ONSEMI MC100LVEL59DWG

MC100LVEL59
3.3VECL Triple 2:1
Multiplexer
Description
The MC100LVEL59 is a 3.3 V triple 2:1 multiplexer with
differential outputs. The output data of the multiplexers can be
controlled individually via the select inputs or as a group via the
common select input. The flexible selection scheme makes the device
useful for both data path and random logic applications.
http://onsemi.com
Features
•
•
•
•
•
•
Individual or Common Select Controls
500 ps Typical Propagation Delays
ESD Protection: >2 kV HBM
SO−20 WB
DW SUFFIX
CASE 751D
The 100 Series Contains Temperature Compensation
PECL Mode Operating Range: VCC = 3.0 V to 3.8 V
with VEE = 0 V
NECL Mode Operating Range: VCC = 0 V
with VEE = −3.0 V to −3.8 V
Internal Input Pulldown Resistors
•
• Q Output will Default LOW with Inputs Open or at VEE
• Meets or Exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
• Moisture Sensitivity;
•
Pb Pkg
Level 1
Pb−Free Pkg
Level 3
For Additional Information, see Application Note AND8003/D
Flammability Rating: UL 94 V−O @ 0.125 in,
Oxygen Index 28 to 34
Transistor Count = 182 devices
•
• Pb−Free Packages are Available*
MARKING DIAGRAM*
20
100LVEL59
AWLYYWWG
1
A
WL
YY
WW
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb−Free Package
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 5 of this data sheet.
*For additional information on our Pb−Free strategy and soldering details, please
download the ON Semiconductor Soldering and Mounting Techniques
Reference Manual, SOLDERRM/D.
© Semiconductor Components Industries, LLC, 2006
November, 2006 − Rev. 4
1
Publication Order Number:
MC100LVEL59/D
MC100LVEL59
VCC
Q0
Q0
VCC
Q1
Q1
VCC
Q2
Q2
VEE
20
19
18
17
16
15
14
13
12
11
9
10
1
1
0
2
COM_SEL D0a
1
3
D0b
4
0
1
5
SEL0 D1a
6
D1b
7
0
8
SEL1 D2a
D2b SEL2
Warning: All VCC and VEE pins must be externally connected
to Power Supply to guarantee proper operation.
Figure 1. Logic Diagram and Pinout: 20−Lead SOIC (Top View)
Table 1. PIN DESCRIPTION
Pins
Function
D0a−D2a
D0b−D2b
SEL0−SEL2
COM_SEL
Q0−Q2; Q0−Q2
VCC
VEE
ECL Input Data a
ECL Input Data b
ECL Individual Select Input
ECL Common Select Input
ECL Differential Outputs
Positive Supply
Negative Supply
Table 2. TRUTH TABLE
SEL
Data
H
L
a
b
Table 3. MAXIMUM RATINGS
Symbol
Parameter
Condition 1
Condition 2
Rating
Unit
VCC
PECL Mode Power Supply
VEE = 0 V
8 to 0
V
VEE
NECL Mode Power Supply
VCC = 0 V
−8 to 0
V
VI
PECL Mode Input Voltage
NECL Mode Input Voltage
VEE = 0 V
VCC = 0 V
6 to 0
−6 to 0
V
V
Iout
Output Current
Continuous
Surge
50
100
mA
mA
TA
Operating Temperature Range
−40 to +85
°C
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction to Ambient)
0 lfpm
500 lfpm
20 SOIC
20 SOIC
140
100
°C/W
°C/W
qJC
Thermal Resistance (Junction to Case)
Standard Board
20 SOIC
30 to 35
°C/W
Tsol
Wave Solder
<2 to 3 sec @ 248°C
265
°C
VI VCC
VI VEE
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect
device reliability.
