LT1789-1/LT1789-10 Micropower, Single Supply Rail-to-Rail Output Instrumentation Amplifiers U FEATURES ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ DESCRIPTIO The LT ®1789-1/LT1789-10 are micropower, precision instrumentation amplifiers that are optimized for single supply operation from 2.2V to 36V. The quiescent current is 95µA max, the inputs common mode to ground and the output swings within 110mV of ground. The gain is set with a single external resistor for a gain range of 1 to 1000 for the LT17891 and 10 to 1000 for the LT1789-10. The high accuracy of the LT1789-1 (40ppm maximum nonlinearity and 0.25% max gain error) is unmatched by other micropower instrumentation amplifiers. The LT1789-10 maximizes both the input common mode range and dynamic output range when an amplification of 10 or greater is required, allowing precise signal processing where other instrumentation amplifiers fail to operate. The LT1789-1/ LT1789-10 are laser trimmed for very low input offset voltage, low input offset voltage drift, high CMRR and high PSRR. The output can handle capacitive loads up to 400pF (LT1789-1), 1000pF (LT1789-10) in any gain configuration while the inputs are ESD protected up to 10kV (human body). The LT1789-1/LT1789-10 are offered in the 8-pin SO package, requiring significantly less PC board area than discrete multi op amp and resistor designs. Micropower: 95µA Supply Current Max Low Input Offset Voltage: 100µV Max Low Input Offset Voltage Drift: 0.5µV/°C Max Single Gain Set Resistor: G = 1 to 1000 (LT1789-1) G = 10 to 1000 (LT1789-10) Inputs Common Mode to V – Wide Supply Range: 2.2V to 36V Total Supply CMRR at G = 10: 96dB Min Gain Error: G = 10, 0.25% Max Gain Nonlinearity: G = 10, 40ppm Max Input Bias Current: 40nA Max PSRR at G = 10: 100dB Min 1kHz Voltage Noise: 48nV/√Hz 0.1Hz to 10Hz Noise: 1.5µVP-P U APPLICATIO S ■ ■ ■ ■ ■ Portable Instrumentation Bridge Amplifiers Strain Gauge Amplifiers Thermocouple Amplifiers Differential to Single-Ended Converters Medical Instrumentation , LTC and LT are registered trademarks of Linear Technology Corporation. U ■ TYPICAL APPLICATIO 0.5A to 4A Voltage Controlled Current Source C1 4700pF R1 90.9k VIN R2 10k VS C3 0.1µF VS 2 3 – + 7 VS = 3.3V TO 32V VIN RSENSE • 10 = 1A PER VOLT AS SHOWN ILOAD = RISE TIME ≈ 250µs, 10% TO 90%, 1A TO 2A OUTPUT STEP INTO 0.25Ω LOAD TIP127* 7 C2 3300pF * ENSURE ADEQUATE POWER DISSIPATION CAPABILITY AT HIGHER VOLTAGES, CURRENTS AND DUTY CYCLES VS 5 4 R4 10k 120Ω R3 100Ω 6 LT1636 8k + 3 3 8 6 1 LT1789-1 REF 2 1 5 – 4 RSENSE* 0.1Ω ILOAD 4 2 RLOAD* 1789 TA01 1789f 1 LT1789-1/LT1789-10 W W W AXI U U ABSOLUTE RATI GS U U W PACKAGE/ORDER I FOR ATIO (Note 1) Supply Voltage (V+ to V–) ........................................ 36V Input Differential Voltage ......................................... 36V Input Current (Note 3) ........................................ ±20mA Output Short-Circuit Duration .......................... Indefinite Operating Temperature Range ................ – 40°C to 85°C Specified Temperature Range (Note 4) LT1789C-1, LT1789C-10 .................... – 40°C to 85°C LT1789I-1, LT1789I-10 ...................... – 40°C to 85°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C ORDER PART NUMBER TOP VIEW RG 1 8 RG –IN 2 7 +VS +IN 3 6 OUT –VS 4 5 REF LT1789CS8-1 LT1789IS8-1 LT1789CS8-10 LT1789IS8-10 S8 PART MARKING S8 PACKAGE 8-LEAD PLASTIC SO 17891 1789I1 178910 789I10 TJMAX = 150°C, θJA = 190°C/ W Consult LTC Marketing for parts specified with wider operating temperature ranges. 3V and 5V ELECTRICAL CHARACTERISTICS VS = 3V, 0V; VS = 5V, 0V; R L = 20k, VCM = VREF = half supply, TA = 25°C, unless otherwise noted. SYMBOL PARAMETER CONDITIONS G LT1789-1, G = 1 + (200k/RG) LT1789-10, G = 10 • [1+ (200k/RG)] Gain Range Gain Error (Note 6) Gain Nonlinearity (Note 6) MIN LT1789-1 TYP MAX 1 MIN LT1789-10 TYP MAX UNITS 1000 10 G = 1, VO = 0.1V to (+VS) – 1V 0.02 0.20 LT1789-1, VO = 0.1V to (+VS) – 0.3V LT1789-10, VO = 0.2V to (+VS) – 0.3V G = 10, (Note 2) G = 100, (Note 2) G = 1000, (Note 2) 0.06 0.06 0.13 0.25 0.27 G = 1, VO = 0.1V to (+VS) – 1V 35 100 LT1789-1, VO = 0.1V to (+VS) – 0.3V LT1789-10, VO = 0.2V to 4.7V, VS = 5V (Note 8) G = 10 G = 100 G = 1000 12 18 90 40 75 1000 % 0.01 0.09 0.16 0.25 0.30 % % % ppm 15 20 100 100 100 ppm ppm ppm VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 15 100 20 160 µV VOSO Output Offset Voltage G = 1 (LT1789-1), G =10 (LT1789-10) 150 750 650 3000 µV IOS Input Offset Current (Note 6) 0.2 4 0.2 4 nA IB Input Bias Current (Note 6) 19 40 19 40 nA en Input Noise Voltage, RTI (Referred to Input) G = 1, fO = 0.1Hz to 10Hz G = 10 G = 100, 1000 5.0 1.5 1.0 4.6 1.1 µVP-P µVP-P µVP-P 1789f 2 LT1789-1/LT1789-10 3V and 5V ELECTRICAL CHARACTERISTICS VS = 