ispLSI 1024EA ® In-System Programmable High Density PLD Features Functional Block Diagram • HIGH DENSITY PROGRAMMABLE LOGIC — 4000 PLD Gates — 48 I/O Pins, Two Dedicated Inputs — 144 Registers — High Speed Global Interconnect — Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc. — Small Logic Block Size for Random Logic • NEW FEATURES — 100% IEEE 1149.1 Boundary Scan Testable — ispJTAG™ In-System Programmable via IEEE 1149.1 (JTAG) Test Access Port — User Selectable 3.3V or 5V I/O Supports MixedVoltage Systems (VCCIO Pin) — Open-Drain Output Option A0 C7 A1 C6 A2 C5 D Q Logic Array A3 D Q GLB A4 A6 C2 C1 Global Routing Pool (GRP) B0 B1 B2 B3 B4 B5 B6 B7 • HIGH PERFORMANCE E2CMOS® TECHNOLOGY — fmax = 200 MHz Maximum Operating Frequency — tpd = 4.5 ns Propagation Delay — TTL Compatible Inputs and Outputs — Electrically Erasable and Reprogrammable — Non-Volatile — 100% Tested at Time of Manufacture — Unused Product Term Shutdown Saves Power • IN-SYSTEM PROGRAMMABLE — Increased Manufacturing Yields, Reduced Time-toMarket and Improved Product Quality — Reprogram Soldered Devices for Faster Prototyping C4 C3 D Q A5 A7 Output Routing Pool Output Routing Pool D Q C0 CLK Output Routing Pool 0139/1024EA Description The ispLSI 1024EA is a High Density Programmable Logic Device containing 144 Registers, 48 Universal I/O pins, two Dedicated Input pins, four Dedicated Clock Input pins and a Global Routing Pool (GRP). The GRP provides complete interconnectivity between all of these elements. The ispLSI 1024EA features 5V in-system diagnostic capabilities via IEEE 1149.1 Test Access Port. The ispLSI 1024EA device offers non-volatile reprogrammability of the logic, as well as the interconnects to provide truly reconfigurable systems. A functional superset of the ispLSI 1024 architecture, the ispLSI 1024EA device adds user selectable 3.3V or 5V I/O and open-drain output options. • OFFERS THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS — Complete Programmable Device Can Combine Glue Logic and Structured Designs — Enhanced Pin Locking Capability — Four Dedicated Clock Input Pins — Synchronous and Asynchronous Clocks — Programmable Output Slew Rate Control to Minimize Switching Noise — Flexible Pin Placement — Optimized Global Routing Pool Provides Global Interconnectivity The basic unit of logic on the ispLSI 1024EA device is the Generic Logic Block (GLB). The GLBs are labeled A0, A1…D7 (Figure 1). There are a total of 24 GLBs in the ispLSI 1024EA device. Each GLB has 18 inputs, a programmable AND/OR/Exclusive OR array, and four outputs which can be configured to be either combinatorial or registered. Inputs to the GLB come from the GRP and dedicated inputs. All of the GLB outputs are brought back into the GRP so that they can be connected to the inputs of any other GLB on the device. • ispDesignEXPERT™ – LOGIC COMPILER AND COMPLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING — Superior Quality of Results — Tightly Integrated with Leading CAE Vendor Tools — Productivity Enhancing Timing Analyzer, Explore Tools, Timing Simulator and ispANALYZER™ — PC and UNIX Platforms Copyright © 2000 