ONSEMI NCP584HSN09T1G

NCP584
Tri-Mode 200 mA CMOS
LDO Regulator with Enable
The NCP584 series of low drop out regulators are designed for
portable battery powered applications which require precise output
voltage accuracy, low quiescent current, and high ripple rejection.
These devices feature an enable function which lowers current
consumption significantly and are offered in the SOT23−5 package.
This series of devices have three modes. Chip Enable (CE mode),
Fast Transient Mode (FT mode), and Low Power Mode (LP mode).
Both the FT and LP mode are utilized via the ECO pin.
http://onsemi.com
MARKING
DIAGRAM
Features
• Tri−mode Operation
• Low Dropout Voltage of 400 mV at 200 mA, Output Voltage = 0.9 V
•
•
•
•
•
•
•
•
•
•
300 mV at 200 mA, Output Voltage = 1.2 V
200 mV at 200 mA, Output Voltage = 1.8 V
Excellent Line Regulation of 0.05%/V (0.10% LP Mode)
Excellent Load Regulation of 10 mV (20 mV FT Mode)
High Output Voltage Accuracy of ±2% (±3% LP mode)
Ultra−Low Iq Current of:
3.5 mA (LP mode, Output Voltage ≤ 1.5 V)
40 mA (FT mode)
Very Low Shutdown Current of 0.1 mA
Excellent Power Supply Rejection Ratio of 75 dB at f = 1.0 kHz
Low Temperature Drift Coefficient on the Output Voltage of
"100 ppm/°C
Fold Back Protection Circuit
Input Voltage up to 6.5 V
These are Pb−Free Devices
5
1
SOT23−5
SN SUFFIX
CASE 1212
5
XXXTT
1
XXX = Specific Device Code
TT = Traceability Information
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 13 of this data sheet.
*Additional voltage options may be available between
0.8 V and 3.3 V in 100 mV steps.
Typical Applications
• Portable Equipment
• Hand−Held Instrumentation
• Camcorders and Cameras
ECO
Vin
ECO
Vout
Vin
Vout
+
+
Vref
Vref
Current Limit
CE
Current Limit
GND CE
Figure 1. Simplified Block Diagram for Active Low
© Semiconductor Components Industries, LLC, 2010
February, 2010 − Rev. 14
GND
Figure 2. Simplified Block Diagram for Active High
1
Publication Order Number:
NCP584/D
NCP584
PIN FUNCTION DESCRIPTION
SOT23−5
Pin Name
Description
1
Vin
2
GND
3
CE or CE
4
ECO
Mode alternative pin. (VECO = Vin for FT mode; VECO = GND for LP mode)
5
Vout
Regulated output voltage.
Power supply input voltage.
Power supply ground.
Chip enable pin.
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Input Voltage
Vin
6.5
V
Input Voltage (CE or CE Pin)
VCE
−0.3 to Vin +0.3
V
VECO
−0.3 to Vin +0.3
V
Output Voltage
Vout
−0.3 to Vin +0.3
V
Output Current
Iout
250
mA
Power Dissipation
PD
250
mW
ESD Capability, Human Body Model, C = 100 pF, R = 1.5 kW
ESDHBM
1000
V
ESD Capability, Machine Model, C = 200 pF, R = 0 W
ESDMM
150
V
TA
−40 to +85
°C
TJ(max)
125
°C
Tstg
−55 to +150
°C
Input Voltage (ECO Pin)
Operating Ambient Temperature Range
Maximum Junction Temperature
Storage Temperature Range
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
http://onsemi.com
2
NCP584
ELECTRICAL CHARACTERISTICS (Vin = Vout + 1.0 V, TA = 25°C, unless otherwise noted.)
