AMD AM79C901A

PRELIMINARY
Am79C901A
HomePHY™
Single-Chip 1/10 Mbps Home Networking PHY
DISTINCTIVE CHARACTERISTICS
n Fully integrated 1 Mbps HomePNA Physical
Layer (PHY) as defined by Home Phoneline
Networking Alliance (HomePNA)
specification 1.1
— Optimized for home networking applications
over existing telephone wire
— Media Independent Interface (MII)-compatible
for connecting external Media Access
Controller (MAC)
— In-band control features:
Adjustable power and speed levels
32 bits of reserved in-band messaging piggybacked on Ethernet packet
— Register programmable features:
Power control
Speed control
Performance registers
Optional control of Squelch algorithm
Major frame timing parameters programmable: ISBI, AID ISBI, pulse width, inter-symbol
time
— any1Home™ link detection:
Indicates to the MAC that a valid home networking node has been detected
Detects a network failure and allows the
upper layer protocol to take corrective action
n Fully integrated 10 Mbps Ethernet transceiver
— Comprehensive Auto-Negotiation
implementation
— IEEE 802.3u-compliant MII
— Full-duplex operation supported on the MII
port with independent Transmit (TX) and
Receive (RX) channels
— Optimized for 10BASE-T applications
n Compliant with HomePNA specification 1.1
n General Purpose Serial Interface (GPSI)/Serial
Peripheral Interface (SPI)
n Extensive programmable internal/external
loopback capabilities
n Extensive LED status support
n IEEE 1149.1-compliant JTAG Boundary Scan
test access port interface
n Very low power consumption
n +3.3 V power supply along with 5 V tolerant I/Os
enable broad system compatibility
— XTAL1 supports 3.3 V I/O only
— XTAL2 supports 1.0 V I/O only
n Available in 68-pin PLCC and 80-pin TQFP
packages
n Industrial Temperature Support (-40ºC to +85ºC)
GENERAL DESCRIPTION
The Am79C901A HomePHY is a single-chip device
that contains both a physical layer (PHY) for 1 Mbps
data networking over existing residential telephone
wiring based on the specification published by
HomePNA and a physical layer for supporting the
IEEE 802.3 standard for 10BASE-T. The HomePHY
is targeted at embedded applications and has both
GPSI and MII-compatible interfaces.
The integrated HomePNA transceiver is a physical
layer device that enables data networking at speeds
up to 1 Mbps over existing residential phone wiring
regardless of topology and without disrupting
telephone (POTS) service.
The integrated Ethernet transceiver is a physical
layer device supporting the IEEE 802.3 standard for
10BASE-T. It provides all of the PHY layer functions
required to support 10 Mbps data transfer speeds.
A compliant IEEE 1149.1 JTAG test interface for
board level testing is provided. The Am79C901A
PHY also provides on-chip LED drivers for collision,
link integrity, speed, activity, and power output.
The Am79C901A PHY is fabricated in an advanced
low power 3.3 V CMOS process to provide low
operating current for power sensitive applications.
T he A m79C901A P H Y is avai lable in the
commercial temperature range (0ºC to +70ºC) in
68-pin PLCC and 80-pin TQFP packages. The
Am79C901A also suppor ts the industrial
temperature range (-40ºC to +85ºC) in the 80-pin
TQFP package. The industrial temperature range is
well suited to environments with enclosures with
restricted air flow or outdoor equipment.
Publication# 22304 Rev: C Amendment/0
Issue Date: July 2000
Refer to AMD’s Website (www.amd.com) for the latest information.
P R E L I M I N A R Y
TDO
TDI
TCLK
TMS
SPEED
POWER
COL
ACT
LINK
BLOCK DIAGRAM
1Mbps HomePNA PHY
LED Interface
JTAG Port
Control
Link
Control
PHY_SEL
MDC, MDIO
or
SCLK, SDI, SDO, CS
Drive
Control
Data
Interface
PHY_AD
ISOLATE
MII/GPSI
GM_MODE
HRTXRXP/N
Receive
State
Machine
MII/GPSI
Interface
10BASE-T PHY
CONTROL
CONTROL
DATA
CONTROL
Link
Control
Transmit
State
Machine
TX±
Receive
State
Machine
RX±
Data
Interface
PHY Control & Registers
XCLK/XTAL
XTAL2
Clock Reference
XTAL1
Analog
Front
End
PHY Control & Registers
DATA
RXDAT, RXCLK,
RXCRS, CLS,
TXDAT, TXCLK, TXEN
or
RXD[3:0], TXD[3:0],
CRS, COL, RX_DV,
TX_EN, TX_CLK,
RX_CLK, RX_ER
Transmit
State
Machine
22304B-1
2
Am79C901A
P R E L I M I N A R Y
TABLE OF CONTENTS
AM79C901A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
DISTINCTIVE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CONNECTION DIAGRAM (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
CONNECTION DIAGRAM (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PIN DESIGNATIONS (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Listed By Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
PIN DESIGNATIONS (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Listed By Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
PIN DESIGNATIONS (PL 068) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Listed By Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
PIN DESIGNATIONS (PQT 80) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Listed By Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PIN DESIGNATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Listed By Driver Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
ORDERING INFORMATION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Standard Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Configuration Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Board Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
GPSI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
SPI Interface (Slave Mode Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MII Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
IEEE 1149.1 (JTAG) Test Access Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Ethernet Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
HomePNA PHY Network Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Clock Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Scan Test Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
BASIC FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Network Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PHY Data Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
H_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
S_RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
DETAILED FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
GPSI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Serial Peripheral Interface (SPI-Slave) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
MII-Compatible Interface for HomePNA PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
MII-Compliant Interface for 10BASE-T PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1 Mbps HomePNA PHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
HomePNA PHY Medium Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
HomePNA PHY Symbol Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Time Interval Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
JAM Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Access ID Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Silence Interval (AID symbol 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Data Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Mode Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1 Mbps HomePNA PHY Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
any1Home Link Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10BASE-T PHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Twisted Pair Transmit Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Twisted Pair Receive Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Twisted Pair Interface Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Collision Detect Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Jabber Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Am79C901A
3
P R E L I M I N A R Y
Reverse Polarity Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Auto-Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Soft Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Loopback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LED Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IEEE 1149.1 (JTAG) Test Access Port Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary Scan Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TAP Finite State Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Supported Instructions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Instruction Register and Decoding Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Other Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary Scan Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
USER ACCESSIBLE REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA PHY Management Registers (HPRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR0: HomePNA PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR1: HomePNA PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR2 and HPR3: HomePNA PHY ID Registers (Registers 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . . . . . . . . . . .
HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register (Register 5). . . . . . . . . . . . . . . . .
HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . . . . . . . . . . .
HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) . . . . . . . . . . . . . . . . . . . . . . .
Reserved Registers: HPR8 - HPR15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR16: HomePNA PHY Control Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR17: HomePNA PHY Status/Control Register (Register 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) . . . . . . . . . . . . . . . . . .
HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) . . . . . . . . . . . . . . . . . .
HPR22: HomePNA PHY AID Register (Register 22) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR23: HomePNA PHY Noise Control Register (Register 23). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR24: HomePNA PHY Noise Control 2 Register (Register 24) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR25: HomePNA PHY Noise Statistics Register (Register 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR26: HomePNA PHY Event Status Register (Register 26) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR27: HomePNA PHY AID Control Register (Register 27) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR28: HomePNA PHY ISBI Control Register (Register 28) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR29: HomePNA PHY TX Control Register (Register 29) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR30: HomePNA PHY Drive Level Control Register (Register 30) . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HPR31: HomePNA PHY Analog Control Register (Register 31). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T PHY Management Registers (TBRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR0: 10BASE-T PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR1: 10BASE-T Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR2 and TBR3: 10BASE-T PHY Identifier Register (Registers 2 and 3) . . . . . . . . . . . . . . . . . . . . . . . .
TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . . . . . . . . . . . . . . .
TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) . . . . . . . . . . . . . . . . . . . . .
TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7). . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reserved Registers (Registers 8-15, 18, 20-23, and 25-31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR16: 10BASE-T Status and Enable Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR17: 10BASE-T PHY Control/Status Register (Register 17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TBR19: 10BASE-T PHY Management Extension Register (Register 19) . . . . . . . . . . . . . . . . . . . . . . . .
TBR24: 10BASE-T Summary Status Register (Register 24). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
OPERATING RANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SWITCHING WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Key to Switching Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SWITCHING TEST CIRCUITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GPSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Transmit Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Receive Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
Am79C901A
39
39
40
40
40
40
40
40
40
41
41
41
41
43
43
44
45
46
47
48
49
49
49
50
51
51
52
52
52
53
53
54
54
55
55
55
56
56
57
58
59
60
61
62
62
62
63
64
65
65
66
66
67
68
68
68
69
69
69
70
71
71
72
P R E L I M I N A R Y
1 Mbps HomePNA Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MII . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Transmit Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Receive Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Transmit Clock Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T Receive Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Receive Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Clock Timing (MII). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MDC/MDIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10BASE-T PMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 Mbps HomePNA Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Clock (XTAL1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PHYSICAL DIMENSIONS*. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PL 068 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PQT 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Am79C901A
73
74
75
75
76
78
78
79
80
81
82
83
84
85
86
87
87
88
88
89
5
P R E L I M I N A R Y
LIST OF FIGURES
Figure 1. Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 2. RXPKT - RXCRS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 3. RXPKT - RXCRS Cleared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 4. TXPKT - TXEN Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 5. TXPKT - RXCLK Active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 6. TXPKT - TXEN Cleared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 7. TXPKT - CLS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 8. RXPKT - CLS Asserted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 9. Operation of the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 10. SPI Read Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 11. Aborted Operation of the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 12. First Operation Following an Abort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Figure 13. Normal Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. MII Start of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Figure 15. MII End of Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 16. HomePNA PHY Framing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Figure 17. AID Symbol Transmit Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 18. AID Symbol Receive Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 19. Transmit Data Symbol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Figure 20. Receive Symbol Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Figure 21. RLL 25 Coding Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 22. 10BASE-T Transmit and Receive Data Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 23. Normal and Tri-State Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Figure 24. 10 Mbps Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70
Figure 25. 10 Mbps Receive Start of Packet Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
Figure 26. 10 Mbps Receive End of Packet Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 27. 10 Mbps Transmit and Receive Clock Timing (GPSI). . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 28. 1 Mbps HomePNA Transmit Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 29. 1 Mbps HomePNA Receive Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
Figure 30. 1 Mbps HomePNA Clock Timing (GPSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Figure 31. 10 Mbps Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76
Figure 32. 10 Mbps Receive Start of Packet Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Figure 33. 10 Mbps Receive End of Packet Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Figure 34. 10 Mbps Transmit and Receive Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . .79
Figure 35. 1 Mbps HomePNA Transmit Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Figure 36. 1 Mbps HomePNA Receive Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Figure 37. 1 Mbps HomePNA Clock Timing (MII) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
Figure 38. MII Management Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
Figure 39. SPI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
Figure 40. 10 Mbps Transmit (TX±) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Figure 41. 10 Mbps Receive (RX±) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
Figure 42. HomePNA PHY AC Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Figure 43. JTAG (IEEE 1149.1) Test Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Figure 44. External Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
6
Am79C901A
P R E L I M I N A R Y
LIST OF TABLES
Table 1. Clock Source Selection 21
Table 2. GPSI Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Table 3. SPI Op Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 4. MII-Compatible Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 5. MII Control Frame Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 6. HomePNA PHY Pulse Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 7. Access ID Symbol Pulse Positions and Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 8. Blanking Interval Speed Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 9. Master Station Control Word Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 10. Auto-Negotiation Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 11. LED Default Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 12. IEEE 1149.1 Supported Instruction Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 13. BSR Mode Of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 14. Device ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 15. Boundary Scan Ring Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 16. 1 Mbps HomePNA PHY Management Registers (HPRs) . . . . . . . . . . . . . . . . . . . . . . .43
Table 17. HPR0: HomePNA PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 18. HPR1: HomePNA PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 19. HPR2: HomePNA PHY ID Register (Register 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 20. HPR3: HomePNA PHY ID Register (Register 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 21. HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4) . . . . . .47
Table 22. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register Base Page Format (Register 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 23. HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register Next Page Format (Register 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 24. HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6) . . . . . . . . .49
Table 25. HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7) . . . . . . . . .49
Table 26. HPR16: HomePNA PHY Control Register (Register 16) . . . . . . . . . . . . . . . . . . . . . . . .50
Table 27. HPR17: HomePNA PHY Status/Control Register (Register 17) . . . . . . . . . . . . . . . . . .51
Table 28. HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19) . . . .52
Table 29. HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21) . . . .52
Table 30. HPR22: HomePNA PHY AID Register (Register 22) . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 31. HPR23: HomePNA PHY Noise Control Register (Register 23) . . . . . . . . . . . . . . . . . . 53
Table 32. HPR24: HomePNA PHY Noise Control 2 Register (Register 24) . . . . . . . . . . . . . . . . .53
Table 33. HPR25: HomePNA PHY Noise Statistics Register (Register 25) . . . . . . . . . . . . . . . . .54
Table 34. HPR26: HomePNA PHY Event Status Register (Register 26) . . . . . . . . . . . . . . . . . . .54
Table 35. HPR27: HomePNA PHY AID Control Register (Register 27) . . . . . . . . . . . . . . . . . . . .55
Table 36. HPR28: HomePNA PHY ISBI Control Register (Register 28) . . . . . . . . . . . . . . . . . . . 55
Table 37. HPR29: HomePNA PHY TX Control Register (Register 29) . . . . . . . . . . . . . . . . . . . . .55
Table 38. HPR30: HomePNA PHY Drive Level Control Register (Register 30) . . . . . . . . . . . . . .56
Table 39. HPR31: HomePNA PHY Analog Control Register (Register 31) . . . . . . . . . . . . . . . . .56
Table 40. 10BASE-T PHY Management Registers (TBRs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 41. TBR0: 10BASE-T PHY Control Register (Register 0) . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 42. TBR1: 10BASE-T PHY Status Register (Register 1) . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 43. TBR2: 10BASE-T PHY Identifier Register (Register 2) . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 44. TBR3: 10BASE-T PHY Identifier Register (Register 3) . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 45. TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4) . . . . . . . . . . 61
Table 46. TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) Base Page Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 47. TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) Next Page Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 48. TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6) . . . . . . . . . . . . . .63
Table 49. TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7) . . . . . . . . . . . . . .63
Table 50. TBR16: 10BASE-T Status and Enable Register (Register 16). . . . . . . . . . . . . . . . . . . 64
Table 51. TBR17: 10BASE-T PHY Control/Status Register (Register 17) . . . . . . . . . . . . . . . . . 65
Table 52. TBR19: 10BASE-T PHY Management Extension Register (Register 19) . . . . . . . . . . .66
Table 53. TBR24: 10BASE-T Summary Status Register (Register 24) . . . . . . . . . . . . . . . . . . . .66
Am79C901A
7
P R E L I M I N A R Y
LED_LINK
2
1 68 67 66 65 64 63 62 61
RESET
LED_COL
3
TEN
LED_ACTIVITY
4
MII/GPSI
DVDD
5
PHY_AD
LED_POWER
6
ISOLATE
LED_SPEED
7
MDIO/SDO
DVSS
8
DVSS
RXD3
9
MDC/SCLK
RXD2
CONNECTION DIAGRAM (PL 068)
RXD1
10
60
NC
RXD0/RXDAT
11
59
RX-
DVSS
12
58
AVDD
RX_DV
13
57
RX+
DVDD
14
56
AVSS
RX_CLK/RXCLK
15
55
TX-
AVDD
16
54
AVDD
PHY_SEL
17
53
TX+
52
AVSS
51
IREF
DVDD
18
RX_ER
19
Am79C901A
HomePHY
DVSS
20
50
AVDD
GM_MODE
21
49
HRTXRXP
TX_CLK/TXCLK
22
48
AVDD
TX_EN/TXEN
23
47
HRTXRXN
TXD0/TXDAT
24
46
AVSS
TXD1/SDI
25
45
AVSS
NC
26
44
AVDD
8
Am79C901A
NC
AVDD
XTAL1
XTAL2
XCLK/XTAL
TDI
TCK
Note: NC pins are reserved and should be left unconnected.
TMS
TDO
DVDD
DVDD
CRS/RXCRS
DVSS
COL/CLS
DVSS
TXD3/CS
TXD2
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
22304B-2
P R E L I M I N A R Y
CONNECTION DIAGRAM (PQT 80)
NC
61
67
62
68
NC
ISOLATE
69
63
MDIO/SDO
70
64
DVSS
71
TEN
MDC/SCLK
72
RESET
LED_LINK
73
65
LED_COL
74
66
LED_ACTIVITY
75
PHY_AD
DVDD
MH/GPSI
LED_POWER
76
78
77
RXD3
79
DVSS
RXD2
80
LED_SPEED
NC
NC
1
60
NC
NC
2
59
NC
RX01
3
58
RX-
RXD0/RXOAT
4
57
AVDD
DVSS
5
56
RX+
RX_DV
6
55
AVSS
DVDD
7
54
TX-
RX_CLK/RXCLK
8
53
AVDD
AVDD
9
52
TX+
51
AVSS
PHY_SEL
10
Am79C901A
HomePHY
36
37
38
39
40
XTAL2
XTAL1
AVDD
NC
NC
TXD3/CS
TXD2
NC
NC
35
NC
XCLK/XTAL
41
34
20
TDI
NC
NC
33
AVDD
42
TMS
43
19
32
18
NC
TDK
TXD1/SDI
31
AVSS
TDO
AVSS
44
30
45
17
DVDD
16
TXD0/TXDAT
29
TX_EN/TXEN
DVDD
HRTXRXN
28
46
CRS/RXCRS
15
27
AVDD
TX_CLK/TXCLK
DVSS
47
26
14
COL/CLS
HRTXRXP
GM_MODE
25
DVSS
48
DVSS
AVDD
13
24
IREF
49
23
50
12
22
11
21
DVDD
RX_ER
Note: NC pins are reserved and should be left unconnected.
Am79C901A
22304B-
9
P R E L I M I N A R Y
PIN DESIGNATIONS (PL 068)
Listed By Pin Number
Pin
No.
Pin
Name
Pin
No.
Pin
Name
Pin
No.
Pin
Name
Pin
Name
1
LED_LINK
18
DVDD
35
TDO
52
AVSS
2
LED_COL
19
RX_ER
36
TCK
53
TX+
3
LED_ACTIVITY
20
DVSS
37
TMS
54
AVDD
4
DVDD
21
GM_MODE
38
TDI
55
TX-
5
LED_POWER
22
TX_CLK/TXCLK
39
XCLK/XTAL
56
AVSS
6
LED_SPEED
23
TX_EN/TXEN
40
XTAL2
57
RX+
7
DVSS
24
TXD0/TXDAT
41
XTAL1
58
AVDD
8
RXD3
25
TXD1/SDI
42
AVDD
59
RX-
9
RXD2
26
NC
43
NC
60
NC
10
RXD1
27
TXD2
44
AVDD
61
RESET
11
RXD0/RXDAT
28
TXD3/CS
45
AVSS
62
TEN
12
DVSS
29
DVSS
46
AVSS
63
MII/GPSI
13
RX_DV
30
COL/CLS
47
HRTXRXN
64
PHY_AD
14
DVDD
31
DVSS
48
AVDD
65
ISOLATE
15
RX_CLK/RXCLK
32
CRS/RXCRS
49
HRTXRXP
66
MDIO/SDO
16
AVDD
33
DVDD
50
AVDD
67
DVSS
17
PHY_SEL
34
DVDD
51
IREF
68
MDC/SCLK
Note: NC pins are reserved and should be left unconnected.
