NCP584 Tri-Mode 200 mA CMOS LDO Regulator with Enable The NCP584 series of low drop out regulators are designed for portable battery powered applications which require precise output voltage accuracy, low quiescent current, and high ripple rejection. These devices feature an enable function which lowers current consumption significantly and are offered in the SOT23−5 package. This series of devices have three modes. Chip Enable (CE mode), Fast Transient Mode (FT mode), and Low Power Mode (LP mode). Both the FT and LP mode are utilized via the ECO pin. http://onsemi.com MARKING DIAGRAM Features • Tri−mode Operation • Low Dropout Voltage of 400 mV at 200 mA, Output Voltage = 0.9 V • • • • • • • • • • 300 mV at 200 mA, Output Voltage = 1.2 V 200 mV at 200 mA, Output Voltage = 1.8 V Excellent Line Regulation of 0.05%/V (0.10% LP Mode) Excellent Load Regulation of 10 mV (20 mV FT Mode) High Output Voltage Accuracy of ±2% (±3% LP mode) Ultra−Low Iq Current of: 3.5 mA (LP mode, Output Voltage ≤ 1.5 V) 40 mA (FT mode) Very Low Shutdown Current of 0.1 mA Excellent Power Supply Rejection Ratio of 75 dB at f = 1.0 kHz Low Temperature Drift Coefficient on the Output Voltage of "100 ppm/°C Fold Back Protection Circuit Input Voltage up to 6.5 V These are Pb−Free Devices 5 1 SOT23−5 SN SUFFIX CASE 1212 5 XXXTT 1 XXX = Specific Device Code TT = Traceability Information ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 13 of this data sheet. *Additional voltage options may be available between 0.8 V and 3.3 V in 100 mV steps. Typical Applications • Portable Equipment • Hand−Held Instrumentation • Camcorders and Cameras ECO Vin ECO Vout Vin Vout + + Vref Vref Current Limit CE Current Limit GND CE Figure 1. Simplified Block Diagram for Active Low © Semiconductor Components Industries, LLC, 2010 February, 2010 − Rev. 14 GND Figure 2. Simplified Block Diagram for Active High 1 Publication Order Number: NCP584/D NCP584 PIN FUNCTION DESCRIPTION SOT23−5 Pin Name Description 1 Vin 2 GND 3 CE or CE 4 ECO Mode alternative pin. (VECO = Vin for FT mode; VECO = GND for LP mode) 5 Vout Regulated output voltage. Power supply input voltage. Power supply ground. Chip enable pin. MAXIMUM RATINGS Rating Symbol Value Unit Input Voltage Vin 6.5 V Input Voltage (CE or CE Pin) VCE −0.3 to Vin +0.3 V VECO −0.3 to Vin +0.3 V Output Voltage Vout −0.3 to Vin +0.3 V Output Current Iout 250 mA Power Dissipation PD 250 mW ESD Capability, Human Body Model, C = 100 pF, R = 1.5 kW ESDHBM 1000 V ESD Capability, Machine Model, C = 200 pF, R = 0 W ESDMM 150 V TA −40 to +85 °C TJ(max) 125 °C Tstg −55 to +150 °C Input Voltage (ECO Pin) Operating Ambient Temperature Range Maximum Junction Temperature Storage Temperature Range Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. http://onsemi.com 2 NCP584 ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.0 V, TA = 25°C, unless otherwise