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice. LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com 1024ea_01 1 June 2000 Specifications ispLSI 1024EA Functional Block Diagram Figure 1. ispLSI 1024EA Functional Block Diagram RESET VCCIO Generic Logic Blocks (GLBs) GOE 1/IN 5 GOE 0/IN 4 I/O 47 I/O 46 I/O 45 I/O 44 C7 C5 A2 A4 C3 C2 A5 C1 I/O 43 I/O 42 I/O 41 I/O 40 I/O 39 I/O 38 I/O 37 I/O 36 I/O 35 I/O 34 I/O 33 I/O 32 A6 I/O 12 I/O 13 I/O 14 I/O 15 C0 B1 B2 B3 B4 B5 B6 Output Routing Pool (ORP) TMS Input Bus CLK 0 CLK 1 CLK 2 IOCLK 0 IOCLK 1 0139B/1024EA B7 Megablock TDO Clock Distribution Network Y0 Y1 Y2 Y3 A7 B0 TDI C4 Global Routing Pool (GRP) A3 lnput Bus Output Routing Pool (ORP) I/O 8 I/O 9 I/O 10 I/O 11 C6 A1 lnput Bus I/O 4 I/O 5 I/O 6 I/O 7 A0 Output Routing Pool (ORP) I/O 0 I/O 1 I/O 2 I/O 3 I/O 28 I/O 29 I/O 30 I/O 31 I/O 24 I/O 25 I/O 26 I/O 27 I/O 20 I/O 21 I/O 22 I/O 23 I/O 16 I/O 17 I/O 18 I/O 19 TCK The device also has 48 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, registered input, latched input, output or bi-directional I/O pin with 3-state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise. By connecting the VCCIO pin to a common 5V or 3.3V power supply, I/O output levels can be matched to 5V or 3.3V-compatible voltages. Clocks in the ispLSI 1024EA device are selected using the Clock Distribution Network. Four dedicated clock pins (Y0, Y1, Y2 and Y3) are brought into the distribution network, and five clock outputs (CLK 0, CLK 1, CLK 2, IOCLK 0 and IOCLK 1) are provided to route clocks to the GLBs and I/O cells. The Clock Distribution Network can also be driven from a special clock GLB (C0 on the ispLSI 1024EA device). The logic of this GLB allows the user to create an internal clock from a combination of internal signals within the device. Eight GLBs, 16 I/O cells, dedicated inputs (if available) and one ORP are connected together to make a Megablock (Figure 1). The outputs of the eight GLBs are connected to a set of 16 universal I/O cells by the ORP. Each ispLSI 1024EA device contains three Megablocks. In addition to the standard output configuration, the outputs of the ispLSI 1024EA are individually programmable, either as a standard totem-pole output or an open-drain output. The totem-pole output drives the specified Voh and Vol levels, whereas the open-drain output drives only the specified Vol. The Voh level on the open-drain output depends on the external loading and pull-up. This output configuration is controlled by a programmable fuse. The default configuration when the device is in bulk erased state is totem-pole configuration. The open-drain/totem-pole option is selectable through the ispDesignEXPERT software tools. Programmable Open-Drain Outputs The GRP has, as its inputs, the outputs from all of the GLBs and all of the inputs from the bi-directional I/O cells. All of these signals are made available to the inputs of the GLBs. Delays through the GRP have been equalized to minimize timing skew. 2 Specifications ispLSI 1024EA Boundary Scan Figure 2. Boundary Scan Waveforms and Timing Specifications TMS TDI Tbtsu Tbtch Tbth Tbtcl Tbtcp TCK Tbtvo Tbtco TDO Valid