an 870 ms period. 7:0 Reserved Reads will produce undefined results. Read/ Write Default Value R/W F4 R XX HPR25: HomePNA PHY Noise Statistics Register (Register 25) Table 33. Bits Name HPR25: HomePNA PHY Noise Statistics Register (Register 25) Description 15:8 Noise Level This is the digital value of the SLICE_LVL_NOISE output. It is effectively a measure of the noise level on the wire and tracks noise by counting the number of false triggers of the NOISE comparator in an 800 ms window. When auto-adaptation is enabled (bit 5 of the PHY_Control Register is false), this register is updated with the current NOISE count every 50 ns. When adaptation is disabled, this register may be written to and is used to generate both the SLICE_LVL_NOISE and SLICE_LVL_DATA signals. 7:0 Peak Level This is a measurement of the peak level of the last valid (non-collision) AID received. Am79C901A Read/ Write Default Value (hex) R/W 03 R/W FF 53 P R E L I M I N A R Y HPR26: HomePNA PHY Event Status Register (Register 26) Table 34. Bits HPR26: HomePNA PHY Event Status Register (Register 26) Name Description Read/ Write Default Value (hex) R 0 15:10 Reserved 9 RxPCOM Indicates a valid RxPCOM. An access to the RxCOM MSB Register 18 will clear this bit. R 0 8 TxPCOM Indicates a valid TxPCOM. Any access to the TxCOM registers (Registers 20 and 21) will clear this bit. R 0 7:4 Reserved Reads will produce undefined results. Should be written as 0. R X 3 Packet Received Status is cleared by writing a 0. R/W 0 2 Packet Transmitted Status is cleared by writing a 0. R/W 0 1 Remote Command Received R/W 0 0 Remote Command Sent R/W 0 Read/ Write Default Value (hex) A valid remote command was received. Status is cleared by writing a 0. A remote command has been sent. Status is cleared by writing a 0. HPR27: HomePNA PHY AID Control Register (Register 27) The HomePNA AID Control Register reports the state of each event source. Any bit may be written and so facilitate software-stimulated event testing. Table 35. Bits 54 Name HPR27: HomePNA PHY AID Control Register (Register 27) Description 15:8 AID_INTERVAL This value defines the number of TCLKs (116.6 ns) separating AID symbols. R/W 14 7:0 AID_ISBI This value defines the number of TCLKs (116.6 ns) separating AID symbol 0. R/W 40 Am79C901A P R E L I M I N A R Y HPR28: HomePNA PHY ISBI Control Register (Register 28) Table 36. Bits HPR28: HomePNA PHY ISBI Control Register (Register 28) Name Description Read/ Write Default Value (hex) 15:8 ISBI_SLOW This value defines the number of TCLKs (116.6 ns) separating data pulses for Symbol 0 in low-speed mode. R/W 2C 7:0 ISBI_FAST This value defines the number of TCLKs (116.6 ns) separating data pulses for Symbol 0 in high-speed mode. R/W 1C Read/ Write Default Value (hex) HPR29: HomePNA PHY TX Control Register (Register 29) Table 37. HPR29: HomePNA PHY TX Control Register (Register 29) Bits Name Description 15:8 TX_PULSE_WIDTH This value defines the duration of a transmit pulse in OSC cycles (16.7 ns). This will effectively determine the transmit spectrum of the PHY. R/W 04 7:4 TX_PULSE_CYCLES_N This value defines the number of pulses that will be driven onto the HRTXRX_N pin. R/W 4 3:0 TX_PULSE_CYCLES_P This value defines the number of pulses that will be driven onto the HRTXRX_P pin. R/W 4 HPR30: HomePNA PHY Drive Level Control Register (Register 30) Table 38. Bits HPR30: HomePNA PHY Drive Level Control Register (Register 30) Name Description Read/ Write Default Value (hex) R XX 15:12 Reserved Reserved. Must be written as 0. Read = X. 11:6 High Level Control Defines the drive level that will be utilized in the High Power mode. R/W 15 5:0 Low Level Control Defines the drive level that will be utilized in the Low Power mode. R/W 09 Am79C901A 55 P R E L I M I N A R Y HPR31: HomePNA PHY Analog Control Register (Register 31) Table 39. Bits HPR31: HomePNA PHY Analog Control Register (Register 31) Name Description 15:11 Level_Adjust Global output slope adjustment. These bits control the number of current sources enabled for transmit. Each bit represents a single current source. Thus 10101 enables three current sources as does 11100. 10:8 Reserved Reserved. Must be written as 0. 1 = Link Status bit will be held valid Force_Link_Valid 7 0 = Normal operation Reserved 6:0 Reserved. Must be written as 0. Read/ Write Default Value (hex) R/W 18 R/W 0 R/W 0 R/W 0 10BASE-T PHY Management Registers (TBRs) The Am79C901A home networking device supports the MII basic register set and extended register set. Both sets of registers are accessible through the MII management interface or via the SPI interface. As specified in the IEEE standard, the basic register setStatus Register (Register 1). The extended register set Table 40. 