noted.) Symbol Min Typ Max Unit Input Voltage Vin 1.4 − 6.0 V Output Voltage (1.0 mA ≤ Iout ≤ 30 mA) VECO = Vin VECO = GND Vout Vout x 0.980 Vout x 0.970 − − Vout x 1.020 Vout x 1.030 − − 0.05 0.10 0.20 0.30 − − 20 10 40 40 − − − − 0.40 0.30 0.20 0.10 0.70 0.50 0.30 0.20 − 40 70 − − 3.5 4.5 6.0 8.0 200 − − Characteristic Line Regulation (Iout = 30 mA, Vout + 0.5 V ≤ Vin ≤ 6.0 V) FT Mode VECO = Vin LP Mode VECO = GND Regline Load Regulation FT Mode (1.0 mA ≤ Iout ≤ 200 mA), VECO = Vin LP Mode (1.0 mA ≤ Iout ≤ 100 mA), VECO = GND Regload V %/V mV Dropout Voltage (Iout = 200 mA) Vout = 0.9 V 1.2 V v Vout v 1.5 V 1.8 V v Vout v 2.5 V 2.6 V v Vout v 3.3 V VDO Quiescent Current (Iout = 0 mA) FT Mode, VECO = Vin LP Mode, VECO = GND Vout ≤ 1.5 V Vout ≥ 1.8 V Iq Output Current (Vin − Vout = 0.5 V) Vin ≥ 1.5 V, Vout = 0.9 V Iout Shutdown Current (VCE = Vin) ISD − 0.1 1.0 mA Output Short Circuit Current (Vout = 0 V) Ilim − 50 − mA Vthenh Vthenl 1.0 0 − − Vin 0.3 Enable Input Threshold Voltage High Low mA mA V Ripple Rejection (Iout = 30 mA, Vout = 0.9 V, Vin − Vout = 1.0 V) f = 120 Hz f = 1.0 kHz f = 10 kHz RR Output Noise Voltage (BW = 10 Hz to 100 kHz Output Voltage Temperature Coefficient (Iout = 30 mA, −40°C ≤ TA ≤ 85°C) V dB − − − 75 75 65 − − − Vn − 30 − mVrms DVout/DT − "100 − ppm/°C http://onsemi.com 3 NCP584 1.0 1.0 0.9 0.9 OUTPUT VOLTAGE Vout (V) OUTPUT VOLTAGE Vout (V) TYPICAL CHARACTERISTICS 0.8 0.7 Vin = Vout nominal +2.0 V 0.6 Vin = Vout nominal + VDO (max) 0.5 0.4 0.3 Vout = Vout nominal ECO = H 0.2 0.1 0.8 0.6 100 300 200 Vin = Vout nominal + VDO (max) 0.5 0.4 0.3 Vout = Vout nominal ECO = L 0.2 0.1 0 Vin = Vout nominal +2.0 V 0.7 400 0 100 1.1 1.1 1.0 1.0 0.9 0.8 0.7 Iout = 1.0 mA Iout = 30 mA 0.4 Iout = 50 mA 0.3 Vout = 0.9 V ECO = H 0.2 0.1 0.1 1.1 2.1 3.1 4.1 5.1 0.9 0.8 0.7 0.6 Iout = 1.0 mA 0.5 Iout = 30 mA 0.4 Iout = 50 mA 0.3 Vout = 0.9 V ECO = L 0.2 0.1 0.1 6.1 1.1 INPUT VOLTAGE Vin (V) 1.7 1.7 OUTPUT VOLTAGE Vout (V) OUTPUT VOLTAGE Vout (V) 1.9 1.5 1.3 1.1 0.9 Iout = 1.0 mA Iout = 30 mA 0.3 0.3 Vout = 1.8 V ECO = H Iout = 50 mA 1.3 2.3 3.3 4.3 3.1 4.1 5.1 6.1 Figure 6. Output Voltage vs. Input Voltage 1.9 0.5 2.1 INPUT VOLTAGE Vin (V) Figure 5. Output Voltage vs. Input Voltage 0.7 400 Figure 4. Output Voltage vs. Output Current OUTPUT VOLTAGE Vout (V) OUTPUT VOLTAGE Vout (V) Figure 3. Output Voltage vs. Output Current 0.5 300 OUTPUT CURRENT Iout (mA) OUTPUT CURRENT Iout (mA) 0.6 200 5.3 1.5 1.3 1.1 0.9 Iout = 30 mA 0.5 0.3 0.3 6.3 Iout = 1.0 mA 0.7 Vout = 1.8 V ECO = L Iout = 50 mA 1.3 2.3 3.3 4.3 5.3 INPUT VOLTAGE Vin (V) INPUT VOLTAGE Vin (V) Figure 7. Output Voltage vs. Input Voltage Figure 8. Output Voltage vs. Input Voltage http://onsemi.com 4 6.3 NCP584 70 8 60 7 QUIESCENT CURRENT, Iq (mA) QUIESCENT CURRENT, Iq (mA) TYPICAL CHARACTERISTICS 50 40 30 20 Vout = 0.9 V ECO = H 10 0 0.1 1.1 2.1 3.1 4.1 5.1 6 5 4 3 2 Vout = 0.9 