10
Pin
No.
Am79C901A
P R E L I M I N A R Y
PIN DESIGNATIONS (PQT 80)
Listed By Pin Number
Pin
No.
Pin
Name
Pin
No.
Pin
Name
Pin
No.
Pin
Name
Pin
No.
Pin
Name
1
NC
21
NC
41
NC
61
NC
2
NC
22
NC
42
NC
62
NC
3
RXD1
23
TXD2
43
AVDD
63
RESET
4
RXD0/RXDAT
24
TXD3/CS
44
AVSS
64
TEN
5
DVSS
25
DVSS
45
AVSS
65
MII/GPSI
6
RX_DV
26
COL/CLS
46
HRTXRXN
66
PHY_AD
7
DVDD
27
DVSS
47
AVDD
67
ISOLATE
8
RX_CLK/RXCLK
28
CRS/RXCRS
48
HRTXRXP
68
MDIO/SDO
9
AVDD
29
DVDD
49
AVDD
69
DVSS
10
PHY_SEL
30
DVDD
50
IREF
70
MDC/SCLK
11
DVDD
31
TDO
51
AVSS
71
LED_LINK
12
RX_ER
32
TCK
52
TX+
72
LED_COL
13
DVSS
33
TMS
53
AVDD
73
LED_ACTIVITY
14
GM_MODE
34
TDI
54
TX-
74
DVDD
15
TX_CLK/TXCLK
35
XCLK/XTAL
55
AVSS
75
LED_POWER
16
TX_EN/TXEN
36
XTAL2
56
RX+
76
LED_SPEED
17
TXD0/TXDAT
37
XTAL1
57
AVDD
77
DVSS
18
TXD1/SDI
38
AVDD
58
RX-
78
RXD3
19
NC
39
NC
59
NC
79
RXD2
20
NC
40
NC
60
NC
80
NC
Note: NC pins are reserved and should be left unconnected.
Am79C901A
11
P R E L I M I N A R Y
PIN DESIGNATIONS (PL 068)
Listed By Group
Pin Name
Pin Function
Type
Driver Type
Number of
Pins
Configuration
MII/GPSI
Selects MII or GPSI mode
I
–
1
GM_MODE
Selects MDC/MDIO and GPSI data
I
–
1
ISOLATE
Isolates device if register isolate bit is set = 1
I
–
1
PHY_SEL
Defines default PHY
I
–
1
PHY_AD
Defines bit 2 of the PHY address
I
–
1
RESET
RESET
I
–
1
XCLK/XTAL
Oscillator/Crystal Select
I
–
1
XTAL1
Crystal Input (20 MHz XTAL/60 MHz CLK)
I
–
1
XTAL2
Crystal Output (20 MHz XTAL)
O
XTAL
1
IREF
Tied to GND via a 12.1 kΩ 1% resistor
I
–
1
LED_COL
Collision Indication
O
LED
1
LED_ACTIVITY
Activity Indication
O
LED
1
LED_LINK
Link Valid Indication
O
LED
1
LED_SPEED
High Speed Indication
O
LED
1
LED_POWER
High Power Indication
O
LED
1
I/O
–
2
Board Interface
1 Mbps HomePNA PHY Network Ports
HRTXRXP/N
Receive/Transmit Data
10BASE-T PHY Network Ports
TX±
Serial Transmit Data
O
–
2
RX±
Serial Receive Data
I
–
2
TX_CLK
MII Transmit Clock
O
OMII
1
TXD[3:0]
MII Transmit Data
I
–
4
TX_EN
MII Transmit Enable
I
–
1
RX_CLK
MII Receive Clock
O
OMII
1
RXD[3:0]
MII Receive Data
O
OMII
4
RX_ER
MII Receive Error
O
OMII
1
RX_DV
MII Receive Data Valid
O
OMII
1
MDC
MII Management Data Clock
I
–
1
MDIO
MII Management Data Input/Output
I/O
TSMII
1
CRS
Carrier Sense
O
OMII
1
COL
Collision
O
OMII
1
MII Interface
12
Am79C901A
P R E L I M I N A R Y
Pin Name
Pin Function
Type
Driver Type
Number of
Pins
GPSI Interface
TXCLK
GPSI Transmit Clock
O
OMII
1
TXDAT
GPSI Transmit Data
I
–
1
TXEN
GPSI Transmit Enable
I
–
1
RXCLK
GPSI Receive Clock
O
OMII
1
RXDAT
GPSI Receive Data
O
OMII
1
RXCRS
Carrier Sense
O
OMII
1
CLS
Collision
O
OMII
1
SCLK
SPI Clock
I
–
1
SDI
SPI Data In
I
–
1
SDO
SPI Data Out
O
TSMII
1
CS
Chip Select
I
–
1
SPI Interface
IEEE 1149.1 (JTAG) Test Access Port Interface
TCK
Test Clock
I
–
1
TMS
Test Mode Select
I
–
1
TDI
Test Data In
I
–
1
TDO
Test Data Out
O
TS
1
DVDD
Digital Power
P
–
6
AVDD
Analog Power
P
–
6
DVSS
Digital Ground
G
–
7
AVSS
Analog Ground
G
–
3
Test Enable
I
–
1
Power Supply
Test Interface
TEN
Am79C901A
13
P R E L I M I N A R Y
PIN DESIGNATIONS (PQT 80)
Listed By Group
Pin Name
Pin Function
Type
Driver Type
Number of
Pins
Configuration
MII/GPSI
Selects MII or GPSI mode
I
–
1
GM_MODE
Selects MDC/MDIO and GPSI data
I
–
1
ISOLATE
Isolates device if register isolate bit is set = 1
I
–
1
PHY_SEL
Defines default PHY
I
–
1
PHY_AD
Defines bit 2 of the PHY address
I
–
1
RESET
RESET
I
–
1
XCLK/XTAL
Oscillator/Crystal Select
I
–
1
XTAL1
Crystal Input (20 MHz XTAL/60 MHz CLK)
I
–
1
XTAL2
Crystal Output (20 MHz XTAL)
O
XTAL
1
IREF
Tied to GND via a 12.1 kΩ 1% resistor
I
–
1
LED_COL
Collision Indication
O
LED
1
LED_ACTIVITY
Activity Indication
O
LED
1
LED_LINK
Link Valid Indication
O
LED
1
LED_SPEED
High Speed Indication
O
LED
1
LED_POWER
High Power Indication
O
LED
1
I/O
–
2
Board Interface
1 Mbps HomePNA PHY Network Ports
HRTXRXP/N
Receive/Transmit Data
10BASE-T PHY Network Ports
TX±
Serial Transmit Data
O
–
2
RX±
Serial Receive Data
I
–
2
TX_CLK
MII Transmit Clock
O
OMII
1
TXD[3:0]
MII Transmit Data
I
–
4
TX_EN
MII Transmit Enable
I
–
1
RX_CLK
MII Receive Clock
O
OMII
1
RXD[3:0]
MII Receive Data
O
OMII
4
RX_ER
MII Receive Error
O
OMII
1
RX_DV
MII Receive Data Valid
O
OMII
1
MDC
MII Management Data Clock
I
–
1
MDIO
MII Management Data Input/Output
I/O
TSMII
1
CRS
Carrier Sense
O
OMII
1
COL
Collision
O
OMII
1
MII Interface
14
Am79C901A
P R E L I M I N A R Y
Pin Name
Pin Function
Type
Driver Type
Number of
Pins
GPSI Interface
TXCLK
GPSI Transmit Clock
O
OMII
1
TXDAT
GPSI Transmit Data
I
–
1
TXEN
GPSI Transmit Enable
I
–
1
RXCLK
GPSI Receive Clock
O
OMII
1
RXDAT
GPSI Receive Data
O
OMII
1
RXCRS
Carrier Sense
O
OMII
1
CLS
Collision
O
OMII
1
SCLK
SPI Clock
I
–
1
SDI
SPI Data In
I
–
1
SDO
SPI Data Out
O
TSMII
1
CS
Chip Select
I
–
1
SPI Interface
IEEE 1149.1 (JTAG) Test Access Port Interface
TCK
Test Clock
I
–
1
TMS
Test Mode Select
I
–
1
TDI
Test Data In
I
–
1
TDO
Test Data Out
O
TS
1
DVDD
Digital Power
P
–
6
AVDD
Analog Power
P
–
6
DVSS
Digital Ground
G
–
7
AVSS
Analog Ground
G
–
3
Test Enable
I
–
1
Power Supply
Test Interface
TEN
Am79C901A
15
P R E L I M I N A R Y
PIN DESIGNATIONS
Listed By Driver Type
The following table describes the various types of output drivers used in the Am79C901A PHY. All IOL and
IOH values shown in the table apply to 3.3 V signaling.
A sustained tri-state signal is an active-low signal that is
driven high for one clock period before it is left floating.
TX± is a differential output driver. Its characteristics
and those of the XTAL2 output are described in the DC
Characteristics section.
Driver Name
Type
IOL (mA)
IOH (mA)
Load (pF)
LED
LED
12
0.4
50
TS
Tri-State
6
2
50
OMII
Tri-State
4
4
50
TSMII
Tri-State
4
4
150
Note: For reference only. See DC specification for actual limits.
16
Am79C901A
P R E L I M I N A R Y
ORDERING INFORMATION
Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed
by a combination of the elements below.
Am79C901A
J\V
C\I
\T
ALTERNATE PACKAGING OPTION
\T = Tape and Reel
TEMPERATURE RANGE
C = Commercial (0°C to +70°C)
I = Industrial (–40°C to +85°C)
PACKAGE TYPE
J = Plastic Leaded Chip Carrier (PL 068)
V = Thin Plastic Quad Flat Pack (PQT 80)
SPEED OPTION
Not applicable
DEVICE NUMBER/DESCRIPTION
Am79C901A
HomePHY
Single-Chip 1/10 Mbps Home Networking PHY
Valid Combinations
Am79C901A
JC, JC\T
VC, VI
Valid Combinations
Valid Combinations list configurations planned to be
supported in volume for this device. Consult the local AMD
sales office to confirm availability of specific valid
combinations and to check on newly released
combinations.
Am79C901A
17
P R E L I M I N A R Y
PIN DESCRIPTIONS
Configuration Pins
MII/GPSI
MII/GPSI
Input
MII/GPSI selects between the MII and the GPSI interface. This pin must be connected to either VDD or VSS.
Changing the state of this pin is prohibited.
GM_MODE
GM_MODE
the MII or the SPI command and control interface (external control mode), this pin selects which PHY data
and status signals will be driven onto the interface.
When set to a LOW, the HomePNA PHY data and status signals will be driven onto the interface. When set
to a HIGH, the 10BASE-T PHY data and status signals
will be driven onto the interface. This pin functions in
conjunction with the ISOLATE pin.
LOW = 1 Mbps HomePNA PHY
Input
This input pin selects between the MDC/MDIO command and control interface and the SPI interface normally available in the GPSI mode. This pin must be
connected to either VDD or VSS. Changing the state of
this pin is prohibited.
GM_MODE
MII/GPSI
Data
Interface
Command and
Control Interface
0
1
MII
MDC/MDIO
0
0
GPSI
SPI
1
X
GPSI
MDC/MDIO
Note: GM_MODE = 1 overrides the value on the
MII/GPSI configuration pin.
HIGH = 10BASE-T PHY
HPR0
Bit 10
TBR0
Bit 10
PHY_SEL
ISOLATE
Interface
Source
Managed Mode
1
1
0
1
Hi Z
0
1
0
1
1 Mbps
HomePNA
1
0
0
1
10BASE-T
0
0
0
1
Non Valid
External Control Mode
1
1
1
0
10BASE-T
1
1
0
0
1 Mbps
HomePNA
1
1
Don’t
Care
1
Hi Z
PHY_AD
PHY Address
Input
Sets bit 2 of the PHY Address field. The PHYs have default MII address of 0x00 (0000b) for the 1 Mbps
HomePNA PHY and 0x01 (0001b) for the 10BASE-T
PHY. If this bit is set, the address for the HomePNA
PHY is 0x02 (00010b) and 0x03 (00011b) for the
10BASE-T PHY.
ISOLATE
Isolate
Input
In an environment that utilizes the MII or the SPI command and control interface (managed mode), this pin
must be held HIGH. In an environment that does not
use the MII or the SPI command and control interface
(external control mode), this pin enables the data interface when set to a LOW, and forces the interface into a
high impedance state when held HIGH. This pin functions in conjunction with the PHY_SEL pin and HPR0,
bit 10, and TBR0, bit 10.
Input
In an environment that utilizes the MII or the SPI command and control interface (managed mode), this pin
must be held LOW. In an environment that does not use
18
LED_COL
Output
This output is designed to directly drive an LED. COL
low indicates that a collision has been detected on
the currently active PHY. An internal pulse stretching
circuit will ensure that the minimum output pulse is
approximately 100 ms.
LED_ACTIVITY
LED_ACTIVITY
Output
This output is designed to directly drive an LED.
ACTIVITY low indicates that there is receive or transmit activity on the network of the currently active PHY.
An internal pulse stretching circuit will ensure that the
minimum output pulse is approximately 100 ms.
LED_LINK
PHY_SEL
PHY Select
Board Interface
LED_COL
LED_LINK
Output
This output is designed to directly drive an LED. LINK
low indicates that a valid link has been detected on the
currently active PHY.
Am79C901A
P R E L I M I N A R Y
LED_SPEED
LED_SPEED
TXCLK
Output
This output is designed to directly drive an LED. SPEED
low indicates that the HomePNA PHY is currently in the
high-speed mode. When operating in the 10BASE-T
mode this output will be held high.
LED_POWER
LED_POWER
RESET
Input
The RESET is an active-low, asynchronous RESET
signal. This signal must be held low for a minimum of
5 µs and requires 60 µs for recovery after the rising
edge of RESET.
GPSI Interface
RXDAT
Receive Data
Output
RXDAT is the serial data received from the selected
port. Data on RXDAT is driven on the falling edge of
RXCLK.
RXCLK
Receive Data Clock
Output
RXCLK provides the timing reference for transfer of
the receive data. RXCLK is driven by the device and
operates at a maximum frequency of 10 MHz.
RXCRS
Receive Carrier Sense
Output
The RXCRS pin is active during receive or transmit activity for the HomePNA PHY or during receive (based
on TBR17, bit 2) for the 10BASE-T PHY.
CLS
Collision
Output
This signal is asserted whenever a collision is detected
on the transmit and receive path of the selected port.
This signal will also be asserted for ~1 µs within 40 µs
after the negation of the TXEN signal in support of the
SQE test. The SQE functionality may be controlled via
TBR17, bit 11, and HPR16, bit 12.
TXDAT
Transmit Data
Input
TXDAT is the serial data driven from the MAC. Data on
TXDAT is latched on the falling edge of TXCLK.
Output
TXCLK provides the timing reference for transfer of the
transmitted data. TXCLK is driven by the device and
operates at a maximum frequency of 10 MHz.
TXEN
Transmit Enable
Output
This output is designed to directly drive an LED.
POWER low indicates that the HomePNA PHY is currently in high-power mode. When operating in the
10BASE-T mode this output will be held high.
RESET
Transmit Data Clock
Input
TXEN indicates when the MAC device is presenting
valid transmit data on the TXDAT pin. TXEN must be
asserted with the first bit of preamble and remain asserted throughout the duration of the packet until it is
deasserted prior to the first TXCLK following the final
bit of the frame. TXEN transitions are synchronous to
TXCLK.
SPI Interface (Slave Mode Only)
SCLK
SPI Clock
Input
SCLK is driven from the controlling device as a timing
reference for transfer of information on the SDI and SDO
signals. The maximum clock frequency is 2.5 MHz.
CS
SPI Chip Select
Input
This pin is used to enable the Am79C901A for slave
mode transfers. When this pin is inactive (HIGH), the
device ignores SCLK and SDI inputs and holds SDO in
high-impedance.
SDI
SPI Serial Data In
Input
This data line provides input data from the master device to the Am79C901A. The data presented on this pin
is latched on the rising edge of SCLK.
SDO
SPI Serial Data Out
Output
T hi s d a ta l in e pr ovi d e s ou t pu t d a ta f ro m th e
Am79C901A to the master device. To provide for a robust interface, this data is driven on the rising edge of
SCLK.
MII Interface
RX_CLK
Receive Clock
Output
RX_CLK is a clock input that provides the timing reference for the transfer of the RX_DV, RXD[3:0], and
R X_ER signal s from th e Am 79C901 A device.
RX_CLK will provide a nibble rate clock. It operates
at a maximum frequency of 2.5 MHz.
Am79C901A
19
P R E L I M I N A R Y
RXD[3:0]
Receive Data
TXD[3:0]
Output
RXD[3:0] is the nibble-wide receive data bus. Data
o n RX D [3 : 0] i s d r i ve n o n t h e fa l l i n g e d g e o f
RX_CLK. RXD[3:0] should be ignored while RX_DV
is deasserted.
RX_DV
Receive Data Valid
Output
Transmit Data
Input
TXD[3:0] is the nibble-wide data bus. Valid data is generated on TXD[3:0] on every rising edge of TX_CLK
while TX_EN is asserted. While TX_EN is deasserted,
TXD[3:0] values are ignored. TXD[3:0] transitions are
latched on the falling edge of TX_CLK.
TX_EN
RX_DV is an output used to indicate that valid received
data is being presented on the RXD[3:0] pins and
RX_CLK is synchronous to the receive data. RX_DV
will be asserted prior to the RX_CLK rising edge, when
the first nibble of the Start of Frame Delimiter (SFD) is
driven on RXD[3:0], and will remain asserted until after
the rising edge of RX_CLK, when the last nibble of the
CRC is driven on RXD[3:0]. RX_DV will be deasserted
prior to the RX_CLK rising edge which follows this final
nibble. RX_DV transitions are driven on the falling edge
of RX_CLK.
Transmit Enable
CRS
MDC is the non-continuous clock input that provides a
timing reference for bits on the MDIO pin. During MII
management port operations, MDC runs at a nominal
frequency of 2.5 MHz.
Carrier Sense
Output
The CRS pin is active during receive or transmit activity
for the HomePNA PHY or during receive (based on
TBR17, bit 2) for the 10BASE-T PHY.
Collision
Output
This signal is asserted whenever a collision is detected
on the transmit and receive path of the selected port.
This signal will also be asserted for ~1 µs within 40 µs
after the negation of the TXEN signal in support of the
SQE test. The SQE functionality may be controlled via
TBR17, bit 11, and HPR16, bit 12.
RX_ER
Receive Error
Output
RX_ER is an output for the 10BASE-T PHY that indicates that the transceiver device has detected a coding
error in the receive data frame currently being transferred on the RXD[3:0] pins. RX_ER is ignored while
RX_DV is deasserted. Special code groups generated
on RXD while RX_DV is deasserted are ignored (e.g.,
bad SSD in TX and idle in T4). RX_ER transitions are
synchronous to RX_CLK.