56 Register Address Symbol 0 TBR0 1 consists of the Control Register (Register 0) and the consists of Registers 2 to 31 (decimal). Table 40 lists all the 10BASE-T registers implemented in the device. All the reserved registers should not be written to, and reading them will return an undetermined value. 10BASE-T PHY Management Registers (TBRs) Basic/Extended Default Value After H_RESET PHY Control Register B 1500h TBR1 PHY Status Register B 1xx9h 2 TBR2 PHY Identifier Register E 0000h 3 TBR3 PHY Identifier Register E 6B71h 4 TBR4 Auto-Negotiation Advertisement Register E 0061h 5 TBR5 Auto-Negotiation Link Partner Ability Register E 0000h 6 TBR6 Auto-Negotiation Expansion Register E 0004h 7 TBR7 Auto-Negotiation Next Page Register E 2001h 8:15 TBR8-TBR15 Reserved E – 16 TBR16 Status and Enable Register E 0000h 17 TBR17 PHY Control/Status Register E 0001h 18 TBR18 Reserved E – 19 TBR19 PHY Management Extension Register E – 20:23 TBR20-TBR23 Reserved E – 24 TBR24 Summary Status Register E 0000h 25:31 TBR25-TBR31 Reserved E – Name Am79C901A P R E L I M I N A R Y TBR0: 10BASE-T PHY Control Register (Register 0) Table 41. Bits TBR0: 10BASE-T PHY Control Register (Register 0) Name Description Read/Write (Note 1) Default Value (hex) R/W, SC 0 R/W 0 R 0 R/W 1 R/W 0 R/W 1 R/W, SC 0 R/W 1 R/W 0 R 0 When write 1 = PHY software reset 15 Soft Reset (Note 2) 0 = Normal operation When read 1 = Reset in process 0 = Reset done 14 Enable Loopback Mode 13 Speed Selection (Note 3) 12 Auto-Negotiation Enable 11 Power Down 10 1 = Loopback mode enable 0 = Loopback mode disable 1 = 100 Mbps (not available) 0 = 10 Mbps 1 = Enable Auto-Negotiation 0 = Disable Auto-Negotiation 1 = Power down 0 = Normal operation Isolate 1 = Electrically isolates PHY from the MII/GPSI (Note 4) 0 = Normal operation 1 = Restart Auto-Negotiation 9 Restart Auto-Negotiation 8 Duplex Mode (Note 3) 1 = Full-Duplex 7 Collision Test (Note 5) 1 = Enable COL signal test Reserved Write as 0, ignore on read 6:0 0 = Normal operation 0 = Half-Duplex 0 = Disable COL signal test Notes: 1. R/W = Read/Write, SC = Self Clearing, R = Read only. 2. Soft Reset does not reset the PDX block. Refer to the Soft Reset section for details. 3. Bits 8 and 13 have no effect if Auto-Negotiation is enabled (Bit 12 = 1). 4. If the ISOL pin of the chip and the Isolate bit in Register 0 is 1, this bit will be set. 5. The “enable loopback mode” bit must also be set to ensure that collision traffic is not imposed on the network. Am79C901A 57 P R E L I M I N A R Y TBR1: 10BASE-T Status Register (Register 1) The Status Register identifies the physical and AutoNegotiation capabilities of the local PHY. This register is read only; a write will have no effect. See Table 42. Table 42. Bits TBR1: 10BASE-T PHY Status Register (Register 1) Name Description 1 = 100BASE-T4 able Default Value (hex) R 0 15 100BASE-T4 14 100BASE-X Full-Duplex 1 = 100BASE-X full-duplex able 0 = Not 100BASE-X full-duplex able R 0 13 100BASE-X Half-Duplex 1 = 100BASE-X half-duplex able 0 = Not 100BASE-X half-duplex able R 0 12 10 Mbps Full-Duplex R 1 11 10 Mbps Half-Duplex 1 = 10 Mbps half-duplex able 0 = Not 10 Mbps half-duplex able R 1 Reserved Ignore when read R X 6 Management Frame Preamble Suppression 1 = PHY can accept management (mgmt) frames with or without preamble 0 = PHY can only accept mgmt frames with preamble R 1 5 Auto-Negotiation Complete R 0 4 Remote Fault 1 = Remote fault detected 0 = No remote fault detected 3 Auto-Negotiation Ability 1 = PHY able to auto-negotiate, 0 = PHY not able to auto-negotiate 2 Link Status 1 = Link is up 0 = Link is down 1 Jabber Detect 1 = Jabber condition detected 0 = No jabber condition detected R 0 0 Extended Capability 1 = Extended register capabilities 0 = Basic register set capabilities only R 1 10:7 0 = Not 100BASE-T4 able 1 = 10 Mbps full-duplex able 0 = Not 10 Mbps full-duplex able 1 = Auto-Negotiation completed 0 = Auto-Negotiation not completed Note: 1. LH = Latching High, LL = Latching Low. 58 Read/Write (Note 1) Am79C901A R, LH (Note 1) R R, LL (Note 1) 0 1 0 P R E L I M I N A R Y TBR2 and TBR3: 10BASE-T PHY Identifier Register (Registers 2 and 3) Registers 2 and 3 contain a unique PHY identifier, consisting of 22 bits of the organizationally unique IEEE identifier, a 6-bit manufacturer’s