V ECO = L 1 0 0.1 6.1 1.1 INPUT VOLTAGE Vin (V) 60 7 SUPPLY CURRENT, Isupply (mA) QUIESCENT CURRENT, Iq (mA) 8 50 40 30 20 Vout = 1.8 V ECO = H 1.3 2.3 3.3 4.3 5.3 5 4 3 2 Vout = 1.8 V ECO = L 1 0 0.3 6.3 1.3 0.92 0.92 OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) 0.93 0.91 0.90 0.89 Vout = 0.9 V ECO = H 0 25 50 3.3 4.3 5.3 6.3 Figure 12. Quiescent Current vs. Input Voltage 0.93 −25 2.3 INPUT VOLTAGE Vin (V) Figure 11. Quiescent Current vs. Input Voltage 0.87 −50 6.1 5.1 6 INPUT VOLTAGE Vin (V) 0.88 4.1 Figure 10. Quiescent Current vs. Input Voltage 70 0 0.3 3.1 INPUT VOLTAGE Vin (V) Figure 9. Quiescent Current vs. Input Voltage 10 2.1 75 0.91 0.90 0.89 0.88 0.87 −50 100 TEMPERATURE (°C) Vout = 0.9 V ECO = L −25 0 25 50 75 TEMPERATURE (°C) Figure 13. Output Voltage vs. Temperature Figure 14. Output Voltage vs. Temperature http://onsemi.com 5 100 NCP584 1.23 1.23 1.22 1.22 OUTPUT VOLTAGE, Vout (V) OUTPUT VOLTAGE, Vout (V) TYPICAL CHARACTERISTICS 1.21 1.20 1.19 1.18 Vout = 1.2 V ECO = H 1.17 1.16 −50 −25 0 25 50 75 1.21 1.20 1.19 1.18 1.16 −50 100 0 25 50 75 TEMPERATURE (°C) Figure 15. Output Voltage vs. Temperature Figure 16. Output Voltage vs. Temperature 100 DROPOUT VOLTAGE, VDO (V) 0.6 0.5 85°C 25°C 0.4 0.3 −40°C 0.2 0.1 Vout = 0.9 V ECO = H 0.0 0 25 50 75 100 125 150 175 0.5 25°C 85°C 0.4 −40°C 0.3 0.2 0.1 Vout = 0.9 V ECO = L 0.0 0 200 25 50 75 100 125 150 175 200 OUTPUT CURRENT Iout (mA) OUTPUT CURRENT Iout (mA) Figure 17. Dropout Voltage vs. Output Current Figure 18. Dropout Voltage vs. Output Current 0.40 0.40 0.35 0.35 0.30 DROPOUT VOLTAGE, VDO (V) DROPOUT VOLTAGE, VDO (V) −25 TEMPERATURE (°C) 0.6 DROPOUT VOLTAGE, VDO (V) Vout = 1.2 V ECO = L 1.17 85°C 25°C 0.25 0.20 0.15 −40°C 0.10 Vout = 1.2 V ECO = H 0.05 0.00 0 25 50 75 100 125 150 175 85°C 0.30 25°C 0.25 0.20 −40°C 0.15 0.10 Vout = 1.2 V ECO = L 0.05 0.00 0 200 25 OUTPUT CURRENT Iout (mA) 50 75 100 125 150 175 200 OUTPUT CURRENT Iout (mA) Figure 19. Dropout Voltage vs. Output Current Figure 20. Dropout Voltage vs. Output Current http://onsemi.com 6 NCP584 TYPICAL CHARACTERISTICS 0.30 0.25 85°C 0.20 25°C 0.15 0.10 −40°C 0.05 0.00 0 Vout = 1.8 V ECO = H 25 50 75 100 125 150 175 DROPOUT VOLTAGE, VDO (V) DROPOUT VOLTAGE, VDO (V) 0.30 0.25 85°C 0.20 25°C 0.15 0.10 −40°C 0.05 Vout = 1.8 V ECO = L 0.00 0 200 25 OUTPUT CURRENT Iout (mA) RIPPLE REJECTION, RR (dB) RIPPLE REJECTION, RR (dB) 60 50 Iout = 1.0 mA 40 30 20 10 0 0.1 Vout = 0.9 V Vin = 1.4 V + 0.2 Vp−p Cout = 2.2 mF, ECO = H 10 1 100 200 70 Vout = 0.9 V Vin = 1.4 V + 0.2 Vp−p Cout = 2.2 mF, ECO = L 60 50 Iout = 1.0 mA 40 Iout = 30 mA 30 20 10 Iout = 50 mA 10 1 100 Figure 23. Ripple Rejection vs. Frequency Figure 24. Ripple Rejection vs. Frequency 90 RIPPLE REJECTION, RR (dB) RIPPLE REJECTION, RR (dB) 175 FREQUENCY, f (kHz) Iout = 50 mA 70 Iout = 30 mA 60 50 40 Iout = 1.0 mA 30 0 0.1 150 FREQUENCY, f (kHz) 80 10 80 0 0.1 