3V, 0V; VS = 5V, 0V; R L = 20k, VCM = VREF = half supply, TA = 25°C, unless otherwise noted. SYMBOL PARAMETER CONDITIONS MIN LT1789-1 TYP MAX MIN LT1789-10 TYP MAX UNITS Total RTI Noise = √eni2 + (eno/G)2 eni Input Noise Voltage Density, RTI fO = 1kHz (Note 7) 48 eno Output Noise Voltage Density, RTI fO = 1kHz (Note 3) 330 270 nV/√Hz in Input Noise Current fO = 0.1Hz to 10Hz 16 16 pAP-P Input Noise Current Density fO = 1kHz 62 62 fA/√Hz RIN Input Resistance VIN = 0V to (+VS) – 1V (Note 6) 1.6 GΩ CIN Input Capacitance Differential Common Mode 1.6 1.6 pF pF VCM Input Voltage Range CMRR Common Mode Rejection Ratio 1k Source Imbalance, (Note 6) LT1789-1,VCM = 0V to (+VS)–1V LT1789-10, VCM = 0V to (+VS)–1.2V G=1 G = 10 G = 100 G = 1000 PSRR Power Supply Rejection Ratio 0.75 1.6 Minimum Supply Voltage 52 0.75 1.6 1.6 0 VS = 2.5V to 12.5V, VCM = VREF = 1V G=1 G = 10 G = 100 G = 1000 85 +VS – 1 0 90 +VS – 1.2 nV/√Hz V 79 96 100 100 88 106 114 114 88 98 98 105 113 113 dB dB dB dB 90 100 102 102 100 113 116 116 94 102 102 109 120 120 dB dB dB dB 2.2 2.5 2.2 2.5 V IS Supply Current (Note 7) 67 95 67 95 µA VOL Output Voltage Swing LOW (Note 7) 54 100 62 110 mV VOH Output Voltage Swing HIGH (Note 7) ISC Short-Circuit Current Short to GND Short to +VS 2.2 8.5 BW Bandwidth G=1 G = 10 G = 100 G = 1000 60 30 3 0.2 25 12 1.5 kHz kHz kHz kHz 0.023 0.062 V/µs 240 190 µs 220 220 kΩ 2.7 2.7 µA 1 ±0.0001 1 ±0.0001 SR Slew Rate G = 10, VOUT = 0.5V to 4.5V Settling Time to 0.01% 4V Step RREFIN Reference Input Resistance IREFIN Reference Input Current AVREF Reference Gain to Output VREF = 0V +VS – 0.3 +VS – 0.19 +VS – 0.3 +VS – 0.19 2.2 8.5 V mA mA 1789f 3 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = 3V, 0V; VS = 5V, 0V; R L = 20k, VREF = half supply, unless otherwise noted. (Note 4) SYMBOL PARAMETER Gain Error (Note 6) Gain Nonlinearity (Note 6) CONDITIONS MIN LT1789-1 TYP MAX G = 1, VO = 0.3V to (+VS) – 1V ● 0.25 VO = 0.3V to (+VS) – 0.5V G = 10 (Note 2) G = 100 (Note 2) ● ● 0.53 0.55 G = 1, VO = 0.3V to (+VS) – 1V ● 185 LT1789-1, VO = 0.3V to (+VS) – 0.5V LT1789-10, VO = 0.3V to 4.7V, VS = 5V (Note 8) G = 10 G = 100 ● ● 90 120 G < 1000 (Notes 2, 3) ● LT1789-10 TYP MAX 0.30 0.53 VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 ● VOSIH Input Offset Voltage Hysteresis (Notes 3, 5) ● VOSO Output Offset Voltage G = 1 (LT1789-1), G = 10 (LT1789-10) ● VOSOH Output Offset Voltage Hysteresis (Notes 3, 5) ● 50 100 300 VOSI/T Input Offset Voltage Drift (RTI) (Note 3) ● 0.2 0.5 0.3 VOSO/T Output Offset Voltage Drift (Note 3) ● 1.5 4 7 IOS Input Offset Current (Note 6) ● IOS/T Input Offset Current Drift IB Input Bias Current IB/T Input Bias Current Drift VCM Input Voltage Range CMRR Common Mode Rejection Ratio Power Supply Rejection Ratio 50 5 150 10 3 950 4.5 3 ● (Note 6) ppm ppm 50 ppm/°C 190 µV 10 µV 3700 µV 900 µV 0.7 µV/°C 20 µV/°C 4.5 nA pA/°C 45 50 ● 130 130 3 45 ● 50 pA/°C ● 0.2 77 94 98 85 96 dB dB dB VS = 2.5V to 12.5V, VCM = VREF = 1V G=1 G = 10 G = 100, 1000 88 98 100 92 100 dB dB dB Minimum Supply Voltage ● 2.5 0.2 nA 1k Source Imbalance, (Note 6) LT1789-1, VCM = 0.2V to (+VS) – 1V LT1789-10, VCM = 0.2V to (+VS) – 1.5V ● G=1 G = 10 ● G = 100, 1000 ● ● ● ● (+VS) – 1 % % ppm Gain vs Temperature 3 UNITS % G/T PSRR 5 MIN (+VS) – 1.5 2.5 V V IS Supply Current (Note 7) ● 115 115 µA VOL Output Voltage Swing LOW (Note 7) ● 110 120 mV VOH Output Voltage Swing HIGH (Note 7) ● +VS – 0.38 +VS – 0.38 V 1789f 4 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = 3V, 0V; VS = 5V, 0V; R L = 20k, VREF = half supply, unless otherwise noted. (Note 4) SYMBOL PARAMETER Gain Error (Note 6) Gain Nonlinearity (Note 6) CONDITIONS MIN LT1789-1 TYP MAX G = 1, VO = + 0.3V to (+VS) – 1V ● 0.30 VO = 0.3V to (+VS) – 0.5V G = 10 (Note 2) G = 100 (Note 2) ● ● 0.57 0.59 G = 1, VO = 0.3V to (+VS) – 1V ● 250 LT1789-1, VO = 0.3V to (+VS) – 0.5V LT1789-10, VO = 0.3V to 4.7V, VS = 5V (Note 8) G = 10 G = 100 ● ● 105 160 G < 1000 (Notes 2, 3) ● LT1789-10 TYP MAX 0.35 0.62 VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 ● VOSIH Input Offset Voltage Hysteresis (Notes 3, 5) ● VOSO Output Offset Voltage G = 1 (LT1789-1), G = 10 (LT1789-10) ● VOSOH Output Offset Voltage Hysteresis (Notes 3, 5) ● 50 100 300 VOSI/T Input Offset Voltage Drift (RTI) (Note 3) ● 0.2 0.5 VOSO/T Output Offset Voltage Drift (Note 3) ● 1.5 4 IOS Input Offset Current (Note 6) ● IOS/T Input Offset Current Drift IB Input Bias Current IB/T Input Bias Current Drift VCM Input Voltage Range CMRR Common Mode Rejection Ratio Power Supply Rejection Ratio 50 5 10 ppm/°C µV 4000 µV 900 µV 0.3 0.7 µV/°C 7 20 µV/°C 5 nA 3 50 pA/°C 50 50 ● 50 µV 5 3 ppm ppm 10 3 1050 ● 150 170 205 175 ● (Note 6) 50 0.2 nA pA/°C ● 0.2 1k Source Imbalance, (Note 6) LT1789-1 VCM = 