TX_CLK
Transmit Clock
Output
TX_CLK is a clock output that provides the timing reference for the transfer of the TXD[3:0] and TX_ER signals from the Am79C901A device. TX_CLK provides a
nibble rate clock.
20
TX_EN indicates that the MAC device is presenting
valid transmit data on the TXD[3:0] bus. TX_EN must
be asserted with the first nibble of preamble and remains asserted throughout the duration of the packet
until it is deasserted prior to the first TX_CLK following
the final nibble of the frame. TX_EN transitions are
latched on the falling edge of TX_CLK.
MDC
Management Data Clock
Input
MDIO
Management Data Input/Output
COL
Input
Input/Output
MDIO is a bidirectional MII management port data pin.
MDIO is an input during the header portion of the management frame transfers and during the data portion of
write operations. MDIO is an output during the data
portion of read operations.
The MDIO pin should be externally pulled up to VDD
with a 1.5 kΩ ±5% resistor.
IEEE 1149.1 (JTAG) Test Access Port
Interface
TCK
Test Clock
Input
TCK is the clock input for the boundary scan test
mode operation. It can operate at a frequency of up to
10 MHz. TCK has an internal pull-up resistor.
TDI
Test Data In
Input
TDI is the test data input path to the Am79C901A PHY.
The pin has an internal pull-up resistor.
TDO
Test Data Out
Output
TDO is the test data output path from the Am79C901A
PHY. The pin is tri-stated when the JTAG port is inactive.
Am79C901A
P R E L I M I N A R Y
TMS
XTAL1
Test Mode Select
Input
A serial input bit stream on the TMS pin is used to define the specific boundary scan test to be executed.
The pin has an internal pull-up resistor.
Ethernet Network Interfaces
TX±
Output
These pins carry the transmit output data and are connected to the transmit side of the magnetics module.
RX±
Serial Receive Data
Input
These pins accept the receive input data from the
magnetics module.
IREF
Internal Current Reference
Input
This pin serves as a current reference for the integrated
1/10 PHY. It must be connected to GND through a
12.1 kΩ resistor (1%).
HomePNA PHY Network Interface
HRTXRXP/HRTXRXN
Input/Output
These pins accept the receive input data from the magnetics module and carry the transmit output data. A
102-Ω resistor should be placed between these pins.
Clock Interface
XCLK/XTAL
The internal clock generator utilizes either a 20-MHz
crystal that is attached to pins XTAL1 and XTAL2 or a
60-MHz clock source connected to XTAL1. This pin is
not 5 V tolerant, and the 60 MHz clock source should
be from a 3.3 V source.
Crystal Oscillator Out
Output
The internal clock generator utilizes a 20-MHz crystal
that is attached to pins XTAL1 and XTAL2. In XCLK
mode, this pin should be left unconnected.
Power Supply
DVDD
Digital Power (5 Pins)
+3.3 V Power
These pins are the power supply pins that are used to
provide power to the digital portions of the design. All
DVDD pins must be connected to a +3.3 V supply.
AVDD
Analog Power (7 Pins)
+3.3 V Power
These pins are the power supply pins that are used to
provide power to the analog portions of the design. All
AVDD pins must be connected to a +3.3 V supply.
DVSS
Digital Ground (6 Pins)
Ground
These pins are the ground connections for the digital
portions of the design.
AVSS
External Clock/Crystal Select
Input
When HIGH, an external 60-MHz clock source is selected bypassing the crystal circuit and clock trippler.
When LOW, a 20-MHz crystal is used instead. Table 1
illustrates how this pin works.
Table 1.
Input
XTAL2
Serial Transmit Data
Serial Receive Data
Crystal Oscillator In
Analog Ground (4 Pins)
These pins are the ground connections for the analog
portion of the design.
Scan Test Interface
TEN
Test Enable
Clock Source Selection
Input Pin
Output
Pin
XCLK/XTAL
Clock Source
XTAL1
XTAL2
0
20-MHz Crystal
XTAL1
NC
1
60-MHz Oscillator/
External CLK
Source
Ground
Input
The test enable pin is for factory use only. It must be
connected to VSS for normal operation.
Am79C901A
21
P R E L I M I N A R Y
BASIC FUNCTIONS
Network Interfaces
H_RESET or S_RESET. The following is a description
of each type of RESET operation.
The Am79C901A PHY contains an integrated 1 Mbps
home networking PHY and a 10BASE-T PHY. This device is compliant with the HomePNA specification 1.0
and IEEE 802.3 specification.
The integrated HomePNA transceiver is a physical
layer device that enables data networking at speeds up
to 1 Mbps over existing residential phone wiring regardless of topology and without disrupting telephone
(POTS) service.
H_RESET
Hardware Reset (H_RESET) is a reset operation that
has been initiated by the proper assertion of the
RESET pin of the Am79C901A device. When the
minimum pulse width timing as specified in the
RESET pin description has been satisfied, an internal reset operation will be performed.
H_RESET will program all of the registers to their
default value.
The integrated Ethernet transceiver is a physical layer
device suppor ting the IEEE 802.3 standard for
10BASE-T. It provides all of the PHY layer functions required to support 10 Mbps data transfer speeds. The
10BASE-T PHY suppor ts both half-duplex and
full-duplex operation.
S_RESET
PHY Data Interfaces
DETAILED FUNCTIONS
GPSI Interface
The Am79C901A PHY has both GPSI and MII-compatible data interfaces. In addition, a special mode,
GM_MODE, allows access to the MDC/MDIO command and control interface while in the GPSI mode.
For more information, see the Pin Descriptions and
the Detailed Functions sections.
Reset
There are two different types of RESET operations that
may be perfor med on the Am79C901A device,
In a software reset (S_RESET), programming bit 15 of
HPR0 to 1 will reset all the registers in the 1 Mbps
HomePNA PHY (HPRs), and programming bit 15 of
TBR0 to 1 will reset TBR4, TBR7, TBR17, and TBR24
in the 10BASE-T PHY. These bits are self-clearing.
The seven signals that comprise the GPSI are TXCLK,
TXEN, TXDAT, RXCLK, RXCRS, RXDAT, and CLS. Of
these, only TXEN and TXDAT are inputs to the PHY;
the other five are outputs from the PHY. These signals
behave differently depending on which operation is currently happening in the PHY. The operations of the
PHY are as follows: Idle (no activity in either direction),
RXPKT (receiving data), and TXPKT (transmitting
data). The subsequent subsections analyze each
GPSI-related state of the PHY in detail.
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-3
Note: RXCLK and TXCLK are synchronized to the same phase. All other signals are inactive. The two clock
signals toggle for an overall period of 583.3ns (about 1.7 MHz).
Figure 1.
22
Idle State
Am79C901A
P R E L I M I N A R Y
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-4
Note: RXCLK becomes disabled as soon as RXCRS is asserted.
Figure 2.
RXPKT - RXCRS Asserted
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-5
Note: RXCLK and TXCLK are unrelated to each other during this time. When a symbol has been received and
decoded, RXCLK toggles in order to shift out the three to six bits encoded in the symbol. The middle portion of
this diagram shows the end of the preamble, followed by an SFD and the beginning of the data. RXCRS will fall
after the last received symbol. Once RXCRS falls, RXCLK and TXCLK are toggled continuously for 96 cycles,
after which the PHY returns to the Idle state.
Figure 3.
RXPKT - RXCRS Cleared
Am79C901A
23
P R E L I M I N A R Y
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
Note: Once TXEN is asserted, the PHY stops RXCLK, asserts RXCRS, and toggles TXCLK.
Figure 4.
22304B-6
TXPKT - TXEN Asserted
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-7
Note: TXCLK continues to toggle until the SFD is observed, as shown in the first section of the above diagram.
At this point, TXCLK is disabled (low) until the AID header has been transmitted on the wire (or until a CLS has
been detected). At this time RXCLK starts toggling, thereby, shifting 32 bits of preamble and SFD back to the
MAC. Sometime later, the TXCLK restarts as symbols get sent onto the wire in an analogous manner as
RXCLK during packet reception.
Figure 5.
24
TXPKT - RXCLK Active
Am79C901A
P R E L I M I N A R Y
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-8
Note: Once TXEN is cleared, the last symbol gets encoded and transmitted, the looped-back data is presented
back to the MAC, and RXCRS falls. Once RXCRS falls, TXCLK and RXCLK toggle for 96 clocks, after which
the system returns to the Idle state.
Figure 6.
TXPKT - TXEN Cleared
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-9
Note: CLS will be asserted some time after the preamble and SFD have been clocked in. TXCLK and RXCLK
are then clocked until RXCRS drops. TXEN drops about 32 clocks after CLS was asserted. RXCRS and CLS
are dropped together after more than 500 clocks (about 120 µs). TXCLK and RXCLK keep toggling for approximately another 100 clock cycles, when the system returns to the Idle state.
Figure 7.
TXPKT - CLS Asserted
Am79C901A
25
P R E L I M I N A R Y
TXCLK
TXEN
TXDAT
RXCLK
RXCRS
RXDAT
CLS
22304B-10
Note: CLS may be asserted up to 120 µs after RXCRS has been asserted. Once CLS has been asserted,
TXCLK and RXCLK run until 96 cycles after CLS and RXCRS are cleared. It can take a maximum of approximately 60 µs for RXCRS to clear.
Figure 8.
Table 2.
Condition
RXPKT - CLS Asserted
GPSI Timing
CLK Period
CLK Frequency
Idle (excluding
IPG time)
583.3 ns
1.7 MHz
Preamble (first 64
bits of TX MAC
frame)
233.3 ns
4.3 MHz
Data (throughout
the data phase)
100 ns 10 µs
1.0 MHz avg.
IPG (96 bit times
following CRS ↓)
233.3 ns
4.3 MHz
opcode, followed by an 10-bit register address and
2 bits of end delimiter. If the operation is a write, the
data bits are written into the desired register. If the operation is a read, then these data bits are ignored. The
SDO pin will shift out 16 data bits representing the contents of the register referenced by the address field for
read operations. All commands must be initiated with a
high-to-low transition on the CS pin. Only one command can be sent in one CS cycle.
For assistance in debugging access to the SPI interface, an error code is driven onto the SDO. If there is
less than 32 bits of SCLK during the time that CS is asserted, the error code field of SDO on the next command will indicate AAAA. When there is an incorrect
opcode in the command on SDI AAAA will be immediately driven out on SDO until CS deasserts. If there are
more than 32 clock cycles while CS is low, the first 32
are assumed to contain the data, and the additional
clock bits and associated data are ignored. In this case,
the SDO might generate AAAA under the additional
clock bits. See Figure 9.
Note: During the AID interval, TXCLK and RXCLK
stop for up to 140 µs.
Serial Peripheral Interface (SPI-Slave)
Mode
When MII/GPSI is set to 0, the device is in “SPI” mode.
The device acts as an SPI slave peripheral in this mode
of operation. Commands are issued to the device by
asserting the CS signal (active low), shifting in an 4-bit
SCLK
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
30
31
32
CS
SDI
SDO
Op Codes
Address
Error Code
Data In
Data Out
22304B-11
Figure 9.
26
Operation of the SPI Interface
Am79C901A
P R E L I M I N A R Y
Table 3.
SPI Op Codes
SDI
Op Codes
Address
Data In
ST
OP
PHYADD
REGADD
ED
READ
01
10
AAAAA
RRRRR
10
Don’t Care
WRITE
01
01
AAAAA
RRRRR
10
D15………D0
SDO
Error Code
Data Out
READ
0000 = No Error/AAAA = Error Detected
D15...D0
WRITE
0000 = No Error/AAAA = Error Detected
Don’t Care
Start
Frame
Read
Command
End
Delimiter
CS
SCLK
1
2
3
4
15
16
17
18
31
32
SDI
SDO
SCLK
1
2
3
4
5
Last Data Bit
First Data Bit
Figure 10.
22304B-12
SPI Read Operation
6
7
8
9
10
11
12
13
CS
SDI
Op Codes
SDO
1
2
3
4
22304B-13
Error Code = 0
Figure 11.
SCLK
Address
5
6
7
Aborted Operation of the SPI Interface
8
9
10
11
12
13
14
15
16
17
18
19
30
31
32
CS
SDI
SDO
Op Codes
Address
Error Code = AAAA
Data In
Data Out
22304B-14
Figure 12.
First Operation Following an Abort
Am79C901A
27
P R E L I M I N A R Y
1
SCLK
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
30
31
32
CS
SDI
Op Codes
Address
SDO
Data In
Error Code = 0
Data Out
22304B-15
Figure 13.
Normal Operation
MII-Compatible Interface for HomePNA
PHY
The control and data signals that are utilized in the MIIcompatible interface of the 1 Mbps HomePNA PHY
function in an manner that is identical to that as defined
in the 802.3u specification. The signals RX_CLK and
TX_CLK function in a slightly different manner in that
they operate at a reduced data rate and that these
clock signals do not run at a constant rate due to the
RLL25™ encoding scheme. See Table 4.
Table 4.
MII-Compatible Timing
CLK
Frequency
Idle (excluding IPG
time)
2333.34 ns
428.6 kHz
Preamble (first 64 bits
of TX MAC frame)
933.33 ns
1.07 MHz
Data (throughout the
data phase)
400 ns - 40 µs
250 kHz avg.
933.33 ns
1.07 MHz
IPG (96 bit times
following CRS↓)
Note: During the AID interval, TX_CLK and RX_CLK
stop for up to 140 µs.
Figure 14 and Figure 15 represent the signal relationships when the MII-compatible data interface is utilized.
Table 5.
28
When the TX_EN signal is deasserted to indicate the
ending of a transmission, TX_CLK is halted until the
RXDATA path detects the end of the packet. At this
time, the clock rate is increased to the IPG data rate for
96 bit times and then returns to the Idle state.
MII-Compliant Interface for 10BASE-T PHY
CLK Period
Condition
The signals TX_CLK and RX_CLK will toggle at a rate
of approximately 428 kHz during idle time. When the
TX_EN signal is asserted to indicate the beginning of a
transmission, the clock rate will enter the preamble
phase. Once the SFD has been detected and the
HomePNA PHY has begun the transmission of the
HomePNA header, the clock enters the data phase.
The MII interface is fully IEEE 802.3u-compliant when
the 10BASE-T PHY is selected. The management interface specified in Clause 22 of the IEEE 802.3u standard provides for a simple two wire, serial interface to
connect a management entity and a managed PHY for
the purpose of controlling the PHY and gathering status information. The two lines are Management Data
Input/Output (MDIO) and Management Data Clock
(MDC). A station management entity, which is attached
to multiple PHY entities, must have prior knowledge of
the appropriate PHY address for each PHY entity.
The management interface physically transports management information across the MII. The information
is encapsulated in a frame format as specified in
Clause 22 of the IEEE 802.3u standard and is shown
in Table 5.
MII Control Frame Format
PRE
ST
OP
PHYADD
REGADD
TA
DATA
IDLE
READ
1...1
01
10
AAAAA
RRRRR
Z0
D15………D0
Z
WRITE
1...1
01
01
AAAAA
RRRRR
10
D15………D0
Z
Am79C901A
P R E L I M I N A R Y
The operation field (OP) follows the start field (ST).
The OP indicates whether the operation is a read or a
write operation. The PHY address (PHYADD) and the
register address (REGADD) that were programmed
follow this. A bus turnaround field (TA) follows the REGADD field. During the read operation, the bus TA
field is used to determine if the PHY is responding
properly to the read request. The final field is the idle
field, and it is required to allow the drivers to turn off.
Idle
The PHYADD field, which is five bits wide, allows 32
unique PHY addresses. The managed PHY layer device that is connected to a station management entity
via the MII interface has to respond to transactions addressed to the PHY’s address. A station management
entity attached to multiple PHYs is required to have
prior knowledge of the appropriate PHY address.
For more information, see the IEEE 802.3 specification
and the MII pin descriptions.
Preamble
Data
TX_CLK
TX_EN
55
TXD
D
CRS
RX_CLK
RX_DV
RXD
55
55
55
D
2
COL
22304B-16
Figure 14.
MII Start of Transmission
Am79C901A
29
P R E L I M I N A R Y
IPG
Idle
TX_CLK
96 Bit Times
TX_EN
TXD
data
CRS
RX_CLK
RX_DV
RXD
data
data
55
55
COL
If SEQ is enabled
22304B-17
Figure 15.
30
MII End of Transmission
Am79C901A
P R E L I M I N A R Y
1 Mbps HomePNA PHY
The integrated HomePNA transceiver is a physical
layer device supporting HomePNA specification 1.0 for
home phoneline networking. It provides all of the PHY
layer functions required to support 1 Mbps data transfer
speeds over existing residential phone wiring.
All data bits are encoded into the relative time position
of a pulse with respect to the previous one. The waveform on the wire consists of a 7.5 MHz carrier sinusoid
enclosed within an exponential (bell shaped) envelope. The waveform is produced by generating four
7.5 MHz square wave cycles and passing them
through an external bandpass filter.
The HomePNA PHY frame consists of a HomePNA
header that replaces the normal Ethernet 64-bit preamble and delimiter. The frame header is prepended to a
standard Ethernet packet starting with the destination
address and ending with the CRC.
Only the PHY layer and its parameters are modified
from that of the standard Ethernet implementation. The
HomePNA PHY layer is designed to operate with a
standard Ethernet MAC layer controller implementing
all the CSMA/CD protocol features.
The frame begins with a characteristic SYNC interval
that delineates the beginning of a HomePNA frame followed by an Access ID (AID) which encodes 8 bits of
AID and 4 bits of control word. The AID is used to detect collisions and is dynamically assigned, while the
control word carries speed and power information.
The data symbol interval is variable. The arriving bit
stream is blocked into from 3-bit to 6-bit blocks according to a proprietary (RLL25) algorithm. The bits in each
block are then used to encode a data symbol. Each
symbol consists of a Data Inter Symbol Blanking Interval (DISBI) and then a pulse at one of 25 possible positions. The bits in the data block determine the pulse
position. Immediately after the pulse a new symbol interval begins. During the DISBI the receiver ignores all
incoming pulses to allow network reflections to die out.
Any station may be programmed to assume the role of
a PHY master and remotely command, via the control
word, the rest of the units on the network to change
their transmit speed or power level.
Many of the framing parameters are programmable in
the HomePNA PHY and will allow modifications to
transmission speed center frequency as well as noise
and reflection rejection algorithms.
Two default speeds are provided, low at 0.7 Mbps and
high at 1 Mbps.
HomePNA PHY Medium Interface
Framing
The HomePNA frame on the phone wire network consists of a header generated in the PHY prepended to
an IEEE 802.3 Ethernet data packet received from the
MAC layer. See Figure 16.
The AID is followed by a silence interval, then 32 bits of
data reserved for PHY layer communication. These bits
are accessible via internal registers and are for future
use.
When transmitting on the phone wire pair, the
HomePNA PHY first receives an Ethernet MAC frame
from the MAC. The 8 octets of preamble and delimiter
are stripped off and replaced with the HomePNA PHY
header described below, then transmitted on the
home network with the LSB of each symbol being
transmitted first.
Data encoding consists of two symbol types: an AID
symbol and a data symbol. The AID symbol is always
transmitted at the same speed and encodes 2 bits that
determine the pulse position (one of four) relative to the
previous pulse. These bits are transmitted LSB first.
The access symbol interval is fixed.