90 20 125 90 Iout = 30 mA 70 100 Figure 22. Dropout Voltage vs. Output Current Iout = 50 mA 80 75 OUTPUT CURRENT Iout (mA) Figure 21. Dropout Voltage vs. Output Current 90 50 Vout = 1.2 V Vin = 2.2 V + 0.2 Vp−p Cout = 2.2 mF, ECO = H 1 10 Vout = 1.2 V 80 V = 2.2 V + 0.2 V in p−p 70 Cout = 2.2 mF, ECO = L 60 50 Iout = 30 mA 30 20 10 0 0.1 100 Iout = 1.0 mA 40 Iout = 50 mA 1 10 FREQUENCY, f (kHz) FREQUENCY, f (kHz) Figure 25. Ripple Rejection vs. Frequency Figure 26. Ripple Rejection vs. Frequency http://onsemi.com 7 100 NCP584 ECO = H, Iout = 30 mA tr = tf = 5 ms, Cout = 1.0 mF Vout = Vout nominal Output Voltage 30 40 50 60 70 80 90 100 ECO = L, Iout = 10 mA tr = tf = 5 ms, Cout = 1.0 mF Vout = Vout nominal Output Voltage 0.0 0.4 0.8 1.2 ECO = H, Iout = 30 mA tr = tf = 5 ms, Cout = 2.2 mF Vout = Vout nominal Output Voltage 10 20 30 40 50 60 OUTPUT VOLTAGE, Vout (0.5 V/div) Input Voltage 0 70 80 90 100 40 50 60 OUTPUT VOLTAGE, Vout (0.05 V/div) Output Voltage 30 3.2 3.6 4.0 2.8 3.2 3.6 4.0 ECO = L, Iout = 10 mA tr = tf = 5 ms, Cout = 2.2 mF Vout = Vout nominal Output Voltage 0.0 INPUT VOLTAGE, Vin (1.0 V/div) OUTPUT VOLTAGE, Vout (0.02 V/div) ECO = H, Iout = 30 mA tr = tf = 5 ms, Cout = 4.7 mF Vout = Vout nominal 20 2.8 0.4 0.8 1.2 1.6 2.0 2.4 TIME, t (ms) Input Voltage 10 2.4 Input Voltage TIME, t (ms) 0 2.0 TIME, t (ms) INPUT VOLTAGE, Vin (1.0 V/div) OUTPUT VOLTAGE, Vout (0.02 V/div) TIME, t (ms) 1.6 INPUT VOLTAGE, Vin (1.0 V/div) 20 Input Voltage 70 80 90 100 Input Voltage ECO = L, Iout = 10 mA tr = tf = 5 ms, Cout = 4.7 mF Vout = Vout nominal 0.0 Output Voltage 0.4 0.8 1.2 TIME, t (ms) 1.6 2.0 2.4 TIME, t (ms) Figure 27. Input Transient Response http://onsemi.com 8 INPUT VOLTAGE, Vin (1.0 V/div) 10 INPUT VOLTAGE, Vin (1.0 V/div) Input Voltage 0 OUTPUT VOLTAGE, Vout (0.5 V/div) INPUT VOLTAGE, Vin (1.0 V/div) OUTPUT VOLTAGE, Vout (0.02 V/div) TYPICAL CHARACTERISTICS 2.8 3.2 3.6 4.0 NCP584 TYPICAL CHARACTERISTICS 20 50 ECO = H, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 1.0 mF Vout = Vout nominal 0 Output Voltage 2 4 6 10 8 12 14 16 18 0 ECO = L, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 1.0 mF Vout = Vout nominal Output Voltage 0.0 1.0 2.0 3.0 TIME, t (ms) 4.0 5.0 6.0 7.0 TIME, t (ms) 20 LOAD CURRENT, Iout (mA) 100 Load Current 50 ECO = H, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 2.2 mF Vout = Vout nominal 0 Output Voltage −2 0 2 4 6 8 10 12 14 16 OUTPUT VOLTAGE, Vout (0.5 V/div) OUTPUT VOLTAGE, Vout (0.1 V/div) 150 18 10 Load Current 0 ECO = L, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 2.2 mF Vout = Vout nominal Output Voltage 0.0 2.0 1.0 TIME, t (ms) 3.0 4.0 5.0 6.0 50 ECO = H, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 4.7 mF Vout = Vout nominal 0 Output Voltage 2 4 6 8 10 12 14 16 LOAD CURRENT, Iout (mA) Load Current 18 OUTPUT VOLTAGE, Vout (0.5 V/div) OUTPUT VOLTAGE, Vout (0.1 V/div) 