0.2V to (+VS) – 1V LT1789-10 VCM = 0.2V to (+VS) – 1.5V G=1 G = 10 G = 100, 1000 ● ● ● 75 92 96 84 94 dB dB dB VS = 2.5V to 12.5V, VCM = VREF = 1V G=1 G = 10 G = 100, 1000 ● ● ● 86 96 98 90 98 dB dB dB Minimum Supply Voltage +VS – 1 % % ppm Gain vs Temperature 3 UNITS % G/T PSRR 5 MIN +VS – 1.5 V ● 2.5 2.5 V IS Supply Current (Note 7) ● 125 125 µA VOL Output Voltage Swing LOW (Note 7) ● 120 130 mV VOH Output Voltage Swing HIGH (Note 7) ● +VS – 0.40 +VS – 0.40 V 1789f 5 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS VS = ±15V, R L = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted. SYMBOL PARAMETER CONDITIONS G LT1789-1, G = 1 + (200k/RG) LT1789-10, G = 10 • [1 + (200k/RG)] Gain Range Gain Error Gain Nonlinearity MIN LT1789-1 TYP MAX 1 MIN LT1789-10 TYP MAX 1000 10 VO = ±10V G=1 G = 10 (Note 2) G = 100 (Note 2) G = 1000 (Note 2) VO = ±10V G=1 G = 10 G = 100 G = 1000 UNITS 1000 0.01 0.04 0.04 0.07 0.10 0.15 0.15 0.20 0.01 0.03 0.03 0.15 0.20 0.25 % % % % 8 1 6 20 20 10 20 100 5 5 25 40 40 160 ppm ppm ppm ppm VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 30 235 30 295 µV VOSO Output Offset Voltage G = 1 (LT1789-1), G = 10 (LT1789-10) 200 1 0.6 3.3 mV IOS Input Offset Current 0.2 4 0.2 4 nA IB Input Bias Current 17 40 17 40 nA en Input Noise Voltage, RTI fO = 0.1Hz to 10Hz G=1 G = 10 G = 100, 1000 5.0 1.5 1.0 fO = 1kHz 49 µVP-P µVP-P µVP-P 4.6 1.1 Total RTI Noise = √eni2 + (eno/G)2 eni Input Noise Voltage Density, RTI eno Output Noise Voltage Density, RTI fO = 1kHz Input Noise Current fO = 0.1Hz to 10Hz 330 19 19 pAP-P Input Noise Current Density 100 62 pA/√Hz 4.7 GΩ 20 17 pF pF in RIN Input Resistance CIN Input Capacitance VCM Input Voltage Range CMRR Common Mode Rejection Ratio PSRR Power Supply Rejection Ratio fO = 1kHz 2 Differential Common Mode Supply Current VO Output Voltage Swing ISC Short-Circuit Current 53 2 20 17 –15 95 270 4.7 14 –15 nV/√Hz nV/√Hz 14 V 1k Source Imbalance, VCM = –15V to 14V G=1 G = 10 G = 100, 1000 80 98 102 89 108 117 93 102 108 123 dB dB dB LT1789-1, VS = ±1.25V to ±16V LT1789-10, VS = ±1.50V to ±16V G=1 G = 10 G = 100, 1000 94 104 106 107 118 121 100 106 115 129 dB dB dB ±1.25 Minimum Supply Voltage IS 90 85 ±14.5 Short to – VS Short to + VS ±14.7 2.2 8.5 130 85 ±14.5 ±14.7 2.2 8.5 ±1.50 V 130 µA V mA mA 1789f 6 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS VS = ±15V, R L = 20k, VCM = VOUT = 0V, TA = 25°C, unless otherwise noted. SYMBOL PARAMETER CONDITIONS BW G=1 G = 10 G = 100 G = 1000 SR Bandwidth Slew Rate VOUT = ±10V Settling Time to 0.01% 10V Step RREFIN Reference Input Resistance IREFIN Reference Input Current AVREF Reference Gain to Output MIN LT1789-1 TYP MAX MIN LT1789-10 TYP MAX 60 30 3 0.2 0.012 0.026 0.028 UNITS 25 12 1.5 kHz kHz kHz kHz 0.066 V/µs 460 270 µs 220 220 kΩ 2.7 2.7 µA 1 ±0.0001 1 ±0.0001 VREF = 0 The ● denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = ±15V, R L = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4) SYMBOL PARAMETER Gain Error Gain Nonlinearity CONDITIONS MIN LT1789-1 TYP MAX MIN LT1789-10 TYP MAX UNITS VO = ±10V G=1 G = 10 (Note 2) G = 100 (Note 2) G = 1000 (Note 2) ● ● ● ● 0.15 0.38 0.38 0.43 0.20 0.43 0.48 % % % % VO = ±10V G=1 G = 10 G = 100 G = 1000 ● ● ● ● 25 15 25 120 45 45 180 ppm ppm ppm ppm G < 1000 (Notes 2, 3) ● 50 ppm/°C 325 µV 8 30 µV G/T Gain vs Temperature 5 VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 ● VOSIH Input Offset Voltage Hysteresis (Notes 3, 5) ● VOSO Output Offset Voltage G=1 ● VOSOH Output Offset Voltage Hysteresis (Notes 3, 5) VOSI/T Input Offset Voltage Drift (RTI) VOSO/T Output Offset Voltage Drift IOS Input Offset Current ● IOS/T Input Offset Current Drift ● IB Input Bias Current ● IB/T Input Bias Current Drift ● VCM Input Voltage Range G = 1, Other Input Grounded ● –14.8 CMRR Common Mode Rejection Ratio 1k Source Imbalance, VCM = –14.8V to 14V G=1 G = 10 G = 100, 1000 ● ● ● 78 96 100 50 5 285 8 30 4 mV ● 50 120 400 1000 µV (Note 3) ● 0.2 0.7 0.3 0.8 µV/°C (Note 3) ● 1.5 5 8 22 µV/°C 4.5 nA 1.2 4.5 2 2 45 pA/°C 45 35 35 14 –14.8 91 100 nA pA/°C 14 V dB dB dB 1789f 7 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range of 0°C ≤ TA ≤ 70°C. VS = ±15V, R L = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4) SYMBOL PARAMETER CONDITIONS PSRR LT1789-1, VS = ±1.25V to ±16V LT1789-10, VS = ±1.50V to ±16V G=1 G = 10 G = 100, 1000 Power Supply Rejection Ratio MIN ● ● ● LT1789-1 TYP MAX 92 102 104 MIN LT1789-10 TYP MAX UNITS dB dB dB 98 104 Minimum Supply Voltage ● ±1.25 IS Supply Current ● 150 VO Output Voltage Swing ● ±14.25 ±14.25 V SR Slew Rate 0.010 0.026 V/µs VOUT = ±10V ● ±1.50 V 150 µA The ● denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = ±15V, R L = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4) SYMBOL