Data Tbtcpsu Data to be captured Tbtoz Valid Data Tbtcph Data Captured Tbtuov Tbtuco Data to be driven out Symbol Valid Data Parameter Tbtuoz Valid Data Min Max Units tbtcp TCK [BSCAN test] clock pulse width 100 – ns tbtch TCK [BSCAN test] pulse width high 50 – ns tbtcl TCK [BSCAN test] pulse width low 50 – ns tbtsu TCK [BSCAN test] setup time 20 – ns tbth TCK [BSCAN test] hold time 25 – ns trf TCK [BSCAN test] rise and fall time 50 – mV/ns tbtco TAP controller falling edge of clock to valid output – 25 ns tbtoz TAP controller falling edge of clock to data output disable – 25 ns tbtvo TAP controller falling edge of clock to data output enable – 25 ns tbtcpsu BSCAN test Capture register setup time 40 – ns tbtcph BSCAN test Capture register hold time 25 – ns tbtuco BSCAN test Update reg, falling edge of clock to valid output – 50 ns tbtuoz BSCAN test Update reg, falling edge of clock to output disable – 50 ns tbtuov BSCAN test Update reg, falling edge of clock to output enable – 50 ns 3 Specifications ispLSI 1024EA Absolute Maximum Ratings 1 Supply Voltage Vcc .................................. -0.5 to +7.0V Input Voltage Applied ........................ -2.5 to VCC +1.0V Off-State Output Voltage Applied ..... -2.5 to VCC +1.0V Storage Temperature ................................ -65 to 150°C Case Temp. with Power Applied .............. -55 to 125°C Max. Junction Temp. (TJ) with Power Applied ... 150°C 1. Stresses above those listed under the “Absolute Maximum Ratings” may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications). DC Recommended Operating Conditions PARAMETER SYMBOL VCC Supply Voltage MIN. MAX. UNITS 4.75 5.25 V 5V 4.75 5.25 V 3.3V 3.0 3.6 V 0.8 V Vcc+1 V Commercial TA = 0°C to + 70°C VCCIO Supply Voltage: Output Drivers VIL VIH Input Low Voltage 0 Input High Voltage 2.0 Table 2-0005/1024EA Capacitance (TA=25oC, f=1.0 MHz) SYMBOL PARAMETER TYPICAL UNITS TEST CONDITIONS C1 Dedicated Input, I/O, Y1, Y2, Y3, Clock Capacitance (Commercial/Industrial) 8 pf VCC = 5.0V, VPIN = 2.0V C2 Y0 Clock Capacitance 10 pf VCC = 5.0V, VPIN = 2.0V Table 2-0006/1024EA Erase/Reprogram Specifications PARAMETER MINIMUM MAXIMUM UNITS 10000 — Cycles Erase/Reprogram Cycles Table 2-0008/1024EA 4 Specifications ispLSI 1024EA Switching Test Conditions Input Pulse Levels Figure 3. Test Load GND to 3.0V Input Rise and Fall Time 10% to 90% 1.5ns Input Timing Reference Levels 1.5V Output Timing Reference Levels + 5V 1.5V Output Load R1 See Figure 3 Device Output Table 2-0003/1024EA 3-state levels are measured 0.5V from steady-state active level. Test Point CL* R2 Output Load Conditions (see Figure 3) TEST CONDITION R1 R2 CL 470Ω 390Ω 35pF Active High ∞ 390Ω 35pF Active Low 470Ω 390Ω 35pF Active High to Z at VOH -0.5V ∞ 390Ω 5pF Active Low to Z at VOL +0.5V 470Ω 390Ω 5pF A B C *CL includes Test Fixture and Probe Capacitance. 