Symbol
Min
Typ
Max
Unit
Input Voltage
Vin
1.4
−
6.0
V
Output Voltage (1.0 mA ≤ Iout ≤ 30 mA)
VECO = Vin
VECO = GND
Vout
Vout x 0.980
Vout x 0.970
−
−
Vout x 1.020
Vout x 1.030
−
−
0.05
0.10
0.20
0.30
−
−
20
10
40
40
−
−
−
−
0.40
0.30
0.20
0.10
0.70
0.50
0.30
0.20
−
40
70
−
−
3.5
4.5
6.0
8.0
200
−
−
Characteristic
Line Regulation (Iout = 30 mA, Vout + 0.5 V ≤ Vin ≤ 6.0 V)
FT Mode VECO = Vin
LP Mode VECO = GND
Regline
Load Regulation
FT Mode (1.0 mA ≤ Iout ≤ 200 mA), VECO = Vin
LP Mode (1.0 mA ≤ Iout ≤ 100 mA), VECO = GND
Regload
V
%/V
mV
Dropout Voltage (Iout = 200 mA)
Vout = 0.9 V
1.2 V v Vout v 1.5 V
1.8 V v Vout v 2.5 V
2.6 V v Vout v 3.3 V
VDO
Quiescent Current (Iout = 0 mA)
FT Mode, VECO = Vin
LP Mode, VECO = GND
Vout ≤ 1.5 V
Vout ≥ 1.8 V
Iq
Output Current (Vin − Vout = 0.5 V)
Vin ≥ 1.5 V, Vout = 0.9 V
Iout
Shutdown Current (VCE = Vin)
ISD
−
0.1
1.0
mA
Output Short Circuit Current (Vout = 0 V)
Ilim
−
50
−
mA
Vthenh
Vthenl
1.0
0
−
−
Vin
0.3
Enable Input Threshold Voltage
High
Low
mA
mA
V
Ripple Rejection
(Iout = 30 mA, Vout = 0.9 V, Vin − Vout = 1.0 V)
f = 120 Hz
f = 1.0 kHz
f = 10 kHz
RR
Output Noise Voltage (BW = 10 Hz to 100 kHz
Output Voltage Temperature Coefficient
(Iout = 30 mA, −40°C ≤ TA ≤ 85°C)
V
dB
−
−
−
75
75
65
−
−
−
Vn
−
30
−
mVrms
DVout/DT
−
"100
−
ppm/°C
http://onsemi.com
3
NCP584
1.0
1.0
0.9
0.9
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
TYPICAL CHARACTERISTICS
0.8
0.7
Vin = Vout nominal +2.0 V
0.6
Vin = Vout nominal + VDO (max)
0.5
0.4
0.3
Vout = Vout nominal
ECO = H
0.2
0.1
0.8
0.6
100
300
200
Vin = Vout nominal + VDO (max)
0.5
0.4
0.3
Vout = Vout nominal
ECO = L
0.2
0.1
0
Vin = Vout nominal +2.0 V
0.7
400
0
100
1.1
1.1
1.0
1.0
0.9
0.8
0.7
Iout = 1.0 mA
Iout = 30 mA
0.4
Iout = 50 mA
0.3
Vout = 0.9 V
ECO = H
0.2
0.1
0.1
1.1
2.1
3.1
4.1
5.1
0.9
0.8
0.7
0.6
Iout = 1.0 mA
0.5
Iout = 30 mA
0.4
Iout = 50 mA
0.3
Vout = 0.9 V
ECO = L
0.2
0.1
0.1
6.1
1.1
INPUT VOLTAGE Vin (V)
1.7
1.7
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
1.9
1.5
1.3
1.1
0.9
Iout = 1.0 mA
Iout = 30 mA
0.3
0.3
Vout = 1.8 V
ECO = H
Iout = 50 mA
1.3
2.3
3.3
4.3
3.1
4.1
5.1
6.1
Figure 6. Output Voltage vs. Input Voltage
1.9
0.5
2.1
INPUT VOLTAGE Vin (V)
Figure 5. Output Voltage vs. Input Voltage
0.7
400
Figure 4. Output Voltage vs. Output Current
OUTPUT VOLTAGE Vout (V)
OUTPUT VOLTAGE Vout (V)
Figure 3. Output Voltage vs. Output Current
0.5
300
OUTPUT CURRENT Iout (mA)
OUTPUT CURRENT Iout (mA)
0.6
200
5.3
1.5
1.3
1.1
0.9
Iout = 30 mA
0.5
0.3
0.3
6.3
Iout = 1.0 mA
0.7
Vout = 1.8 V
ECO = L
Iout = 50 mA
1.3
2.3
3.3
4.3
5.3
INPUT VOLTAGE Vin (V)
INPUT VOLTAGE Vin (V)
Figure 7. Output Voltage vs. Input Voltage
Figure 8. Output Voltage vs. Input Voltage
http://onsemi.com
4
6.3
NCP584
70
8
60
7
QUIESCENT CURRENT, Iq (mA)
QUIESCENT CURRENT, Iq (mA)
TYPICAL CHARACTERISTICS
50
40
30
20
Vout = 0.9 V
ECO = H
