MICREL MIC7201BM5

MIC7201
Micrel
MIC7201
GainBlock™ Difference Amplifier
Preliminary Information
General Description
Features
The MIC7201 difference amplifier is an analog gain block
designed to convert a differential signal to a signal-ended
signal. It features an extended common-mode range that
includes rail-to-rail input/output capabilities. The part is packaged in the SOT-23-5 IttyBitty™ package.
The MIC7201 is designed using the MIC7101 operational
amplifier plus well-matched monolithic resistors to provide a
unity-gain stable differential input to signal-ended output
amplifier that requires a minimum of external components.
Performance is guaranteed from 2.2V through 10V.
•
•
•
•
•
•
Operates from 2.2V to 10V
±1% typical gain error
0.6mA typical supply current at 2.2V
400kHz bandwidth
Small SOT-23-5 package
Suitable for driving capacitive loads
Applications
•
•
•
•
Cellular telephones
Digital audio systems
Mobile communications
Portable computers and PDAs
Ordering Information
Part Number
Temperature Range
Package
MIC7201BM5
–40°C to +85°C
SOT-23-5
Other voltages available. Contact Micrel for details.
Block Diagram
V+
50k
IN+
2
VIN–
100k
3
OUT
VIN+
1
100k
50k
IN–
VOUT
4
50k
MIC7201
V–
5
Difference Amplifier Behavior
The desired 100mV, 400Hz differential sinusoidal signal is shown applied to
inputs VIN– and VIN+. A 500mV, 5kHz square-wave “noise” signal is superimposed on both VIN– and VIN+.
These signals demonstrate the noise cancellation ability of the MIC7201.
The output (VOUT) shows the recovered single-ended 200mV peak-to-peak,
400Hz sine wave.
GainBlock is a trademark of Micrel, Inc.
Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com
December 1998
1
MIC7201
MIC7201
Micrel
Pin Configuration
IN+
3
V+ OUT
2
1
Part
Identification
A16
4
5
IN–
V–
SOT-23-5
Pin Description
Pin Number
Pin Name
1
OUT
2
V+
Positive Supply: Positive power supply input.
3
IN+
Noniverting Input: In-phase differential input.
4
IN–
Inverting Input: Out-of-phase differential input.
5
V–
Ground: Power supply ground return.
MIC7201
Pin Function
Amplifier Output: Single-ended output.
2
December 1998
MIC7201
Micrel
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 1)
Supply Voltage (VV+–VV–) ............................................. 12V
Differential Input Voltage (VV+–VV–) ................. ±(VV+–VV–)
I/O Pin Voltage (VIN, VOUT), Note 2
................................................ VV––0.3V to VV++0.3V
Junction Temperature (TJ) ...................................... +150°C
Storage Temperature (TS) ....................... –65°C to +150°C
Lead Temperature (soldering, 10 sec.) ..................... 260°C
ESD, Note 5 .................................................................. 2kV
Supply Voltage (VV+–VV–) ............................ +2.2V to +10V
Input Voltage (VIN+, VIN–) ................................... VV– to VV+
Continuous Output Current ...................................... ±15mA
Junction Temperature (TJ) ......................... –40°C to +85°C
Max. Junction Temperature (TJ(max)), Note 3 ........... +85°C
Package Thermal Resistance (θJA), Note 4.......... 325°C/W
Max. Power Dissipation ............................................ Note 3
Electrical Characteristics (2.2V)
VV+ = 2.2V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
Condition
Min
Typ
Max
Units
EZ
Zero Error
EZ = VOUT – VV+/2
9
44
mV
TCVOS
Input Offset Voltage Temp. Drift
RIN
Input Resistance
CMRR
Common-mode Rejection Ratio
VCM = 0V to VV+
65
dB
±PSRR
