NCP4523 CMOS 3CH−LDOs for RF Unit The NCP4523 Series are multi voltage regulator ICs with high output voltage accuracy, extremely low supply current, low noise, low ON−resistance and high ripple rejection by CMOS process. The NCP4523 Series contain three voltage regulators. Each of these voltage regulators in the NCP4523 Series consists of a voltage reference unit, an error amplifier, resistors for setting output voltage, a current limit circuit and a chip enable circuit. The chip enable function contributes to prolong battery life. Further, regulators in the NCP4523 Series are with low dropout voltage, excellent load transient response and line transient response, thus the NCP4523 series are very suitable for the power supply for hand−held communication equipment. The output voltage of each regulator is fixed with high accuracy by laser trim. Since the package for these ICs is SSOP−8, high density mounting of the ICs on boards is possible. http://onsemi.com MARKING DIAGRAM 8 1 xxx xyy 1 xxxx = Product Code yy = Lot Number PIN ASSIGNMENT Features • • • • • • • • • SSOP−8 G SUFFIX CASE 487 8 Ultra−Low Supply Current Low Standby Current Low Dropout Voltage High Ripple Rejection, Typical 70 dB (f = 1.0 kHz) High Output Voltage Accuracy, 2.0% Excellent Load Transient Response and Line Transient Response Small Package 8−Pin SSOP Maximum Input Voltage 6.0 V Pb−Free Package is Available Applications • Power Source for Cellular Phones such as GSM, CDMA and Personal Handy−Phone System VOUT1 1 8 VDD VOUT2 2 7 CE1 VOUT3 3 6 CE2 GND 4 5 CE3 (Top View) SSOP−8 ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 22 of this data sheet. • Power Source for Electrical Appliances such as Cameras, VCRs, • DEVICE MARKING INFORMATION Camcorders, etc. Power Source for Battery−Powered Equipment Semiconductor Components Industries, LLC, 2004 December, 2004 − Rev. 4 See general marking information in the device marking section on page 22 of this data sheet. 1 Publication Order Number: NCP4523/D NCP4523 PIN DESCRIPTION Pin Number NCP4523G SSOP−8 Symbol 1 VOUT1 Output Pin 2 VOUT2 Output Pin 3 VOUT3 Output Pin 4 GND Ground Pin 5 CE3 Chip Enable Pin 6 CE2 Chip Enable Pin 7 CE1 Chip Enable Pin 8 VDD Input Pin Description ABSOLUTE MAXIMUM RATINGS Rating Symbol Value Unit Input Voltage VIN 7.0 V Input Voltage (CE Pin) CE −0.3 VIN + 0.3 V Output Voltage VOUT −0.3 VIN + 0.3 V Output Current (VOUT1) IOUT1 200 mA Output Current (VOUT2) IOUT2 100 mA Output Current (VOUT3) IOUT3 100 mA Power Dissipation PD 300 mW Operating Temperature Range Topt −40 85 °C Storage Temperature Range Tstg −55 125 °C Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. http://onsemi.com 2 NCP4523 ELECTRICAL CHARACTERISTICS VR1 (Topt = 25°C) Characteristics Conditions Symbol Min Typ Max Unit Output Voltage VIN − VOUT = 1.0 V 1.0 mA IOUT 30 mA VOUT 