0213a Table 2-0004/1024EA DC Electrical Characteristics Over Recommended Operating Conditions SYMBOL MIN. TYP.3 — — 0.4 V IOH = -2 mA, VCCIO = 3.0V 2.4 — — V IOH = -4 mA, VCCIO = 4.75V CONDITION PARAMETER VOL Output Low Voltage VOH Output High Voltage IIL Input or I/O Low Leakage Current IIH Input or I/O High Leakage Current IIL-PU IOS1 ICC2, 4, 5 IOL = 8 mA MAX. UNITS 2.4 — — V 0V ≤ VIN ≤ VIL (Max.) — — -10 µA (VCCIO - 0.2)V ≤ VIN ≤ VCCIO — — 10 µA VCCIO ≤ VIN ≤ 5.25V — — 10 µA I/O Active Pull-Up Current 0V ≤ VIN ≤ VIL — — -200 µA Output Short Circuit Current VCCIO = 5.0V or 3.3V, VOUT = 0.5V — — -240 mA Operating Power Supply Current VIL = 0.0V, VIH = 3.0V fTOGGLE = 1 MHz — 152 — mA Table 2-0007/1024EA 1. One output at a time for a maximum duration of one second. VOUT = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested. 2. Measured using eight 16-bit counters. 3. Typical values are at VCC = 5V and TA = 25°C. 4. Unused inputs held at 0.0V. 5. Maximum ICC varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and the Thermal Management section of the Lattice Semiconductor Data Book CD-ROM to estimate maximum ICC. 5 Specifications ispLSI 1024EA External Timing Parameters Over Recommended Operating Conditions 4 PARAMETER tpd1 tpd2 fmax (Int.) fmax (Ext.) fmax (Tog.) tsu1 tco1 th1 tsu2 tco2 th2 tr1 trw1 tptoeen tptoedis tgoeen tgoedis twh twl tsu3 th3 1. 2. 3. 4. -200 -100 -125 TEST COND. #2 DESCRIPTION A 1 Data Propagation Delay, 4PT Bypass, ORP Bypass — 4.5 — 7.5 — 10.0 ns A 2 Data Propagation Delay, Worst Case Path — 6.0 — 10.0 — 12.5 ns 200 — 125 — 100 — MHz 143 — 100 — 77 — MHz 250 — 167 — 125 — MHz 3.0 — 4.5 — 6.0 — ns A 3 1 MIN. MAX. MIN. MAX. MIN. MAX. Clock Frequency with Internal Feedback 3 1 tsu2 + tco1 ) UNITS — 4 Clock Frequency with External Feedback ( — 5 Clock Frequency, Max. Toggle — 6 GLB Reg. Setup Time before Clock,4 PT Bypass A 7 GLB Reg. Clock to Output Delay, ORP Bypass — 3.5 — 4.5 — 6.0 ns — 8 GLB Reg. Hold Time after Clock, 4 PT Bypass 0.0 — 0.0 — 0.0 — ns — 9 GLB Reg. Setup Time before Clock 3.5 — 5.5 — 7.0 — ns — 10 GLB Reg. Clock to Output Delay — 4.0 — 5.5 — 7.0 ns — 11 GLB Reg. Hold Time after Clock 0.0 — 0.0 — 0.0 — ns A 12 Ext. Reset Pin to Output Delay — 13 Ext. Reset Pulse Duration B ( twh 1+ twl ) — 5.5 — 10.0 — 13.5 ns 3.5 — 5.0 — 6.5 — ns 14 Input to Output Enable — 7.0 — 12.0 — 15.0 ns C 15 Input to Output Disable — 7.0 — 12.0 — 15.0 ns B 16 Global OE Output Enable — 4.5 — 7.0 — 9.0 ns C 17 Global OE Output Disable — 4.5 — 7.0 — 9.0 ns — 18 External Synchronous Clock Pulse Duration, High 2.0 — 3.0 — 4.0 — ns — 19 External Synchronous Clock Pulse Duration, Low 2.0 — 3.0 — 4.0 — ns — 20 I/O Reg. Setup Time before Ext. Sync Clock (Y2, Y3) 3.0 — 3.0 — 3.5 — ns — 21 I/O Reg. Hold Time after Ext. Sync. Clock (Y2, Y3) — 0.0 — 0.0 — ns 0.0 Unless noted otherwise, all parameters use a GRP load of four GLBs, 20 PTXOR path, ORP and Y0 clock. Refer to Timing Model in this data sheet for further details. Standard 16-bit counter using GRP feedback. Reference Switching Test Conditions section. 