Split-Supply Rejection Ratio
VV+ = VV– = 1.1V to 2.5V,
VCM = 0V
50
dB
+PSRR
Single-Supply Rejection Ratio,
Note 8
VV+ = 2.2V to 5V, VV– = 0V, VCM = 1.1V
6
dB
EG
Gain Error, Note 9
0.2V ≤ VOUT ≤ 2.0V
±1
%
VOUT
Output Voltage Swing
Note 10
output high, RL = 2k,
specified as VV+ – VOUT
10
33
50
mV
mV
output low, RL = 2k
10
33
50
mV
mV
output high, RL = 600Ω,
specified as VV+ – VOUT
33
mV
mV
output low, RL = 600Ω
33
mV
mV
60
mA
400
kHz
0.5
V/µs
µV/°C
14
35
65
kΩ
ISC
Output Short-Circuit Current
sinking or sourcing, Note 6, Note 7
BW
Bandwidth
–3dB point
SR
Slew Rate
THD
Total Harmonic Distortion
f = 1kHz
f = 10kHz
0.02
0.02
%
%
en
Input Referred Voltage Noise
f = 1kHz
30
nV/ Hz
IS
Supply Current
no load
0.6
December 1998
3
20
50
2.0
mA
MIC7201
MIC7201
Micrel
Electrical Characteristics (5V)
VV+ = +5V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
Condition
Min
Typ
Max
Units
EZ
Zero Error
EZ = VOUT – VV+/2
26
100
mV
TCVOS
Input Offset Voltage Temp. Drift
RIN
Input Resistance
CMRR
Common-Mode Rejection Ratio
VCM = 0V to VV+
65
dB
±PSRR
Split-Supply Rejection Ratio
VV+ = VV– = 2.5V to 5V,
VCM = 0V
50
dB
+PSRR
Single-Supply Rejection Ratio,
Note 8
VV+ = 5V to 10V, VV– = 0V, VCM = 2.5V
6
dB
EG
Gain Error, Note 9
0.5V ≤ VOUT ≤ 4.5V
±1
%
VOUT
Output Voltage Swing
Note 10
output high, RL = 2k,
specified as VV+ – VOUT
15
50
75
mV
mV
output low, RL = 2k
15
50
75
mV
mV
output high, RL = 600Ω,
specified as VV+ – VOUT
50
mV
mV
output low, RL = 600Ω
50
mV
mV
110
mA
250
kHz
0.5
V/µs
µV/°C
14
35
40
50
65
kΩ
ISC
Output Short-Circuit Current
sinking or sourcing, Note 6, Note 7
BW
Bandwidth
–3dB point
SR
Slew Rate
THD
Total Harmonic Distortion
f = 1kHz
f = 10kHz
0.02
0.02
%
%
en
Input Referred Voltage Noise
f = 1kHz
30
nV/ Hz
IS
Supply Current
no load
0.8
2.8
mA
Typ
Max
Units
60
200
mV
Electrical Characteristics (10V)
VV+ = 10V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
Condition
EZ
Zero Error
EZ = VOUT – VV+/2
TCVOS
Input Offset Voltage Temp. Drift
RIN
Input Resistance
CMRR
Common-Mode Rejection Ratio
VCM = 0V to VV+
65
dB
±PSRR
Split-Supply Rejection Ratio
VV+ = VV– = 2.5V to 5V,
VCM = 0V
50
dB
+PSRR
Single-Supply Rejection Ratio,
Note 8
VV+ = 5V to 10V, VV– = 0V, VCM = 2.5V
6
dB
EG
Gain Error, Note 9
0.5V ≤ VOUT ≤ 9.5V
±1
%
MIC7201
Min
µV/°C
14
35
4
50
65
kΩ
December 1998
MIC7201
Micrel
Symbol
Parameter
Condition
VOUT
Output Voltage Swing
Note 10
Min
Typ
Max
Units
output high, RL = 2k,
specified as VV+ – VOUT
24
80
120
mV
mV
output low, RL = 2k
24
80
120
mV
mV
output high, RL = 600Ω,
specified as VV+ – VOUT
80
mV
mV
output low, RL = 600Ω
80
mV
mV
200
mA
250
kHz
0.5
V/µs
ISC
Output Short-Circuit Current
sinking or sourcing, Note 6, Note 7
40
BW
Bandwidth
–3dB point
SR
Slew Rate
THD
Total Harmonic Distortion
f = 1kHz
f = 10kHz
0.02
0.02
%
%
en
Input Referred Voltage Noise
f = 1kHz
30
nV/ Hz
IS
Supply Current
no load
1.2
4.0
mA
Internal Op Amp Typical Characteristics
+2.2V ≤ VV+ ≤ 10V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted
Symbol
Parameter
VOS
Input Offset Voltage
0.11
mV
TCVOS
Input Offset Voltage Drift
1.0
µV/°C
IB
Input Bias Current
1.0
pA
IOS
Input Offset Current
0.5
pA
RIN
Input Resistance
>1
TΩ
CMRR
Common-Mode Rejection Ratio
0V ≤ VCM ≤ VV+
80
dB
VCM
Input Common-Mode Voltage
input low
–0.3
V
input high
VV++0.3
V
60
dB
PSRR
Power Supply Rejection Ratio
Condition
Min
VV+ = VV– = 1.1V to 1.65V,
VCM = 0V
Typ
Max
Units
General Note: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing or statistical analysis.