During a receive operation, the reverse process is executed. When a HomePNA PHY frame is received by
the PHY, the header is stripped off and replaced with
the 4 octets of preamble and delimiter of the IEEE
802.3 Ethernet MAC frame specification and then
passed on to the MAC layer.
Am79C901A
31
P R E L I M I N A R Y
Ethernet Packet
HomePNA Header
SYNC
interval
Access ID
AID
blanking
interval
Fixed
14.93 µs
AID
blanking
interval
01
Silence
AID
blanking
interval
11
AID
blanking
interval
10
AID
blanking
interval
00
PCOM
4
Destination Source Length
6
6
2
AID
blanking
interval
01
ETHERNET MAC and DATA
max 1500
Silence
interval
00
32 bits
PCOM
60 tics
20 tics
66 tics
potential
pulse position
pulse
129 tics
129 tics
129 tics
129 tics
129 tics
129 tics
129 tics
129 tics
SYNC
Symbol 0
ACCESS
ID Symbol
1
ACCESS
ID Symbol
2
ACCESS
ID Symbol
3
ACCESS
ID Symbol
4
ACCESS
ID Symbol
5
ACCESS
ID Symbol
6
ACCESS
ID Symbol
7
ACCESS ID interval
Fixed 120.39 µs
CRC
4
Ethernet Packet
Data
symbols
30.75 µs
@ 1 Mbps
Example Access ID of 01110100 and control word 0100
HomePNA PHY Header
151.14 µs @ 1 Mbps
1 Tic = 116.6667 ns
= receiver blanking interval
22304B-18
Note: Using default configurations.
Figure 16.
HomePNA PHY Framing
HomePNA PHY Symbol Waveform
These symbols are described in the following sections.
All HomePNA PHY symbols are composed at the transmitter of a silence interval and a pulse formed of an integer
number of cycles (TX_PULSE_CYCLES_P/N in HPR29)
of a square wave of frequency (CENTER_FREQUENCY
TX_PULSE_WIDTH in HPR29) that has been filtered with
an external bandpass filter. Data is encoded in the time interval from the preceding pulse.
Symbol 0 (SYNC interval)
Table 6.
HomePNA PHY Pulse Parameters
Parameter
Value
Tolerance
Unit
CENTER_FREQUENCY
7.5
500 PPM
MHz
CYCLES_PER_PULSE
4
–
Cycles
Time Interval Unit
HomePNA PHY time intervals are expressed in Time
Interval Clock (TIC) units. One TIC is defined as
7/60E6 seconds or approximately 116.7 ns.
Access ID Intervals
A HomePNA frame begins with an Access ID (AID) interval which is composed of eight equally spaced subintervals termed AID symbols 0 through 7 as shown in
Figure 17.
An AID symbol is 129 TICs long. Transmit timing is
shown in Figure 17; receive timing in Figure 18. Timing
starts at the beginning of each AID symbol at TIC = 0
and ends at TIC = 129.
32
SYNC Transmit Timing: The SYNC interval (AID symbol 0) delineates the beginning of a HomePNA PHY
frame and is composed of a SYNC_START pulse, followed by a SYNC_END pulse, after a fixed silence interval as shown in Figure 17. Timing for this (AID
symbol 0) starts (TIC = 0) at the beginning of the
SYNC_START pulse. The SYNC_END pulse starts at
TIC = 126.
At TIC = 129, this AID symbol 0 ends and the next AID
symbol begins, with the symbol timing reference reset
to TIC = 0. No information bits are coded in the SYNC
(AID symbol 0 interval).
SYNC Receive Timing: As soon as the SYNC_START
pulse is detected the receiver disables (blanks) further
detection until time TIC = 61, after which detection is
re-enabled for the next received pulse. The receiver allows for jitter by establishing a window around each
legal pulse position. This asymmetrical window is two
TICS wide on one side of the position and one TIC wide
on the other.
A SYNC_END pulse that arrives outside the window of
the legal TIC = 126 is considered a noise event which
is used in setting the adaptive squelch level, aborts the
packet, and sets the receiver in search of a new
SYNC_START pulse and SYNC interval. If it is a transmitting station, the COLLISION event is asserted as
described in the Collisions section.
Am79C901A
P R E L I M I N A R Y
Transmitter
AID Symbol 0
AID Symbol 1
pulse 0
AID Symbol 2
pulse 2
shown in position 1
pulse 1
TIC=129
and
TIC=0
SYNC_START
TIC=0
TIC=129
and
TIC=0
AID_Position_0
TIC=66
SYNC_END
TIC=126
AID_Position_1
TIC=86
AID_Position_2
TIC=106
AID_Position_3
TIC=126
22304B-19
Figure 17.
AID Symbol Transmit Timing
Receiver
D slice threshold
AID Symbol 1
AID Symbol 0
pulse 0
pulse 2
shown in position 1
pulse 1
Detected envelope
AID Symbol 2
END_RCV_BLANK
TIC=129
and
TIC=0
SYNC_START
TIC=0
AID_Position_0
TIC=66
AID_GUARD_INTERVAL
TIC=129
and
TIC=0
AID_Position_1
TIC=86
AID_Position_2
TIC=106
SYNC_END
TIC=126
AID_Position_3
TIC=126
22304B-20
Figure 18.
AID Symbol Receive Timing
The SYNC interval is followed by six AID symbols
(symbols 1 through 6). Transmit timing is shown in Figure 17; receive timing in Figure 18. Data is encoded in
the relative position of each pulse with respect to the
previous one. A pulse may occur at one, and only one,
of the four possible positions within an AID symbol
yielding two bits of data coded per AID symbol.
Table 7.
Access ID Symbol Pulse Positions and
Encoding
Pulse
Position
TICs from Beginning of AID
Symbol
Bit Encoding
The decoded bits from the AID symbols 1 to 4 produce
eight bits of Access ID which is used to identify individual HomePNA stations and to detect collisions. The
MSB is encoded in AID Symbol 1 and is the leftmost bit
in Table 7.
Am79C901A
1
66
00
2
86
01
3
106
10
4
126
11
33
P R E L I M I N A R Y
The next two AID symbols (5 and 6) encode four bits
of control word information. The MSB is encoded in
AID Symbol 5. Control word messages are described
further in the Mode Interface section.
AID Transmit Timing: The transmitter encodes the Access ID in a pulse position in each 129 TIC interval.
Each AID symbol interval must have only one pulse.
Pulse transmission must start in only one of the four
possible positions (measured from the beginning of the
Access ID symbol) defined in Table 7.
AID Receive Timing: The receiver allows for jitter by
establishing a window around each legal pulse position. This asymmetrical window is two TICS wide on
one side of the position and one TIC wide on the other.
A pulse that arrives outside of the legal AID positions is
considered a COLLISION event.
Collisions
A Collision is detected only during Access ID and silent
intervals (AID symbols 0 through 7). In general during
a collision, a transmitting station will read back an AID
value that does not match its own, recognize the event
as a collision, and alert other stations with a JAM signal. Non-transmitting stations may also detect some
collisions by interpreting received non-conforming AID
pulses as collisions.
With two transmitters colliding, each transmitter normally blanks its receive input immediately after transmitting (and simultaneously receiving) a pulse.
Therefore, only when a transmitting station receives
pulses in a position earlier than the position it transmitted will it recognize it as a pulse transmitted by another
station and signal a collision.
For this reason, guaranteed collision detection is possible only as long as the spacing between successive
possible pulse positions in an AID symbol (20 TICs or
2.3 µs) is greater than the roundtrip delay between the
colliding nodes. At approximately 1.5 ns propagation
delay per foot, the maximum distance between two
HomePNA units must not be greater than 500 feet for
collision detection purposes (1.5 µs roundtrip delay
plus margin).
The following criteria must be met to guarantee reliable
collision detection:
At least one HomePNA station of a colliding group must
always detect a collision when the delay between the
beginning of its transmitted packet and the beginning of
the received colliding packet is between -1.5 µs and
+1.5 µs.
a collision, it emits a JAM signal to alert all other stations to the collision. The following conditions signify
a COLLISION event:
1. A HomePNA station receives an AID that does not
match the one being sent.
2. A HomePNA station receives a pulse outside the
AID_GUARD INTERVAL in AID intervals 0 to 7.
3. A HomePNA station receives a pulse inside the
SILENT_INTERVAL (AID symbol 7).
As in all cases, pulses received during a blanking
interval are ignored.
Passive stations (stations not actively transmitting during the collision) cannot reliably detect collisions.
Therefore, once a collision is detected by a transmitting
station, the station must inform the rest of the stations
of the collision with a JAM pattern described below.
Only a transmitting station emits a JAM signal.
Once a collision is detected, the COLLISION signal to
the MAC interface is asserted and is not reset until the
MAC deactivates the TXEN signal.
JAM Signal
A JAM pattern consists of 1 pulse every 32 TICs and
continues until at least the end of the AID intervals.
After the AID interval, the JAM pattern will continue
until TXEN from the MAC is deactivated.
Access ID Values
The access ID values for stations are randomly picked
by each individual station from the set of AID numbers
described in the management section. During operation, each HomePNA station monitors HomePNA
frames received on the wire. If it detects another HomePNA station using the same AID, it will select a new
random AID.
Silence Interval (AID symbol 7)
The Access ID symbols are followed by a fixed silence
interval of 129 TICs. The receive blanking interval is the
same as that of the AID symbols (1 through 6).
Any pulses detected in the silence interval are considered a COLLISION event for transmitting stations and
are handled as described in the Collisions section.
Data Symbols
Data symbols encode data for a much higher transmission rate, and they do not allow collision detection.
In general, any received pulse at a HomePNA station
that does not conform to the pulse position requirements of AID symbols 0 through 7 shall indicate a collision on the wire. When a transmitting station senses
34
Am79C901A
P R E L I M I N A R Y
Data Transmit Timing
When a pulse begins transmission, the previous symbol interval ends and a new one begins immediately.
A data symbol interval begins with the start of transmission of a pulse as shown in Figure 19. Transmit Symbol
timing (in TICs) is measured from this point (TIC = 0).
Table 8.
Depending on the data code, the next pulse may begin
at any PULSE_POSITION_N where N = 0 to 24. Each
position is separated from the previous one by one TIC.
PULSE_POSITION_0 occurs at a value defined in
Table 8 which determines the transmission speed.
Blanking Interval Speed Settings
Speed Setting
Nominal Data
Rate
PULSE_POSITION_0
Value
(in TICs)
LOW_SPEED
0.7 Mbps
44
HIGH_SPEED
1.0 Mbps
28
Transmitter
Symbol 1
Pulse 0
START_TX_PULSE
TIC=0
Symbol 2
Data Blanking interval (DISBI)
END_TX_PULSE
time
Pulse 1
PULSE_POSITION_0
time
Position 1
1 TIC
Position n1
n=0-24
Position 0
Position 1
Pulse 2
Position n2
22304B-21
Figure 19.
Transmit Data Symbol Timing
Data Receive Timing
The receiver is then re-enabled for pulse detection.
Upon reception of the next pulse, the receiver measures the elapsed time from the previous pulse.
This value is then placed in the nearest pulse position bin (one of 25) where pulse position 0 is at
PULSE_POSITION_0 and each subsequent position is spaced one TIC from the previous one as defined in the Data Transmit Timing section. Data
symbol intervals are therefore variable and depend
on the encoded data.
The incoming waveform is formed from the transmitted
pulse along with any distortions and reflections that
occur in the wiring network. The receiver detects the
point at which the envelope of the received waveform
crosses a set threshold. See Figure 20.
Immediately after the threshold crossing, the receiver
disables any further detection for a period ISBI-3 TICs
(HPR28, ISBI_SLOW or ISBI_FAST) starting with the
detection of the pulse peak.
Receiver
Symbol 1
Data slice
threshold
Symbol 2
Pulse 0
Pulse 1
Pulse 2
Detected Envelope
END_DATA_BLANK
egin of receive
anking interval
Position 0
Position 1
Position n1
Position 0
Position 1
Position n2
22304B-22
Figure 20.
Receive Symbol Timing
Am79C901A
35
P R E L I M I N A R Y
Data Symbol RLL25 Encoding
3. If bit A is a zero, bit B is a zero, and bit C is a one, the
next three bits (D, E, and F) select which one of the
eight positions 17-24 is transmitted. The encoding
process then continues at the root node.
The RLL25 code is the version of TM32 that was developed for the HomePNA PHY. It produces the highest bit
rate for a given value of ISBI and TIC size. In a manner
similar to run length limited disk coding, RLL25 encodes data bits in groups of varying sizes, specifically:
3, 4, 5, and 6 bits. Pulse positions are assigned to the
encoded bit groups in a manner, which causes more
data bits to be encoded in positions that are farther
apart. This keeps both the average and minimum bit
rates higher.
4. Finally, if bits A, B, and C are all zeros, position 0 is
transmitted. The encoding process then continues
at the root node.
As a result, Symbol 0 encodes the 3-bit data pattern
000, positions 1-8 encode the 4-bit data pattern 1BCD,
positions 9-16 encode the 5-bit data pattern 01CDE,
and positions 17-24 encode the 6-bit data pattern
001DEF. If the data encoded is random, 50% of the positions used will be for 4-bit patterns, 25% will be for 5bit patterns, 12.5% will be for 6-bit patterns, and 12.5%
will be for 3-bit patterns.
Data symbol RLL25 codes data by traversing a tree as
illustrated in Figure 21. Assuming that successive data
bits are encoded and labeled A, B, C, D,…, etc., the encoding process begins at the root node and proceeds
as follows:
Mode Interface
1. If the first bit (bit A) is a one, the next three bits (B, C,
and D) select which one of the eight positions 1-8 is
transmitted. The encoding process then continues at
the root node.
The HomePNA PHY may be managed from either of two
interfaces (the managed parameters vary depending on
the interface):
1. Remote Control-Word management commands
embedded in the HomePNA AID header on the
wire network.
2. If bit A is a zero and bit B is a one, the next three bits
(C, D, and E) select which one of the eight positions
9-16 is transmitted. The encoding process then
continues at the root node.
2. Management messages from a local management
entity.
Data stream from MAC controller
Start: Examine the next
bits to be encoded
A
Encoded and sent
A=?
1
Send symbol 1-8
1
Send symbol 9-16
1
Send symbol 17-24
1
Send symbol 0
0
B=?
C
D
E
F
Awaiting coding and transmission
1
B
C
D
These select position 1 - 8
0
1
0
C=?
B
C
D
E
These select position 9 - 16
0
0
0
1
D
E
F
These select position 17- 24
0
0
0
22304B-23
Figure 21.
36
RLL 25 Coding Tree
Am79C901A
P R E L I M I N A R Y
Header AID Remote Control Word Commands
Table 9.
Stations may be configured either as master stations
or as slave stations. Only one master may exist on a
given HomePNA segment or network over which the
HomePNA PHY header is preserved.
AID
Bit No.
5
LSB
5
MSB
6
LSB
6
MSB
The master station may send commands embedded in
the HomePNA header control word to remotely set various parameters of the remote slave stations. Stations
are identified via the AID as follows:
1. The master station is identified on the HomePNA
wire network with an AID of FFh.
2. A slave is identified with an AID of 00h to EFh.
3. AID values of F0h to FEh are reserved for future use.
Once a command has been transmitted, the master
station will revert to a slave AID, so that subsequent
control words are not interpreted by the slave stations
as new commands.
Master mode is entered by writing to the PHY control
register (HPR16, bits 8 to 11) and is exited upon the
completion of the command sequence.
A valid master remote command consists of three
HomePNA frames with an AID of FFh. Since the
HomePNA PHY header is prepended to packets received from the MAC, as well as any1Home packets,
packets from the master station may be separated by
intervals during which other (slave) stations may
transmit their frames.
A remote master Control Word command will be recognized and executed by a HomePNA PHY when it receives three consecutive valid HomePNA frames with
an AID of FFh.
Valid commands are as follows:
1. SET_POWER: Commands slave stations to set
their transmit level to a prescribed level until another
master command is received.
2. SET_SPEED: Commands slave stations to set their
transmit speed to a prescribed value until another
master command is received.
The control word bit encoding and possible values are
described in Table 9.
Master Station Control Word Functions
Command Function
0 = version 0
0 = Set to low-power transmit mode.
1 = Set to high-power transmit mode.
0 = Set to low-speed transmit mode.
1 = Set to high-speed transmit mode.
Reserved
Slave stations transmit the following status messages
in the HomePNA header control word of all outgoing
frames:
1. VERSION_STATUS: The HomePNA PHY version of
the slave station. The receiving station must revert to
this version to interpret the packet.
2. POWER_STATUS: The transmit power level of the
transmitting slave station for the current frame. All
HomePNA units support both LOW_POWER and
HIGH_POWER modes of operation.
3. SPEED_STATUS: The transmit speed of the slave
station for the current frame. Receiving stations will
adjust their receiver parameters to correctly interpret
this frame.
The slave control word bit encoding is identical to the
master control word format.
1 Mbps HomePNA PHY Loopback
The HomePNA PHY is capable of supporting internal
loopback only.
Internal Loopback
In internal loopback, the transmitted data is returned to
the receive data bus without transmitting data on the
network. The MAC must be programmed to support
full-duplex operation and is responsible for comparing
the transmitted data to that received. Internal loopback
is accomplished by setting the “enable loopback mode”
in HPR0, bit 14, to 1.
any1Home Link Detection
While consuming minimal network resources, AMD’s
innovative any1Home Link Detection Packet provides a
means to indicate to the MAC, and thus the upper layers of the system protocol, that a valid network (as defined by HomePNA) has been detected. The Link
Detection Packet is also capable of detecting a network
failure and allows the upper layer protocol to take corrective action. Thus, the any1Home Packet provides
link indication that the MAC requires for compliance to
the Microsoft PC98, PC99, and HomePNA revision 1.1
requirements without utilizing resources from the upper
layers of the system protocol
Am79C901A
37
P R E L I M I N A R Y
The any1Home link packet consists of valid AID and
PCOM fields followed by four bytes of data. The receiving node’s MAC will interpret this packet as a runt frame
and will not forward the frame to upper layers, thus ensuring that no system resources are required.
Clock
Data
Manchester
Encoder
T h e A m 79 C 9 0 1A Ho m e P HY wi l l t ra n sm it t h e
any1Home Link Packet as a result of not transmitting a
normal Data packet within the last 400 ms time period.
Similarly, the HomePHY will determine that it is not
connected to a valid network (a link down state) after
not receiving any Data or Link packets for a period
greater than four seconds. The any1Home Link detection status is reported via the LED_LINK output pin and
in the HomePNA PHY Status Register (HPR1, bit 2).
See Table 18.
Clock
Data
Manchester
Decoder
Squelch
Circuit
10BASE-T PHY
The 10BASE-T transceiver incorporates the physical
layer function, including both clock recovery (ENDEC)
and transceiver function. Data transmission over the
10BASE-T medium requires an integrated 10BASE-T
MAU. The transceiver meets the electrical requirements for 10BASE-T as specified in IEEE 802.3i. The
transmit signal is filtered on the transceiver to reduce
harmonic content per IEEE 802.3i. Since filtering is
performed in silicon, external filtering modules are not
needed. The 10BASE-T PHY transceiver receives 10
Mbps data from the MAC across the MII at 2.5 million
nibbles per second (parallel), or 10 million bits per second (serial) for 10BASE-T. It then Manchester encodes
the data before transmission to the network.