10
0
0.1
1.1
2.1
3.1
4.1
5.1
6
5
4
3
2
Vout = 0.9 V
ECO = L
1
0
0.1
6.1
1.1
INPUT VOLTAGE Vin (V)
60
7
SUPPLY CURRENT, Isupply (mA)
QUIESCENT CURRENT, Iq (mA)
8
50
40
30
20
Vout = 1.8 V
ECO = H
1.3
2.3
3.3
4.3
5.3
5
4
3
2
Vout = 1.8 V
ECO = L
1
0
0.3
6.3
1.3
0.92
0.92
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
0.93
0.91
0.90
0.89
Vout = 0.9 V
ECO = H
0
25
50
3.3
4.3
5.3
6.3
Figure 12. Quiescent Current vs. Input Voltage
0.93
−25
2.3
INPUT VOLTAGE Vin (V)
Figure 11. Quiescent Current vs. Input Voltage
0.87
−50
6.1
5.1
6
INPUT VOLTAGE Vin (V)
0.88
4.1
Figure 10. Quiescent Current vs. Input Voltage
70
0
0.3
3.1
INPUT VOLTAGE Vin (V)
Figure 9. Quiescent Current vs. Input Voltage
10
2.1
75
0.91
0.90
0.89
0.88
0.87
−50
100
TEMPERATURE (°C)
Vout = 0.9 V
ECO = L
−25
0
25
50
75
TEMPERATURE (°C)
Figure 13. Output Voltage vs. Temperature
Figure 14. Output Voltage vs. Temperature
http://onsemi.com
5
100
NCP584
1.23
1.23
1.22
1.22
OUTPUT VOLTAGE, Vout (V)
OUTPUT VOLTAGE, Vout (V)
TYPICAL CHARACTERISTICS
1.21
1.20
1.19
1.18
Vout = 1.2 V
ECO = H
1.17
1.16
−50
−25
0
25
50
75
1.21
1.20
1.19
1.18
1.16
−50
100
0
25
50
75
TEMPERATURE (°C)
Figure 15. Output Voltage vs. Temperature
Figure 16. Output Voltage vs. Temperature
100
DROPOUT VOLTAGE, VDO (V)
0.6
0.5
85°C
25°C
0.4
0.3
−40°C
0.2
0.1
Vout = 0.9 V
ECO = H
0.0
0
25
50
75
100
125
150
175
0.5
25°C
85°C
0.4
−40°C
0.3
0.2
0.1
Vout = 0.9 V
ECO = L
0.0
0
200
25
50
75
100
125
150
175
200
OUTPUT CURRENT Iout (mA)
OUTPUT CURRENT Iout (mA)
Figure 17. Dropout Voltage vs. Output Current
Figure 18. Dropout Voltage vs. Output Current
0.40
0.40
0.35
0.35
0.30
DROPOUT VOLTAGE, VDO (V)
DROPOUT VOLTAGE, VDO (V)
−25
TEMPERATURE (°C)
0.6
DROPOUT VOLTAGE, VDO (V)
Vout = 1.2 V
ECO = L
1.17
85°C
25°C
0.25
0.20
0.15
−40°C
0.10
Vout = 1.2 V
ECO = H
0.05
0.00
0
25
50
75
100
125
150
175
85°C
0.30
25°C
0.25
0.20
−40°C
0.15
0.10
Vout = 1.2 V
ECO = L
0.05
0.00
0
200
25
OUTPUT CURRENT Iout (mA)
50
75
100
125
150
175
200
OUTPUT CURRENT Iout (mA)
Figure 19. Dropout Voltage vs. Output Current
Figure 20. Dropout Voltage vs. Output Current
http://onsemi.com
6
NCP584
TYPICAL CHARACTERISTICS
0.30
0.25
85°C
0.20
25°C
0.15
0.10
−40°C
0.05
0.00
0
Vout = 1.8 V
ECO = H
25
50
75
100
125
150
175
DROPOUT VOLTAGE, VDO (V)
DROPOUT VOLTAGE, VDO (V)
0.30
0.25
85°C
0.20
25°C
0.15
0.10
−40°C
0.05
Vout = 1.8 V
ECO = L
0.00
0
200
25
OUTPUT CURRENT Iout (mA)
RIPPLE REJECTION, RR (dB)
RIPPLE REJECTION, RR (dB)
60
50
Iout = 1.0 mA
40
30
20
10
0
0.1
Vout = 0.9 V
Vin = 1.4 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
10
1
100
200
70
Vout = 0.9 V
Vin = 1.4 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = L
60
50
Iout = 1.0 mA
40
Iout = 30 mA
30
20
10
Iout = 50 mA
10
1
100
Figure 23. Ripple Rejection vs. Frequency
Figure 24. Ripple Rejection vs. Frequency
90
RIPPLE REJECTION, RR (dB)