PARAMETER Gain Error Gain Nonlinearity CONDITIONS MIN LT1789-1 TYP MAX MIN LT1789-10 TYP MAX UNITS VO = ±10V G=1 G = 10 (Note 2) G = 100 (Note 2) G = 1000 (Note 2) ● ● ● ● 0.20 0.57 0.57 0.62 0.25 0.62 0.67 % % % % VO = ±10V G=1 G = 10 G = 100 G = 1000 ● ● ● ● 30 20 30 130 50 50 200 ppm ppm ppm ppm G < 1000 (Notes 2, 3) ● 50 ppm/°C G/T Gain vs Temperature 5 50 5 VOST Total Input Referred Offset Voltage VOST = VOSI + VOSO/G VOSI Input Offset Voltage G = 1000 ● VOSIH Input Offset Voltage Hysteresis (Notes 3, 5) ● VOSO Output Offset Voltage G=1 ● VOSOH Output Offset Voltage Hysteresis (Notes 3, 5) ● 50 120 400 1000 VOSI/T Input Offset Voltage Drift (RTI) (Note 3) ● 0.2 0.7 0.3 0.8 µV/°C VOSO/T Output Offset Voltage Drift (Note 3) ● 1.5 5 8 22 µV/°C IOS Input Offset Current ● 5 nA IOS/T Input Offset Current Drift ● IB Input Bias Current ● IB/T Input Bias Current Drift ● VCM Input Voltage Range G = 1, Other Input Grounded ● –14.8 CMRR Common Mode Rejection Ratio 1k Source Imbalance, VCM = –14.8V to 14V G=1 G = 10 G = 100, 1000 ● ● ● 305 8 30 8 1.3 5 2 µV 30 µV 4.2 mV 2 50 35 14 –14.8 89 98 µV pA/°C 50 35 76 94 98 340 nA pA/°C 14 V dB dB dB 1789f 8 LT1789-1/LT1789-10 ELECTRICAL CHARACTERISTICS The ● denotes the specifications which apply over the temperature range of –40°C ≤ TA ≤ 85°C. VS = ±15V, R L = 20k, VCM = VREF = 0V, unless otherwise noted. (Note 4) SYMBOL PARAMETER CONDITIONS PSRR LT1789-1, VS = ±1.25V to ±16V LT1789-10, VS = ±1.50V to ±16V G=1 G = 10 G = 100, 1000 Power Supply Rejection Ratio IS ● ● ● V Supply Current ● 160 160 µA VOUT = ±10V ● ±14.15 ±14.15 V 0.008 0.024 V/µs ● Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: Does not include the effect of the external gain resistor RG. Note 3: This parameter is not 100% tested. Note 4: The LT1789C-1/ LT1789C-10 is guaranteed to meet specified performance from 0°C to 70°C and is designed, characterized and expected to meet these extended temperature limits, but is not tested at –40°C and 85°C. The LT1789I-1/ LT1789I-10 is guaranteed to meet the extended temperature limits. Note 5: Hysteresis in offset voltage is created by package stress that differs depending on whether the IC was previously at a higher or lower temperature. Offset voltage hysteresis is always measured at 25°C, but the IC is cycled to 85°C I-grade (or 70°C C-grade) or – 40°C I-grade (0°C C-grade) before successive measurement. 60% of the parts will pass the typical limit on the data sheet. Note 6: VS = 5V limits are guaranteed by correlation to VS = 3V and VS = ±15V tests. Note 7: VS = 3V limits are guaranteed by correlation to VS = 5V and VS = ±15V tests. Note 8: This parameter is not tested at VS = 3V on the LT1789-10 due to an increase in sensitivity to test system noise. Actual performance is expected to be similar to performance at VS = 5V. U W TYPICAL PERFOR A CE CHARACTERISTICS (LT1789-1, LT1789-10) Input Bias Current vs Temperature Supply Current vs Supply Voltage 0 INPUT BIAS CURRENT (nA) 125°C 90 80 25°C –55°C 50 40 Input Bias Current vs Common Mode Input Voltage –10 VS = 5V, 0V VCM = 2.5V –12 –5 INPUT BIAS CURRENT (nA) 120 110 SUPPLY CURRENT (µA) dB dB dB 96 102 ±1.50 Output Voltage Swing –10 –15 –20 30 20 5 10 15 20 25 30 35 TOTAL SUPPLY VOLTAGE (V) 40 1789 G01 –25 –50 –25 50 25 0 75 TEMPERATURE (°C) 100 125 1789 G02 –55°C –14 –16 125°C –18 25°C –20 85°C –22 –24 –26 –28 0 UNITS ±1.25 Slew Rate 60 90 100 102 LT1789-10 TYP MAX ● SR 70 MIN Minimum Supply Voltage VO 100 LT1789-1 TYP MAX MIN VS = 5V, 0V VREF = 2.5V –30 –0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 COMMON MODE INPUT VOLTAGE (V) 1789 G03 1789f 9 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS Output Voltage Swing vs Load Current Slew Rate vs Temperature Gain vs Frequency 80 1.6 4.4 25°C 1.4 4.2 1.2 VS = 5V, 0V VREF = 2.5V 4.0 1.0 125°C 0.8 25°C 0.6 0.4 SINK –55°C 0.2 60 0.1 1 0.01 OUTPUT CURRENT (mA) G = 1000 50 40 G = 100 30 20 G = 10 10 0 G=1 1k 10k FREQUENCY (Hz) 100k VS = 5V, 0V VREF = 2.5V G = 10 G = 100, 1000 G=1 80 70 60 50 40 10 100 1k FREQUENCY (Hz) 10k 20k NEGATIVE POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) 120 90 140 120 G = 1000 VS = 5V, 0V VREF = 2.5V INPUT REFERRED G = 100 100 G = 10 80 G=1 60 40 20 0 10 100 1k FREQUENCY (Hz) 10k 20k 1879 G07 80 140 G=1 80 60 40 20 0 10 100 1k FREQUENCY (Hz) AV = 1 VS = ±15V RL = 20k G=1 2 0 –2 –4 –8 AV ≥ 100 10 100 CAPACITIVE LOAD (pF) 4 –6 AV = 10 1 10k 20k 1789 G09 6 40 0 1789 G10 VS = 5V, 0V VREF = 2.5V INPUT REFERRED G = 10 100 8 50 10 100k G = 100, 1000 120 10 60 30 125 Settling Time to 0.01% vs Output Step 70 20 1k 10k FREQUENCY (Hz) 100 Positive Power Supply Rejection Ratio vs Frequency OUTPUT STEP (V) 1k 10 75 50 25 TEMPERATURE (°C) 0 1789 G06 VS = 5V, 0V VREF = 2.5V VOUT = 100mVP-P 90 