The 10BASE-T block consists of the following sub-blocks:
— Transmit Process
— Receive Process
— Interface Status
— Collision Detect Function
TX Driver
RX Driver
TX±
RX±
22304B-24
Figure 22.
10BASE-T Transmit and Receive Data
Paths
Twisted Pair Transmit Function
Data transmission over the 10BASE-T medium requires use of the integrated 10BASE-T MAU and uses
the differential driver circuitry on the TX± pins.
TX± is a differential twisted-pair driver. When properly
terminated, TX± will meet the transmitter electrical requirements for 10BASE-T transmitters as specified in
IEEE 802.3, Section 14.3.1.2. The load is a twisted pair
cable that meets IEEE 802.3, Section 14.4.
Twisted Pair Receive Function
— Jabber Function
— Reverse Polarity Detect
Refer to Figure 22 for the 10BASE-T block diagram.
The RX+ port is a differential twisted-pair receiver.
When properly terminated, the RX+ port will meet the
electrical requirements for 10BASE-T receivers as
specified in IEEE 802.3, Section 14.3.1.3. The receiver
has internal filtering and does not require external filter
modules or common mode chokes.
Signals appearing at the RX± differential input pair are
routed to the internal decoder. The receiver function
meets the propagation delays and jitter requirements
specified by the 10BASE-T standard. The receiver
squelch level drops to half its threshold value after unsquelch to allow reception of minimum amplitude signals and to mitigate carrier fade in the event of worst
case signal attenuation and crosstalk noise conditions.
38
Am79C901A
P R E L I M I N A R Y
Twisted Pair Interface Status
Reverse Polarity Detect
The Am79C901A device will power up in the Link Fail
state. The Auto-Negotiation algorithm will apply to
allow it to enter the Link Pass state.
The polarity for 10BASE-T signals is set by reception
of Normal Link Pulses (NLP) or packets. Polarity is
locked, however, by incoming packets only. The first
NLP received when trying to bring the link up will be
ignored, but it will set the polarity to the correct state.
The reception of two consecutive packets will cause
the polarity to be locked, based on the polarity of the
End of Transmit Data (ETD). In order to change the
polarity once it has been locked, the link must be
brought down and back up again.
In the Link Pass state, receive activity which passes the
pulse width/amplitude requirements of the RX± inputs
will cause the PCS Control block to assert the Carrier
Sense (CRS) signal at the MII interface. A collision
would cause the PCS Control block to assert Carrier
Sense (CRS) and Collision (COL) signals at the MII. In
the Link Fail state, this block would cause the PCS
Control block to deassert Carrier Sense (CRS) and
Collision (COL).
In jabber detect mode, this block would cause the PCS
Control block to assert the COL signal at the MII and
allow the PCS Control block to assert or deassert the
CRS pin to indicate the current state of the RX± pair. If
there is no receive activity on RX±, this block would
cause the PCS Control block to assert only the COL pin
at the MII. If there is RX± activity, this block would
cause the PCS Control block to assert both COL and
CRS at the MII.
Collision Detect Function
Simultaneous activity (presence of valid data signals)
from both the internal encoder transmit function and
the twisted pair RX± pins constitutes a collision,
thereby causing the PCS Control block to assert the
COL pin at the MII.
Jabber Function
The Jabber function inhibits the 10BASE-T twisted pair
transmit function of the Am79C901A device if the TX±
circuits are active for an excessive period (20-150 ms).
This prevents one port from disrupting the network due
to a stuck-on or faulty transmitter condition. If the maximum transmit time is exceeded, the data path through
the 10BASE-T transmitter circuitry is disabled (although Link Test pulses will continue to be sent). The
PCS Control block also asserts the COL signal at the
MII and sets the Jabber Detect bit in Register 1 of the
active PHY. Once the internal transmit data stream
from the MENDEC stops, an unjab time of 250-750 ms
will elapse before this block causes the PCS Control
block to deassert the COL indication and re-enable the
transmit circuitry.
When jabber is detected, this block will cause the PCS
Control block to assert the COL signal and allow the
PCS Control block to assert or deassert the CRS signal
to indicate the current state of the RX± pair. If there is
no receive activity on RX±, this block causes the PCS
Control block to assert only the COL signal at the MII.
If there is RX± activity, this block will cause the PCS
Control block to assert both COL and CRS on the MII.
Auto-Negotiation
The object of the Auto-Negotiation function is to determine the abilities of the devices sharing a link.
After exchanging abilities, the Am79C901A device
and remote link partner device acknowledge each
other and make a choice of which advertised abilities
to support. The Auto-Negotiation function facilitates
an ordered resolution between exchanged abilities.
This exchange allows both devices at either end of
the link to take maximum advantage of their respective shared abilities.
The Auto-Negotiation algorithm uses a burst of link
pulses called Fast Link Pulses (FLPs). The burst of link
pulses are spaced between 55 and 140 µs so as to be
ignored by the standard 10BASE-T algorithm. The FLP
burst conveys information about the abilities of the
sending device. The receiver can accept and decode
an FLP burst to learn the abilities of the sending device.
The link pulses transmitted conform to the standard
10BASE-T template. The device can perform Auto-Negotiation with reverse polarity link pulses.
The Am79C901A device uses the Auto-Negotiation algorithm to select the type connection to be established
according to the following priority: 10BASE-T full duplex, then 10BASE-T half-duplex. See Table 10.
The Auto-Negotiation algorithm is initiated by the following events: Auto-Negotiation enable bit is set, hardware reset, soft reset, transition to link fail state (when
Auto-Negotiation enable bit is set), or Auto-Negotiation
restart bit is set. The result of the Auto-Negotiation process can be read from the status register (Summary
Status Register, TBR24).
By default, the link partner must be at least 10BASE-T
half-duplex capable. The Am79C901A PHY can automatically negotiate with the network and yield the highest performance possible without software support.
Table 10.
Network Speed
20 Mbps
10 Mbps
Am79C901A
Auto-Negotiation Capabilities
Physical Network Type
10BASE-T, Full Duplex
10BASE-T, Half Duplex
39
P R E L I M I N A R Y
Auto-Negotiation goes further by providing a message-based communication scheme called Next
Pages before connecting to the Link Partner.
Table 11.
Driver
Mode
Pulse
Stretch
Collision
Open Drain
- Active Low
Enabled
LED_ACTIVITY
Activity
Open Drain
- Active Low
Enabled
LED_LINK
Link
Open Drain
- Active Low
Not
applicable
LED_SPEED
Speed
Open Drain
- Active Low
Not
applicable
LED_POWER
Power
Open Drain
- Active Low
Not
applicable
LED Output
Indication
LED_COL
Soft Reset Function
The PHY Control Register (TBR0) incorporates the soft
reset function (bit 15). It is a read/write register and is
self-clearing. Writing a 1 to this bit causes a soft reset.
When read, the register returns a 1 if the soft reset is
still being performed; otherwise, it is cleared to zero.
Note that the register can be polled to verify that the
soft reset has terminated. Under normal operating conditions, soft reset will be finished in 150 clock cycles.
Soft reset only resets the 10BASE-T PHY unit registers
to default values (some register bits retain their previous values). Soft reset does not reset the management
interface.
10BASE-T Loopback
The 10BASE-T PHY is capable of supporting two different types of loopback, referred to as internal and
external loopback.
Internal Loopback
In internal loopback, the transmitted data is returned to
the receive data bus without transmitted data appearing on the network. The MAC must be programmed to
support full-duplex operation and is responsible for
comparing the transmitted data to that received. Internal loopback is accomplished by setting the “enable
loopback mode” in TBR0, bit 14, to 1.
External Loopback
External loopback is accomplished by the use of an exter nal shor ti ng plug. In this environm ent, the
10BASE-T PHY is left in through mode (i.e., enable
loopback mode in TBR0 = 0), the MAC in full duplex.
The transmitted data will then be looped back at the
shorting plug into the receive circuitry and driven onto
the receive data bus for the MAC to process and verify.
LED Support
The controller can support up to five LEDs. LED outp u t s L E D _ C O L , L E D _ AC T I V I T Y, L E D _ L I N K ,
LED_SPEED, and LED_POWER allow for direct connection of an LED and its supporting pull-up device.
The outputs are stretched to allow the human eye to
recognize even short events that last only several microseconds. The five LED outputs are configured as
shown in Table 11.
40
LED Default Configuration
IEEE 1149.1 (JTAG) Test Access Port
Interface
An IEEE 1149.1-compatible boundary scan Test Access Port is provided for board-level continuity test and
diagnostics. All digital input, output, and input/output
pins are tested. The following paragraphs summarize
the IEEE 1149.1-compatible test functions implemented in the controller. Refer to the IEEE 1149.1
Boundary Scan Architecture document for details.
Boundary Scan Circuit
The boundary scan test circuit requires four pins (TCK,
TMS, TDI, and TDO), defined as the Test Access Port
(TAP). It includes a finite state machine (FSM), an instruction register, a data register array, and a power-on
reset circuit. Internal pull-up resistors are provided for
the TDI, TCK, and TMS pins.
TAP Finite State Machine
The TAP engine is a 16-state FSM driven by the Test
Clock (TCK) and the Test Mode Select (TMS) pins. An
independent power-on reset circuit is provided to ensure that the FSM is in the TEST_LOGIC_RESET state
at power-up. Therefore, the TRST is not provided. The
FSM is also reset when TMS and TDI are high for five
TCK periods.
Supported Instructions
In addition to the minimum IEEE 1149.1 requirements
(BYPASS, EXTEST, and SAMPLE instructions), two
additional instructions (IDCODE and TRI_ST) are
provided to further ease board-level testing. All unused
instruction codes are reserved. See Table 12 for a summary of supported instructions.
Am79C901A
P R E L I M I N A R Y
Table 12.
IEEE 1149.1 Supported Instruction
Summary
Mode
Selected
Data
Register
Test
BSR
Normal
ID REG
Normal
BSR
Normal
Bypass
Bypass Scan Normal
Bypass
Instruction Instruction
Name
Code
Description
EXTEST
0000
IDCODE
0001
SAMPLE
0010
TRI_ST
0011
BYPASS
1111
TRI_ST
BYPASS
External Test
ID Code
Inspection
Sample
Boundary
Force TriState
Force TriState
0011
1111
Normal
Bypass Scan Normal
Bypass
Bypass
The main purpose of this is board-level testing. See
Table 15.
To force the output pins, use SAMPLE to load the
BSR cells via the TDI pin and EXTEST to force the
output. Program the output cells, and set the control
cells to enable the output, or clear the control cells to
float the output.
To sample the chip inputs and outputs, use a SAMPLE
command and cell values are shifted out through the
TDO pin. Check the values in the input cells. Both input
and output pins have input-type cells.
Table 15.
Boundary Scan Ring Order
BSR Cell
No.
Cell Name
Cell
Type1
Pin
No.
53
XTAL_SEL_L
IN
39
Instruction Register and Decoding Logic
52
CRS
IN
32
After the TAP FSM is reset, the IDCODE instruction is
always invoked. The decoding logic gives signals to control the data flow in the data registers according to the
current instruction.
51
CRS
OUT
32
50
CRS_COL_OEN
CO
–
49
COL
IN
30
48
COL
OUT
30
Boundary Scan Register
47
TXD3_CSN
IN
28
Each Boundary Scan Register (BSR) cell has two
stages. A flip-flop and a latch are used for the Serial
Shift Stage and the Parallel Output Stage, respectively.
There are four possible operation modes in the BSR
cell shown in Table 13.
46
TXD2
IN
27
Table 13.
BSR Mode Of Operation
1
2
3
4
Capture
Shift
Update
System Function
Other Data Registers
Other data registers are the following:
45
TXD1_SDI
IN
25
44
TXD0_TXDAT
IN
24
43
TX_EN
IN
23
42
TX_CLK_OEN
CO
–
41
TX_CLK
IN
22
40
TX_CLK
OUT
22
39
GM_MODE
IN
21
38
RX_ER
IN
19
37
RX_ER
OUT
19
36
PHY_SEL
IN
17
35
RX_CLK
IN
15
34
RX_CLK
OUT
15
33
RX_DV_RXEN
IN
13
1. Bypass register (1 bit)
32
RX_DV_RXEN
OUT
13
2. Device ID register (32 bits) (Table 14).
31
RXD_OEN
CO
–
30
RXD0_RXDAT
IN
11
29
RXD0_RXDAT
OUT
11
28
RXD1
IN
10
10
Table 14.
Device ID Register
Bits 31-28
Version
27
RXD1
OUT
Bits 27-12
Part Number (1001 0000 0001 0000)
26
RXD2
IN
9
25
RXD2
OUT
9
Bits 11-1
Manufacturer ID. The 11-bit manufacturer ID
code for AMD is 00000000001 in
accordance with JEDEC publication 106-A.
24
RXD3
IN
8
23
RXD3
OUT
8
Bit 0
Always a logic 1
22
LED_SPEED
CO
6
Boundary Scan Cells
21
LED_SPEED
IN
6
In Boundary Scan, most of the chip input and output
latches are linked together to form a scan chain.
20
LED_SPEED
OUT
6
19
LED_POWER
CO
5
Am79C901A
41
P R E L I M I N A R Y
18
LED_POWER
IN
17
5
LED_POWER
OUT
5
BSR Cell
No.
Cell Name
Cell
Type1
Pin
No.
16
LED_ACTIVITY
CO
3
15
LED_ACTIVITY
IN
3
14
LED_ACTIVITY
OUT
3
13
LED_COL
CO
2
12
LED_COL
IN
2
11
LED_COL
OUT
2
10
LED_LINK
CO
1
9
LED_LINK
IN
1
8
LED_LINK
OUT
1
7
MDC_SCLK
IN
68
6
MDIO
IN
66
5
MDIO
OUT
66
4
MDIO_OEN
CO
–
3
ISOLATE
IN
65
2
PHY_AD
IN
64
1
MODE_MII
IN
63
0
RESET_L
IN
61
Notes:
1. IN = input cells, samples the device inputs and internal
outputs; OUT = output cells, drives the device outputs and
internal inputs; and CO = control cells, controls the output
enable.
2. BSR Cell 0 is closest to TDO.
3. Boundary register is 54 bits long. Data path starts
from TDI to cell 53, cell 0 to TDO.
42
Am79C901A
P R E L I M I N A R Y
USER ACCESSIBLE REGISTERS
The Am79C901A PHY has two types of user registers: 1 Mbps HomePNA PHY management registers
(HPRs) and 10BASE-T PHY management registers
(TBRs).
Table 16.
Register
Address
Symbol
0
HPR0
1
HPR1
2
3
1 Mbps HomePNA PHY Management
Registers (HPRs)
The registers of the HomePNA PHY are accessible
via the MII or the SPI interface. All reserved registers
should not be written to, and reading them will return
an undetermined value. Table 16 lists all the registers
implemented in the HomePNA PHY.
1 Mbps HomePNA PHY Management Registers (HPRs)
Basic/Extended
Default Value After
H_RESET
Control Register
B
0400h
Status Register
B
0841h
HPR2
PHY_ID Register
E
0000h
HPR3
PHY_ID Register
E
6B91h
4
HPR4
Auto-Negotiation Register
E
0021h
5
HPR5
Auto-Negotiation Register
E
0000h
6
HPR6
Auto-Negotiation Register
E
0000h
7
HPR7
Auto-Negotiation Register
E
0000h
8-15
HPR8-HPR15
Reserved
E
–
16
HPR16
PHY Control Register
E
0005h
17
HPR17
Status/Control Register
E
000xh
18
HPR18
PHY TXCOMM Register
E
0000h
19
HPR19
PHY TXCOMM Register
E
0000h
20
HPR20
PHY RXCOMM Register
E
0000h
21
HPR21
PHY RXCOMM Register
E
0000h
22
HPR22
PHY AID Register
E
0000h
23
HPR23
PHY Noise Control Register
E
03FFh
24
HPR24
PHY Noise Control 2 Register
E
F4xxh
25
HPR25
PHY Noise Statistics Register
E
03FFh
26
HPR26
Event Status Register
E
0000h
27
HPR27
AID Control Register
E
1440h
28
HPR28
ISBI Control Register
E
2C1Ch
29
HPR29
TX Control Register
E
0444h
30
HPR30
Drive Level Control Register
E
x549h
31
HPR31
Analog Control Register
E
C000h
Name
Am79C901A
43
P R E L I M I N A R Y
HPR0: HomePNA PHY Control Register (Register 0)
Table 17.
Bits
HPR0: HomePNA PHY Control Register (Register 0)
Name
Description
Read/
Write
Default
Value
(hex)
R/W
0
R/W
0
R
0
R
0
R
0
R/W
1
R
0
R/W
0
R/W
0
R
0
1 = RESET
15
RESET
When read, 1= reset in process
0 = Normal operation
** Self Clearing after ~70 µs
14
Enable Loopback Mode
13
Speed Selection
12
Auto-Negotiation Enabled
11
Power Down
1 = Loopback mode enable
0 = Loopback mode disable
0 = 10 Mbps
1 = Enabled
0 = Disabled
1 = Power down
0 = Normal operation
(This bit is mirrored in PHY Control bit 4)
10
Isolate
9
Restart Auto-Negotiation
1 = Electrically isolates PHY from the MII/GPSI
0 = Normal operation
1 = Restart Auto-Negotiation
0 = Normal operation
** Self Clearing
8
Duplex Mode
7
Collision Test (Note 1)
6:0
Reserved
1 = Full-Duplex (for Loopback test only)
0 = Half-Duplex
1 = Enable COL test signal
0 = Disable COL test signal
Write as 0, ignore on read
Notes:
1. For collision test, the “enable loopback mode” bit must also be set to ensure that collision traffic is not imposed
on the network.
2. R/W = Read/Write; R = Read only.
44
Am79C901A
P R E L I M I N A R Y
HPR1: HomePNA PHY Status Register (Register 1)
Table 18.
Bits
HPR1: HomePNA PHY Status Register (Register 1)
Name
Description
Read/Write
Default
Value
(hex)
15
100BASE-T4
0 = PHY not able to perform 100BASE-T4
R
0
14
100BASE-X Full-Duplex
0 = PHY not able to perform Full-Duplex
100BASE-X
R
0
13
100BASE-X Half-Duplex
0 = PHY not able to perform Half-Duplex
100BASE-X
R
0
12
10 Mbps Full-Duplex
0 = PHY not able to perform 10 Mbps in Full-Duplex
R
0
11
10 Mbps Half-Duplex
1 = PHY able to perform 10 Mbps in Half-Duplex
R
1
Reserved
Reads will produce undefined results
R
X
R
1
R
0
R
0
R
0
R
0
R
0
R
1
10:7
6
Management Frame Preamble
Suppression
5
Auto-Negotiation Complete
4
Remote Fault
3
Auto-Negotiation Ability
1 = PHY will accept management frames with
Preamble suppressed
0 = PHY will not accept management frames with
Preamble suppressed
1 = Auto-Negotiation completed
0 = Auto-Negotiation not completed
1 = Remote fault detected
0 = Normal operation
1 = PHY is able to perform Auto-Negotiation
0 = PHY is not able to perform Auto-Negotiation
1 = Link is up
2
Link Status
0 = Link is down
This bit will be RESET (latched low and re-enabled
on Read).