model number, and a 4-bit manufacturer’s revision number. The most significant bit of the PHY identifier is bit 15 of register 2; the least significant bit of the PHY identifier is bit 0 of register 3. Register 2, bit 15, corresponds to bit 3 of the IEEE identifier and register 2, bit 0, corresponds to bit Table 43. Bits Name 15:0 PHY_ID[31-16] Table 44. Bits Name 18 of the IEEE identifier. Register 3, bit 15, corresponds to bit 19 of the IEEE identifier and register 3, bit 10, corresponds to bit 24 of the IEEE identifier. Register 3, bits 9-4, contain the manufacturer’s model number and bits 3-0 contain the manufacturer’s revision number. These registers are shown in Table 43 and Table 44. TBR2: 10BASE-T PHY Identifier Register (Register 2) Description IEEE Address (bits 3-18); Register 2, bit 15 is MSB of PHY Identifier Read/ Write Default Value (hex) R 0000 TBR3: 10BASE-T PHY Identifier Register (Register 3) Description Read/ Write Default Value (hex) PHY_ID[15-10] IEEE Address (bits 19-24) R 1A 9:4 PHY_ID[9-4] Manufacturer’s Model Number (bits 5-0) R 37 3:0 PHY_ID[3-0] Revision Number (bits 3-0); Register 3, bit 0, is LSB of PHY Identifier R 01 15:10 Am79C901A 59 P R E L I M I N A R Y TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) This register contains the advertised ability of the Am79C901A home networking device. The purpose of this register is to advertise the technology ability to the link partner device. See Table 45. Table 45. W hen th is reg ister is m odifi ed, Restar t AutoNegotiation (Register 0, bit 9) must be enabled to guarantee the change is implemented. TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) Bits Name Description 15 Next Page When set, the device wishes to engage in next page exchange. If cleared, the device does not wish to engage in next page exchange. 14 Reserved When set, a remote fault bit is inserted into the base link code word during the Auto-Negotiation process. When cleared, the base link code work will have the bit position for remote fault as cleared. Read/ Write Default Value (hex) R/W 0 R 0 R/W 0 R 0 R/W 0 R 0 13 Remote Fault 12:11 Reserved 10 PAUSE 9 Reserved 8 Full-Duplex 100BASE-TX This bit advertises Full-Duplex capability. When set, Full-Duplex capability is advertised. When cleared, Full-Duplex capability is not advertised. R 0 7 Half-Duplex 100BASE-TX This bit advertises Half-Duplex capability for the Auto-Negotiation process. Setting this bit advertises Half-Duplex capability. Clearing this bit does not advertise Half-Duplex capability. R 0 6 Full-Duplex 10BASE-T This bit advertises Full-Duplex capability. When set, Full-Duplex capability is advertised. When cleared, Full-Duplex capability is not advertised. R/W 1 5 Half-Duplex 10BASE-T This bit advertises Half-Duplex capability for the Auto-Negotiation process. Setting this bit advertises Half-Duplex capability. Clearing this bit does not advertise Half-Duplex capability. R/W 1 4:0 Selector Field The 10BASE-T PHY of the Am79C901A home networking device is an 802.3 compliant device. R 01 60 This bit should be set if the PAUSE capability is to be advertised. Am79C901A P R E L I M I N A R Y TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) The Auto-Negotiation Link Partner Ability Register is Read Only. The register contains the advertised ability of the link partner. The bit definitions represent the received link code word. This register contains either the base page or the link partner’s next pages. The values Table 46. contained in these registers are only valid once AutoNegotiation has successfully completed, as indicated by bit 5 in TBR1, or if the Next Page exchange is used after the Page Received (TBR6, bit 1) has been set to logic one. See Table 46 and Table 47. TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) - Base Page Format Read/ Write Default Value (hex) Link partner next page request R 0 Acknowledge Link partner acknowledgment R 0 13 Remote Fault Link partner remote fault request R 0 12:5 Technology Ability Link partner technology ability field R 0 4:0 Selector Field Link partner selector field R 0 Bits Name 15 Next Page 14 Table 47. Description TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) - Next Page Format Bits Name 15 Next Page 14 Acknowledge 13 Message Page 12 Acknowledge 2 11 Toggle 10:0 Message Field Read/ Write Default Value (hex) Link partner next page request R 0 Link partner acknowledgment R 0 Link partner message page request R 0 R 0 Link partner toggle bit R 0 Link partner’s