6 Table 2-0030A/1024EA v.2.5 Specifications ispLSI 1024EA Internal Timing Parameters1 PARAM. # 2 -200 DESCRIPTION -125 -100 MIN. MAX. MIN. MAX. MIN. MAX. UNITS Inputs tiobp tiolat tiosu tioh tioco tior tdin 22 I/O Register Bypass 23 I/O Latch Delay — 0.3 — 0.3 — 0.4 ns — 4.0 — 4.0 — 4.0 ns 24 I/O Register Setup Time before Clock 3.0 — 3.0 — 3.4 — ns 25 I/O Register Hold Time after Clock 0.0 — 0.0 — 0.0 — ns 26 I/O Register Clock to Out Delay — 4.0 — 4.6 — 5.0 ns 27 I/O Register Reset to Out Delay — 4.0 — 4.6 — 5.0 ns 28 Dedicated Input Delay — 1.1 — 1.9 — 2.2 ns 29 GRP Delay, 1 GLB Load — 1.3 — 1.7 — 2.1 ns 30 GRP Delay, 4 GLB Loads — 1.5 — 1.9 — 2.3 ns 31 GRP Delay, 8 GLB Loads — 1.7 — 2.1 — 2.5 ns 32 GRP Delay, 16 GLB Loads — 2.1 — 2.5 — 2.9 ns 33 GRP Delay, 24 GLB Loads — 2.5 — 2.9 — 3.3 ns 34 4 ProductTerm Bypass Path Delay (Combinatorial) — 1.7 — 3.4 — 4.9 ns GRP tgrp1 tgrp4 tgrp8 tgrp16 tgrp24 GLB t4ptbpc t4ptbpr t1ptxor t20ptxor txoradj tgbp tgsu tgh tgco tgro tptre tptoe tptck tgfb 35 4 Product Term Bypass Path Delay (Registered) — 1.8 — 3.1 — 3.8 ns 36 1 ProductTerm/XOR Path Delay — 1.9 — 3.6 — 4.3 ns 37 20 Product Term/XOR Path Delay — 1.9 — 3.6 — 4.3 ns — 1.9 — 3.6 — 4.3 ns — 38 XOR Adjacent Path Delay 3 0.6 — 1.2 — 2.1 ns 40 GLB Register Setup Time before Clock 0.2 — 0.3 — 1.4 — ns 41 GLB Register Hold Time after Clock 1.0 — 3.5 — 4.0 — ns 42 GLB Register Clock to Output Delay — 1.4 — 1.4 — 1.7 ns 43 GLB Register Reset to Output Delay — 3.8 — 4.9 — 5.0 ns 44 GLB Product Term Reset to Register Delay — 2.5 — 3.8 — 4.5 ns 45 GLB Product Term Output Enable to I/O Cell Delay — 2.1 — 5.7 — 7.2 ns 1.5 2.5 2.8 3.9 3.5 4.7 ns 47 GLB Feedback Delay — 0.0 — 0.3 — 0.3 ns 48 ORP Delay — 0.8 — 1.3 — 1.4 ns — 0.1 — 0.2 — 0.4 ns 39 GLB Register Bypass Delay 46 GLB Product Term Clock Delay ORP torp torpbp 49 ORP Bypass Delay 1. Internal Timing Parameters are not tested and are for reference only. 2. Refer to Timing Model in this data sheet for further details. 3. The XOR adjacent path can only be used by hard macros. 7 Table 2-0036A/1024EA v.2.5 Specifications ispLSI 1024EA Internal Timing Parameters1 PARAM. # -200 DESCRIPTION -125 -100 MIN. MAX. MIN. MAX. MIN. MAX. UNITS Outputs tob tsl toen todis tgoe 50 Output Buffer Delay — 0.9 — 1.7 — 2.0 ns 51 Output Buffer Delay, Slew Limited Adder — 5.0 — 5.0 — 5.0 ns 52 I/O Cell OE to Output Enabled — 3.1 — 4.0 — 5.1 ns 53 I/O Cell OE to Output Disabled — 3.1 — 4.0 — 5.1 ns 54 Global OE — 1.4 — 3.0 — 3.9 ns 55 Clock Delay, Y0 to Global GLB Clock Line (Ref. clk) 0.9 0.9 1.1 1.1 1.9 1.9 ns 56 Clock Delay, Y1 or Y2 to Global GLB Clock Line 0.9 0.9 0.9 0.9 1.5 1.5 ns 57 Clock Delay, Clock GLB to Global GLB Clock Line 0.8 1.8 0.8 1.8 0.8 1.8 ns 58 Clock Delay, Y2 or Y3 to I/O Cell Global Clock Line 0.0 0.0 0.0 0.0 0.0 0.0 ns 59 Clock Delay, Clock GLB to I/O Cell Global Clock Line 0.8 2.8 0.8 2.8 0.8 2.8 ns — 0.0 — 2.1 — 5.1 ns Clocks tgy0 tgy1/2 tgcp tioy2/3 tiocp Global Reset tgr 60 Global Reset to GLB and I/O Registers 1. Internal Timing Parameters are not tested and are for reference only. 8 Table 2-0037A/1024EA v.2.5 Specifications ispLSI 1024EA ispLSI 1024EA Timing Model I/O Cell GRP GLB #47 Ded. In I/O Pin (Input) #60 Comb 4 PT Bypass Reg 4 PT Bypass GLB Reg Bypass ORP Bypass #22 #30 #35 #39 #49 Input D Register Q RST #23 - 27 GRP Loading Delay 20 PT XOR Delays GLB Reg Delay ORP Delay #29, 31 - 33 #36 - 38 I/O Reg Bypass GRP4 I/O Cell Feedback #34 #28 ORP D Q #50, 51 #52, 53 #48 RST #60 Reset Clock Distribution Y1,2,3 #56 - 59 #40 - 43 Control