0.98 − 1.02 V Output Current VIN − VOUT = 1.0 V IOUT 150 − − mA Load Regulation VIN − VOUT = 1.0 V 1.0 mA IOUT 80 mA VOUT/IOUT − 12 40 mV Dropout Voltage Refer to Electrical Characteristic by Output Voltage (VR1) VDIF − − − − Supply Current VIN − VOUT = 1.0 V ISS − 70 120 µA Supply Current (Standby) VIN − VOUT = 1.0 V VCE = GND Istandby − 0.1 1.0 µA Line Regulation VOUT + 0.5 V VIN 6.0 V IOUT = 30 mA VOUT/VIN − 0.05 0.20 %/V Ripple Rejection f = 1.0 kHz, sinusoidal 0.5 Vp−p VIN − VOUT = 1.0 V RR − 70 − dB − VIN − − 6.0 V IOUT = 50 mA −40°C Topt 85°C VOUT/T − 100 − ppm/ °C VOUT = 0 V ILIM − 50 − mA Input Voltage Output Voltage Temperature Coefficient Short Current Limit CE Pull−down Resistance − RDN 2.5 5.0 10 M CE Input Voltage “H’’ − VCEH 1.5 − VIN V CE Input Voltage “L’’ − VCEL 0.00 − 0.25 V BW = 10 Hz − 100 kHz en − 60 − µVrms Output Noise ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE (VR1) Output Voltage VOUT (V) Dropout Voltage VDIF (V) Condition 2.0 VOUT 2.4 2.5 VOUT 2.7 IOUT = 150 mA 2.8 VOUT 3.3 http://onsemi.com 3 Typ Max 0.35 0.55 0.30 0.45 0.22 0.35 NCP4523 ELECTRICAL CHARACTERISTICS VR2 (Topt = 25°C) Characteristics Conditions Symbol Min Typ Max Unit Output Voltage VIN − VOUT = 1.0 V 1.0 mA IOUT 30 mA VOUT 0.98 − 1.02 V Output Current VIN − VOUT = 1.0 V IOUT 80 − − mA Load Regulation VIN − VOUT = 1.0 V 1.0 mA IOUT 50 mA VOUT/IOUT − 12 40 mV Dropout Voltage Refer to Electrical Characteristic by Output Voltage (VR2) VDIF − − − − Supply Current VIN − VOUT = 1.0 V ISS − 70 120 µA Supply Current (Standby) VIN − VOUT = 1.0 V VCE = GND Istandby − 0.1 1.0 µA Line Regulation VOUT + 0.5 V VIN 6.0 V I = 30 mA VOUT/VIN − 0.05 0.20 V Ripple Rejection f = 1.0 kHz, sinusoidal 0.5 Vp−p VIN − VOUT = 1.0 V RR − 70 − dB − VIN − − 6.0 V IOUT = 30 mA −40°C Topt 85°C VOUT/T − 100 − ppm/ °C VOUT = 0 V ILIM − 50 − mA Input Voltage Output Voltage Temperature Coefficient Short Current Limit CE Pull−down Resistance − RDN 2.5 5.0 10 M CE Input Voltage “H’’ − VCEH 1.5 − VIN V CE Input Voltage “L’’ − VCEL 0.00 − 0.25 V BW = 10 Hz − 100 kHz en − 60 − µVrms Output Noise ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE (VR2) Output Voltage VOUT (V) Dropout Voltage VDIF (V) Condition 2.0 VOUT 2.4 2.5 VOUT 2.7 IOUT = 80 mA 2.8 VOUT 3.3 http://onsemi.com 4 Typ Max 0.22 0.38 0.20 0.38 0.16 0.24 NCP4523 ELECTRICAL CHARACTERISTICS VR3 (Topt = 25°C) Characteristics Conditions Symbol Min Typ Max Unit Output Voltage VIN − VOUT = 1.0 V 1.0 mA 30 mA VOUT 0.98 − 1.02 V Output Current VIN − VOUT = 1.0 V IOUT 80 − − mA Load Regulation VIN − VOUT = 1.0 V 1.0 mA IOUT 50 mA VOUT/IOUT − 12 40 mV Dropout Voltage Refer to Electrical Characteristic by Dropout Voltage (VR3) VDIF − − − − Supply Current VOUT + 0.5 V VIN 6.0 V IOUT = 30 mA ISS − 70 120 µA f = 1.0 kHz, sinusoidal 0.5 Vp−p VIN − VOUT = 1.0 V Istandby − 0.1 1.0 