message code R 0 Description 1 = Link partner can comply with the request 0 = Link partner cannot comply with the request Am79C901A 61 P R E L I M I N A R Y TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) The Auto-Negotiation Expansion Register provides additional information which aids the Auto-Negotiation Table 48. TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) Bits Name 15:5 Reserved 4 Parallel Detection Fault 1 = Parallel detection fault 3 Link Partner Next Page Able 1 = Link partner is next page able 2 Next Page Able 1 Page Received 0 process. The Auto-Negotiation Expansion Register bits are Read Only. See Table 48. Description 0 = No parallel detection fault 0 = Link partner is not next page able 1 = Am79C901A device channel is next page able 0 = Am79C901A device channel is not next page able 1 = A new page has been received Read/ Write Default Value (hex) R 0 R, LH 0 R 0 R 1 R, LH 0 = A new page has not been received Link Partner ANEG 1 = Link partner is Auto-Negotiation able Able 0 = Link partner is not Auto-Negotiation able R 0 0 TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7) The Auto-Negotiation Next Page Register contains the next page link code word to be transmitted. On power-up Table 49. Bits Name 15 Next Page 14 Reserved 13 Message Page 12 Acknowledge 2 11 Toggle 10:0 Message Field the default value of 2001h represents a message page with the message code set to null. See Table 49. TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7) Description Am79C901A device channel next page request Am79C901A device channel message page request 1 = Am79C901A device channel can comply with the request 0 = Am79C901A device channel cannot comply with the request Am79C901A device channel toggle bit Message code field Read/ Write Default Value (hex) R/W 0 R 0 R/W 1 R/W 0 R 0 R/W 001 Reserved Registers (Registers 8-15, 18, 20-23, and 25-31) The Am79C901A device contains reserved registers at addresses 8-15, 18, 20-23, and 25-31. These registers 62 should be ignored when read and should not be written to at any time. Am79C901A P R E L I M I N A R Y TBR16: 10BASE-T Status and Enable Register (Register 16) The status bits indicate when there is a change in the Link Status, Duplex Mode, Auto-Negotiation status, or Speed status. Register 16 contains the status and enable bits. The status is always updated whether or Table 50. Bits Name 15:14 Reserved 13 not the enable bits are set. When a status change occurs, the system will need to read this register to clear the status bits. See Table 50. TBR16: 10BASE-T Status and Enable Register (Register 16) Status Test Enable (Note 1) Description 1 = When this bit is set, setting bits 12:9 of this register will cause a condition that will set bits 4:1 accordingly. The effect is to test the register bits with a forced interrupt condition. Read/ Write Default Value (hex) R 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R 0 R, LH 0 R, LH 0 R, LH 0 R, LH 0 R, LH 0 0 = Bits 4:1 are only set if the interrupt condition (if any bits in 12:9 are set) occurs. 12 Link Status Change Enable 11 Duplex Mode Change Enable 10 Auto-Negotiation Change Enable 9 8 Speed Change Enable Global Enable 7:5 Reserved 4 Link Status Change 3 Duplex Mode Change 2 Auto-Negotiation Change 1 Speed Change 0 Global 1 = Link Status change enable 0 = This interrupt is masked 1 = Duplex Mode change enable 0 = This interrupt is masked 1 = Auto-Negotiation change enable 0 = This interrupt is masked 1 = Speed change enable 0 = This interrupt is masked 1= Global interrupt enable 0 = This interrupt is masked 1 = Link Status has changed on a port 0 = No change in Link Status 1 = Duplex Mode has changed on a port 0 = No change in Duplex mode 1 = Auto-Negotiation status has changed on a port 0 = No change in Auto-Negotiation status 1 = Speed status has changed on a port 0 = No change 1 = Indicates a change in status of any of the above interrupts 0 = Indicates no change in Interrupt status Note: All bits, except bit 13, are cleared on read (COR). The register must be read twice to see if it has been cleared. Am79C901A 63 P R E L I M I N A R Y TBR17: 10BASE-T PHY Control/Status Register (Register 17) This register is used to control the configuration of the 10 Mbps PHY of the Am79C901A home networking device. See Table 1. Table 1. TBR17: 10BASE-T PHY Control/Status Register (Register 17) Read/Write Default Value (hex) R 00 1 = Link status forced to link up state 0 = Link status is determined by the device R/W 0 Disable Link