1
Jabber Detect
0
Extended Capability
1 = Jabber condition detected
0 = Normal operation
1 = Extended Register capability
0 = Basic Register Set capability
Am79C901A
45
P R E L I M I N A R Y
HPR2 and HPR3: HomePNA PHY ID Registers (Registers 2 and 3)
Table 19.
Bits
15:0
Name
PHY_ID MSB (31-16)
Table 20.
Description
Most significant bytes of the PHY_ID (Bits 3-18)
Read/
Write
Default
Value
(hex)
R
0000
HPR3: HomePNA PHY ID Register (Register 3)
Read/
Write
Default
Value (hex)
IEEE Address (Bits 19-24)
R
1A
PHY_ID LSB (9-4)
Manufacturer’s Model Number
R
39
PHY_ID LSB (3-0)
Revision Number
R
1 (rev. A.1)
2 (rev. A.2)
3 (rev. A.3)
Bits
Name
15:10
PHY_ID LSB (15-10)
9:4
3:0
46
HPR2: HomePNA PHY ID Register (Register 2)
Description
Am79C901A
P R E L I M I N A R Y
HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4)
This register contains the advertised ability of the
Am79C901A device. The purpose of this register is to
advertise the technology ability to the link partner de-
Table 21.
Bits
HPR4: HomePNA PHY Auto-Negotiation Advertisement Register (Register 4)
Name
15
Next Page
14
Reserved
13
Remote Fault
12:11
vice. When this register is modified, Restart Auto-Negotiation (Register 0, bit 9) must be enabled to
guarantee the change is implemented.
Description
Read/Write
Default
Value
(hex)
When set, the device wishes to engage in next page exchange. If
cleared, the device does not wish to engage in next page
exchange.
R
0
R
0
R
0
R
0
R
0
R
0
When set, a remote fault bit is inserted into the base link code word
during the Auto-Negotiation process. When cleared, the base link
code work will have the bit position for remote fault as cleared.
Reserved
10
PAUSE
9
Reserved
8
Full-Duplex
100BASE-TX
This bit advertises Full-Duplex capability. When set, Full-Duplex
capability is advertised. When cleared, Full-Duplex capability is
not advertised.
R
0
7
Half-Duplex
100BASE-TX
This bit advertises Half-Duplex capability for the Auto-Negotiation
process. Setting this bit advertises Half-Duplex capability. Clearing
this bit does not advertise Half-Duplex capability.
R
0
6
Full-Duplex
10BASE-T
This bit advertises Full-Duplex capability. When set, Full-Duplex
capability is advertised. When cleared, Full-Duplex capability is
not advertised.
R
0
5
Half-Duplex
10BASE-T
This bit advertises Half-Duplex capability for the Auto-Negotiation
process. Setting this bit advertises Half-Duplex capability. Clearing
this bit does not advertise Half-Duplex capability.
R
1
Selector Field
The Am79C901A device is an IEEE 802.3 compliant device.
R
01
4:0
This bit should be set if the PAUSE capability is to be advertised.
Am79C901A
47
P R E L I M I N A R Y
HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register (Register 5)
The Auto-Negotiation Link Partner Ability Register is
Read Only. The register contains the advertised ability
of the link partner. The bit definitions represent the received link code word. This register contains either the
base page or the link partner’s next pages. The values
Table 22.
HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register - Base Page Format
(Register 5)
Bits
Name
Description
Read/Write
Default
Value
(hex)
15
Next Page
Link partner next page request
R
0
14
Acknowledge
Link partner acknowledgment
R
0
13
Remote Fault
Link partner remote fault request
R
0
12:5
Technology Ability
Link partner technology ability field
R
0
4:0
Selector Field
Link partner selector field
R
0
Table 23.
HPR5: HomePNA PHY Auto-Negotiation Link Partner Ability Register - Next Page Format
(Register 5)
Bits
Name
Description
Read/Write
Default
Value
(hex)
15
Next Page
Link partner next page request
R
0
14
Acknowledge
Link partner acknowledgment
R
0
13
Message Page
Link partner message page request
R
0
12
Acknowledge 2
R
0
11
Toggle
Link partner toggle bit
R
0
Message Field
Link partner’s message code
R
0
10:0
48
contained in these registers are only valid once AutoNegotiation has successfully completed, as indicated
by bit 5 in HPR1, or if the Next Page exchange is used,
after the Page Received (bit 1 of HPR6) has been set
to logic one.
1 = Link partner can comply with the request
0 = Link partner cannot comply with the request
Am79C901A
P R E L I M I N A R Y
HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6)
The Auto-Negotiation Expansion Register provides
additional information that aids the Auto-Negotiation
Table 24.
Bits
15:5
process. The Auto-Negotiation Expansion Register
bits are Read Only.
HPR6: HomePNA PHY Auto-Negotiation Expansion Register (Register 6)
Name
Description
Reserved
4
Parallel Detection
Fault
1 = Parallel detection fault
3
Link Partner Next
Page Able
1 = Link partner is next page able
2
Next Page Able
1
Page Received
0
Link Partner AutoNegotiation Able
0 = No parallel detection fault
0 = Link partner is not next page able
1 = Am79C901A device channel is next page able
0 = Am79C901A device channel is not next page able
1 = A new page has been received
0 = A new page has not been received
1 = Link partner is Auto-Negotiation able
0 = Link partner is not Auto-Negotiation able
Read/Write
Default
Value
(hex)
R
0
R
0
R
0
R
0
R
0
R
0
HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7)
The Auto-Negotiation Next Page Register contains
the next page link code word to be transmitted. On
Table 25.
Bits
power-up the default value of 0x2001 represents a
message page with the message code set to null.
HPR7: HomePNA PHY Auto-Negotiation Next Page Register (Register 7)
Name
Description
Am79C901A device channel next page request
Read/Write
Default
Value
(hex)
R
0
R
0
R
0
15
Next Page
14
Reserved
13
Message Page
12
Acknowledge 2
0 = Am79C901A device channel cannot comply with the
request
R
0
11
Toggle
Am79C901A device channel toggle bit
R
0
Message Field
Message code field
R
000
Am79C901A device channel message page request
1 = Am79C901A device channel can comply with the request
10:0
Reserved Registers: HPR8 - HPR15
These registers should be ignored when read and
should not be written to at any time.
Am79C901A
49
P R E L I M I N A R Y
HPR16: HomePNA PHY Control Register (Register 16)
Table 26.
Bits
15
14:13
HPR16: HomePNA PHY Control Register (Register 16)
Name
Remote Command
Reserved
Description
1 = Ignore Remote Commands
0 = Normal operation
Reads will produce undefined results. Should be
written as 0.
Read/
Write
Default
Value
(hex)
R/W
0
R/W
XX
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R
0
R
X
R/W
1
R/W
0
R/W
X
1 = Disables the SQE heartbeat which occurs after
each transmission.
12
SQE_TEST Disable
11
Command Low Power
10
Command High Power
9
Command Low Speed
8
Command High Speed
7
Disable AID Negotiation
6
Clear PHY-Event Counter
0 = The heartbeat assertion occurs on the COL pin
approximately 1-5 µs after transmission and for a
duration of 1 µs.
1 = Command low power
0 = Normal operation
1 = Command high power
0 = Normal operation
1 = Command low speed
0 = Normal operation
1 = Command high speed
0 = Normal operation
1 = Disable AID negotiation
0 = Normal operation
1 = Clear PHY event counter
0 = Normal operation
**Self clearing after ~100 ns
5
Disable Squelch adaptation
4
Power Down
1 = Disable Squelch adaptation
0 = Normal operation
1 = Power down
0 = Normal operation
(This bit is controlled by the HPR0, bit 11)
3
Reserved
2
High Speed
1
High Power
0
Reserved
Reads will produce undefined results
1 = Device is currently in High speed
0 = Device is currently in Low speed
1 = Device is currently in High power
0 = Device is currently in Low power
Reads will produce undefined results
Note: Writes to bits 1 and 2 will affect speed and power on node only.
50
Am79C901A
P R E L I M I N A R Y
HPR17: HomePNA PHY Status/Control Register (Register 17)
The HomePNA PHY Status/Control Register provides information regarding the global aspects of the
operation of the PHY.
Table 27.
Name
Bits
15:13
12
HPR17: HomePNA PHY Status/Control Register (Register 17)
Description
Test control bits. Reads will produce undefined
results. Should be written as 0.
Reserved
any1Home_ Disable
1 = any1Home Link packet disabled
0 = any1Home Link packet enabled
Read/Write
Default
Value
(hex)
R
00
R/W
0
11:8
Reserved
Test control bits. Reads will produce undefined
results. Should be written as 0.
R
3
7
Reserved
Test control bit. Reads will produce undefined
results. Should be written as 0.
R
0
6
Received_Power
R
0
5
Received_Speed
R
0
4
Received_Ver
R
0
R
X
3:0
1 = Last packet received, was sent at High Power
0 = Last packet received, was sent at Low Power
1 = Last packet received, was sent at High Speed
0 = Last packet received, was sent at Low Speed
1 = Last packet received, was sent at Version XX
0 = Last packet received, was sent at Version 0
Test control bits. Reads will produce undefined
results. Should be written as 0.
Reserved
HPR18 and HPR19: HomePNA PHY TxCOMM
Registers (Registers 18 and 19)
Table 28.
HPR18 and HPR19: HomePNA PHY TxCOMM Registers (Registers 18 and 19)
Bits
Name
15:0
PHY_TX_COMM (4)
Description
Read/Write
Default
Value
(hex)
The 32-bit preamble transmitted on the HomePNA
PHY. HPR18 contains the high word and HPR19 the
low word.
R/W
0000
The 32-bit transmitted data field is to be used for outof-band communication between PHY management
entities. No protocol for out-of-band management has
been defined. Accessing the low word causes the PHY
to send all-0 PCOMs until the high word has been accessed. Once accessed, the next transmitted packet
will cause this register’s contents to be shifted out in the
PCOM field of the transmitted packet. Upon transmission, this register will read back as all 0s. A non-null
transmitted PCOM will set the TxPCOM Ready bit in
the Event Status Register (HPR26). An access to any
of the two TxPCOM words will clear the TxPCOM
Ready bit in the ISTAT register.
Am79C901A
51
P R E L I M I N A R Y
HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21)
Table 29.
HPR20 and HPR21: HomePNA PHY RxCOMM Registers (Registers 20 and 21)
Bits
Name
15:0
PHY_RX_COMM (4)
Description
Read/Write
Default
Value
(hex)
The 32-bit preamble received by the HomePNA
PHY. HPR20 contains the high word and HPR21 the
low word.
R
0000
The 32-bit received data field to be used for out-ofband communication between PHY management
entities. No protocol for out-of-band management
has been defined. Accessing the low word of the
register is sufficient to ensure that subsequently
received packets will not overwrite the register
contents. A non-null received PCOM will set the
RxPCOM Valid bit of the Event Status Register
(HPR26). Accessing the high word of the register
clears this bit and allows overwriting of the register
by subsequent received packets.
HPR22: HomePNA PHY AID Register (Register 22)
Table 30.
Bits
HPR22: HomePNA PHY AID Register (Register 22)
Name
Description
Read/Write
Default
Value
(hex)
R/W
00
R/W
00
The Access ID of this PHY.
15:8
PHY_AID
7:0
Noise Events
If PHY_Control Disable AID Negotiation is set, then
writes to this bit will have no effect.
An 8-bit counter that records the number of noise
events detected. Overflows are held as FFh. Can be
cleared by setting bit 6 of HPR16.
The PHY’s AID address is used for collision detection. Unless bit 7 of the CONTROL register is set,
the PHY is assured to select a unique AID address.
Addresses above EFh are reserved. Address FFh is
defined to indicate a remote command.
HPR23: HomePNA PHY Noise Control Register (Register 23)
Table 31.
Read/
Write
Default
Value
(hex)
Noise Floor
If the input NOISE measurement (HPR25, bits 15:8)
exceeds the PEAK measurement (HPR25, bits 7:0),
this value is loaded into the NOISE Level register
HPR25, bits 15:8.
R/W
03
Noise Ceiling
If the input NOISE measurement (HPR25, bits 15:8)
exceeds the PEAK measurement (HPR25, bits 7:0),
this value is loaded into the NOISE Level register
HPR25, bits 7:0.
R/W
FF
Bits
15:8
7:0
52
HPR23: HomePNA PHY Noise Control Register (Register 23)
Name
Description
Am79C901A
P R E L I M I N A R Y
HPR24: HomePNA PHY Noise Control 2 Register (Register 24)
Table 32.
Bits
Name
HPR24: HomePNA PHY Noise Control 2 Register (Register 24)
Description
15:8
Noise Attack
Sets the attack characteristics of the NOISE
algorithm. High nibble sets number of noise events
needed to raise the NOISE level immediately, while
the low nibble is the number of noise events needed
to raise the level at the end of an 870 ms period.
7:0
Reserved
Reads will produce undefined results.
Read/
Write
Default
Value
R/W
F4
R
XX
HPR25: HomePNA PHY Noise Statistics Register (Register 25)
Table 33.
Bits
Name
HPR25: HomePNA PHY Noise Statistics Register (Register 25)
Description
15:8
Noise Level
This is the digital value of the SLICE_LVL_NOISE
output. It is effectively a measure of the noise level
on the wire and tracks noise by counting the
number of false triggers of the NOISE comparator
in an 800 ms window. When auto-adaptation is
enabled (bit 5 of the PHY_Control Register is
false), this register is updated with the current
NOISE count every 50 ns. When adaptation is
disabled, this register may be written to and is used
to generate both the SLICE_LVL_NOISE and
SLICE_LVL_DATA signals.
7:0
Peak Level
This is a measurement of the peak level of the last
valid (non-collision) AID received.
Am79C901A
Read/
Write
Default
Value
(hex)
R/W
03
R/W
FF
53
P R E L I M I N A R Y
HPR26: HomePNA PHY Event Status Register (Register 26)
Table 34.
Bits
HPR26: HomePNA PHY Event Status Register (Register 26)
Name
Description
Read/
Write
Default
Value
(hex)
R
0
15:10
Reserved
9
RxPCOM
Indicates a valid RxPCOM. An access to the
RxCOM MSB Register 18 will clear this bit.
R
0
8
TxPCOM
Indicates a valid TxPCOM. Any access to the
TxCOM registers (Registers 20 and 21) will clear
this bit.
R
0
7:4
Reserved
Reads will produce undefined results. Should be
written as 0.
R
X
3
Packet Received
Status is cleared by writing a 0.
R/W
0
2
Packet Transmitted
Status is cleared by writing a 0.
R/W
0
1
Remote Command Received
R/W
0
0
Remote Command Sent
R/W
0
Read/
Write
Default
Value
(hex)
A valid remote command was received.
Status is cleared by writing a 0.
A remote command has been sent.
Status is cleared by writing a 0.
HPR27: HomePNA PHY AID Control Register (Register 27)
The HomePNA AID Control Register reports the state
of each event source. Any bit may be written and so
facilitate software-stimulated event testing.
Table 35.
Bits
54
Name
HPR27: HomePNA PHY AID Control Register (Register 27)
Description
15:8
AID_INTERVAL
This value defines the number of TCLKs (116.6 ns)
separating AID symbols.
R/W
14
7:0
AID_ISBI
This value defines the number of TCLKs (116.6 ns)
separating AID symbol 0.
R/W
40
Am79C901A
P R E L I M I N A R Y
HPR28: HomePNA PHY ISBI Control Register (Register 28)
Table 36.
Bits
HPR28: HomePNA PHY ISBI Control Register (Register 28)
Name
Description
Read/
Write
Default
Value
(hex)
15:8
ISBI_SLOW
This value defines the number of TCLKs (116.6 ns)
separating data pulses for Symbol 0 in low-speed
mode.
R/W
2C
7:0
ISBI_FAST
This value defines the number of TCLKs (116.6 ns)
separating data pulses for Symbol 0 in high-speed
mode.
R/W
1C
Read/
Write
Default
Value
(hex)
HPR29: HomePNA PHY TX Control Register
(Register 29)
Table 37.
HPR29: HomePNA PHY TX Control Register (Register 29)
Bits
Name
Description
15:8
TX_PULSE_WIDTH
This value defines the duration of a transmit pulse in
OSC cycles (16.7 ns). This will effectively determine
the transmit spectrum of the PHY.
R/W
04
7:4
TX_PULSE_CYCLES_N
This value defines the number of pulses that will be
driven onto the HRTXRX_N pin.
R/W
4
3:0
TX_PULSE_CYCLES_P
This value defines the number of pulses that will be
driven onto the HRTXRX_P pin.
R/W
4
HPR30: HomePNA PHY Drive Level Control Register (Register 30)
Table 38.
Bits
HPR30: HomePNA PHY Drive Level Control Register (Register 30)
Name
Description
Read/
Write
Default
Value
(hex)
R
XX
15:12
Reserved
Reserved. Must be written as 0. Read = X.
11:6
High Level Control
Defines the drive level that will be utilized in the High
Power mode.
R/W
15
5:0
Low Level Control
Defines the drive level that will be utilized in the Low
Power mode.
R/W
09
Am79C901A
55
P R E L I M I N A R Y
HPR31: HomePNA PHY Analog Control Register (Register 31)
Table 39.
Bits
HPR31: HomePNA PHY Analog Control Register (Register 31)
Name
Description
15:11
Level_Adjust
Global output slope adjustment. These bits control
the number of current sources enabled for transmit.
Each bit represents a single current source. Thus
10101 enables three current sources as does
11100.
10:8
Reserved
Reserved. Must be written as 0.
1 = Link Status bit will be held valid
Force_Link_Valid
7
0 = Normal operation
Reserved
6:0
Reserved. Must be written as 0.
Read/
Write
Default
Value
(hex)
R/W
18
R/W
0
R/W
0
R/W
0
10BASE-T PHY Management Registers (TBRs)
The Am79C901A home networking device supports
the MII basic register set and extended register set.
Both sets of registers are accessible through the MII
management interface or via the SPI interface. As
specified in the IEEE standard, the basic register setStatus Register (Register 1). The extended register set
Table 40.
56
Register
Address
Symbol
0
TBR0
1
consists of the Control Register (Register 0) and the
consists of Registers 2 to 31 (decimal).
Table 40 lists all the 10BASE-T registers implemented in the device. All the reserved registers
should not be written to, and reading them will return
an undetermined value.
10BASE-T PHY Management Registers (TBRs)
Basic/Extended
Default Value After
H_RESET
PHY Control Register
B
1500h
TBR1
PHY Status Register
B
1xx9h
2
TBR2
PHY Identifier Register
E
0000h
3
TBR3
PHY Identifier Register
E
6B71h
4
TBR4
Auto-Negotiation Advertisement Register
E
0061h
5
TBR5
Auto-Negotiation Link Partner Ability Register
E
0000h
6
TBR6
Auto-Negotiation Expansion Register
E
0004h
7
TBR7
Auto-Negotiation Next Page Register
E
2001h
8:15
TBR8-TBR15
Reserved
E
–
16
TBR16
Status and Enable Register
E
0000h
17
TBR17
PHY Control/Status Register
E
0001h
18
TBR18
Reserved
E
–
19
TBR19
PHY Management Extension Register
E
–
20:23
TBR20-TBR23
Reserved
E
–
24
TBR24
Summary Status Register
E
0000h
25:31
TBR25-TBR31
Reserved
E
–
Name
Am79C901A
P R E L I M I N A R Y
TBR0: 10BASE-T PHY Control Register (Register 0)
Table 41.