Note 1:
Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when
operating the device outside its recommended operating ratings.
Note 2:
I/O pin voltage is any external voltage to which an input or output is referenced.
Note 3:
The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal
resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using:
PD = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature.
Note 4:
Thermal resistance, θJA, applies to a part soldered on a printed-circuit board.
Note 5:
Human body model, 1.5k in series with 100pF.
Note 6:
Short circuit may cause the device to exceed maximum allowable power dissipation. See Note 3.
Note 7:
Shorting VOUT to V+ when V+ > 10V may damage the device.
Note 8:
Limited by internal bias-network resistors. Power supply must be “clean.” Power supply should be bypassed as shown in typical application
circuit.
Note 9:
The gain error specification applies to differential, inverting, and noninverting gains.
Note 10: Since the part is specified in a single-supply configuration, the output load (RL) is a Thevenin equivalent value. The actual load consists of 2 ×
RL to ground and 2 × RL to the supply (V+).
December 1998
5
MIC7201
MIC7201
Micrel
VV+
Applications Information
V+
Input Common Mode Voltage
The MIC7201 tolerates overdriving the inputs by at least
300mV beyond either rail without producing phase inversion.
If the absolute maximum input voltage is exceeded, the input
current should be limited to ±5mA to prevent reducing reliability. A 10kΩ series input resistor, used as a current limiter will
protect the input structure from voltages as large as 50V
above the supply or below ground.
Output Voltage Swing
Output resistance of the MIC7201 is symmetric; sink and
source output resistances are equal. Output voltage swing is
determined by the load and, given the approximate output
resistance, which may be readily calculated with the following
formula:
IN+
VIN
2
100k
50k
OUT
3
100k
IN–
4
50k
MIC7201
V–
5
Figure 2. Gain of One-Half
VV+
2
VDROP
ILOAD
IN+
VDROP is the voltage dropped within the amplifier output
stage. VDROP and ILOAD can be determined from the VOUT
(output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage
minus V+/2 and divided by RLOAD. For example, using the
Electrical Characteristics DC (5V) table, the typical output
voltage drop using a 2kΩ load (connected to V+/2) is 0.015V,
which produces an ILOAD of (2.5V – 0.015V) / 2kΩ ≈ 1.243mA.
Then:
VIN
50k
100k
OUT
3
VV+ IN–
4
2
50k
50k
MIC7201
V–
5
Figure 3. Voltage Follower
15mV
= 12.1 ≈ 12Ω
1.243mA
Driving Capacitive Loads
Driving a capacitive load introduces phase-lag into the output
signal, and this in turn reduces system phase margin. The
application that is least forgiving of reduced phase margin is
a unity gain amplifier. The MIC7201 typically can drive a
500pF capacitive load connected directly to its output.
VV+
V+
IN+
50k
100k
OUT
0.1µF
1
IN–
VIN
50k
4
50k
MIC7201
VV+
VOUT
MIC7201
V+
IOUT
0.1µF
5
Figure 4. Inverting Unity Gain
4.7µF
0.1µF
IOUT
VOUT = –VIN
100k
V–
DAC
2
3
VSUPPLY
0.1µF
VOUT = VIN
1
100k
ROUT =
Digital
Input
VIN
2
50k
V+
ROUT ≈
VOUT =
1
2
RL
0.1µF
IN+
50k
100k
OUT
3
0.1µF
1
VOUT =
100k
Figure 1. Audio DAC
IN–
VV+
2
50k
4
50k
MIC7201
V–
5
Figure 5. Virtual Ground Generator
MIC7201
6
December 1998
MIC7201
Micrel
Package Information
1.90 (0.075) REF
0.95 (0.037) REF
1.75 (0.069)
1.50 (0.059)
3.00 (0.118)
2.60 (0.102)
DIMENSIONS:
MM (INCH)
3.02 (0.119)
2.80 (0.110)
0.50 (0.020)
0.35 (0.014)
1.30 (0.051)
0.90 (0.035)
0.20 (0.008)
0.09 (0.004)
10°
0°
0.15 (0.006)
0.00 (0.000)
0.60 (0.024)
0.10 (0.004)
SOT-23-5 (M5)
December 1998
7
MIC7201
MIC7201
Micrel
MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131
TEL
USA
+ 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com
This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or
other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc.
© 1998 Micrel Incorporated
MIC7201
8
December 1998