µA Line Regulation − VOUT/VIN − 0.05 0.20 %/V Ripple Rejection IOUT = 30 mA −40°C Topt 85°C RR − 70 − dB VOUT = 0 V VIN − − 6.0 V − VOUT/T − 100 − ppm/ °C BW = 10 Hz − 100 kHz ILIM − 50 − mA Supply Current (Standby) Input Voltage Output Voltage Temperature Coefficient Short Current Limit CE Pull−down Resistance − RDN 2.5 5.0 10 M CE Input Voltage “H’’ − VCEH 1.5 − VIN V CE Input Voltage “L’’ − VCEL 0.00 − 0.25 V Output Noise − en − 60 − µVrms ELECTRICAL CHARACTERISTICS BY OUTPUT VOLTAGE (VR3) Output Voltage VOUT (V) Dropout Voltage VDIF (V) Condition 2.0 VOUT 2.4 2.5 VOUT 2.7 IOUT = 80 mA 2.8 VOUT 3.3 http://onsemi.com 5 Typ Max 0.24 0.38 0.22 0.28 0.16 0.24 NCP4523 VOUT1 1 R1_1 − + 8 VDD 7 CE1 6 CE2 5 CE3 Error Amp. Vref R2_1 Current Limit VOUT2 2 R1_2 − + Error Amp. Vref R2_2 Current Limit VOUT3 3 R1_3 − + Error Amp. Vref R2_3 Current Limit GND 4 (Pin numbers of this block diagrams are applied to NCP4523 Series) Figure 1. Block Diagram http://onsemi.com 6 NCP4523 VOUT1 1 R1_1 − + 8 VDD 7 CE1 6 CE2 5 CE3 Error Amp. Vref R2_1 Current Limit VOUT2 2 R1_2 − + Error Amp. Vref R2_2 Current Limit VOUT3 3 R1_3 − + Error Amp. Vref R2_3 Current Limit GND 4 (Pin numbers of this block diagrams are applied to NCP4523 Series) Figure 2. Operation In each regulator, short protection is made with a current limit circuit and standby mode is available by a chip enable circuit. Fluctuation of each regulator’s output voltage, or VOUT1, 2, 3 is detected individually. Then it is put back to an error amplifier through feedback resistors, or R1_1, R2_1, R1_2, R2_2, R1_3, R2_3 and compared with a reference voltage and compensated for the result and make a constant voltage. http://onsemi.com 7 NCP4523 IOUT1 1 VOUT1 VDD 8 2 VOUT2 CE1 7 3 VOUT3 CE2 6 4 GND CE3 5 C2 IOUT2 VIN C3 IOUT3 C1 C4 C1 = 1.0 µF C2 = C3 = C4 = 2.2 µF Figure 3. Basic Test Circuit IOUT1 1 VOUT1 VDD 8 2 VOUT2 CE1 7 C2 A IOUT2 VIN C3 IOUT3 3 VOUT3 CE2 6 4 GND CE3 5 C1 C4 C1 = 1.0 µF C2 = C3 = C4 = 2.2 µF Figure 4. Test Circuit for Supply Current IOUT1 1 VOUT1 VDD 8 2 VOUT2 CE1 7 3 VOUT3 CE2 6 4 GND CE3 5 C1 IOUT2 C2 IOUT3 C3 C1 = C2 = C3 = 2.2 µF Figure 5. Test Circuit for Line Transient Response http://onsemi.com 8 P.G. NCP4523 11a 11b 12a 1 VOUT1 VDD 8 2 VOUT2 CE1 7 3 VOUT3 CE2 6 4 GND CE3 5 C2 12b 13a VIN C3 C1 C4 13b C1 = 1.0 µF C2 = C3 = C4 = 2.2 µF Figure 6. Test Circuit for Load Transient Response IOUT1 1 VOUT1 VDD 8 2 VOUT2 CE1 7 C1 IOUT2 VIN C2 IOUT3 3 VOUT3 CE2 6 4 GND CE3 5 C3 C1 = C2 = C3 = 2.2 µF Figure 7. Test Circuit for Ripple Rejection 80 VR3 SUPPLY CURRENT ISS (S) VOUT = 3.0 V 70 VR1 VR2 60 50 40 30 20 10 0 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) Figure 8. Supply Current vs Input Voltage http://onsemi.com 9 6 NCP4523 3.5 3.5 VR2 3.