20 100 0 7.0 TIME, t (ms) 150 −2 LOAD CURRENT, Iout (mA) 0 Load Current 10 Load Current 0 ECO = L, Vin = Vout nominal + 1.0 V Cin = 1.0 mF, Cout = 4.7 mF Vout = Vout nominal 0.0 Output Voltage 1.0 2.0 TIME, t (ms) 3.0 4.0 TIME, t (ms) Figure 28. Load Transient Response http://onsemi.com 9 5.0 6.0 7.0 LOAD CURRENT, Iout (mA) −2 10 LOAD CURRENT, Iout (mA) Load Current LOAD CURRENT, Iout (mA) 100 OUTPUT VOLTAGE, Vout (0.5 V/div) OUTPUT VOLTAGE, Vout (0.1 V/div) 150 NCP584 TYPICAL CHARACTERISTICS 1.8 ECO = H, Vin = 1.8 V, Cin = 1.0 mF, Cout = 2.2 mF 1.2 0.6 0.0 2.6 2.4 VCE = 0 V to 1.8 V OUTPUT VOLTAGE, Vout (V) CE INPUT VOLTAGE, VCE (V) CE INPUT VOLTAGE, VCE (V) VCE = 0 V to 1.8 V Iout = 200 mA 2.1 1.8 1.6 1.2 1.1 0.6 0.6 0.0 2.1 ECO = L, Vin = 1.8 V, Cin = 1.0 mF, Cout = 2.2 mF Iout = 200 mA 0.1 0 10 20 30 40 50 60 70 OUTPUT VOLTAGE, Vout (V) 2.6 2.4 1.6 1.1 0.6 0.1 0 TIME, t (ms) 100 200 300 400 500 600 700 TIME, t (ms) Figure 29. Turn−On/Off Speed with CE Pin (Vout = 0.9 V) 2.4 1.7 1.6 1.2 0.8 Iout = 200 mA 0.7 0.0 0.2 ECO = H, Vin = 2.5 V, Cin = 1.0 mF, Cout = 2.2 mF 0 10 20 30 40 50 3.2 VCE = 0 V to 2.5 V OUTPUT VOLTAGE, Vout (V) CE INPUT VOLTAGE, VCE (V) CE INPUT VOLTAGE, VCE (V) VCE = 0 V to 2.5 V 2.4 1.7 1.6 1.2 0.8 Iout = 200 mA 0.0 70 ECO = L, Vin = 2.5 V, Cin = 1.0 mF, Cout = 2.2 mF 0 TIME, t (ms) Figure 30. Turn−On/Off Speed with CE Pin (Vout = 1.2 V) 10 −0.3 100 200 300 400 500 600 700 TIME, t (ms) http://onsemi.com 0.7 0.2 −0.3 60 2.2 OUTPUT VOLTAGE, Vout (V) 2.2 3.2 NCP584 Iout = 0 mA 0.91 0.90 0.89 Iout = 1 mA 0.91 0.90 0.89 Iout = 10 mA Iout = 50 mA 0.90 0.89 0.88 0.90 0.89 0.88 Iout = 100 mA 0.91 0.90 0.89 Iout = 200 mA 0.0 3.0 2.0 1.0 0.0 VECO−0 V to 1.3 V ECO INPUT VOLTAGE, ECO−IN (V) OUTPUT VOLTAGE, Vout (V) 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 TIME, t (ms) Figure 31. Output Voltage at Mode Alternative Point (Cin = 1.0 mF, Cout = 2.2 mF, 8.0 V, Vout = 0.9 V) http://onsemi.com 11 NCP584 APPLICATION INFORMATION Input Decoupling value of this capacitor, output might be unstable. For a ceramic type capacitor it is recommended connection about 1 W resistor in series for the stability of output voltage. The relation between Output Current of regulator and ESR of an output capacitor is shown in Figures 32 to 34. Those charts show minimal value of ESR for stable output voltage in Fast Transient mode. The minimal ESR of an output ceramic capacitor in Low Power mode is 40 mW for all output voltages. For PCB layout considerations, place the output capacitor close to the output pin and keep the leads short as possible. A 1.0 mF tantalum capacitor is the recommended value to be connected between Vin and GND. For PCB layout considerations, the traces of Vin and GND should be sufficiently wide in order to minimize noise and prevent unstable operation. Output Decoupling It is recommended to use a 2.2 mF or higher tantalum