Pulse 1 = Link pulses sent from the 10BASE-T transmitter are suppressed 0 = Link pulse enabled (normal operation) R/W 0 11 SQE_TEST Disable 1 = Disables the SQE heartbeat which occurs after each 10BASE-T transmission 0 = The heartbeat assertion occurs on the COL pin approximately 1 µs after transmission and for a duration of 1 µs R/W 0 10 Reserved R 0 R/W 0 R 00 R 0 1 = Polarity correction circuit is disabled for 10BASE-T 0 = Self correcting polarity circuit is enabled R/W 0 1 = 10BASE-T receive squelch thresholds are reduced to allow reception of frames which are greater than 100 meters 0 = Squelch thresholds are set for standard distance of 100 meters R/W 0 1 = TX± outputs not active 0 = Transmit valid data R/W 0 1 = CRS is asserted when transmit or receive medium is active 0 = CRS is asserted when receive medium is active R/W 0 R 0 R 1 Bits Name 15:14 Reserved 13 Force Link Good Enable 12 9 Jabber Detect Disable 8:7 Reserved 6 Receive Polarity Reversed 5 Auto Receive Polarity Correction Disable 4 3 Extended Distance Enable TX_DISABLE 2 TX_CRS_EN 1 Reserved 0 PHY Isolated Description 1 = Disable jabber detect 0 = Enable jabber detect 1 = Receive polarity of the 10BASE-T receiver is reversed 0 = Receive polarity is correct 1 = 10BASE-T PHY is isolated 0 = 10BASE-T PHY is enabled Note: For these loopback paths, the data is also transmitted out of the MDI pins (TX±). 64 Am79C901A P R E L I M I N A R Y TBR19: 10BASE-T PHY Management Extension Register (Register 19) Table 2 contains the PHY Management Extension Register (Register 19) bits. Table 2. TBR19: 10BASE-T PHY Management Extension Register (Register 19) Bits Name 15:6 Reserved 5 Mgmt Frame Format Read/Write Default Value (hex) Write as 0; ignore on read R 0 1 = Last management frame was invalid (opcode error, etc.) R 0 R 01/03 Description 0 = Last management frame was valid PHY Address defaults to 000X1 4:0 PHY Address X = Value on pin PHY_ADD (i.e., 00001 or 00011) TBR24: 10BASE-T Summary Status Register (Register 24) The Summary Status register is a global register containing status information. This register is Read Only and represents the most important data which a single Table 3. Bits Name 15:4 Reserved 3 Link Status 2 Full-Duplex 1 Auto-Negotiation Alert 0 Speed register access can convey. The Summary Status register indicates the following: Link Status, Full-Duplex Status, Auto-Negotiation Alert, and Speed. See Table 3. TBR24: 10BASE-T Summary Status Register (Register 24) Description Write as 0; Ignore on Read 1 = Link Status is up 0 = Link Status is down 1 = Operating in Full-Duplex mode 0 = Operating in Half-Duplex mode 1 = Auto-Negotiation status has changed 0 = Auto-Negotiation status unchanged 1 = Operating at 100 Mbps 0 = Operating at 10 Mbps Am79C901A Read/Write Default Value (hex) R 0 R 0 R 0 R 0 R 0 65 P R E L I M I N A R Y ABSOLUTE MAXIMUM RATINGS OPERATING RANGES Storage Temperature . . . . . . . . . . . . –65°C to +150°C Commercial (C) Devices Ambient Temperature (C). . . . . . . . . . -65°C to +70°C Temperature (TA) . . . . . . . . . . . . . . . . . .0°C to +70°C Ambient Temperature (I) . . . . . . . . . . -65°C to +85°C Supply Voltages (VDD) . . . . . . . . . . . . . 3.0 V to 3.6 V Supply Voltage with respect to VSS . . . . . . . . . . . . . –0.3 V to 3.63 V All inputs within the range: . . . . . . VSS - 0.5 V to 5.5 V Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. 66 Industrial (I) Devices Temperature (TA) . . . . . . . . . . . . . . . . -40°C to +85°C Supply Voltages (VDD) . . . . . . . . . . . . . 3.0 V to 3.6 V All inputs within the range: . . . . . . VSS - 0.5 V to 5.5 V Operating ranges define those limits between which the functionality of the device is guaranteed. Am79C901A P R E L I M I N A R Y DC CHARACTERISTICS Parameter Symbol Parameter Description Digital I/O Voltage VIH Input HIGH Voltage VIH5V Input HIGH voltage (5V) VIL Input LOW Voltage Test Conditions Min Max 2.0 2.0 Units V DVDD + 2.5 V 0.8 V 0.4 V IOL1 = 4 mA VOL Output LOW Voltage IOL2 = 6 mA IOL3 = 12 mA IOH1 = -4 mA VOH Output HIGH Voltage (Notes 1, 2) IOH2 = -2 mA 2.4 V (Note 2) Output Voltage on TX± (peak) (Note 8) Input Differential Squelch Assert on VDIFF RX± (peak) Input Differential De-Assert Voltage VDIFF on RX± (peak) Digital I/O Current IOZ Output Leakage Current (Note 3) IIX Input Leakage Current (Note 4) IIL Input LOW Current (Note 5) IIH Input HIGH Current (Note 5) Power Supply Current VOUT ICC (1 Mbps) 1 Mbps mode on TX± and RX±. Outputs driving load. ICC (10 Mbps) 10BASE-T