Bits
TBR0: 10BASE-T PHY Control Register (Register 0)
Name
Description
Read/Write
(Note 1)
Default
Value
(hex)
R/W, SC
0
R/W
0
R
0
R/W
1
R/W
0
R/W
1
R/W, SC
0
R/W
1
R/W
0
R
0
When write
1 = PHY software reset
15
Soft Reset (Note 2)
0 = Normal operation
When read
1 = Reset in process
0 = Reset done
14
Enable Loopback Mode
13
Speed Selection
(Note 3)
12
Auto-Negotiation Enable
11
Power Down
10
1 = Loopback mode enable
0 = Loopback mode disable
1 = 100 Mbps (not available)
0 = 10 Mbps
1 = Enable Auto-Negotiation
0 = Disable Auto-Negotiation
1 = Power down
0 = Normal operation
Isolate
1 = Electrically isolates PHY from the MII/GPSI
(Note 4)
0 = Normal operation
1 = Restart Auto-Negotiation
9
Restart Auto-Negotiation
8
Duplex Mode
(Note 3)
1 = Full-Duplex
7
Collision Test
(Note 5)
1 = Enable COL signal test
Reserved
Write as 0, ignore on read
6:0
0 = Normal operation
0 = Half-Duplex
0 = Disable COL signal test
Notes:
1. R/W = Read/Write, SC = Self Clearing, R = Read only.
2. Soft Reset does not reset the PDX block. Refer to the Soft Reset section for details.
3. Bits 8 and 13 have no effect if Auto-Negotiation is enabled (Bit 12 = 1).
4. If the ISOL pin of the chip and the Isolate bit in Register 0 is 1, this bit will be set.
5. The “enable loopback mode” bit must also be set to ensure that collision traffic is not imposed on the network.
Am79C901A
57
P R E L I M I N A R Y
TBR1: 10BASE-T Status Register (Register 1)
The Status Register identifies the physical and AutoNegotiation capabilities of the local PHY. This register
is read only; a write will have no effect. See Table 42.
Table 42.
Bits
TBR1: 10BASE-T PHY Status Register (Register 1)
Name
Description
1 = 100BASE-T4 able
Default
Value
(hex)
R
0
15
100BASE-T4
14
100BASE-X Full-Duplex
1 = 100BASE-X full-duplex able
0 = Not 100BASE-X full-duplex able
R
0
13
100BASE-X Half-Duplex
1 = 100BASE-X half-duplex able
0 = Not 100BASE-X half-duplex able
R
0
12
10 Mbps Full-Duplex
R
1
11
10 Mbps Half-Duplex
1 = 10 Mbps half-duplex able
0 = Not 10 Mbps half-duplex able
R
1
Reserved
Ignore when read
R
X
6
Management Frame Preamble
Suppression
1 = PHY can accept management (mgmt)
frames with or without preamble
0 = PHY can only accept mgmt frames with
preamble
R
1
5
Auto-Negotiation Complete
R
0
4
Remote Fault
1 = Remote fault detected
0 = No remote fault detected
3
Auto-Negotiation Ability
1 = PHY able to auto-negotiate,
0 = PHY not able to auto-negotiate
2
Link Status
1 = Link is up
0 = Link is down
1
Jabber Detect
1 = Jabber condition detected
0 = No jabber condition detected
R
0
0
Extended Capability
1 = Extended register capabilities
0 = Basic register set capabilities only
R
1
10:7
0 = Not 100BASE-T4 able
1 = 10 Mbps full-duplex able
0 = Not 10 Mbps full-duplex able
1 = Auto-Negotiation completed
0 = Auto-Negotiation not completed
Note:
1. LH = Latching High, LL = Latching Low.
58
Read/Write
(Note 1)
Am79C901A
R, LH
(Note 1)
R
R, LL
(Note 1)
0
1
0
P R E L I M I N A R Y
TBR2 and TBR3: 10BASE-T PHY Identifier Register (Registers 2 and 3)
Registers 2 and 3 contain a unique PHY identifier, consisting of 22 bits of the organizationally unique IEEE
identifier, a 6-bit manufacturer’s model number, and a
4-bit manufacturer’s revision number. The most significant bit of the PHY identifier is bit 15 of register 2; the
least significant bit of the PHY identifier is bit 0 of register 3. Register 2, bit 15, corresponds to bit 3 of the
IEEE identifier and register 2, bit 0, corresponds to bit
Table 43.
Bits
Name
15:0
PHY_ID[31-16]
Table 44.
Bits
Name
18 of the IEEE identifier. Register 3, bit 15, corresponds to bit 19 of the IEEE identifier and register 3, bit
10, corresponds to bit 24 of the IEEE identifier. Register 3, bits 9-4, contain the manufacturer’s model number and bits 3-0 contain the manufacturer’s revision
number. These registers are shown in Table 43 and
Table 44.
TBR2: 10BASE-T PHY Identifier Register (Register 2)
Description
IEEE Address (bits 3-18); Register 2, bit
15 is MSB of PHY Identifier
Read/
Write
Default Value (hex)
R
0000
TBR3: 10BASE-T PHY Identifier Register (Register 3)
Description
Read/
Write
Default Value (hex)
PHY_ID[15-10]
IEEE Address (bits 19-24)
R
1A
9:4
PHY_ID[9-4]
Manufacturer’s Model Number (bits 5-0)
R
37
3:0
PHY_ID[3-0]
Revision Number (bits 3-0); Register 3, bit
0, is LSB of PHY Identifier
R
01
15:10
Am79C901A
59
P R E L I M I N A R Y
TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4)
This register contains the advertised ability of the
Am79C901A home networking device. The purpose of
this register is to advertise the technology ability to the
link partner device. See Table 45.
Table 45.
W hen th is reg ister is m odifi ed, Restar t AutoNegotiation (Register 0, bit 9) must be enabled to
guarantee the change is implemented.
TBR4: 10BASE-T Auto-Negotiation Advertisement Register (Register 4)
Bits
Name
Description
15
Next Page
When set, the device wishes to engage in next page exchange. If
cleared, the device does not wish to engage in next page
exchange.
14
Reserved
When set, a remote fault bit is inserted into the base link code
word during the Auto-Negotiation process. When cleared, the
base link code work will have the bit position for remote fault as
cleared.
Read/
Write
Default
Value
(hex)
R/W
0
R
0
R/W
0
R
0
R/W
0
R
0
13
Remote Fault
12:11
Reserved
10
PAUSE
9
Reserved
8
Full-Duplex 100BASE-TX
This bit advertises Full-Duplex capability. When set, Full-Duplex
capability is advertised. When cleared, Full-Duplex capability is
not advertised.
R
0
7
Half-Duplex 100BASE-TX
This bit advertises Half-Duplex capability for the Auto-Negotiation
process. Setting this bit advertises Half-Duplex capability.
Clearing this bit does not advertise Half-Duplex capability.
R
0
6
Full-Duplex 10BASE-T
This bit advertises Full-Duplex capability. When set, Full-Duplex
capability is advertised. When cleared, Full-Duplex capability is
not advertised.
R/W
1
5
Half-Duplex 10BASE-T
This bit advertises Half-Duplex capability for the Auto-Negotiation
process. Setting this bit advertises Half-Duplex capability.
Clearing this bit does not advertise Half-Duplex capability.
R/W
1
4:0
Selector Field
The 10BASE-T PHY of the Am79C901A home networking device
is an 802.3 compliant device.
R
01
60
This bit should be set if the PAUSE capability is to be advertised.
Am79C901A
P R E L I M I N A R Y
TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5)
The Auto-Negotiation Link Partner Ability Register is
Read Only. The register contains the advertised ability
of the link partner. The bit definitions represent the received link code word. This register contains either the
base page or the link partner’s next pages. The values
Table 46.
contained in these registers are only valid once AutoNegotiation has successfully completed, as indicated
by bit 5 in TBR1, or if the Next Page exchange is used
after the Page Received (TBR6, bit 1) has been set to
logic one. See Table 46 and Table 47.
TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) - Base Page Format
Read/
Write
Default Value
(hex)
Link partner next page request
R
0
Acknowledge
Link partner acknowledgment
R
0
13
Remote Fault
Link partner remote fault request
R
0
12:5
Technology Ability
Link partner technology ability field
R
0
4:0
Selector Field
Link partner selector field
R
0
Bits
Name
15
Next Page
14
Table 47.
Description
TBR5: 10BASE-T Auto-Negotiation Link Partner Ability Register (Register 5) - Next Page Format
Bits
Name
15
Next Page
14
Acknowledge
13
Message Page
12
Acknowledge 2
11
Toggle
10:0
Message Field
Read/
Write
Default Value
(hex)
Link partner next page request
R
0
Link partner acknowledgment
R
0
Link partner message page request
R
0
R
0
Link partner toggle bit
R
0
Link partner’s message code
R
0
Description
1 = Link partner can comply with the request
0 = Link partner cannot comply with the request
Am79C901A
61
P R E L I M I N A R Y
TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6)
The Auto-Negotiation Expansion Register provides additional information which aids the Auto-Negotiation
Table 48.
TBR6: 10BASE-T Auto-Negotiation Expansion Register (Register 6)
Bits
Name
15:5
Reserved
4
Parallel Detection
Fault
1 = Parallel detection fault
3
Link Partner Next
Page Able
1 = Link partner is next page able
2
Next Page Able
1
Page Received
0
process. The Auto-Negotiation Expansion Register bits
are Read Only. See Table 48.
Description
0 = No parallel detection fault
0 = Link partner is not next page able
1 = Am79C901A device channel is next page able
0 = Am79C901A device channel is not next page able
1 = A new page has been received
Read/
Write
Default Value
(hex)
R
0
R, LH
0
R
0
R
1
R, LH
0 = A new page has not been received
Link Partner ANEG 1 = Link partner is Auto-Negotiation able
Able
0 = Link partner is not Auto-Negotiation able
R
0
0
TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7)
The Auto-Negotiation Next Page Register contains the
next page link code word to be transmitted. On power-up
Table 49.
Bits
Name
15
Next Page
14
Reserved
13
Message Page
12
Acknowledge 2
11
Toggle
10:0
Message Field
the default value of 2001h represents a message page
with the message code set to null. See Table 49.
TBR7: 10BASE-T Auto-Negotiation Next Page Register (Register 7)
Description
Am79C901A device channel next page request
Am79C901A device channel message page request
1 = Am79C901A device channel can comply with the request
0 = Am79C901A device channel cannot comply with the request
Am79C901A device channel toggle bit
Message code field
Read/
Write
Default Value
(hex)
R/W
0
R
0
R/W
1
R/W
0
R
0
R/W
001
Reserved Registers (Registers 8-15, 18, 20-23, and 25-31)
The Am79C901A device contains reserved registers at
addresses 8-15, 18, 20-23, and 25-31. These registers
62
should be ignored when read and should not be written
to at any time.
Am79C901A
P R E L I M I N A R Y
TBR16: 10BASE-T Status and Enable Register (Register 16)
The status bits indicate when there is a change in the
Link Status, Duplex Mode, Auto-Negotiation status,
or Speed status. Register 16 contains the status and
enable bits. The status is always updated whether or
Table 50.
Bits
Name
15:14
Reserved
13
not the enable bits are set. When a status change occurs, the system will need to read this register to
clear the status bits. See Table 50.
TBR16: 10BASE-T Status and Enable Register (Register 16)
Status Test Enable
(Note 1)
Description
1 = When this bit is set, setting bits 12:9 of this register
will cause a condition that will set bits 4:1
accordingly. The effect is to test the register bits with
a forced interrupt condition.
Read/
Write
Default Value
(hex)
R
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R/W
0
R
0
R, LH
0
R, LH
0
R, LH
0
R, LH
0
R, LH
0
0 = Bits 4:1 are only set if the interrupt condition (if any
bits in 12:9 are set) occurs.
12
Link Status Change
Enable
11
Duplex Mode Change
Enable
10
Auto-Negotiation Change
Enable
9
8
Speed Change Enable
Global Enable
7:5
Reserved
4
Link Status Change
3
Duplex Mode Change
2
Auto-Negotiation Change
1
Speed Change
0
Global
1 = Link Status change enable
0 = This interrupt is masked
1 = Duplex Mode change enable
0 = This interrupt is masked
1 = Auto-Negotiation change enable
0 = This interrupt is masked
1 = Speed change enable
0 = This interrupt is masked
1= Global interrupt enable
0 = This interrupt is masked
1 = Link Status has changed on a port
0 = No change in Link Status
1 = Duplex Mode has changed on a port
0 = No change in Duplex mode
1 = Auto-Negotiation status has changed on a port
0 = No change in Auto-Negotiation status
1 = Speed status has changed on a port
0 = No change
1 = Indicates a change in status of any of the above
interrupts
0 = Indicates no change in Interrupt status
Note:
All bits, except bit 13, are cleared on read (COR). The register must be read twice to see if it has been cleared.
Am79C901A
63
P R E L I M I N A R Y
TBR17: 10BASE-T PHY Control/Status Register (Register 17)
This register is used to control the configuration of the 10
Mbps PHY of the Am79C901A home networking device.
See Table 1.
Table 1.
TBR17: 10BASE-T PHY Control/Status Register (Register 17)
Read/Write
Default
Value
(hex)
R
00
1 = Link status forced to link up state
0 = Link status is determined by the device
R/W
0
Disable Link Pulse
1 = Link pulses sent from the 10BASE-T transmitter
are suppressed
0 = Link pulse enabled (normal operation)
R/W
0
11
SQE_TEST Disable
1 = Disables the SQE heartbeat which occurs after
each 10BASE-T transmission
0 = The heartbeat assertion occurs on the COL pin
approximately 1 µs after transmission and for a
duration of 1 µs
R/W
0
10
Reserved
R
0
R/W
0
R
00
R
0
1 = Polarity correction circuit is disabled for
10BASE-T
0 = Self correcting polarity circuit is enabled
R/W
0
1 = 10BASE-T receive squelch thresholds are
reduced to allow reception of frames which are
greater than 100 meters
0 = Squelch thresholds are set for standard distance
of 100 meters
R/W
0
1 = TX± outputs not active
0 = Transmit valid data
R/W
0
1 = CRS is asserted when transmit or receive
medium is active
0 = CRS is asserted when receive medium is active
R/W
0
R
0
R
1
Bits
Name
15:14
Reserved
13
Force Link Good Enable
12
9
Jabber Detect Disable
8:7
Reserved
6
Receive Polarity
Reversed
5
Auto Receive Polarity
Correction Disable
4
3
Extended Distance
Enable
TX_DISABLE
2
TX_CRS_EN
1
Reserved
0
PHY Isolated
Description
1 = Disable jabber detect
0 = Enable jabber detect
1 = Receive polarity of the 10BASE-T receiver is
reversed
0 = Receive polarity is correct
1 = 10BASE-T PHY is isolated
0 = 10BASE-T PHY is enabled
Note: For these loopback paths, the data is also transmitted out of the MDI pins (TX±).
64
Am79C901A
P R E L I M I N A R Y
TBR19: 10BASE-T PHY Management Extension Register (Register 19)
Table 2 contains the PHY Management Extension Register (Register 19) bits.
Table 2.
TBR19: 10BASE-T PHY Management Extension Register (Register 19)
Bits
Name
15:6
Reserved
5
Mgmt Frame Format
Read/Write
Default Value
(hex)
Write as 0; ignore on read
R
0
1 = Last management frame was invalid
(opcode error, etc.)
R
0
R
01/03
Description
0 = Last management frame was valid
PHY Address defaults to 000X1
4:0
PHY Address
X = Value on pin PHY_ADD (i.e., 00001 or
00011)
TBR24: 10BASE-T Summary Status Register (Register 24)
The Summary Status register is a global register containing status information. This register is Read Only
and represents the most important data which a single
Table 3.
Bits
Name
15:4
Reserved
3
Link Status
2
Full-Duplex
1
Auto-Negotiation
Alert
0
Speed
register access can convey. The Summary Status register indicates the following: Link Status, Full-Duplex Status, Auto-Negotiation Alert, and Speed. See Table 3.
TBR24: 10BASE-T Summary Status Register (Register 24)
Description
Write as 0; Ignore on Read
1 = Link Status is up
0 = Link Status is down
1 = Operating in Full-Duplex mode
0 = Operating in Half-Duplex mode
1 = Auto-Negotiation status has changed
0 = Auto-Negotiation status unchanged
1 = Operating at 100 Mbps
0 = Operating at 10 Mbps
Am79C901A
Read/Write
Default Value
(hex)
R
0
R
0
R
0
R
0
R
0
65
P R E L I M I N A R Y
ABSOLUTE MAXIMUM RATINGS
OPERATING RANGES
Storage Temperature . . . . . . . . . . . . –65°C to +150°C
Commercial (C) Devices
Ambient Temperature (C). . . . . . . . . . -65°C to +70°C
Temperature (TA) . . . . . . . . . . . . . . . . . .0°C to +70°C
Ambient Temperature (I) . . . . . . . . . . -65°C to +85°C
Supply Voltages (VDD) . . . . . . . . . . . . . 3.0 V to 3.6 V
Supply Voltage
with respect to VSS . . . . . . . . . . . . . –0.3 V to 3.63 V
All inputs within the range: . . . . . . VSS - 0.5 V to 5.5 V
Stresses above those listed under Absolute Maximum
Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to
Absolute Maximum Ratings for extended periods may
affect device reliability.
66
Industrial (I) Devices
Temperature (TA) . . . . . . . . . . . . . . . . -40°C to +85°C
Supply Voltages (VDD) . . . . . . . . . . . . . 3.0 V to 3.6 V
All inputs within the range: . . . . . . VSS - 0.5 V to 5.5 V
Operating ranges define those limits between which
the functionality of the device is guaranteed.
Am79C901A
P R E L I M I N A R Y
DC CHARACTERISTICS
Parameter
Symbol
Parameter Description
Digital I/O Voltage
VIH
Input HIGH Voltage
VIH5V
Input HIGH voltage (5V)
VIL
Input LOW Voltage
Test Conditions
Min
Max
2.0
2.0
Units
V
DVDD + 2.5
V
0.8
V
0.4
V
IOL1 = 4 mA
VOL
Output LOW Voltage
IOL2 = 6 mA
IOL3 = 12 mA
IOH1 = -4 mA
VOH
Output HIGH Voltage (Notes 1, 2)
IOH2 = -2 mA
2.4
V
(Note 2)
Output Voltage on TX± (peak)
(Note 8)
Input Differential Squelch Assert on
VDIFF
RX± (peak)
Input Differential De-Assert Voltage
VDIFF
on RX± (peak)
Digital I/O Current
IOZ
Output Leakage Current (Note 3)
IIX
Input Leakage Current (Note 4)
IIL
Input LOW Current (Note 5)
IIH
Input HIGH Current (Note 5)
Power Supply Current
VOUT
ICC
(1 Mbps)
1 Mbps mode on TX± and RX±.
Outputs driving load.
ICC
(10 Mbps)
10BASE-T mode on TX± and RX±.