RIPPLE REJECTION, RR (dB)
175
FREQUENCY, f (kHz)
Iout = 50 mA
70
Iout = 30 mA
60
50
40
Iout = 1.0 mA
30
0
0.1
150
FREQUENCY, f (kHz)
80
10
80
0
0.1
90
20
125
90
Iout = 30 mA
70
100
Figure 22. Dropout Voltage vs. Output Current
Iout = 50 mA
80
75
OUTPUT CURRENT Iout (mA)
Figure 21. Dropout Voltage vs. Output Current
90
50
Vout = 1.2 V
Vin = 2.2 V + 0.2 Vp−p
Cout = 2.2 mF, ECO = H
1
10
Vout = 1.2 V
80 V = 2.2 V + 0.2 V
in
p−p
70 Cout = 2.2 mF, ECO = L
60
50
Iout = 30 mA
30
20
10
0
0.1
100
Iout = 1.0 mA
40
Iout = 50 mA
1
10
FREQUENCY, f (kHz)
FREQUENCY, f (kHz)
Figure 25. Ripple Rejection vs. Frequency
Figure 26. Ripple Rejection vs. Frequency
http://onsemi.com
7
100
NCP584
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 1.0 mF
Vout = Vout nominal
Output Voltage
30
40
50
60
70
80
90
100
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 1.0 mF
Vout = Vout nominal
Output Voltage
0.0
0.4
0.8
1.2
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 2.2 mF
Vout = Vout nominal
Output Voltage
10
20
30
40
50
60
OUTPUT VOLTAGE, Vout (0.5 V/div)
Input Voltage
0
70
80
90
100
40
50
60
OUTPUT VOLTAGE, Vout (0.05 V/div)
Output Voltage
30
3.2
3.6
4.0
2.8
3.2
3.6
4.0
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 2.2 mF
Vout = Vout nominal
Output Voltage
0.0
INPUT VOLTAGE, Vin (1.0 V/div)
OUTPUT VOLTAGE, Vout (0.02 V/div)
ECO = H, Iout = 30 mA
tr = tf = 5 ms, Cout = 4.7 mF
Vout = Vout nominal
20
2.8
0.4
0.8
1.2
1.6
2.0
2.4
TIME, t (ms)
Input Voltage
10
2.4
Input Voltage
TIME, t (ms)
0
2.0
TIME, t (ms)
INPUT VOLTAGE, Vin (1.0 V/div)
OUTPUT VOLTAGE, Vout (0.02 V/div)
TIME, t (ms)
1.6
INPUT VOLTAGE, Vin (1.0 V/div)
20
Input Voltage
70
80
90
100
Input Voltage
ECO = L, Iout = 10 mA
tr = tf = 5 ms, Cout = 4.7 mF
Vout = Vout nominal
0.0
Output Voltage
0.4
0.8
1.2
TIME, t (ms)
1.6
2.0
2.4
TIME, t (ms)
Figure 27. Input Transient Response
http://onsemi.com
8
INPUT VOLTAGE, Vin (1.0 V/div)
10
INPUT VOLTAGE, Vin (1.0 V/div)
Input Voltage
0
OUTPUT VOLTAGE, Vout (0.5 V/div)
INPUT VOLTAGE, Vin (1.0 V/div)
OUTPUT VOLTAGE, Vout (0.02 V/div)
TYPICAL CHARACTERISTICS
2.8
3.2
3.6
4.0
NCP584
TYPICAL CHARACTERISTICS
20
50
ECO = H, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 1.0 mF
Vout = Vout nominal
0
Output Voltage
2
4
6
10
8
12
14
16
18
0
ECO = L, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 1.0 mF
Vout = Vout nominal
Output Voltage
0.0
1.0
2.0
3.0
TIME, t (ms)
4.0
5.0
6.0
7.0
TIME, t (ms)
20
LOAD CURRENT, Iout (mA)
100
Load Current
50
ECO = H, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 2.2 mF
Vout = Vout nominal
0
Output Voltage
−2
0
2
4
6
8
10
12
14
16
OUTPUT VOLTAGE, Vout (0.5 V/div)
OUTPUT VOLTAGE, Vout (0.1 V/div)
150
18
10
Load Current
0
ECO = L, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 2.2 mF
Vout = Vout nominal
Output Voltage
0.0
2.0
1.0
TIME, t (ms)
3.0
4.0
5.0
6.0
50