http://onsemi.com
2
MC100LVEL59
Table 4. LVPECL DC CHARACTERISTICS VCC= 3.3 V; VEE= 0.0 V (Note 1)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
27
32
Min
85°C
Typ
Max
27
32
Min
Typ
Max
Unit
27
32
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 2)
2215
2295
2420
2275
2345
2420
2275
2345
2420
mV
VOL
Output LOW Voltage (Note 2)
1470
1605
1745
1490
1595
1680
1490
1595
1680
mV
VIH
Input HIGH Voltage
2135
2420
2135
2420
2135
2420
mV
VIL
Input LOW Voltage
1490
1825
1490
1825
1490
1825
mV
IIH
Input HIGH Current
150
mA
IIL
Input LOW Current
150
0.5
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
1. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
2. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
Table 5. LVNECL DC CHARACTERISTICS VCC= 0.0 V; VEE= −3.3 V (Note 3)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
27
32
Min
85°C
Typ
Max
27
32
Min
Typ
Max
Unit
27
32
mA
IEE
Power Supply Current
VOH
Output HIGH Voltage (Note 4)
−1085
−1005
−880
−1025
−955
−880
−1025
−955
−880
mV
VOL
Output LOW Voltage (Note 4)
−1830
−1695
−1555
−1810
−1705
−1620
−1810
−1705
−1620
mV
VIH
Input HIGH Voltage
−1165
−880
−1165
−880
−1165
−880
mV
VIL
Input LOW Voltage
−1810
−1475
−1810
−1475
−1810
−1475
mV
IIH
Input HIGH Current
150
mA
IIL
Input LOW Current
150
0.5
150
0.5
0.5
mA
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
3. Input and output parameters vary 1:1 with VCC. VEE can vary ±0.3 V.
4. Outputs are terminated through a 50 W resistor to VCC − 2.0 V.
http://onsemi.com
3
MC100LVEL59
Table 6. AC CHARACTERISTICS VCC= 3.3 V; VEE= 0.0 V or VCC= 0.0 V; VEE= −3.3 V (Note 5)
−40°C
Symbol
Characteristic
Min
fmax
Maximum Toggle Frequency
tPLH
tPHL
Propagation
Delay
tskew
Output−Output Skew
tJITTER
Cycle−to−Cycle Jitter
tr
tf
Output Rise/Fall Times Q
(20% − 80%)
DATA to Q/Q
SEL to Q/Q
COM_SEL to Q/Q
Typ
25°C
Max
Min
TBD
340
340
340
Typ
Max
340
340
340
690
690
690
340
340
340
Max
100
TBD
540
200
ps
ps
ps
TBD
200
Unit
GHz
690
690
690
100
TBD
540
Typ
TBD
100
200
Min
TBD
690
690
690
Any Dn, Dm to Q
85°C
540
ps
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
5. VEE can vary ±0.3 V.
Q
Zo = 50 W
D
Receiver
Device
Driver
Device
Q
D
Zo = 50 W
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 2. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
http://onsemi.com
4
MC100LVEL59
ORDERING INFORMATION
Package
Package†
MC100LVEL59DW
SOIC−20
38 Units / Rail
MC100LVEL59DWG
SOIC−20
(Pb−Free)
38 Units / Rail
MC100LVEL59DWR2
SOIC−20
1000 / Tape & Reel
MC100LVEL59DWR2G
SOIC−20
(Pb−Free)
1000 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AN1405/D
− ECL Clock Distribution Techniques
AN1406/D
− Designing with PECL (ECL at +5.0 V)
AN1503/D
− ECLinPS I/O SPiCE Modeling Kit
AN1504/D
− Metastability and the ECLinPS Family
AN1568/D
− Interfacing Between LVDS and ECL
AN1672/D
− The ECL Translator Guide
AND8001/D
− Odd Number Counters Design
AND8002/D
− Marking and Date Codes
AND8020/D
− Termination of ECL Logic Devices
AND8066/D
− Interfacing with ECLinPS
AND8090/D
− AC Characteristics of ECL Devices
http://onsemi.com
5
MC100LVEL59
PACKAGE DIMENSIONS
SO−20 WB
DW SUFFIX
CASE 751D−05
ISSUE G
A
20
q
X 45 _
E
h
H
M
10X
0.25
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
11
B
M
D
1
10
20X
B
B
0.25
M
T A
S
B
S
L
A
18X
e
A1
SEATING
PLANE
C
T
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
ECLinPS are registered trademarks of Semiconductor Components Industries, LLC (SCILLC).
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5773−3850
http://onsemi.com
6
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC100LVEL59/D