mode on TX± and RX±. Outputs driving load. ICC (Static) ICC (Idle) XCLK frequency = 0. Not transmitting. Pin Capacitance CIN Pin Capacitance CCLK CLK Pin Capacitance LPIN Pin Inductance 1.55 1.98 V 300 520 mV 150 300 mV -10 10 µA -10 -200 10 -10 µA µA -50 10 µA Transmitting maximum packets at minimum IPG. VDD = Maximum 100 mA Transmitting maximum packets at minimum IPG. VDD = Maximum 175 mA 45 mA 75 mA 10 pF 12 20 pF nH 0 V <VOUT <VDD 0 V < VIN < VDD VIN = 0 V; VDD = 3.6 V VIN = 2.7 V; VDD = 3.6 V VDD= Maximum VDD = Maximum FC = 1 MHz (Note 6) FC = 1 MHz (Notes 6, 7) FC = 1 MHz (Note 6) 5 Notes: 1. VOH does not apply to open-drain output pins. 2. IOH2 applies to all other outputs. 3. IOZ applies to all output and bidirectional pins. Tests are performed at VIN = 0 V and at VDD only. 4. IIX applies to all input pins except TDI, TCLK, and TMS pins. 5. 6. 7. 8. IIL and IIH apply to the TDI, TCLK, and TMS pins. Parameter not tested. Value determined by characterization. CCLK applies only to the CLK pin. VOUT reflects output levels prior to 1: √ 2 transformer state. Am79C901A 67 P R E L I M I N A R Y SWITCHING WAVEFORMS Key to Switching Waveforms WAVEFORM INPUTS OUTPUTS Must be Steady Will be Steady May Change from H to L Will be Changing from H to L May Change from L to H Will be Changing from L to H Don’t Care, Any Change Permitted Changing, State Unknown Does Not Apply Center Line is HighImpedance “Off” State KS000010-PAL SWITCHING TEST CIRCUITS IOL VTHRESHOLD Sense Point CL IOH 22304B-25 Figure 1. 68 Normal and Tri-State Outputs Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS GPSI 10BASE-T Transmit Timing (GPSI) No. Symbol 1 tS 2 Parameter Description Min Max Unit TXDAT, TXEN setup time to TXCLK ↑ edge 10 – ns tH TXDAT, TXEN hold time from TXCLK ↑ edge 0 – ns 3 tPD Transmit latency (TXEN sampled HIGH to 1st bit of data) 240 360 ns 4 tPD RXCRS assert from TXEN sampled HIGH 0 130 ns 5 tPD RXCRS de-assert from TXEN sampled LOW 0 130 ns 6 tPWL 300 – ns TXEN de-assertion time between packets (Note 1) Note: Not tested. TXCLK 6 TXEN 5 4 RXCRS 3 TX± End of Packet Start of Packet 2 1 TXDAT, TXEN 22304B-26 Figure 2. 10 Mbps Transmit Timing (GPSI) Am79C901A 69 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T Receive Timing (GPSI) No. Symbol 10 tPD 11 Parameter Description Min Max Unit CLS assert latency from SOP 200 300 ns tPD RXCRS assert latency from SOP 200 300 ns 12 tPD Receive latency (SOP to RXDAT valid) 320 430 ns 13 tPD RXCLK ↓ edge to RXDAT transition – 10 ns 14 tPD CLS de-assert latency from EOP 125 250 ns 15 tPD RXCRS de-assert latency from EOP 165 255 ns RXCLK RX± Start of Packet 10 CLS 11 RXCRS 12 13 RXDAT 22304B-27 Figure 3. 70 10 Mbps Receive Start of Packet Timing (GPSI) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T Receive Timing (GPSI) (Continued) RXCLK End of Packet RX± 14 CLS 15 RXCRS 22304B-28 Figure 4. 10 Mbps Receive End of Packet Timing (GPSI) 10BASE-T Transmit Clock Timing (GPSI) No. Symbol Parameter Description Min Max Unit 18 tPER TXCLK period 99.99 100.01 ns 19 tPWH TXCLK pulse width HIGH 45 55 ns 20 tPWL TXCLK pulse width LOW 45 55 ns Min Max Unit 99.99 100.01 ns 10BASE-T Receive Clock Timing (GPSI) No. Symbol Parameter Description 18 tPER RXCLK period 19 tPWH RXCLK pulse width HIGH 45 55 ns 20 tPWL RXCLK pulse width LOW 45 55 ns 18 19 20 TXCLK, RXCLK Figure 5. 22304B-29 10 Mbps Transmit and Receive Clock Timing (GPSI) Am79C901A 71 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Transmit Timing (GPSI) No. Symbol 23 tS 24 Parameter Description Min Max Unit TXDAT setup time to TXCLK ↑ 12 – ns tS TXEN setup time to TXCLK ↓ 10 – ns 25 tH TXDAT hold time from TXCLK ↑ 10 – ns 26 tH TXEN hold time from TXCLK ↓ 10 – ns 27 tPD Transmit Latency (TXEN sampled HIGH to SYNC pulse (5 mV)) 200 500 ns 28 tPD TXEN sampled HIGH to CLS active (Note 1) – 120 µs Note: Not tested. TXCLK 23 25 TXDAT 24 26 TXEN 27 SYNC AID HRTXRXP/N± PCOM DATA 28 CLS 22304B-30 Figure 6. 72 1 Mbps HomePNA Transmit Timing (GPSI) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Receive Timing (GPSI) No. Symbol Parameter Description 29 tPD RXCLK ↓ edge to RXDAT transition (Note 1) 30 tPD SYNC pulse detected to RXCRS clocked as active by MAC (Note 1) 31 tPD Last DATA pulse crosses noise slice level to RXCRS inactive (Note 1) 32 tPD RXCRS inactive to CLS inactive clocked into MAC (Note 1) Min Max Unit 0 10 ns 650 850 ns 15.98 16.10 µs – 200 ns Note: Not tested. RXCLK 29 RXDAT DATA DATA SYNC HRTXRXP/N± AID DATA 32 31 RXCRS 30 CLS 22304B-31 Figure 7. 