RE PTs OE #44 - 46 CK 0491/1032EA #55 Y0 #54 GOE 0,1 Derivations of tsu, th and tco from the Product Term Clock 1 tsu = = = 0.6 = Logic + Reg su - Clock (min) (tiobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min)) (#22 + #30 + #37) + (#40) - (#22 + #30 + #46) (0.3 + 1.5 + 1.9) + (0.2) - (0.3 + 1.5 + 1.5) th = = = 1.6 = Clock (max) + Reg h - Logic (tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor) (#22 + #30 + #46) + (#41) - (#22 + #30 + #37) (0.3 + 1.5 + 2.5) + (1.0) - (0.3 + 1.5 + 1.9) tco = = = 7.4 = Clock (max) + Reg co + Output (tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob) (#22 + #30 + #46) + (#42) + (#48 + #50) (0.3 + 1.5 + 2.5) + (1.4) + (0.8 + 0.9) Derivations of tsu, th and tco from the Clock GLB 1 tsu = = = 0.8 = Logic + Reg (setup) - Clock (min) (tiobp + tgrp4 + t20ptxor) + (tgsu) - (tgy0(min) + tgco + tgcp(min)) (#22 + #30 + #37) + (#40) - (#55 + #42 + #57) (0.3 + 1.5 + 1.9) + (0.2) - (0.9 + 1.4 + 0.8) th = = = 1.4 = Clock (max) + Reg (hold) - Logic (tgy0(max) + tgco + tgcp(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor) (#55 + #42 + #57) + (#41) - (#22 + #30 + #37) (0.9 + 1.4 + 1.8) + (1.0) - (0.3 + 1.5 + 1.9) tco = = = 7.2 = Clock (max) + Reg (clock-to-out) + Output (tgy0(max) + tgco + tgcp(max)) + (tgco) + (torp + tob) (#55 + #42 + #57) + (#42) + (#48 + #50) (0.9 + 1.4 + 1.8) + (1.4) + (0.8 + 0.9) 1. Calculations are based upon timing specifications for the ispLSI 1024EA-200. Table 2-0042a/1024EA v.2.5 9 I/O Pin (Output) Specifications ispLSI 1024EA Maximum GRP Delay vs GLB Loads 4 GRP Delay (ns) ispLSI 1024EA-100 3 ispLSI 1024EA-125 ispLSI 1024EA-200 2 1 1 4 8 16 24 GLB Load GRP/GLB/1024EA Power Consumption Power consumption in the ispLSI 1024EA device depends on two primary factors: the speed at which the device is operating, and the number of product terms used. Figure 4 shows the relationship between power and operating speed. Figure 4. Typical Device Power Consumption vs fmax 260 ispLSI 1024EA 240 ICC (mA) 220 200 180 160 140 120 100 0 50 100 150 fmax (MHz) 200 250 Notes: Configuration of eight 16-bit counters Typical current at 5V, 25°C Icc can be estimated for the ispLSI 1024EA using the following equation: Icc = 17mA + (# of PTs * .726) + (# of nets * Max Freq * .0043) Where: # of PTs = Number of Product Terms used in design # of nets = Number of Signals used in device Max freq = Highest Clock Frequency to the device (in MHz) The Icc estimate is based on typical conditions (Vcc = 5.0V, room temperature) and an assumption of four GLB loads on average exists. These values are for estimates only. Since the value of Icc is sensitive to operating conditions and the program in the device, the actual Icc should be verified. 