LMC7101 Micrel LMC7101 Low-Power Operational Amplifier General Description Features The LMC7101 is a high-performance, low-power, operational amplifier which is pin-for-pin compatible with the National Semiconductor LMC7101. It features rail-to-rail input and output performance in Micrel’s IttyBitty™ SOT-23-5 package. • • • • • The LMC7101 is a 500kHz gain bandwidth amplifier designed to operate from 2.7V to 12V single-ended power supplies with guaranteed performance at supply voltages of 2.7V, 3V, 5V, and 12V. This op amp’s input common-mode range includes ground and extends 300mV beyond the supply rails. For example, the common-mode range is –0.3V to +5.3V with a 5V supply. Small footprint SOT-23-5 package Guaranteed 2.7V, 3V, 5V, and 12V performance 500kHz gain-bandwidth 0.01% total harmonic distortion at 10kHz (5V, 2kΩ) 0.5mA typical supply current at 5V Applications • • • • Mobile communications, cellular phones, pagers Battery-powered instrumentation PCMCIA, USB Portable computers and PDAs Ordering Information Part Number Marking Grade Temperature Range Package LMC7101AIM5 A12A Prime –40°C to +85°C SOT-23-5 LMC7101BIM5 A12 Standard –40°C to +85°C SOT-23-5 Pin Configuration IN+ Functional Configuration V+ OUT 3 2 1 IN+ Part Identification 3 V+ OUT 2 1 A12A 4 5 4 5 IN– V– IN– V– SOT-23-5 (M5) Pin Description Pin Number Pin Name Pin Function 1 OUT Amplifier Output 2 V+ Positive Supply 3 IN+ Noninverting Input 4 IN– Inverting Input 5 V– Negative Supply: Negative supply for split supply application or ground for single supply application. Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com September 1999 1 LMC7101 LMC7101 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) Supply Voltage (VV+ – VV–) ........................................... 15V Differential Input Voltage (VIN+ – VIN–) ........... ±(VV+ – VV–) I/O Pin Voltage (VIN, VOUT), Note 2 ............................................. VV+ + 0.3V to VV– – 0.3V Junction Temperature (TJ) ...................................... +150°C Storage Temperature ............................... –65°C to +150°C Lead Temperature (soldering, 10 sec.) ..................... 260°C ESD, Note 5 .................................................................. 2kV Supply Voltage (VV+ – VV–) .............................. 2.7V to 12V Ambient Temperature (TA) ......................... –40°C to +85°C Junction Temperature (TJ) ....................... –40°C to +125°C Max. Junction Temperature (TJ(max)), Note 3 ......... +125°C Package Thermal Resistance (θJA), Note 4.......... 325°C/W Max. Power Dissipation ............................................ Note 3 Electrical Characteristics (2.7V) V+ = +2.7V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Symbol Parameter VOS Input Offset Voltage 0.11 TCVOS Input Offset Voltage Average Drift 1.0 IB Input Bias Current 1.0 64 64 pA IOS Input Offset Current 0.5 32 32 pA RIN Input Resistance >1 CMRR Common-Mode Rejection Ratio 0V ≤ VCM ≤ 2.7V, Note 6 70 VCM Input Common-Mode Voltage input low, CMRR ≥ 50dB –0.3 input high, CMRR ≥ 50dB 3.0 2.7 2.7 V V+ = 1.35V to 1.65V, V– = –1.35V to –1.65V, VCM = 0 60 50 45 dB PSRR Power Supply Rejection Ratio CIN Common-Mode Input Capacitance VO Output Swing Condition Typ Min Max LMC7101B