ECO = H, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 4.7 mF
Vout = Vout nominal
0
Output Voltage
2
4
6
8
10
12
14
16
LOAD CURRENT, Iout (mA)
Load Current
18
OUTPUT VOLTAGE, Vout (0.5 V/div)
OUTPUT VOLTAGE, Vout (0.1 V/div)
20
100
0
7.0
TIME, t (ms)
150
−2
LOAD CURRENT, Iout (mA)
0
Load Current
10
Load Current
0
ECO = L, Vin = Vout nominal + 1.0 V
Cin = 1.0 mF, Cout = 4.7 mF
Vout = Vout nominal
0.0
Output Voltage
1.0
2.0
TIME, t (ms)
3.0
4.0
TIME, t (ms)
Figure 28. Load Transient Response
http://onsemi.com
9
5.0
6.0
7.0
LOAD CURRENT, Iout (mA)
−2
10
LOAD CURRENT, Iout (mA)
Load Current
LOAD CURRENT, Iout (mA)
100
OUTPUT VOLTAGE, Vout (0.5 V/div)
OUTPUT VOLTAGE, Vout (0.1 V/div)
150
NCP584
TYPICAL CHARACTERISTICS
1.8
ECO = H, Vin = 1.8 V,
Cin = 1.0 mF,
Cout = 2.2 mF
1.2
0.6
0.0
2.6
2.4
VCE = 0 V to 1.8 V
OUTPUT VOLTAGE, Vout (V)
CE INPUT VOLTAGE, VCE (V)
CE INPUT VOLTAGE, VCE (V)
VCE = 0 V to 1.8 V
Iout = 200 mA
2.1
1.8
1.6
1.2
1.1
0.6
0.6
0.0
2.1
ECO = L, Vin = 1.8 V,
Cin = 1.0 mF,
Cout = 2.2 mF
Iout = 200 mA
0.1
0
10
20
30
40
50
60
70
OUTPUT VOLTAGE, Vout (V)
2.6
2.4
1.6
1.1
0.6
0.1
0
TIME, t (ms)
100 200 300 400 500 600 700
TIME, t (ms)
Figure 29. Turn−On/Off Speed with CE Pin (Vout = 0.9 V)
2.4
1.7
1.6
1.2
0.8
Iout = 200 mA
0.7
0.0
0.2
ECO = H, Vin = 2.5 V,
Cin = 1.0 mF,
Cout = 2.2 mF
0
10
20
30
40
50
3.2
VCE = 0 V to 2.5 V
OUTPUT VOLTAGE, Vout (V)
CE INPUT VOLTAGE, VCE (V)
CE INPUT VOLTAGE, VCE (V)
VCE = 0 V to 2.5 V
2.4
1.7
1.6
1.2
0.8
Iout = 200 mA
0.0
70
ECO = L, Vin = 2.5 V,
Cin = 1.0 mF,
Cout = 2.2 mF
0
TIME, t (ms)
Figure 30. Turn−On/Off Speed with CE Pin (Vout = 1.2 V)
10
−0.3
100 200 300 400 500 600 700
TIME, t (ms)
http://onsemi.com
0.7
0.2
−0.3
60
2.2
OUTPUT VOLTAGE, Vout (V)
2.2
3.2
NCP584
Iout = 0 mA
0.91
0.90
0.89
Iout = 1 mA
0.91
0.90
0.89
Iout = 10 mA
Iout = 50 mA
0.90
0.89
0.88
0.90
0.89
0.88
Iout = 100 mA
0.91
0.90
0.89
Iout = 200 mA
0.0
3.0
2.0
1.0
0.0
VECO−0 V to 1.3 V
ECO INPUT VOLTAGE, ECO−IN (V)
OUTPUT VOLTAGE, Vout (V)
0.95
0.94
0.93
0.92
0.91
0.90
0.89
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
TIME, t (ms)
Figure 31. Output Voltage at Mode Alternative Point
(Cin = 1.0 mF, Cout = 2.2 mF, 8.0 V, Vout = 0.9 V)
http://onsemi.com
11
NCP584
APPLICATION INFORMATION
Input Decoupling
value of this capacitor, output might be unstable. For a
ceramic type capacitor it is recommended connection
about 1 W resistor in series for the stability of output
voltage. The relation between Output Current of regulator
and ESR of an output capacitor is shown in Figures 32 to
34. Those charts show minimal value of ESR for stable
output voltage in Fast Transient mode. The minimal ESR
of an output ceramic capacitor in Low Power mode is
40 mW for all output voltages. For PCB layout
considerations, place the output capacitor close to the
output pin and keep the leads short as possible.