0127/1024EA 10 Specifications ispLSI 1024EA Pin Description TQFP PIN NUMBERS NAME DESCRIPTION Input/Output Pins - These are the general purpose I/O pins used by the logic array. I/O 0 - I/O 3 I/O 4 - I/O 7 I/O 8 - I/O 11 I/O 12 - I/O 15 I/O 16 - I/O 19 I/O 20 - I/O 23 I/O 24 - I/O 27 I/O 28 - I/O 31 I/O 32 - I/O 35 I/O 36 - I/O 39 I/O 40 - I/O 43 I/O 44 - I/O 47 19, 23, 31, 42, 46, 54, 69, 73, 81, 92, 96, 4, GOE 0/IN 41 91 This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin. GOE 1/IN 51 8 This is a dual function pin. It can be used either as Global Output Enable for all I/O cells or it can be used as a dedicated input pin. TDI 18 Input - Functions as an input pin to load programming data into the device and also used as one of the two control pins for the ispJTAG state machine. TMS 68 Input - Controls the operation of the ISP state machine. TDO 35 Output - Functions as an output pin to read serial shift register data. TCK 58 Input - Functions as a clock pin for the Serial Shift Register. RESET 17 Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device. Y0 9 Y1 67 Dedicated Clock input. This clock input is connected to one of the clock inputs of all of the GLBs on the device. Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB on the device. Y2 60 Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any GLB and/or any I/O cell on the device. Y3 59 Dedicated Clock input. This clock input is brought into the clock distribution network, and can optionally be routed to any I/O cell on the device. GND 14, 61, 15, 62, 36, 37, 89, 90 Ground (GND) VCC 10, 65, 11, 66, 40, 41, 85, 86 Vcc VCCIO 16 NC2 1, 24, 38, 51, 74, 87, 20, 28, 32, 43, 47, 55, 70, 78, 82, 93, 97, 5, 21, 29, 33, 44, 48, 56, 71, 79, 83, 94, 98, 6, 22, 30, 34, 45, 53, 57, 72, 80, 84, 95, 3, 7 Supply voltage for output drivers, 5V or 3.3V. 2, 25, 39, 52, 75, 88, 12, 26, 49, 63, 76, 99, 13, No Connect 27, 50, 64, 77, 100 1. Pins have dual function capability which is software selectable. 2. NC pins are not to be connected to any active signals, Vcc or GND. 11 Table 2-0002A/1024EA Specifications ispLSI 1024EA Pin Configurations 2NC 2NC ispLSI 1024EA Top View 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 NC2 NC2 I/O 28 I/O 27 I/O 26 I/O 25 I/O 24 TMS Y1 VCC VCC NC2 NC2 GND GND Y2 Y3 TCK I/O 23 I/O 22 I/O 21 I/O 20 I/O 19 NC2 NC2 I/O 5 I/O 6 I/O 7 I/O 8 I/O 9 I/O 10 I/O 11 TDO GND GND 2NC 2NC VCC VCC I/O 12 I/O 13 I/O 14 I/O 15 I/O 16 I/O 17 I/O 18 2NC 2NC 2NC 2NC 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 I/O 43 I/O 44 I/O 45 I/O 46 I/O 47 1GOE 1/IN 5 Y0 VCC VCC 2NC 2NC GND GND VCCIO RESET TDI I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 2NC 2NC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 NC2 NC2 I/O 42 I/O 41 I/O 40 I/O 39 I/O 38 I/O 37 I/O 36 GOE 0/IN 41 GND GND NC2 NC2 VCC VCC I/O 35 I/O 34 I/O 33 I/O 32 I/O 31 I/O 30 I/O 29 NC2 NC2 ispLSI 1024EA 100-Pin TQFP Pinout Diagram 1. Pins have dual function capability which is software selectable. 2. NC pins are not to be connected to any active signal, VCC or GND. 100-TQFP/1024EA 12 Specifications ispLSI 1024EA Part Number Description ispLSI 1024EA - XXX X XXXX X Device Family Grade Blank = Commercial Package T100 = 100-Pin TQFP Device Number Power L = Low Speed 200 = 200 MHz fmax 125 = 125 MHz fmax 100 = 100 MHz fmax 0212/1024EA ispLSI 1024EA Ordering Information COMMERCIAL FAMILY ispLSI fmax (MHz) tpd (ns) ORDERING NUMBER PACKAGE 200 4.5 ispLSI 1024EA-200LT100 100-Pin TQFP 125 7.5 ispLSI 1024EA-125LT100 100-Pin TQFP 100 10 ispLSI 1024EA-100LT100 100-Pin TQFP Table 2-0041A/1024EA 13