Min 6 Max Units 9 mV µV/°C TΩ 50 50 dB 0.0 0.0 3 V pF output high, RL = 10k 2.699 output low, RL = 10k 0.001 output high, RL = 2k 2.692 output low, RL = 2k 0.008 0.1 0.1 V 0.5 0.81 0.95 0.81 0.95 mA mA VOUT = V+/2 2.64 2.64 V 0.06 2.6 0.06 2.6 V V IS Supply Current SR Slew Rate 0.4 V/µs GBW Gain-Bandwidth Product 0.5 MHz Electrical Characteristics (3.0V) V+ = +3.0V, V– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Symbol Parameter VOS Input Offset Voltage 0.11 TCVOS Input Offset Voltage Average Drift 1.0 IB Input Bias Current 1.0 64 64 pA IOS Input Offset Current 0.5 32 32 pA RIN Input Resistance >1 LMC7101 Condition Typ 2 Min Max LMC7101B 4 6 Min Max Units 7 9 mV mV µV/°C TΩ September 1999 LMC7101 Micrel LMC7101A Symbol Parameter Condition CMRR Common-Mode Rejection Ratio VCM Input Common-Mode Voltage PSRR Power Supply Rejection Ratio CIN Common-Mode Input Capacitance VOUT Output Swing IS Max LMC7101B Typ Min Min Max 0V ≤ VCM ≤ 3.0V, Note 6 74 60 input low, CMRR ≥ 50dB –0.3 input high, CMRR ≥ 50dB 3.3 3.0 3.0 V V+ = 1.5V to 6.0V, V– = –1.5V to –6.0V, VCM = 0 80 68 60 dB 60 0 Units dB 0 V 3 pF output high, RL = 2k 2.992 output low, RL = 2k 0.008 output high, RL = 600Ω 2.973 output low, RL = 600Ω 0.027 0.15 0.15 V 0.5 0.81 0.95 0.81 0.95 mA mA Supply Current 2.9 2.9 0.1 2.85 V 0.1 V 2.85 V Electrical Characteristics—DC (5V) V+ = +5.0V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Condition Typ Symbol Parameter VOS Input Offset Voltage 0.11 TCVOS Input Offset Voltage Average Drift 1.0 IB Input Bias Current 1.0 64 64 pA IOS Input Offset Current 0.5 32 32 pA RIN Input Resistance >1 CMRR Common-Mode Rejection Ratio 0V ≤ VCM ≤ 5V, Note 6 VCM Input Common-Mode Voltage input low, CMRR ≥ 50dB –0.3 input high, CMRR ≥ 50dB 5.3 5.20 5.00 5.20 5.00 V V 82 Min Max LMC7101B Min 3 5 Max Units 7 9 mV mV µV/°C TΩ 60 55 60 55 –0.20 0.00 dB dB –0.20 0.00 V V +PSRR Positive Power Supply Rejection Ratio V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 82 70 65 65 62 dB dB –PSRR Negative Power Supply Rejection Ratio V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 82 70 65 65 62 dB dB CIN Common-Mode Input Capacitance VOUT Output Swing 3 output high, RL = 2k 4.989 output low, RL = 2k 0.011 output high, RL = 600Ω 4.963 output low, RL = 600Ω 0.037 ISC Output Short Circuit Current Note 7 sourcing (VOUT = 0V) or sinking (VOUT = 5V) 200 IS Supply Current VOUT = V+/2 0.5 September 1999 3 pF 4.9 4.85 4.9 4.85 0.1 0.15 4.9 4.8 V V 0.1 0.15 4.9 4.8 0.1 0.2 120 80 V V 0.1 0.2 V V 120 80 0.85 1.0 V V mA mA 0.85 1.0 mA mA LMC7101 LMC7101 Micrel Electrical Characteristics—DC (12V) V+ = +12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Condition Typ Symbol Parameter VOS Input Offset Voltage 0.11 TCVOS Input Offset Voltage Average Drift 1.0 IB Input Bias Current 1.0 64 64 pA IOS Input Offset Current 0.5 32 32 pA RIN Input Resistance >1 CMRR Common-Mode Rejection Ratio 0V ≤ VCM ≤ 12V, Note 6 VCM Input Common-Mode Voltage input low, V+ = 12V, CMRR ≥ 50dB –0.3 input high, V+ = 12V, CMRR ≥ 50dB 12.3 12.2 12.0 12.2 12.0 V V 82 Min Max LMC7101B Min 6 Max Units 9 mV µV/°C TΩ 65 60 65 60 –0.20 0.00 dB dB –0.20 0.00 V V +PSRR Positive Power Supply Rejection Ratio V+ = 5V to 12V, V– = 0V, VOUT = 1.5V 82 70 65 65 62 dB dB –PSRR Negative Power Supply Rejection Ratio V+ = 0V, V– = –5V to –12V, VOUT = –1.5V 82 70 65 65 62 dB dB AV Large Signal Voltage Gain sourcing or sinking, RL = 2k, Note 9 340 80 40 80 40 V/mV V/mV sourcing or sinking, RL = 600Ω, Note 9 300 15 10 15 10 V/mV V/mV CIN Common-Mode Input Capacitance VOUT Output Swing 3 output high, V+ = 12V, RL = 2k 11.98 output low, V+ = 12V, RL = 2k, 0.02 output high, V+ = 12V, RL = 600Ω 11.93 output low, V+ = 12V, RL = 600Ω 0.07 ISC Output Short Circuit Current sourcing (VOUT = 0V) or sinking (VOUT = 12V), Notes 7, 8 300 IS Supply Current VOUT = V+/2 0.8 LMC7101 4 pF 11.9 11.87 11.9 11.87 0.10 0.13 11.73 11.65 V V 0.10 0.13 11.73 11.65 0.27 0.35 200 120 V V 0.27 0.35 200 120 1.5 1.71 V V V V mA mA 1.5 1.71 mA mA September 1999 LMC7101 Micrel Electrical Characteristics—AC (5V) V+ = 5V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Min Max LMC7101B Symbol Parameter Condition Typ Min Max Units THD Total Harmonic Distortion f = 10kHz, AV = –2, RL = 2kΩ, VOUT = 4.0 VPP 0.01 % SR Slew Rate 0.3 V/µs GBW Gain-Bandwidth Product 0.5 MHz Electrical Characteristics—AC (12V) V+ = 12V, V– = 0V, VCM = 1.5V, VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted LMC7101A Min Max LMC7101B Symbol Parameter Condition Typ Min Max Units THD Total Harmonic Distortion f = 10kHz, AV = –2, RL = 2k, VOUT = 8.5 VPP 0.01 SR Slew Rate V+ = 12V, Note 10 0.3 GBW Gain-Bandwidth Product 0.5 MHz φm Phase Margin 45 ° Gm Gain Margin 10 dB en Input-Referred Voltage Noise f = 1kHz, VCM = 1V 37 nV/ Hz in Input-Referred Current Noise f = 1kHz 1.5 fA/ Hz % 0.19 0.15 0.19 0.15 V/µs V/µs General Notes: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing on statistical analysis. Note 1. Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings. Note 2. I/O Pin Voltage is any external voltage to which an input or output is referenced. Note 3. The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: PD = (TJ(max) – TA) ÷ θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature. Note 4. Thermal resistance, θJA, applies to a part soldered on a printed-circuit board. Note 5. Human body model, 1.5k in series with 100pF. Note 6. Common-mode performance tends to follow the typical value. Minimum value limits reflect performance only near the supply rails. Note 7. Continuous short circuit may exceed absolute maximum TJ under some conditions. Note 8. Shorting OUT to V+ when V+ > 12V may damage the device. Note 9. RL connected to 5.0V. Sourcing: 5V ≤ VOUT ≤ 12V. Sinking: 2.5V ≤ VOUT ≤ 5V. Note 10. Device connected as a voltage follower with a 12V step input. The value is the positive or negative slew rate, whichever is slower. September 1999 5 LMC7101 LMC7101 Micrel Typical Characteristics Supply Current vs. Supply Voltage Input Current vs. Junction Temperature 10000 85°C 400 200 0 0 2 4 6 8 10 SUPPLY VOLTAGE (V) 60 20 0 1x101 60 40 TA = 25°C 20 1x102 1x103 1x104 FREQUENCY (Hz) TA = 25°C 0 1x101 1x105 0.8 1x102 1x103 1x104 FREQUENCY (Hz) 1x105 0.5 -40°C 0.4 +25°C 0.3 0.2 +85°C 0.1 0 2 4 6 8 10 SUPPLY VOLTAGE (V) -40°C 0.5 0.4 +25°C 0.3 0.2 +85°C 0.1 0 0 12 PHASE MARGIN (°) 100 2 4 6 8 10 SUPPLY VOLTAGE (V) 12 1x105 Sink / Source Currents vs. Output Voltage TA = 25°C 10 1 0.1 0.01 0.001 800 0.6 1x102 1x103 1x104 