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) VR1 5V 2.5 4V 2.0 3.5 V 1.5 VIN = 3.3 V 1.0 0.5 0.0 3.0 5V 2.5 4V 2.0 3.5 V 1.5 VIN = 3.3 V 1.0 0.5 0.0 0 0.1 0.2 0.3 0.4 0.5 0 0.6 0.3 0.4 IOUT, OUTPUT CURRENT (A) Figure 9. Output Voltage vs. Output Current Figure 10. Output Voltage vs. Output Current 0.5 4.0 VR3 VR1 3.0 VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 0.2 IOUT, OUTPUT CURRENT (A) 3.5 5V 2.5 4V 2.0 3.5 V 1.5 VIN = 3.3 V 1.0 0.5 0.0 3.0 IOUT = 1 mA 2.0 IOUT = 50 mA 1.0 IOUT = 30 mA 0.0 0 0.1 0.2 0.3 0.4 0 2 1 3 4 5 IOUT, OUTPUT CURRENT (A) VIN, INPUT VOLTAGE (V) Figure 11. Output Voltage vs. Output Current Figure 12. Output Voltage vs. Input Voltage 6 4.0 4.0 VR3 VOUT, OUTPUT VOLTAGE (V) VR2 VOUT, OUTPUT VOLTAGE (V) 0.1 3.0 IOUT = 1 mA 2.0 IOUT = 30 mA 1.0 IOUT = 50 mA 3.0 IOUT = 1 mA 2.0 IOUT = 30 mA 1.0 IOUT = 50 mA 0.0 0.0 0 1 2 3 4 5 6 0 1 2 3 4 5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 13. Output Voltage vs. Input Voltage Figure 14. Output Voltage vs. Input Voltage http://onsemi.com 10 6 80 80 70 70 10 kHz 100 Hz 60 RR, RIPPLE REJECTION (dB) RR, RIPPLE REJECTION (dB) NCP4523 50 1 kHz 40 30 VR1 IOUT = 10 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 20 10 0 3.1 3.2 3.3 1 kHz 20 10 3.2 3.3 3.5 3.4 Figure 16. Ripple Rejection vs. Input Voltage (DC Bias) 80 100 Hz 60 RR, RIPPLE REJECTION (dB) RR, RIPPLE REJECTION (dB) 30 Figure 15. Ripple Rejection vs. Input Voltage (DC Bias) 10 kHz 50 1 kHz 40 30 VR2 IOUT = 10 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 20 10 3.2 3.3 3.4 70 60 VR2 IOUT = 50 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 100 Hz 50 10 kHz 40 30 1 kHz 20 10 0 3.1 3.5 3.2 3.3 3.4 3.5 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 17. Ripple Rejection vs. Input Voltage (DC Bias) Figure 18. Ripple Rejection vs. Input Voltage (DC Bias) 80 80 100 Hz 70 RR, RIPPLE REJECTION (dB) RR, RIPPLE REJECTION (dB) 10 kHz 40 VIN, INPUT VOLTAGE (V) 70 10 kHz 60 50 1 kHz 40 30 VR3 IOUT = 10 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 20 10 0 3.1 100 Hz VIN, INPUT VOLTAGE (V) 80 0 3.1 50 0 3.1 3.5 3.4 60 VR1 IOUT = 50 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 3.2 3.3 60 VR3 IOUT = 50 mA COUT = Tantal 2.2 µF VOUT = 3.0 V 100 Hz 50 10 kHz 40 1 kHz 30 20 10 0 3.1 3.5 3.4 70 3.2 3.3 3.4 VIN, INPUT VOLTAGE (V) VIN, INPUT VOLTAGE (V) Figure 19. Ripple Rejection vs. Input Voltage (DC Bias) Figure 20. Ripple Rejection vs. Input Voltage (DC Bias) http://onsemi.com 11 3.5 NCP4523 3.10 VR1 IOUT = 50 mA VOUT, OUTPUT VOLTAGE (V) VOUT, OUTPUT VOLTAGE (V) 3.10 3.05 3.00 2.95 2.90 −50 0 50 0 50 Figure 21. Output Voltage vs. Temperature Figure 22. Output Voltage vs. Temperature 100 100 ISS, SUPPLY CURRENT (µA) VOUT, OUTPUT VOLTAGE (V) 2.95 Topt, Topt TEMPERATURE (°C) 3.05 3.00 2.95 2.90 −50 0 50 VR1 VOUT = 3.0 V 80 60 40 20 0 −50 100 0 50 Topt, Topt TEMPERATURE (°C) Topt, Topt TEMPERATURE (°C) Figure 