OVERSHOOT (%) OUTPUT IMPEDANCE (Ω) 100 VS = 5V, 0V VREF = 2.5V 1 100 0.010 – 50 – 25 Overshoot vs Capacitive Load 100 FALLING 1789 G08 Output Impedance vs Frequency 10k 0.025 Negative Power Supply Rejection Ratio vs Frequency Common Mode Rejection Ratio vs Frequency 100 RISING 0.030 1789 G05 1789 G04 110 0.035 0.015 –20 100 10 VS = 5V, 0V 0.045 VREF = 2.5V G=1 0.040 RL = 20k 0.020 –10 0 0.001 VS = 5V, 0V VREF = 2.5V 70 POSITIVE POWER SUPPLY REJECTION RATIO (dB) SOURCE 0.050 SLEW RATE (V/µs) 125°C 4.6 OUTPUT VOLTAGE SWING—SINKING (V) –55°C 4.8 GAIN (dB) 5.0 OUTPUT VOLTAGE SWING—SOURCING (V) (LT1789-1) 1000 1789 G11 –10 0 100 300 400 200 SETTLING TIME (µs) 500 1789 G12 1789f 10 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS Voltage Noise Density vs Frequency Current Noise Density vs Frequency 1000 VS = 5V, 0V VREF = 2.5V INPUT REFERRED CURRENT NOISE DENSITY (fA/√Hz) VOLTAGE NOISE DENSITY (nV/√Hz) 1000 G=1 G = 10 100 G = 100, 1000 10 10 100 FREQUENCY (Hz) 1 (LT1789-1) VS = 5V, 0V VREF = 2.5V 100 RS LT1789-1 10 1k 10 100 FREQUENCY (Hz) 1 1k 1789 G13 1789 G14 0.1Hz to 10Hz Noise Voltage, RTI, G = 1000 0.1Hz to 10Hz Noise Voltage, G=1 0.1Hz to 10Hz Noise Current VS = 5V, 0V VREF = 2.5V VS = 5V, 0V VREF = 2.5V 1 2 3 4 5 6 TIME (SEC) 7 8 0 9 10 1 3 2 4 5 6 TIME (SEC) 7 8 9 10 1789 G16 1789 G15 0 1 2 3 4 5 6 TIME (SEC) 7 8 9 10 1789 G17 Turn-On Characteristics 1.5 CHANGE IN OUTPUT VOLTAGE (V) 0 NOISE CURRENT (5pA/DIV) NOISE VOLTAGE (2µV/DIV) NOISE VOLTAGE (0.5µV/DIV) VS = 5V, 0V VREF = 2.5V VS = 5V, 0V VREF = 2.5V VCM = 2.5V G = 1000 TA = 25°C 0.5 –0.5 –1.5 0 10 20 30 40 TIME (ms) 1789 G18 1789f 11 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS Output Voltage Swing vs Load Current 1.6 25°C 1.4 4.2 1.2 VS = 5V, 0V VREF = 2.5V 4.0 1.0 125°C 0.8 25°C 0.6 0.4 SINK –55°C 0.2 0.1 1 0.01 OUTPUT CURRENT (mA) 40 G = 100 30 20 G = 10 10 100 VS = 5V, 0V VREF = 2.5V 90 80 70 60 50 40 100 1k FREQUENCY (Hz) –20 100 1k 10k FREQUENCY (Hz) 10k 20k 140 G = 1000 120 100 VS = 5V, 0V VREF = 2.5V INPUT REFERRED G = 100 80 G = 10 60 40 20 0 10 90 80 100 1k FREQUENCY (Hz) 10k 20k 140 G = 100, 1000 120 G = 10 VS = 5V, 0V VREF = 2.5V INPUT REFERRED 100 80 60 40 20 0 10 100 1k FREQUENCY (Hz) 10 6 50 40 0 10 VS = ±15V RL = 20k G = 10 8 30 G = 1000 4 2 0 –2 –4 –6 G = 100 –8 G = 10 –10 100 CAPACITIVE LOAD (pF) 10k 20k 1789 G26 VS = 5V, 0V VREF = 2.5V VOUT = 100mVP-P 60 10 1789 G27 125 Settling Time to 0.01% vs Output Step 70 20 100k 100 Positive Power Supply Rejection Ratio vs Frequency OUTPUT STEP (V) 1k OVERSHOOT (%) OUTPUT IMPEDANCE (Ω) 100 1k 10k FREQUENCY (Hz) 75 50 1789 G25 VS = 5V, 0V VREF = 2.5V 10 25 TEMPERATURE (°C) Overshoot vs Capacitive Load 100 0 1789 G23 Output Impedance vs Frequency 1 100 0.04 –50 –25 100k 1789 G22 1789 G24 10k FALLING 0.07 Negative Power Supply Rejection Ratio vs Frequency G = 10 10 0.08 0.05 –10 10 NEGATIVE POWER SUPPLY REJECTION RATIO (dB) COMMON MODE REJECTION RATIO (dB) 110 0.09 0.06 Common Mode Rejection Ratio vs Frequency G = 100, 1000 RISING 0 1789 G21 120 0.11 0.10 50 0 0.001 G = 1000 POSITIVE POWER SUPPLY REJECTION RATIO (dB) SOURCE 60 SLEW RATE (V/µs) 125°C 0.12 VS = 5V, 0V VREF = 2.5V 70 GAIN (dB) –55°C OUTPUT VOLTAGE SWING—SINKING (V) OUTPUT VOLTAGE SWING—SOURCING (V) 80 4.8 4.4 Slew Rate vs Temperature Gain vs Frequency 5.0 4.6 (LT1789-10) 1000 1789 G28 0 100 300 400 200 SETTLING TIME (µs) 500 1789 G29 1789f 12 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS (LT1789-10) Current Noise Density vs Frequency Voltage Noise Density vs Frequency 1000 VS = 5V, 0V VREF = 2.5V INPUT REFERRED CURRENT NOISE DENSITY (fA/√Hz) VOLTAGE NOISE DENSITY (nV/√Hz) 1000 G = 10 100 G = 100 G = 1000 VS = 5V, 0V VREF = 2.5V 100 RS LT1789-10 10 10 10 100 FREQUENCY (Hz) 1 10 100 FREQUENCY (Hz) 1 1k 1k 1789 G31 1789 G30 0.1Hz to 10Hz Noise Voltage, RTI, G = 1000 0.1Hz to 10Hz Noise Voltage, RTI, G = 10 0.1Hz to 10Hz Noise Current VS = 5V, 0V VREF = 2.5V VS = 5V, 0V VREF = 2.5V 1 2 3 4 5 6 TIME (SEC) 7 8 0 9 10 1 2 3 4 5 6 TIME (SEC) 7 8 9 10 1789 G33 1789 G32 0 1 2 3 4 5 6 TIME (SEC) 7 8 9 10 1789 G34 Turn-On Characteristics 1.5 CHANGE IN OUTPUT VOLTAGE (V) 0 NOISE CURRENT (5pA/DIV) NOISE VOLTAGE (2µV/DIV) NOISE VOLTAGE (0.5µV/DIV) VS = 5V, 0V VREF = 2.5V VS = 5V, 0V VREF = 2.5V VCM = 2.5V G = 1000 TA = 25°C 0.5 –0.5 –1.5 0 10 20 30 40 TIME (ms) 1789 G18 1789f 13 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS (LT1789-1) Large-Signal Transient Response G = 1000 5V/DIV 5V/DIV Large-Signal Transient Response G = 1, 10, 100 VS = ±15V RL = 20k CL = 50pF 500µs/DIV 1789-1 G38 VS = ±15V RL = 20k CL = 50pF 1789-1 G39 Small-Signal Transient Response G = 10 20mV/DIV 20mV/DIV Small-Signal Transient Response G=1 2ms/DIV VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 100µs/DIV 