1 Mbps HomePNA Receive Timing (GPSI) Am79C901A 73 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Clock Timing (GPSI) No. Symbol Parameter Description Clock Period Unit Idle (excluding IPG time) 35 tPER TXCLK, RXCLK period 583.3 ns 36 tPWH TXCLK, RXCLK pulse width HIGH 115.5 ns 37 tPWL TXCLK, RXCLK pulse width LOW 467.8 ns Preamble (first 64 bits of TX MAC frame) 35 tPER TXCLK, RXCLK period 233.3 ns 36 tPWH TXCLK, RXCLK pulse width HIGH 115.5 ns 37 tPWL TXCLK, RXCLK pulse width LOW 117.8 ns Data (thoughtout the data phase) 233.3 ns - 10 µs 35 tPER TXCLK, RXCLK period 36 tPWH TXCLK, RXCLK pulse width HIGH 115.5 37 tPWL TXCLK, RXCLK pulse width LOW 117.8 ns - 10 µs ns IPG (96 bit times following CRS falling edge) 35 tPER TXCLK, RXCLK period 233.3 ns 36 tPWH TXCLK, RXCLK pulse width HIGH 115.5 ns 37 tPWL TXCLK, RXCLK pulse width LOW 117.8 ns Note: During AID interval, RXCLK and TXCLK stop for up to 140 µs. 35 36 37 TXCLK, RXCLK Figure 8. 74 22304B-32 1 Mbps HomePNA Clock Timing (GPSI) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) MII 10BASE-T Transmit Timing (MII) No. Symbol 40 tS 41 Parameter Description Min Max Unit TXD, TX_EN setup time to TXCLK ↑ edge 10 – ns tH TXD, TX_EN hold time from TXCLK ↑ edge 0 – ns 42 tPD Transmit latency (TX_EN sampled HIGH to 1st bit of data) 240 360 ns 43 tPD CRS assert from TX_EN sampled HIGH 0 430 ns 44 tPD CRS de-assert from TX_EN sampled LOW 0 430 ns 45 tPWL 1200 – ns Note: Not tested TX_EN de-assertion time between packets (Note 1) TX_CLK 45 TX_EN 44 43 CRS 42 TX± End of Packet Start of Packet 41 40 TXD, TX_EN 22304B-33 Figure 9. 10 Mbps Transmit Timing (MII) Am79C901A 75 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T Receive Timing (MII) No. Symbol 48 tPD 49 Parameter Description Min Max Unit COL assert latency from SOP 200 300 ns tPD CRS assert latency from SOP 200 300 ns 50 tPD Receive latency (SOP to RXD, RX_DV valid) (Note 1) 625 1275 ns 51 tPD RX_CLK ↓ edge to RXD, RX_DV transition – 10 ns 52 tPD RX_DV de-assert latency EOP 500 900 ns 53 tPD COL de-assert latency from EOP 100 700 ns 54 tPD CRS de-assert latency from EOP 500 900 ns Note: RXD not tested. RX_CLK RX± Start of Packet 48 COL 49 CRS 50 51 RXD, RX_DV 22304B-34 Figure 10. 76 10 Mbps Receive Start of Packet Timing (MII) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T Receive Timing (MII) (Continued) RX_CLK RX± End of Packet 53 COL 54 CRS 52 RX_DV 22304B-35 Figure 11. 10 Mbps Receive End of Packet Timing (MII) Am79C901A 77 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T Transmit Clock Timing (MII) No. Symbol Parameter Description Min Max Unit 57 tPER TX_CLK period 399.6 400.4 ns 58 tPWH TX_CLK pulse width HIGH 180 220 ns 59 tPWL TX_CLK pulse width LOW 180 220 ns Min Max Unit 399.6 400.4 ns 10BASE-T Receive Clock Timing (MII) No. Symbol Parameter Description 57 tPER RX_CLK period 58 tPWH RX_CLK pulse width HIGH 180 220 ns 59 tPWL RX_CLK pulse width LOW 180 220 ns 57 58 59 TX_CLK, RX_CLK Figure 12. 78 22304B-36 10 Mbps Transmit and Receive Clock Timing (MII) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Transmit Timing (MII) No. Symbol 62 tS 63 Parameter Description Min Max Unit TXD, TX_EN setup time to TX_CLK ↑ edge 10 – ns tH TXD, TX_EN hold time from TX_CLK ↑ edge 10 – ns 64 tPD Transmit Latency (TX_EN sampled HIGH to SYNC pulse (5 mV)) 200 500 ns 65 tPD TX_EN sampled HIGH to COL active (Note 1) – 120 µs Note: Not tested. TX_CLK 62 63 TXD, TX_EN TX_EN 64 SYNC HRTXRXP/N± AID PCOM DATA 65 COL 22304B-37 Figure 13. 1 Mbps HomePNA Transmit Timing (MII) Am79C901A 79 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Receive Timing (MII) No. Symbol Parameter Description Min Max Unit 68 tPD RX_CLK ↓ edge to RXD, RX_DV transitions (Note 1) 0 10 ns 69 tPD SYNC pulse detected to CRS clocked as active by MAC (Note 1) 650 850 ns 70 tPD Last DATA pulse crosses data slice level to CRS inactive (Note 1) 15.98 16.10 µs 71 tPD CRS inactive to COL inactive clocked into MAC (Note 1) – 200 ns Note: Not tested. RX_CLK 68 RXD, RX_DV DATA DATA SYNC HRTXRXP/N± AID DATA 71 70 CRS 69 COL 22304B-38 Figure 14. 