FREQUENCY (Hz) 100 ∆ OFFSET VOLTAGE (µV) 0.6 1000 Rising Slew Rate vs. vs. Supply Voltage 0.7 SLEW RATE (V/µs) SLEW RATE (V/µs) 5V 80 0.7 0 2.7V 100 Falling Slew Rate vs. vs. Supply Voltage 0.8 12V 120 40 TA = 25°C -20 1x101 CMRR vs. Frequency 140 2.7V 20 1 -40 0 40 80 120 160 JUNCTION TEMPERATURE (°C) 12 12V 40 0 CMRR (dB) 80 2.7V 5V 10 5V 100 +PSRR (dB) 100 +PSRR vs. Frequency 120 12V 60 -PSRR (dB) 600 80 1000 CURRENT SINK / SOURCE (mA) 25°C −PSRR vs. Frequency 100 –40°C 800 INPUT CURRENT (pA) SUPPLY CURRENT (µA) 1000 0.01 0.1 1 OUTPUT VOLTAGE (V) 10 Offset Voltage vs. Supply Voltage 600 85°C 400 25°C -40°C 200 0 0 2 4 6 8 10 SUPPLY VOLTAGE (V) 12 Phase Margin vs. Capacitive Load 12V 80 5V 60 3V 40 2.7V 20 TA = 25°C AV = 1 0 100 LMC7101 1000 200 300 500 LOAD CAPACITANCE (pF) 6 September 1999 LMC7101 Micrel 20 TA = 25°C 60 40 GAIN (dB) 60 RL = 2k 12V Open-Loop Frequency Response 80 60 RL = 1M GAIN (dB) GAIN (dB) 80 40 5V Open-Loop Frequency Response 80 1MΩ 2k 20 20 600Ω TA = 25°C GAIN (dB) 75 100pF (°) 500pF (°) 50 25 0 RL = 1MΩ -25 1x102 1x103 100pF (dB) 1x104 1x105 FREQUENCY (Hz) September 1999 90 500pF (dB) 0 TA = 25°C 100 135 45 -45 -90 1x106 5V Open-Loop Gain and Phase 120 120 90 100 100pF (°) 80 60 1000pF (°) 40 20 60 500pF (°) TA = 25°C RL = 1MΩ 0 100pF (dB) 500pF (dB) 1000pF (dB) 0 -20 1x102 1x103 30 1x104 -30 1x105 -60 1x106 COMMON-MODE VOLTAGE (V) 7 2k TA = 25°C 0 1x102 1x105 600Ω 1x103 1x104 FREQUENCY (Hz) 1x105 12V Open-Loop Gain and Phase TA = 25°C RL = 1MΩ 150 100pF (°) 500pF (°) 120 90 80 GAIN (dB) 100 1x103 1x104 FREQUENCY (Hz) PHASE (°) 2.7V Open-Loop Gain and Phase 0 1x102 1x105 OFFSET VOLTAGE (µV) 1x103 1x104 FREQUENCY (Hz) PHASE (°) 0 1x102 1M 40 60 60 40 1000pF (°) 0 20 0 -20 1x102 30 PHASE (°) 2.7V Open-Loop Frequency Response 100 100pF (dB) 500pF (dB) 1000pF (dB) 1x103 1x104 1x105 FREQUENCY (Hz) -30 -60 1x106 LMC7101 LMC7101 Micrel Functional Characteristics Inverting Small-Signal Pulse Response INPUT OUTPUT OUTPUT INPUT Inverting Large-Signal Pulse Response Noninverting Large-Signal Pulse Response OUTPUT OUTPUT INPUT INPUT Noninverting Small-Signal Pulse Response Input Voltage Noise vs. Frequency LMC7101 8 September 1999 LMC7101 Micrel Application Information 0.011V = 8.8 ≈ 9Ω 0.001245A Driving Capacitive Loads ROUT = Input Common-Mode Voltage Some amplifiers exhibit undesirable or unpredictable performance when the inputs are driven beyond the common-mode voltage range, for example, phase inversion of the output signal. The LMC7101 tolerates input overdrive by at least 200mV beyond either rail without producing phase inversion. If the absolute maximum input voltage (700mV beyond either rail) is exceeded, the input current should be limited to ±5mA maximum to prevent reducing reliability. A 10kΩ series input resistor, used as a current limiter, will protect the input structure from voltages as large as 50V above the supply or below ground. See Figure 1. RIN Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces op-amp system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The LMC7101 can typically drive a 100pF capacitive load connected directly to the output when configured as a unity-gain amplifier. Using Large-Value Feedback Resistors A large-value feedback resistor (> 500kΩ) can