1789-1 G40 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 100µs/DIV 1789-1 G41 Small-Signal Transient Response G = 1000 20mV/DIV 20mV/DIV Small-Signal Transient Response G = 100 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 200µs/DIV 1789-1 G42 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 2ms/DIV 1789-1 G43 1789f 14 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS (LT1789-10) 5V/DIV Large-Signal Transient Response G = 1000 5V/DIV Large-Signal Transient Response G = 10, 100 VS = ±15V RL = 20k CL = 50pF 500µs/DIV 1789-10 G44 VS = ±15V RL = 20k CL = 50pF 500µs/DIV 1789-1 0 G45 20mV/DIV Small-Signal Transient Response G = 10 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 100µs/DIV 1789-10 G46 Small-Signal Transient Response G = 1000 20mV/DIV 20mV/DIV Small-Signal Transient Response G = 100 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 200µs/DIV 1789-10 G47 VS = 5V, 0V VREF = 2.5V RL = 20k CL = 50pF 2ms/DIV 1789-10 G48 1789f 15 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS Valid Output Voltage vs Input Common Mode Voltage VS = ±15V 3.0 TA = 25°C G=1 2.5 10 VALID OUTPUT VOLTAGE (V) VALID OUTPUT VOLTAGE (V) G≥2 Valid Output Voltage vs Input Common Mode Voltage VS = ±2.5V 5 0 –5 –10 Valid Output Voltage vs Input Common Mode Voltage VS = ±1.5V 1.5 TA = 25°C AV = 10 2.0 AV = 1 1.5 VALID OUTPUT VOLTAGE (V) 15 (LT1789-1) AV = 2 1.0 0.5 0 –0.5 –1.0 –1.5 TA = 25°C AV = 1 1.0 AV = 2 AV = 10 0.5 0 –0.5 –1.0 –2.0 –15 –15 10 –5 0 5 –10 INPUT COMMON MODE VOLTAGE (V) –2.5 –2.5 15 –1.5 1.5 –0.5 0.5 INPUT COMMON MODE VOLTAGE (V) 15V + VOUT VCM REF – 20K V– –15V VCM VOUT REF – 4 3 G=1 2 G=2 G = 10 0 0 1 3 4 2 INPUT COMMON MODE VOLTAGE (V) VCM 5 G=1 1 G=2 G = 10 0 0 2.0 0.5 1.5 2.5 1.0 INPUT COMMON MODE VOLTAGE (V) V– 3.0 3V V+ VD /2 VOUT REF – 1789 G51 TA = 25°C + LT1789-1 VD /2 20K 2 V+ VD /2 V– –1.5V 5V + – 3 TA = 25°C 1 REF Valid Output Voltage vs Input Common Mode Voltage VS = 3V VALID OUTPUT VOLTAGE (V) VALID OUTPUT VOLTAGE (V) 5 VCM VD /2 1789 G50 Valid Output Voltage vs Input Common Mode Voltage VS = 5V VOUT LT1789-1 20K V– –2.5V 1789 G49 V+ VD /2 LT1789-1 VD /2 1.5 1.5V + V+ VD /2 LT1789-1 VD /2 0 0.5 1.0 –1.0 –0.5 INPUT COMMON MODE VOLTAGE (V) 2.5V + V+ VD /2 –1.5 –1.5 2.5 20K 1789 G52 VOUT LT1789-1 VCM VD /2 REF – V– 20K 1789 G53 1789f 16 LT1789-1/LT1789-10 U W TYPICAL PERFOR A CE CHARACTERISTICS Valid Output Voltage vs Input Common Mode Voltage VS = ±15V Valid Output Voltage vs Input Common Mode Voltage VS = ±2.5V 15 2.5 5 0 –5 –10 Valid Output Voltage vs Input Common Mode Voltage VS = ±1.5V AV = 100 1.5 1.5 TA = 25°C AV = 10 VALID OUTPUT VOLTAGE (V) G = 100 2.0 VALID OUTPUT VOLTAGE (V) 10 TA = 25°C 1.0 0.5 0 –0.5 –1.0 –1.5 TA = 25°C AV = 10 1.0 AV = 100 0.5 0 –0.5 –1.0 –2.0 –15 –15 10 –5 0 5 –10 INPUT COMMON MODE VOLTAGE (V) –2.5 –2.5 15 –1.5 1.5 –0.5 0 0.5 INPUT COMMON MODE VOLTAGE (V) 15V + VOUT REF – 0 0.5 1.0 –1.0 –0.5 INPUT COMMON MODE VOLTAGE (V) V– 20K VCM –15V VOUT VD /2 VCM REF – –2.5V Valid Output Voltage vs Input Common Mode Voltage VS = 5V 1789 G56 3 TA = 25°C TA = 25°C G = 10 G = 100 3 2 1 0 1 3 4 2 INPUT COMMON MODE VOLTAGE (V) 5 G = 100 2 1 0 0 2.0 0.5 1.5 2.5 1.0 INPUT COMMON MODE VOLTAGE (V) 5V + VCM VOUT REF – V– V+ VD /2 LT1789-10 VD /2 3.0 3V + V+ VD /2 20K Valid Output Voltage vs Input Common Mode Voltage VS = 3V 4 0 V– –1.5V 1789 G55 G = 10 VOUT LT1789-10 20K V– 1789 G54 5 V+ VD /2 REF – 1.5 1.5V + LT1789-10 VD /2 VALID OUTPUT VOLTAGE (V) VCM –1.5 –1.5 V+ VD /2 LT1789-10 VD /2 2.5 2.5V + V+ VD /2 VALID OUTPUT VOLTAGE (V) VALID OUTPUT VOLTAGE (V) G = 10 (LT1789-10) 20K 1789 G57 VOUT LT1789-10 VCM VD /2 REF – V– 20K 1789 G58 1789f 17 LT1789-1/LT1789-10 W BLOCK DIAGRA V+ V+ 100k V+ 5.7k +IN 3 – R1 R2 110k/10k* 110k/100k* RG 1 V– V– V+ V+ + A1 5 REF VB V– + RG 8 A3 100k – 5.7k V+ –IN 2 – V– V + – R3 R4 110k/10k* 110k/100k* A2 6 OUT 7 V+ VB *LT1789-1/LT1789-10 V– 4 V– 1789 BD Figure 1. Block Diagram 1789f 18 LT1789-1/LT1789-10 U W U U APPLICATIO S I FOR ATIO Setting the Gain The gain of the LT1789-1 and LT1789-10 is set by the value of resistor RG, applied across pins 1 and 8. For the LT1789-1, the gain G will be: G = 1+ 200k/RG voltage dominates, whereas at low gains the output offset voltage dominates. The total offset voltage is: Total input offset voltage (RTI) = input offset + (output offset/G) Total output offset voltage (RTO) = (input offset • G) + output offset and RG can be calculated from the desired gain by RG = 200k/(G – 1) Reference Terminal For the LT1789-10, the gain G will be G =10 • (1 + 200k/RG) and RG can be calculated from the desired gain by RG = 200k/(0.1 • G – 1) For the lowest achievable gain, RG may be set to infinity by leaving Pins 1 and 8 open. The output voltage of the LT1789-1/LT1789-10 (Pin 6) is referenced to the voltage on the reference terminal (Pin 5). Resistance in series with the REF pin must be minimized for best common mode rejection. For example, a 22Ω resistance from the REF pin to ground will not only increase the gain error by 0.02% but will lower the CMRR to 80dB. Output Offset Trimming Input and Output Offset Voltage The offset voltage of the LT1789-1/LT1789-10 has two components: the output offset and the input offset. The total offset voltage referred to the input (RTI) is found by dividing the output offset by the programmed gain (G) and adding it to the input offset. At high gains the input offset – 1 LT1789-1/-10 8 REF 3 + +IN 5 RG V+ OUTPUT 6 1 ±10mV ADJUSTMENT RANGE 2 10mV 100Ω LT1880 + 2 – –IN The LT1789-1/LT1789-10 is laser trimmed for low offset voltage so that no external offset trimming is required for most applications. In the event that the offset needs to be adjusted, the circuit in Figure 2 is an example of an optional offset adjust circuit. The op amp buffer provides a low impedance to the REF pin where resistance must be kept to a minimum for best CMRR and lowest gain error. 3 10k 100Ω –10mV V– 1789 F02 Figure 2. Optional Trimming of Output Offset Voltage 1789f 19 LT1789-1/LT1789-10 U W U U APPLICATIO S I FOR ATIO Input Bias Current Return Path Output Voltage vs Input Common Mode Voltage The low input bias current of the LT1789-1/LT1789-10 (19nA) and the high input impedance (1.6GΩ) allow the use of high impedance sources without introducing significant offset voltage errors, even when the full common mode range is required. However, a path must be provided for the input bias currents of both inputs when a purely differential signal is being amplified. Without this path the inputs will float high and exceed the input common mode range of the LT1789-1/LT1789-10, resulting in a saturated input stage. Figure 3 shows three examples of an input bias current path. The first example is of a purely differential signal source with a 10kΩ input current path to ground. Since the impedance of the signal source is low, only one resistor is needed. Two matching resistors are needed for higher impedance signal sources as shown in the second example. Balancing the input impedance improves both common mode rejection and DC offset. The need for input resistors is eliminated if a center tap is present as shown in the third example. All instrumentation amplifiers have limiting factors that can cause an output to be invalid (the output is not equal to the input differential voltage multiplied by the gain) even though the output appears to be operating in a linear region. Limiting factors such as input voltage range and output swing can be easily measured, however, there are also internal nodes that can limit. These internal nodes cannot be measured externally and can lead to erroneous output readings. To ensure a valid output for a given input common mode voltage and input differential voltage, the following four limiting factors must be taken into consideration (refer to the block diagram): 1) The input voltage ranges of the input amplifiers A1 and A2. 2) The output swings of the input amplifiers A1 and A2 (internal nodes). – THERMOCOUPLE – LT1789-1/ LT1789-10 RG MICROPHONE, HYDROPHONE, ETC 10k LT1789-1/ LT1789-10 RG + – + 200k LT1789-1/ LT1789-10 RG + 200k CENTER-TAP PROVIDES BIAS CURRENT RETURN 1789 F03 Figure 3. Providing an Input Common Mode Current Path 1789f 20 LT1789-1/LT1789-10 U W U U APPLICATIO S I FOR ATIO 3) The input voltage range of the output amplifier A3 (internal node). 4) The output swing of the output amplifier A3. These limits can be determined using the relationships below. 1)The input voltage range limits can be found in the electrical tables. 2)The output voltages of the input amplifiers A1 and A2 can be found by the following formulas: VOUT A1 = (VD/2)(G)(R1/R2) + VCM + 0.6V VOUT A2 = (–VD/2)(G)(R1/R2) + VCM + 0.6V Where VD is the input differential voltage and VCM is the input common mode voltage. The typical output swing limits for A1 and A2 can be found in the Output Swing vs Load Current typical performance curve, using R1 + R2 as the load resistance. This limitation usually becomes dominant when gain is taken in the input stage and the common mode input voltage is close to either supply rail. The LT1789-10 is less susceptible to this limiting factor because the gain is taken in the output stage. 3)The voltage on the inputs to the output amplifier A3 can be determined by the following formula: VIN A3 = (VOUT A1 – VREF)(R2/(R1 + R2)) The input voltage range of A3 has the same input limits as the LT1789-1. This limiting factor is more prevalent with single supplies, where both the reference voltage and input common mode voltage are near V+. This is also more of a concern with the LT1789-10 because the ratio of R1:R2 is 1:10 instead of 1:1. 