80 1 Mbps HomePNA Receive Timing (MII) Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Clock Timing (MII) No. Symbol Parameter Description Clock Period Unit 2333.34 ns Idle (excluding IPG time) 74 tPER TX_CLK, RX_CLK period 75 tPWH TX_CLK, RX_CLK pulse width HIGH 1165 ns 76 tPWL TX_CLK, RX_CLK pulse width LOW 1168 ns 933.33 ns Preamble (first 64 bits of TX MAC frame) 74 tPER TX_CLK, RX_CLK period 75 tPWH TX_CLK, RX_CLK pulse width HIGH 466 ns 76 tPWL TX_CLK, RX_CLK pulse width LOW 467 ns Data (throughout the data phase) 74 tPER TX_CLK, RX_CLK period 933 ns - 40 µs 75 tPWH TX_CLK, RX_CLK pulse width HIGH 466 ns - 40 µs 76 tPWL TX_CLK, RX_CLK pulse width LOW 467 ns - 40 µs IPG (96 bit times following CRS falling edge) 74 tPER TX_CLK, RX_CLK period 75 tPWH 76 tPWL 933.33 ns TX_CLK, RX_CLK pulse width HIGH 466 ns TX_CLK, RX_CLK pulse width LOW 467 ns Note: During AID interval, RX_CLK and TX_CLK stop for up to 140 µs. 74 75 76 TX_CLK, RX_CLK Figure 15. 22304B-39 1 Mbps HomePNA Clock Timing (MII) Am79C901A 81 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) MDC/MDIO No. Symbol 79 tPER 80 Parameter Description Min Max Unit MDC period 400 – ns tPWH MDC pulse width HIGH 160 – ns 81 tPWL MDC pulse width LOW 160 – ns 82 tPD MDIO output delay from MDC ↑ edge 0 300 ns 83 tS MDIO input setup time to MDC ↑ edge 8 – ns 84 tH MDIO input hold time from MDC ↑ edge 8 – ns 85 tZ MDC to high impedance 5 40 ns 79 80 81 MDC 84 85 MDIO 83 82 22304B-40 Figure 16. 82 MII Management Timing Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) SPI No. Parameter Symbol 88 tPW 89 Parameter Name Min Max Unit SCLK period 400 – ns tPWH SCLK Min pulse HIGH 160 – ns 90 tPWL SCLK Min pulse LOW 160 – ns 91 tS CS ↓ setup to SCLK ↑ 8 – ns 92 tH CS ↑ hold to SCLK ↑ 25 – ns 93 tS SDI setup to SCLK ↑ 8 – ns 94 tH SDI hold to SCLK ↑ 0 – ns 95 tPD SCLK ↑ to DO valid 0 25 ns 96 tPZD CS ↑ to DO Hi Z – 50 ns CS 95 88 91 92 SCLK 89 93 94 96 90 SDI SDO 22304B-41 Figure 17. SPI Timing Am79C901A 83 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 10BASE-T PMD No. Symbol 99 tTETD 100 tPWKRD Parameter Description Test Conditions Transmit End of Transmit Data RX± Pulse Width Maintain/Turn Off Threshold |VIN| > |VTHS| (Note 1) Min Max Unit 250 375 ns 136 200 ns Note: RX± pulses narrower than tPWDRD (min) will maintain internal Carrier Sense on. RX± pulses wider than tPWKRD (max) will turn internal Carrier Sense off. 99 TX± 22304B-42 Figure 18. 10 Mbps Transmit (TX±) Timing Diagram 100 100 VTSQ+ RX± VTSQ100 Figure 19. 84 22304B-43 10 Mbps Receive (RX±) Timing Diagram Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) 1 Mbps HomePNA Analog No. Parameter Symbol 103 tPW 104 Parameter Name Conditions Typical Units Pulse Width 133 ns tPWH Pulse Width HIGH 67 ns 105 tPWL Pulse Width LOW 67 ns 106 tVMAXp Maximum Voltage (positive) Low Power High Power 1.00 2.00 V 107 tVMAXn Maximum Voltage (negative) Low Power High Power 1.00 2.00 V Notes: 1. All registers at default values and VCC = 3.3 V, 25°C. 2. Measurements across HRTXTXP and HRTXTXN, differentially measured, with a 50 Ω resistive load. 105 103 106 107 104 Figure 20. 22304B-44 HomePNA PHY AC Waveform Am79C901A 85 P R E L I M I N A R Y AC CHARACTERISTICS (CONTINUED) JTAG No. Parameter Symbol Min Max Unit 110 tPER TCK Period Parameter Name 100 – ns 111 tPWH TCK HIGH Time 45 – ns 112 tPWL TCK LOW Time 45 – ns 113 tS TDI, TMS Setup Time 8 – ns 114 tH TDI, TMS Hold Time 10 – ns 115 tPD TDO Valid Delay 3 30 ns 116 tPD TDO Float Delay – 50 ns Note: 1. Not tested; parameter guaranteed by design characterization. 111 110 112 TCK 113 114 TDI, TMS 115 116 TDO 22304B-45 Figure 21. 86 JTAG (IEEE 1149.1) Test Signal Timing Am79C901A P R E L I M I N A R Y AC CHARACTERISTICS (CONCLUDED) External Clock (XTAL1) No. Symbol Parameter Description Min Max Unit 119 tPER Cycle time 16.665 16.669 ns 120 tPWH Cycle HIGH time 0.4 x TCYCLE 0.6 x TCYCLE ns 121 tPWL Cycle LOW time 0.4 x TCYCLE 0.6 x TCYCLE ns 119 120 121 XTAL1 22304B-46 Figure 22. External Clock Timing Reset Symbol tPW Parameter Description RESET ↓ to RESET ↑ Am79C901A Min Max Unit 5000 – ns 87 P R E L I M I N A R Y PHYSICAL DIMENSIONS* PL 068 Plastic Leaded Chip Carrier (measured in inches) *For reference only. BSC is an ANSI standard for Basic Space Centering. 88 Am79C901A P R E L I M I N A R Y PHYSICAL DIMENSIONS* PQT 80 Thin Plastic Quad Flat Pack (measured in millimeters) *For reference only. BSC is an ANSI standard for Basic Space Centering. Am79C901A 89 P R E L I M I N A R Y The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice. Trademarks Copyright 1999, 2000 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc. AlertIT, any1Home, eIMR, eIMR+, GigaPHY, HIMIB, HomePHY, IMR2, MACE, Magic Packet, NetPHY, PCnet, PCnet-Home, QuEST, and QuIET are trademarks of Advanced Micro Devices, Inc. RLL25 is a trademark of Tut Systems, Inc. Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies. 22304C 90 Am79C901A