Outputs driving load.
ICC
(Static)
ICC
(Idle)
XCLK frequency = 0.
Not transmitting.
Pin Capacitance
CIN
Pin Capacitance
CCLK
CLK Pin Capacitance
LPIN
Pin Inductance
1.55
1.98
V
300
520
mV
150
300
mV
-10
10
µA
-10
-200
10
-10
µA
µA
-50
10
µA
Transmitting maximum packets at
minimum IPG.
VDD = Maximum
100
mA
Transmitting maximum packets at
minimum IPG.
VDD = Maximum
175
mA
45
mA
75
mA
10
pF
12
20
pF
nH
0 V <VOUT <VDD
0 V < VIN < VDD
VIN = 0 V; VDD = 3.6 V
VIN = 2.7 V; VDD = 3.6 V
VDD= Maximum
VDD = Maximum
FC = 1 MHz (Note 6)
FC = 1 MHz (Notes 6, 7)
FC = 1 MHz (Note 6)
5
Notes:
1. VOH does not apply to open-drain output pins.
2. IOH2 applies to all other outputs.
3. IOZ applies to all output and bidirectional pins. Tests are performed at VIN = 0 V and at VDD only.
4. IIX applies to all input pins except TDI, TCLK, and TMS pins.
5.
6.
7.
8.
IIL and IIH apply to the TDI, TCLK, and TMS pins.
Parameter not tested. Value determined by characterization.
CCLK applies only to the CLK pin.
VOUT reflects output levels prior to 1: √ 2 transformer state.
Am79C901A
67
P R E L I M I N A R Y
SWITCHING WAVEFORMS
Key to Switching Waveforms
WAVEFORM
INPUTS
OUTPUTS
Must be
Steady
Will be
Steady
May
Change
from H to L
Will be
Changing
from H to L
May
Change
from L to H
Will be
Changing
from L to H
Don’t Care,
Any Change
Permitted
Changing,
State
Unknown
Does Not
Apply
Center
Line is HighImpedance
“Off” State
KS000010-PAL
SWITCHING TEST CIRCUITS
IOL
VTHRESHOLD
Sense Point
CL
IOH
22304B-25
Figure 1.
68
Normal and Tri-State Outputs
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS
GPSI
10BASE-T Transmit Timing (GPSI)
No.
Symbol
1
tS
2
Parameter Description
Min
Max
Unit
TXDAT, TXEN setup time to TXCLK ↑ edge
10
–
ns
tH
TXDAT, TXEN hold time from TXCLK ↑ edge
0
–
ns
3
tPD
Transmit latency (TXEN sampled HIGH to 1st bit of data)
240
360
ns
4
tPD
RXCRS assert from TXEN sampled HIGH
0
130
ns
5
tPD
RXCRS de-assert from TXEN sampled LOW
0
130
ns
6
tPWL
300
–
ns
TXEN de-assertion time between packets (Note 1)
Note: Not tested.
TXCLK
6
TXEN
5
4
RXCRS
3
TX±
End of Packet
Start of Packet
2
1
TXDAT,
TXEN
22304B-26
Figure 2.
10 Mbps Transmit Timing (GPSI)
Am79C901A
69
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T Receive Timing (GPSI)
No.
Symbol
10
tPD
11
Parameter Description
Min
Max
Unit
CLS assert latency from SOP
200
300
ns
tPD
RXCRS assert latency from SOP
200
300
ns
12
tPD
Receive latency (SOP to RXDAT valid)
320
430
ns
13
tPD
RXCLK ↓ edge to RXDAT transition
–
10
ns
14
tPD
CLS de-assert latency from EOP
125
250
ns
15
tPD
RXCRS de-assert latency from EOP
165
255
ns
RXCLK
RX±
Start of Packet
10
CLS
11
RXCRS
12
13
RXDAT
22304B-27
Figure 3.
70
10 Mbps Receive Start of Packet Timing (GPSI)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T Receive Timing (GPSI) (Continued)
RXCLK
End of Packet
RX±
14
CLS
15
RXCRS
22304B-28
Figure 4.
10 Mbps Receive End of Packet Timing (GPSI)
10BASE-T Transmit Clock Timing (GPSI)
No.
Symbol
Parameter Description
Min
Max
Unit
18
tPER
TXCLK period
99.99
100.01
ns
19
tPWH
TXCLK pulse width HIGH
45
55
ns
20
tPWL
TXCLK pulse width LOW
45
55
ns
Min
Max
Unit
99.99
100.01
ns
10BASE-T Receive Clock Timing (GPSI)
No.
Symbol
Parameter Description
18
tPER
RXCLK period
19
tPWH
RXCLK pulse width HIGH
45
55
ns
20
tPWL
RXCLK pulse width LOW
45
55
ns
18
19
20
TXCLK,
RXCLK
Figure 5.
22304B-29
10 Mbps Transmit and Receive Clock Timing (GPSI)
Am79C901A
71
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Transmit Timing (GPSI)
No.
Symbol
23
tS
24
Parameter Description
Min
Max
Unit
TXDAT setup time to TXCLK ↑
12
–
ns
tS
TXEN setup time to TXCLK ↓
10
–
ns
25
tH
TXDAT hold time from TXCLK ↑
10
–
ns
26
tH
TXEN hold time from TXCLK ↓
10
–
ns
27
tPD
Transmit Latency (TXEN sampled HIGH to SYNC pulse (5 mV))
200
500
ns
28
tPD
TXEN sampled HIGH to CLS active (Note 1)
–
120
µs
Note: Not tested.
TXCLK
23
25
TXDAT
24
26
TXEN
27
SYNC
AID
HRTXRXP/N±
PCOM
DATA
28
CLS
22304B-30
Figure 6.
72
1 Mbps HomePNA Transmit Timing (GPSI)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Receive Timing (GPSI)
No.
Symbol
Parameter Description
29
tPD
RXCLK ↓ edge to RXDAT transition (Note 1)
30
tPD
SYNC pulse detected to RXCRS clocked as active by MAC (Note 1)
31
tPD
Last DATA pulse crosses noise slice level to RXCRS inactive (Note 1)
32
tPD
RXCRS inactive to CLS inactive clocked into MAC (Note 1)
Min
Max
Unit
0
10
ns
650
850
ns
15.98
16.10
µs
–
200
ns
Note: Not tested.
RXCLK
29
RXDAT
DATA
DATA
SYNC
HRTXRXP/N±
AID
DATA
32
31
RXCRS
30
CLS
22304B-31
Figure 7.
1 Mbps HomePNA Receive Timing (GPSI)
Am79C901A
73
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Clock Timing (GPSI)
No.
Symbol
Parameter Description
Clock Period
Unit
Idle (excluding IPG time)
35
tPER
TXCLK, RXCLK period
583.3
ns
36
tPWH
TXCLK, RXCLK pulse width HIGH
115.5
ns
37
tPWL
TXCLK, RXCLK pulse width LOW
467.8
ns
Preamble (first 64 bits of TX MAC frame)
35
tPER
TXCLK, RXCLK period
233.3
ns
36
tPWH
TXCLK, RXCLK pulse width HIGH
115.5
ns
37
tPWL
TXCLK, RXCLK pulse width LOW
117.8
ns
Data (thoughtout the data phase)
233.3 ns - 10 µs
35
tPER
TXCLK, RXCLK period
36
tPWH
TXCLK, RXCLK pulse width HIGH
115.5
37
tPWL
TXCLK, RXCLK pulse width LOW
117.8 ns - 10 µs
ns
IPG (96 bit times following CRS falling edge)
35
tPER
TXCLK, RXCLK period
233.3
ns
36
tPWH
TXCLK, RXCLK pulse width HIGH
115.5
ns
37
tPWL
TXCLK, RXCLK pulse width LOW
117.8
ns
Note: During AID interval, RXCLK and TXCLK stop for up to 140 µs.
35
36
37
TXCLK,
RXCLK
Figure 8.
74
22304B-32
1 Mbps HomePNA Clock Timing (GPSI)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
MII
10BASE-T Transmit Timing (MII)
No.
Symbol
40
tS
41
Parameter Description
Min
Max
Unit
TXD, TX_EN setup time to TXCLK ↑ edge
10
–
ns
tH
TXD, TX_EN hold time from TXCLK ↑ edge
0
–
ns
42
tPD
Transmit latency (TX_EN sampled HIGH to 1st bit of data)
240
360
ns
43
tPD
CRS assert from TX_EN sampled HIGH
0
430
ns
44
tPD
CRS de-assert from TX_EN sampled LOW
0
430
ns
45
tPWL
1200
–
ns
Note:
Not tested
TX_EN de-assertion time between packets (Note 1)
TX_CLK
45
TX_EN
44
43
CRS
42
TX±
End of Packet
Start of Packet
41
40
TXD,
TX_EN
22304B-33
Figure 9.
10 Mbps Transmit Timing (MII)
Am79C901A
75
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T Receive Timing (MII)
No.
Symbol
48
tPD
49
Parameter Description
Min
Max
Unit
COL assert latency from SOP
200
300
ns
tPD
CRS assert latency from SOP
200
300
ns
50
tPD
Receive latency (SOP to RXD, RX_DV valid) (Note 1)
625
1275
ns
51
tPD
RX_CLK ↓ edge to RXD, RX_DV transition
–
10
ns
52
tPD
RX_DV de-assert latency EOP
500
900
ns
53
tPD
COL de-assert latency from EOP
100
700
ns
54
tPD
CRS de-assert latency from EOP
500
900
ns
Note: RXD not tested.
RX_CLK
RX±
Start of Packet
48
COL
49
CRS
50
51
RXD,
RX_DV
22304B-34
Figure 10.
76
10 Mbps Receive Start of Packet Timing (MII)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T Receive Timing (MII) (Continued)
RX_CLK
RX±
End of Packet
53
COL
54
CRS
52
RX_DV
22304B-35
Figure 11.
10 Mbps Receive End of Packet Timing (MII)
Am79C901A
77
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T Transmit Clock Timing (MII)
No.
Symbol
Parameter Description
Min
Max
Unit
57
tPER
TX_CLK period
399.6
400.4
ns
58
tPWH
TX_CLK pulse width HIGH
180
220
ns
59
tPWL
TX_CLK pulse width LOW
180
220
ns
Min
Max
Unit
399.6
400.4
ns
10BASE-T Receive Clock Timing (MII)
No.
Symbol
Parameter Description
57
tPER
RX_CLK period
58
tPWH
RX_CLK pulse width HIGH
180
220
ns
59
tPWL
RX_CLK pulse width LOW
180
220
ns
57
58
59
TX_CLK,
RX_CLK
Figure 12.
78
22304B-36
10 Mbps Transmit and Receive Clock Timing (MII)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Transmit Timing (MII)
No.
Symbol
62
tS
63
Parameter Description
Min
Max
Unit
TXD, TX_EN setup time to TX_CLK ↑ edge
10
–
ns
tH
TXD, TX_EN hold time from TX_CLK ↑ edge
10
–
ns
64
tPD
Transmit Latency (TX_EN sampled HIGH to SYNC pulse (5 mV))
200
500
ns
65
tPD
TX_EN sampled HIGH to COL active (Note 1)
–
120
µs
Note: Not tested.
TX_CLK
62
63
TXD, TX_EN
TX_EN
64
SYNC
HRTXRXP/N±
AID
PCOM
DATA
65
COL
22304B-37
Figure 13.
1 Mbps HomePNA Transmit Timing (MII)
Am79C901A
79
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Receive Timing (MII)
No.
Symbol
Parameter Description
Min
Max
Unit
68
tPD
RX_CLK ↓ edge to RXD, RX_DV transitions (Note 1)
0
10
ns
69
tPD
SYNC pulse detected to CRS clocked as active by MAC (Note 1)
650
850
ns
70
tPD
Last DATA pulse crosses data slice level to CRS inactive (Note 1)
15.98
16.10
µs
71
tPD
CRS inactive to COL inactive clocked into MAC (Note 1)
–
200
ns
Note: Not tested.
RX_CLK
68
RXD,
RX_DV
DATA
DATA
SYNC
HRTXRXP/N±
AID
DATA
71
70
CRS
69
COL
22304B-38
Figure 14.
80
1 Mbps HomePNA Receive Timing (MII)
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Clock Timing (MII)
No.
Symbol
Parameter Description
Clock Period
Unit
2333.34
ns
Idle (excluding IPG time)
74
tPER
TX_CLK, RX_CLK period
75
tPWH
TX_CLK, RX_CLK pulse width HIGH
1165
ns
76
tPWL
TX_CLK, RX_CLK pulse width LOW
1168
ns
933.33
ns
Preamble (first 64 bits of TX MAC frame)
74
tPER
TX_CLK, RX_CLK period
75
tPWH
TX_CLK, RX_CLK pulse width HIGH
466
ns
76
tPWL
TX_CLK, RX_CLK pulse width LOW
467
ns
Data (throughout the data phase)
74
tPER
TX_CLK, RX_CLK period
933 ns - 40 µs
75
tPWH
TX_CLK, RX_CLK pulse width HIGH
466 ns - 40 µs
76
tPWL
TX_CLK, RX_CLK pulse width LOW
467 ns - 40 µs
IPG (96 bit times following CRS falling edge)
74
tPER
TX_CLK, RX_CLK period
75
tPWH
76
tPWL
933.33
ns
TX_CLK, RX_CLK pulse width HIGH
466
ns
TX_CLK, RX_CLK pulse width LOW
467
ns
Note: During AID interval, RX_CLK and TX_CLK stop for up to 140 µs.
74
75
76
TX_CLK,
RX_CLK
Figure 15.
22304B-39
1 Mbps HomePNA Clock Timing (MII)
Am79C901A
81
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
MDC/MDIO
No.
Symbol
79
tPER
80
Parameter Description
Min
Max
Unit
MDC period
400
–
ns
tPWH
MDC pulse width HIGH
160
–
ns
81
tPWL
MDC pulse width LOW
160
–
ns
82
tPD
MDIO output delay from MDC ↑ edge
0
300
ns
83
tS
MDIO input setup time to MDC ↑ edge
8
–
ns
84
tH
MDIO input hold time from MDC ↑ edge
8
–
ns
85
tZ
MDC to high impedance
5
40
ns
79
80
81
MDC
84
85
MDIO
83
82
22304B-40
Figure 16.
82
MII Management Timing
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
SPI
No.
Parameter
Symbol
88
tPW
89
Parameter Name
Min
Max
Unit
SCLK period
400
–
ns
tPWH
SCLK Min pulse HIGH
160
–
ns
90
tPWL
SCLK Min pulse LOW
160
–
ns
91
tS
CS ↓ setup to SCLK ↑
8
–
ns
92
tH
CS ↑ hold to SCLK ↑
25
–
ns
93
tS
SDI setup to SCLK ↑
8
–
ns
94
tH
SDI hold to SCLK ↑
0
–
ns
95
tPD
SCLK ↑ to DO valid
0
25
ns
96
tPZD
CS ↑ to DO Hi Z
–
50
ns
CS
95
88
91
92
SCLK
89
93
94
96
90
SDI
SDO
22304B-41
Figure 17.
SPI Timing
Am79C901A
83
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
10BASE-T PMD
No.
Symbol
99
tTETD
100
tPWKRD
Parameter Description
Test Conditions
Transmit End of Transmit Data
RX± Pulse Width Maintain/Turn Off
Threshold
|VIN| > |VTHS| (Note 1)
Min
Max
Unit
250
375
ns
136
200
ns
Note: RX± pulses narrower than tPWDRD (min) will maintain internal Carrier Sense on. RX± pulses wider than tPWKRD (max)
will turn internal Carrier Sense off.
99
TX±
22304B-42
Figure 18.
10 Mbps Transmit (TX±) Timing Diagram
100
100
VTSQ+
RX±
VTSQ100
Figure 19.
84
22304B-43
10 Mbps Receive (RX±) Timing Diagram
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
1 Mbps HomePNA Analog
No.
Parameter
Symbol
103
tPW
104
Parameter Name
Conditions
Typical
Units
Pulse Width
133
ns
tPWH
Pulse Width HIGH
67
ns
105
tPWL
Pulse Width LOW
67
ns
106
tVMAXp
Maximum Voltage (positive)
Low Power
High Power
1.00
2.00
V
107
tVMAXn
Maximum Voltage (negative)
Low Power
High Power
1.00
2.00
V
Notes:
1. All registers at default values and VCC = 3.3 V, 25°C.
2. Measurements across HRTXTXP and HRTXTXN, differentially measured, with a 50 Ω resistive load.
105
103
106
107
104
Figure 20.
22304B-44
HomePNA PHY AC Waveform
Am79C901A
85
P R E L I M I N A R Y
AC CHARACTERISTICS (CONTINUED)
JTAG
No.
Parameter Symbol
Min
Max
Unit
110
tPER
TCK Period
Parameter Name
100
–
ns
111
tPWH
TCK HIGH Time
45
–
ns
112
tPWL
TCK LOW Time
45
–
ns
113
tS
TDI, TMS Setup Time
8
–
ns
114
tH
TDI, TMS Hold Time
10
–
ns
115
tPD
TDO Valid Delay
3
30
ns
116
tPD
TDO Float Delay
–
50
ns
Note: 1. Not tested; parameter guaranteed by design characterization.
111
110
112
TCK
113
114
TDI, TMS
115
116
TDO
22304B-45
Figure 21.
86
JTAG (IEEE 1149.1) Test Signal Timing
Am79C901A
P R E L I M I N A R Y
AC CHARACTERISTICS (CONCLUDED)
External Clock (XTAL1)
No.
Symbol
Parameter Description
Min
Max
Unit
119
tPER
Cycle time
16.665
16.669
ns
120
tPWH
Cycle HIGH time
0.4 x TCYCLE
0.6 x TCYCLE
ns
121
tPWL
Cycle LOW time
0.4 x TCYCLE
0.6 x TCYCLE
ns
119
120
121
XTAL1
22304B-46
Figure 22.
External Clock Timing
Reset
Symbol
tPW
Parameter Description
RESET ↓ to RESET ↑
Am79C901A
Min
Max
Unit
5000
–
ns
87
P R E L I M I N A R Y
PHYSICAL DIMENSIONS*
PL 068
Plastic Leaded Chip Carrier (measured in inches)
*For reference only. BSC is an ANSI standard for Basic Space Centering.
88
Am79C901A
P R E L I M I N A R Y
PHYSICAL DIMENSIONS*
PQT 80
Thin Plastic Quad Flat Pack (measured in millimeters)
*For reference only. BSC is an ANSI standard for Basic Space Centering.
Am79C901A
89
P R E L I M I N A R Y
The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied,
arising by estoppel or otherwise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right.
AMD’s products are not designed, intended, authorized or warranted for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of
AMD’s product could create a situation where personal injury, death, or severe property or environmental damage may occur.
AMD reserves the right to discontinue or make changes to its products at any time without notice.
Trademarks
Copyright  1999, 2000 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.
AlertIT, any1Home, eIMR, eIMR+, GigaPHY, HIMIB, HomePHY, IMR2, MACE, Magic Packet, NetPHY, PCnet, PCnet-Home, QuEST, and QuIET
are trademarks of Advanced Micro Devices, Inc.
RLL25 is a trademark of Tut Systems, Inc.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
22304C
90
Am79C901A