reduce the phase margin of a system. This occurs when the feedback resistor acts in conjunction with input capacitance to create phase lag in the fedback signal. Input capacitance is usually a combination of input circuit components and other parasitic capacitance, such as amplifier input capacitance and stray printed circuit board capacitance. VOUT Figure 2 illustrates a method of compensating phase lag caused by using a large-value feedback resistor. Feedback capacitor CFB introduces sufficient phase lead to overcome the phase lag caused by feedback resistor RFB and input capacitance CIN. The value of CFB is determined by first estimating CIN and then applying the following formula: VIN 10kΩ Figure 1. Input Current-Limit Protection Output Voltage Swing Sink and source output resistances of the LMC7101 are equal. Maximum output voltage swing is determined by the load and the approximate output resistance. The output resistance is: ROUT = RIN × CIN ≤ RFB × CFB CFB RFB VDROP ILOAD VIN RIN VOUT VDROP is the voltage dropped within the amplifier output stage. VDROP and ILOAD can be determined from the VO (output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage minus V+/2 and divided by RLOAD. For example, using the Electrical Characteristics DC (5V) table, the typical output high voltage using a 2kΩ load (connected to V+/2) is 4.989V, which produces an ILOAD of CIN Figure 2. Cancelling Feedback Phase Lag Since a significant percentage of CIN may be caused by board layout, it is important to note that the correct value of CFB may change when changing from a breadboard to the final circuit layout. 4.989V – 2.5V 1.245mA = 1.245mA . 2kΩ Voltage drop in the amplifier output stage is: VDROP = 5.0V – 4.989V VDROP = 0.011V Because of output stage symmetry, the corresponding typical output low voltage (0.011V) also equals VDROP. Then: September 1999 9 LMC7101 LMC7101 Micrel Typical Circuits Some single-supply, rail-to-rail applications for which the LMC7101 is well suited are shown in the circuit diagrams of Figures 3 through 7. VS 0.5V to Q1 VCEO(sus) V+ 3 VIN LMC7101 2 1 V+ 0V to AV VOUT 0V to V+ 4 5 3 VIN 0V to 2V 2 VOUT 0V to V+ Load V+ LMC7101 IOUT 1 Q1 VCEO = 40V 2N3904 IC(max) = 200mA 4 { 5 RS 10Ω 1⁄2W R2 Change Q1 and RS for higher current and/or different gain. 900k R1 100k VIN = 100mA/V as shown RS IOUT = Figure 3a. Noninverting Amplifier Figure 5. Voltage-Controlled Current Sink R4 100 V+ 100k V+ VOUT (V) C1 0.001µF AV = 1 + R2 ≈ 10 R1 LMC7101 2 4 1 VOUT 3 0 0 5 100 VIN (V) Figure 3b. Noninverting Amplifier Behavior V+ R2 R4 100k 100k V+ VIN 0V to V+ 3 2 R3 100k LMC7101 1 4 V+ 0V Figure 6. Square Wave Oscillator VOUT 0V to V+ CIN 5 VOUT = VIN R1 R2 33k 330k V+ Figure 4. Voltage Follower 2 4 LMC7101 COUT 1 3 RL 5 V+ R3 R4 330k 330k C1 1µF AV = − VOUT 0V R2 330k = = −10 R1 33k Figure 7. AC-Coupled Inverting Amplifier LMC7101 10 September 1999 LMC7101 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 0.50 (0.020) 0.35 (0.014) 1.30 (0.051) 0.90 (0.035) 0.20 (0.008) 0.09 (0.004) 10° 0° 0.15 (0.006) 0.00 (0.000) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) September 1999 11 LMC7101 LMC7101 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 1999 Micrel Incorporated LMC7101 12 September 1999