4)The output voltage swing limits are also found in the electrical tables. The Output Voltage vs Input Common Mode Voltage typical performance curves show the regions of operation for the three supply voltages specified. Single Supply Operation There are usually two types of input signals that need to be processed; differential signals, like the output of a bridge or single ended signals, such as the output from a thermistor. Both signals require special consideration when operating with a single supply. When processing differential signals , REF (Pin 5) must be brought above the negative supply (Pin 4) to allow the output to process both the positive and negative going input signal. The maximum output operating range is obtained by setting the voltage on the REF pin to half supply. This must be done with a low impedance source to minimize CMRR and gain errors. For single ended input signals, the REF pin can be at the same potential as the negative supply provided the output of the instrumentation amplifier remains inside the specified operating range. This maximizes the output range, however the smallest input signal that can be processed is limited by the output swing to the negative supply. 1789f 21 LT1789-1/LT1789-10 U TYPICAL APPLICATIO S Single Supply Positive Integrator VS 3 VIN + 7 LT1789-1 REF 1 2 – VS R1 6 10k 8 5 3 + C1 100µF 4 + 1 LT1636 R2 10Ω 4 – VOUT 2 RESET 1789 TA02 VS = 2.7V TO 32V TIME CONSTANT = (R1)(C1) = 1 SECOND AS SHOWN Avalanche Photo Diode Module Bias Current Monitor APD HIGH VOLTAGE BIAS INPUT FOR OPTIONAL “ZERO CURRENT” FEEDBACK TO APD BIAS REGULATOR, SEE APPENDIX A, APPLICATION NOTE 92 1k* 1% 1µF 100V 100k* 1µF 100V 100k* VOUT = 20V TO 90V TO APD Q1 1N4690 5.6V 1M* 0.2µF 5V – 10k A1 LT1789-1 30k + Q2 MPSA42 0.2µF 5V 1µF 6 20k + 2 S2 5 – 20k* 1M* –3.5V –3.5V 20k 200k* 12 13 OUTPUT 0V TO 1V = 0mA TO 1mA A2 LT1006 1µF 14 S1 18 5V 5V 3 15 + * = 0.1% METAL FILM RESISTOR 1µF 100V = TECATE CMC100105MX1825 # CIRCLED NUMBERS = LTC1043 PIN NUMBER + S3 –3.5V TO AMPLIFIERS 22µF 22µF = 1N4148 = TP0610L 16 17 4 0.056µF † FOR MORE INFORMATION REFER TO APPLICATION NOTE 92 5V AN92 F04 1789f 22 LT1789-1/LT1789-10 U PACKAGE DESCRIPTION S8 Package 8-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610) .189 – .197 (4.801 – 5.004) NOTE 3 .045 ±.005 .050 BSC 8 .245 MIN 7 6 5 .160 ±.005 .150 – .157 (3.810 – 3.988) NOTE 3 .228 – .244 (5.791 – 6.197) .030 ±.005 TYP 1 RECOMMENDED SOLDER PAD LAYOUT .010 – .020 × 45° (0.254 – 0.508) .008 – .010 (0.203 – 0.254) 3 4 .053 – .069 (1.346 – 1.752) .004 – .010 (0.101 – 0.254) 0°– 8° TYP .016 – .050 (0.406 – 1.270) NOTE: 1. DIMENSIONS IN 2 .014 – .019 (0.355 – 0.483) TYP INCHES (MILLIMETERS) 2. DRAWING NOT TO SCALE 3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm) .050 (1.270) BSC SO8 0303 1789f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 23 LT1789-1/LT1789-10 U TYPICAL APPLICATIO S Voltage Controlled Current Source 3V TO 32V 3 VIN + 7 8 RG 1 2 6 LT1789-1 REF 5 – R1 1k 4 IL LOAD IL = AV • VIN/R1 1789 TA03 AV = 1 + 200k RG 10°C to 40°C Thermometer 29.4k 1% VS+ 4 LT1790 6 –1.25 1 2 3 7 6 LT1789-10 1 2 100k @ 25°C + 8 36.5k 0.5% THERMISTOR THERMOMETRICS DC95G104V VS+ 5 – 4 866k 1% 56.2k 1% VOUT = 2.5V AT 25°C + 50mV/°C OVER 10°C TO 40°C LINEARITY = 0.3°C ACCURACY = 1°C WORST CASE TOLERANCE STACK-UP VS+ = 4V TO 18V 1789 TA04 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1100 Precision Chopper-Stabilized Instrumentation Amplifier Best DC Accuracy LT1101 Precision, Micropower, Single Supply Instrumentation Amplifier Fixed Gain of 10 or 100, IS < 105µA LT1102 High Speed, JFET Instrumentation Amplifier Fixed Gain of 10 or 100, 30V/µs Slew Rate LT1167 Single Resistor Gain Programmable, Precision Instrumentation Amplifier Gain Error: 0.08% Max, Gain Nonlinearity: 10ppm Max, 60µV Max Input Offset Voltage, 90dB Min CMRR LT1168 Low Power, Single Resistor Programmable Instrumentation Amplifier ISUPPLY = 530µA Max LTC 1418 14-Bit, Low Power, 200ksps ADC with Serial and Parallel I/O Single Supply 5V or ±5V Operation, ±1.5LSB INL and ±1LSB DNL Max LT1460 Precision Series Reference Micropower; 2.5V, 5V, 10V Versions; High Precision LT1468 16-Bit Accurate Op Amp, Low Noise Fast Settling 16-Bit Accuracy at Low and High Frequencies, 90MHz GBW, 22V/µs, 900ns Settling LTC1562 Active RC Filter Lowpass, Bandpass, Highpass Responses; Low Noise, Low Distortion, Four 2nd Order Filter Sections LTC1605 16-Bit, 100ksps, Sampling ADC Single 5V Supply, Bipolar Input Range: ±10V, Power Dissipation: 55mW Typ ® 1789f 24 Linear Technology Corporation LT/TP 0403 2K • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2002