capacitor on the Vout pin. For better performance, select a tantalum capacitor with low Equivalent Series Resistance (ESR). If you use a tantalum type capacitor with high ESR 450 400 350 200 Cout = 1 mF 250 200 Cout = 2.2 mF 150 Cout = 1 mF 150 100 100 Cout = 2.2 mF 50 50 20 40 60 80 0 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) Figure 32. Minimal ESR of Output Ceramic Capacitor vs. Output Current Figure 33. Minimal ESR of Output Ceramic Capacitor vs. Output Current 45 Vout = 3.3 V Vin = 5 V FT Mode TA = 25°C 40 35 Cout = 1 mF 30 ESR (mW) 0 0 Vout = 1.2 V Vin = 3 V FT Mode TA = 25°C 250 ESR (mW) 300 ESR (mW) 300 Vout = 0.9 V Vin = 3 V FT Mode TA = 25°C 25 20 Cout = 2.2 mF 15 10 5 0 0 25 50 75 100 125 150 175 OUTPUT CURRENT (mA) Figure 34. Minimal ESR of Output Ceramic Capacitor vs. Output Current http://onsemi.com 12 200 NCP584 ORDERING INFORMATION Nominal Output Voltage Marking Package Shipping† Active High, LP and FT Mode 0.9 109 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN12T1G Active High, LP and FT Mode 1.2 112 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN15T1G Active High, LP and FT Mode 1.5 115 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN18T1G Active High, LP and FT Mode 1.8 118 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN25T1G Active High, LP and FT Mode 2.5 125 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN26T1G Active High, LP and FT Mode 2.6 126 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN28T1G Active High, LP and FT Mode 2.8 128 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN30T1G Active High, LP and FT Mode 3.0 130 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN31T1G Active High, LP and FT Mode 3.1 131 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584HSN33T1G Active High, LP and FT Mode 3.3 133 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584LSN09T1G Active Low, LP and FT Mode 0.9 009 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584LSN12T1G Active Low, LP and FT Mode 1.2 012 SOT23−5 (Pb−Free) 3000 / Tape & Reel NCP584LSN18T1G Active Low, LP and FT Mode 1.8 018 SOT23−5 (Pb−Free) 3000 / Tape & Reel Device Output Type / Features NCP584HSN09T1G †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. Other voltages are available. Consult your ON Semiconductor representative. http://onsemi.com 13 NCP584 PACKAGE DIMENSIONS SOT23−5 SN SUFFIX CASE 1212−01 ISSUE O A 5 E 1 A2 0.05 S B D A1 4 2 NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DATUM C IS A SEATING PLANE. DIM A1 A2 B C D E E1 e e1 L L1 L 3 E1 L1 B e e1 C 5X 0.10 M C B S A C S MILLIMETERS MIN MAX 0.00 0.10 1.00 1.30 0.30 0.50 0.10 0.25 2.80 3.00 2.50 3.10 1.50 1.80 0.95 BSC 1.90 BSC 0.20 --0.45 0.75 SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 SCALE 10:1 mm Ǔ ǒinches *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your loca Sales Representative NCP584/D