23. Output Voltage vs. Temperature Figure 24. Supply Current vs. Temperature 100 100 100 VR2 VOUT = 3.0 V ISS, SUPPLY CURRENT (µA) ISS, SUPPLY CURRENT (µA) 3.00 Topt, Topt TEMPERATURE (°C) VR3 IOUT = 10 mA 60 40 20 0 −50 3.05 2.90 −50 100 3.10 80 VR2 IOUT = 30 mA 0 50 100 80 VR3 VOUT = 3.0 V 60 40 20 0 −50 0 50 Topt, Topt TEMPERATURE (°C) Topt, Topt TEMPERATURE (°C) Figure 25. Supply Current vs. Temperature Figure 26. Supply Current vs. Temperature http://onsemi.com 12 100 NCP4523 0.25 VOUT = 3.0 V VDF, DROPOUT VOLTAGE (V) VDF, DROPOUT VOLTAGE (V) 0.25 0.20 100 mA 0.15 0.10 50 mA 30 mA 0.05 10 mA 2 3 0.15 50 mA 0.10 30 mA 0.05 5 4 10 mA 2 3 4 5 Vreg, SET OUTPUT VOLTAGE (V) Vreg, SET OUTPUT VOLTAGE (V) Figure 27. Dropout Voltage vs. Set Output Voltage Figure 28. Dropout Voltage vs. Set Output Voltage 0.25 80 VR3 VOUT = 3.0 V RR, RIPPLE REJECTION (dB) VDF, DROPOUT VOLTAGE (V) 0.20 0.00 0.00 0.20 0.15 50 mA 0.10 30 mA 0.05 10 mA 0.00 2 3 4 1 mA 40 30 20 10 VR1 COUT = 0.47 µF VOUT = 3.0 V 1 10 100 Figure 29. Dropout Voltage vs. Set Output Voltage Figure 30. Ripple Rejection vs. Frequency 80 RR, RIPPLE REJECTION (dB) 50 mA 10 mA 1 mA 50 40 30 0 0.1 10 mA 50 FREQUENCY (kHz) 60 10 60 Vreg, SET OUTPUT VOLTAGE (V) 70 20 50 mA 70 0 0.1 5 80 RR, RIPPLE REJECTION (dB) VR2 VOUT = 3.0 V VR1 COUT = 2.2 µF VOUT = 3.0 V 1 10 70 60 50 1 mA 40 10 mA 30 20 10 0 0.1 100 50 mA VR2 COUT = 0.47 µF VOUT = 3.0 V 1 10 FREQUENCY (kHz) FREQUENCY (kHz) Figure 31. Ripple Rejection vs. Frequency Figure 32. Ripple Rejection vs. Frequency http://onsemi.com 13 100 NCP4523 80 86 50 mA RR, RIPPLE REJECTION (dB) RR, RIPPLE REJECTION (dB) 50 mA 70 60 1 mA 50 10 mA 40 30 VR2 COUT = 2.2 µF VOUT = 3.0 V 20 10 0 0.1 1 10 10 mA 80 78 VR3 COUT = 2.2 µF VOUT = 3.0 V 76 74 Figure 34. Ripple Rejection vs. Frequency 60 50 mA 50 1 mA 10 mA 40 30 VR3 COUT = 2.2 µF VOUT = 3.0 V 0 −50 1.00 Figure 33. Ripple Rejection vs. Frequency 70 10 0.10 FREQUENCY (kHz) 0.30 20 1 mA FREQUENCY (kHz) VDF, DROPOUT VOLTAGE (V) RR, RIPPLE REJECTION (dB) 82 72 0.01 100 80 VR1 VOUT = 3.0 V 0.25 25°C 0.20 0.15 85°C 0.10 −40°C 0.05 0.0 0 −25 25 50 75 100 0 125 50 100 150 FREQUENCY (kHz) IOUT, OUTPUT CURRENT (mA) Figure 35. Ripple Rejection vs. Frequency Figure 36. Dropout Voltage vs. Output Current 0.30 0.30 VR2 VOUT = 3.0 V 0.25 VDF, DROPOUT VOLTAGE (V) VDF, DROPOUT VOLTAGE (V) 84 25°C 0.20 0.15 85°C 0.10 −40°C 0.05 0.0 VR3 VOUT = 3.0 V 0.25 25°C 0.20 85°C 0.15 0.10 −40°C 0.05 0.0 0 50 100 150 0 50 100 150 IOUT, OUTPUT CURRENT (mA) IOUT, OUTPUT CURRENT (mA) Figure 37. Dropout Voltage vs. Output Current Figure 38. Dropout Voltage vs. Output Current http://onsemi.com 14 NCP4523 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 COUT = 2.2 µF Tantalum IOUT = 50 mA Output Voltage (VR1) 2.0 INPUT VOLTAGE (V) 5.0 3.01 1.0 2.97 2.96 0 10 20 40 30 50 60 70 0.0 80 TIME (µs) Figure 39. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) COUT = 2.2 µF Tantalum IOUT = 30 mA 2.97 2.96 0 10 20 40 30 50 60 70 INPUT VOLTAGE (V) 5.0 3.01 1.0 0.0 80 TIME (µs) Figure 40. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) COUT = 2.2 µF Tantalum IOUT = 10 mA 2.97 2.96 0 10 20 30 40 50 60 TIME (µs) Figure 41. Line Transient Response http://onsemi.com 15 70 1.0 0.0 80 INPUT VOLTAGE (V) 5.0 3.01 NCP4523 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 COUT = 0.47 µF Tantalum 2.0 IOUT = 50 mA 1.0 Output Voltage (VR1) 2.97 2.96 0 10 20 40 30 50 60 70 INPUT VOLTAGE (V) 5.0 3.01 0.0 80 TIME (µs) Figure 42. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) COUT = 0.47 µF Tantalum 1.0 IOUT = 30 mA 0.0 40 50 60 70 80 2.97 2.96 0 10 20 INPUT VOLTAGE (V) 5.0 3.01 30 TIME (µs) Figure 43. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) 2.97 2.96 0 10 20 30 COUT = 0.47 µF Tantalum 1.0 IOUT = 10 mA 0.0 40 50 60 70 80 TIME (µs) Figure 44. Line Transient Response http://onsemi.com 16 INPUT VOLTAGE (V) 5.0 3.01 NCP4523 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 COUT = Ceramic 2.2 µF and ESR 1.0 3.0 IOUT = 50 mA 2.98 2.0 Output Voltage (VR1) INPUT VOLTAGE (V) 5.0 3.01 1.0 2.97 2.96 0 10 20 40 30 50 60 70 0.0 80 TIME (µs) Figure 45. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) INPUT VOLTAGE (V) 5.0 3.01 COUT = Ceramic 2.2 µF and ESR 1.0 1.0 IOUT = 30 mA 2.97 2.96 0 10 20 30 40 50 60 70 0.0 80 TIME (µs) Figure 46. Line Transient Response 6.0 3.02 OUTPUT VOLTAGE (V) Input Voltage 3.00 4.0 2.99 3.0 2.98 2.0 Output Voltage (VR1) COUT = Ceramic 2.2 µF and ESR 1.0 IOUT = 10 mA 2.97 2.96 0 10 20 30 40 50 60 TIME (µs) Figure 47. Line Transient Response http://onsemi.com 17 70 1.0 0.0 80 INPUT VOLTAGE (V) 5.0 3.01 NCP4523 150 3.35 100 3.30 3.25 IOUT1 3.20 50 3.15 VOUT1 VOUT, OUTPUT VOLTAGE (V) 3.10 0 3.05 3.00 2.95 2.90 3.05 VOUT2 3.00 IOUT2 = 30 mA 2.95 2.90 3.05 VOUT3 3.00 2.95 IOUT3 = 10 mA 2.90 2.85 2.80 −40 −30 −20 −10 0 10 20 30 40 50 60 70 t, TIME (µs) Figure 48. Load Transient Response http://onsemi.com 18 80 90 100 IOUT, OUTPUT CURRENT (mA) COUT = 2.2 µF + 1 Ω 3.40 NCP4523 COUT = 2.2 µF + 1 Ω 3.35 100 3.30 3.25 3.20 50 3.15 IOUT2 0 VOUT, OUTPUT VOLTAGE (V) 3.10 3.05 3.00 VOUT1 2.95 IOUT1 = 50 mA 2.90 3.05 VOUT2 3.00 2.95 2.90 3.05 VOUT3 3.00 IOUT3 = 10 mA 2.95 2.90 2.85 2.80 −40 −30 −20 −10 0 10 20 30 40 50 60 70 t, TIME (µs) Figure 49. Load Transient Response http://onsemi.com 19 80 90 100 IOUT, OUTPUT CURRENT (mA) 3.40 NCP4523 100 3.25 50 3.20 3.15 IOUT3 3.10 0 3.05 VOUT, OUTPUT VOLTAGE (V) 3.00 VOUT1 2.95 IOUT1, OUTPUT CURRENT (mA) COUT = 2.2 µF + 1 Ω 3.30 IOUT1 = 50 mA 2.90 3.05 VOUT2 3.00 2.95 IOUT2 = 30 mA 2.90 3.05 VOUT3 3.00 2.95 2.90 2.85 2.80 −40 −30 −20 −10 0 10 20 30 40 50 60 70 80 90 100 t, TIME (µs) Figure 50. Load Transient Response Technical