A 1.0 mF tantalum capacitor is the recommended value
to be connected between Vin and GND. For PCB layout
considerations, the traces of Vin and GND should be
sufficiently wide in order to minimize noise and prevent
unstable operation.
Output Decoupling
It is recommended to use a 2.2 mF or higher tantalum
capacitor on the Vout pin. For better performance, select a
tantalum capacitor with low Equivalent Series Resistance
(ESR). If you use a tantalum type capacitor with high ESR
450
400
350
200
Cout = 1 mF
250
200
Cout = 2.2 mF
150
Cout = 1 mF
150
100
100
Cout = 2.2 mF
50
50
20
40
60
80
0
100 120 140 160 180 200
0
20
40
60
80
100 120 140 160 180 200
OUTPUT CURRENT (mA)
OUTPUT CURRENT (mA)
Figure 32. Minimal ESR of Output Ceramic
Capacitor vs. Output Current
Figure 33. Minimal ESR of Output Ceramic
Capacitor vs. Output Current
45
Vout = 3.3 V
Vin = 5 V
FT Mode
TA = 25°C
40
35
Cout = 1 mF
30
ESR (mW)
0
0
Vout = 1.2 V
Vin = 3 V
FT Mode
TA = 25°C
250
ESR (mW)
300
ESR (mW)
300
Vout = 0.9 V
Vin = 3 V
FT Mode
TA = 25°C
25
20
Cout = 2.2 mF
15
10
5
0
0
25
50
75
100
125
150
175
OUTPUT CURRENT (mA)
Figure 34. Minimal ESR of Output Ceramic
Capacitor vs. Output Current
http://onsemi.com
12
200
NCP584
ORDERING INFORMATION
Nominal
Output Voltage
Marking
Package
Shipping†
Active High,
LP and FT Mode
0.9
109
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN12T1G
Active High,
LP and FT Mode
1.2
112
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN15T1G
Active High,
LP and FT Mode
1.5
115
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN18T1G
Active High,
LP and FT Mode
1.8
118
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN25T1G
Active High,
LP and FT Mode
2.5
125
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN26T1G
Active High,
LP and FT Mode
2.6
126
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN28T1G
Active High,
LP and FT Mode
2.8
128
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN30T1G
Active High,
LP and FT Mode
3.0
130
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN31T1G
Active High,
LP and FT Mode
3.1
131
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584HSN33T1G
Active High,
LP and FT Mode
3.3
133
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584LSN09T1G
Active Low,
LP and FT Mode
0.9
009
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584LSN12T1G
Active Low,
LP and FT Mode
1.2
012
SOT23−5
(Pb−Free)
3000 / Tape & Reel
NCP584LSN18T1G
Active Low,
LP and FT Mode
1.8
018
SOT23−5
(Pb−Free)
3000 / Tape & Reel
Device
Output Type / Features
NCP584HSN09T1G
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification
Brochure, BRD8011/D.
Other voltages are available. Consult your ON Semiconductor representative.
http://onsemi.com
13
NCP584
PACKAGE DIMENSIONS
SOT23−5
SN SUFFIX
CASE 1212−01
ISSUE O
A
5
E
1
A2
0.05 S
B
D
A1
4
2
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DATUM C IS A SEATING PLANE.
DIM
A1
A2
B
C
D
E
E1
e
e1
L
L1
L
3
E1
L1
B
e
e1
C
5X
0.10
M
C B
S
A
C
S
MILLIMETERS
MIN
MAX
0.00
0.10
1.00
1.30
0.30
0.50
0.10
0.25
2.80
3.00
2.50
3.10
1.50
1.80
0.95 BSC
1.90 BSC
0.20
--0.45
0.75
SOLDERING FOOTPRINT*
0.95
0.037
1.9
0.074
2.4
0.094
1.0
0.039
0.7
0.028
SCALE 10:1
mm Ǔ
ǒinches
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
14
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your loca
Sales Representative
NCP584/D