Notes (Pin numbers of the diagram below are applied to NCP4523) To use this IC with ceramic capacitors, ESR should be set in the range of the following graphs. Test circuit for Noise level measurement is shown below. IOUT1 Ceramic Capacitor ESR S.A. ESR VDD 8 2 VOUT2 CE1 7 IOUT2 Ceramic Capacitor Spectrum Analyzer 1 VOUT1 VIN IOUT3 3 VOUT3 CE2 6 4 GND CE3 5 Ceramic Capacitor ESR Ceramic 1.0 µF Figure 51. http://onsemi.com 20 NCP4523 Noise level is measured with a spectrum analyzer and hatched area shows stable areas of which noise level is approximately equal or less than 40 V (Avg.). The relation between Load Current (IOUT) and Equivalent Series Resistors (ESR) value of external output capacitor with the stable area is shown below. 100 100 STABLE 1 UNSTABLE 0.1 UNSTABLE 0.01 0 50 150 100 0 50 100 150 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 52. Ceramic Capacitor 1.0 F Figure 53. Ceramic Capacitor 2.2 F 100 100 STABLE 1 UNSTABLE 0.1 STABLE 10 ESR (Ω) 10 ESR (Ω) 1 0.1 0.01 1 UNSTABLE 0.1 0.01 0.01 0 20 40 60 80 0 20 40 60 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 54. Ceramic Capacitor 1.0 F Figure 55. Ceramic Capacitor 2.2 F 100 80 100 STABLE 1 UNSTABLE 0.1 STABLE 10 ESR (Ω) 10 ESR (Ω) STABLE 10 ESR (Ω) ESR (Ω) 10 1 UNSTABLE 0.1 0.01 0.01 0 20 40 60 80 0 20 40 60 LOAD CURRENT (mA) LOAD CURRENT (mA) Figure 56. Ceramic Capacitor 1.0 F Figure 57. Ceramic Capacitor 2.2 F http://onsemi.com 21 80 NCP4523 ORDERING INFORMATION Output Voltage Marking S/N for Voltage Setting VR1 VR2 VR2 Product Code Package Shipping† 1 2.8 2.8 2.8 B01A SSOP−8 3000 Tape and Reel 1 2.8 2.8 2.8 B01A SSOP−8 (Pb−Free) 3000 Tape and Reel NCP4523G3T1 3 3.0 3.0 3.0 B03A SSOP−8 3000 Tape and Reel NCP4523G20T1 20 2.35 2.8 2.8 B20A SSOP−8 3000 Tape and Reel Device NCP4523G1T1 NCP4523G1T1G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. http://onsemi.com 22 NCP4523 PACKAGE DIMENSIONS SSOP−8 G SUFFIX CASE 487−01 ISSUE O NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION D APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.25 AND 0.30 MM FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. −X− E 8 −Y− 5 B L 1 DIM A B C D E F G H J K L 4 H A K C 0.10 (0.004) G −T− NOTE 3 D 8 PL 0.15 (0.006) M F SEATING PLANE INCHES MIN MAX 0.106 0.122 0.102 0.118 0.039 0.051 0.004 0.012 0.073 0.081 0.012 0.024 0.026 TYP 0.019 TYP 0.004 0.006 0.000 0.008 0.150 0.165 MILLIMETERS MIN MAX 2.70 3.10 2.60 3.00 1.00 1.30 0.10 0.30 1.85 2.05 0.30 0.60 0.65 TYP 0.475 TYP 0.11 0.14 0.00 0.20 3.80 4.20 J T X Y SOLDERING FOOTPRINT* 1.465 mm 0.38 mm 0.65 mm 2.32 mm 5.28 mm *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 23 NCP4523 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Phone: 81−3−5773−3850 http://onsemi.com 24 For additional information, please contact your local Sales Representative. NCP4523/D