MIC7201 Micrel MIC7201 GainBlock™ Difference Amplifier Preliminary Information General Description Features The MIC7201 difference amplifier is an analog gain block designed to convert a differential signal to a signal-ended signal. It features an extended common-mode range that includes rail-to-rail input/output capabilities. The part is packaged in the SOT-23-5 IttyBitty™ package. The MIC7201 is designed using the MIC7101 operational amplifier plus well-matched monolithic resistors to provide a unity-gain stable differential input to signal-ended output amplifier that requires a minimum of external components. Performance is guaranteed from 2.2V through 10V. • • • • • • Operates from 2.2V to 10V ±1% typical gain error 0.6mA typical supply current at 2.2V 400kHz bandwidth Small SOT-23-5 package Suitable for driving capacitive loads Applications • • • • Cellular telephones Digital audio systems Mobile communications Portable computers and PDAs Ordering Information Part Number Temperature Range Package MIC7201BM5 –40°C to +85°C SOT-23-5 Other voltages available. Contact Micrel for details. Block Diagram V+ 50k IN+ 2 VIN– 100k 3 OUT VIN+ 1 100k 50k IN– VOUT 4 50k MIC7201 V– 5 Difference Amplifier Behavior The desired 100mV, 400Hz differential sinusoidal signal is shown applied to inputs VIN– and VIN+. A 500mV, 5kHz square-wave “noise” signal is superimposed on both VIN– and VIN+. These signals demonstrate the noise cancellation ability of the MIC7201. The output (VOUT) shows the recovered single-ended 200mV peak-to-peak, 400Hz sine wave. GainBlock is a trademark of Micrel, Inc. Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com December 1998 1 MIC7201 MIC7201 Micrel Pin Configuration IN+ 3 V+ OUT 2 1 Part Identification A16 4 5 IN– V– SOT-23-5 Pin Description Pin Number Pin Name 1 OUT 2 V+ Positive Supply: Positive power supply input. 3 IN+ Noniverting Input: In-phase differential input. 4 IN– Inverting Input: Out-of-phase differential input. 5 V– Ground: Power supply ground return. MIC7201 Pin Function Amplifier Output: Single-ended output. 2 December 1998 MIC7201 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1) Supply Voltage (VV+–VV–) ............................................. 12V Differential Input Voltage (VV+–VV–) ................. ±(VV+–VV–) I/O Pin Voltage (VIN, VOUT), Note 2 ................................................ VV––0.3V to VV++0.3V Junction Temperature (TJ) ...................................... +150°C Storage Temperature (TS) ....................... –65°C to +150°C Lead Temperature (soldering, 10 sec.) ..................... 260°C ESD, Note 5 .................................................................. 2kV Supply Voltage (VV+–VV–) ............................ +2.2V to +10V Input Voltage (VIN+, VIN–) ................................... VV– to VV+ Continuous Output Current ...................................... ±15mA Junction Temperature (TJ) ......................... –40°C to +85°C Max. Junction Temperature (TJ(max)), Note 3 ........... +85°C Package Thermal Resistance (θJA), Note 4.......... 325°C/W Max. Power Dissipation ............................................ Note 3 Electrical Characteristics (2.2V) VV+ = 2.2V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter Condition Min Typ Max Units EZ Zero Error EZ = VOUT – VV+/2 9 44 mV TCVOS Input Offset Voltage Temp. Drift RIN Input Resistance CMRR Common-mode Rejection Ratio VCM = 0V to VV+ 65 dB ±PSRR Split-Supply Rejection Ratio VV+ = VV– = 1.1V to 2.5V, VCM = 0V 50 dB +PSRR Single-Supply Rejection Ratio, Note 8 VV+ = 2.2V to 5V, VV– = 0V, VCM = 1.1V 6 dB EG Gain Error, Note 9 0.2V ≤ VOUT ≤ 2.0V ±1 % VOUT Output Voltage Swing Note 10 output high, RL = 2k, specified as VV+ – VOUT 10 33 50 mV mV output low, RL = 2k 10 33 50 mV mV output high, RL = 600Ω, specified as VV+ – VOUT 33 mV mV output low, RL = 600Ω 33 mV mV 60 mA 400 kHz 0.5 V/µs µV/°C 14 35 65 kΩ ISC Output Short-Circuit Current sinking or sourcing, Note 6, Note 7 BW Bandwidth –3dB point SR Slew Rate THD Total Harmonic Distortion f = 1kHz f = 10kHz 0.02 0.02 % % en Input Referred Voltage Noise f = 1kHz 30 nV/ Hz IS Supply Current no load 0.6 December 1998 3 20 50 2.0 mA MIC7201 MIC7201 Micrel Electrical Characteristics (5V) VV+ = +5V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter Condition Min Typ Max Units EZ Zero Error EZ = VOUT – VV+/2 26 100 mV TCVOS Input Offset Voltage Temp. Drift RIN Input Resistance CMRR Common-Mode Rejection Ratio VCM = 0V to VV+ 65 dB ±PSRR Split-Supply Rejection Ratio VV+ = VV– = 2.5V to 5V, VCM = 0V 50 dB +PSRR Single-Supply Rejection Ratio, Note 8 VV+ = 5V to 10V, VV– = 0V, VCM = 2.5V 6 dB EG Gain Error, Note 9 0.5V ≤ VOUT ≤ 4.5V ±1 % VOUT Output Voltage Swing Note 10 output high, RL = 2k, specified as VV+ – VOUT 15 50 75 mV mV output low, RL = 2k 15 50 75 mV mV output high, RL = 600Ω, specified as VV+ – VOUT 50 mV mV output low, RL = 600Ω 50 mV mV 110 mA 250 kHz 0.5 V/µs µV/°C 14 35 40 50 65 kΩ ISC Output Short-Circuit Current sinking or sourcing, Note 6, Note 7 BW Bandwidth –3dB point SR Slew Rate THD Total Harmonic Distortion f = 1kHz f = 10kHz 0.02 0.02 % % en Input Referred Voltage Noise f = 1kHz 30 nV/ Hz IS Supply Current no load 0.8 2.8 mA Typ Max Units 60 200 mV Electrical Characteristics (10V) VV+ = 10V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter Condition EZ Zero Error EZ = VOUT – VV+/2 TCVOS Input Offset Voltage Temp. Drift RIN Input Resistance CMRR Common-Mode Rejection Ratio VCM = 0V to VV+ 65 dB ±PSRR Split-Supply Rejection Ratio VV+ = VV– = 2.5V to 5V, VCM = 0V 50 dB +PSRR Single-Supply Rejection Ratio, Note 8 VV+ = 5V to 10V, VV– = 0V, VCM = 2.5V 6 dB EG Gain Error, Note 9 0.5V ≤ VOUT ≤ 9.5V ±1 % MIC7201 Min µV/°C 14 35 4 50 65 kΩ December 1998 MIC7201 Micrel Symbol Parameter Condition VOUT Output Voltage Swing Note 10 Min Typ Max Units output high, RL = 2k, specified as VV+ – VOUT 24 80 120 mV mV output low, RL = 2k 24 80 120 mV mV output high, RL = 600Ω, specified as VV+ – VOUT 80 mV mV output low, RL = 600Ω 80 mV mV 200 mA 250 kHz 0.5 V/µs ISC Output Short-Circuit Current sinking or sourcing, Note 6, Note 7 40 BW Bandwidth –3dB point SR Slew Rate THD Total Harmonic Distortion f = 1kHz f = 10kHz 0.02 0.02 % % en Input Referred Voltage Noise f = 1kHz 30 nV/ Hz IS Supply Current no load 1.2 4.0 mA Internal Op Amp Typical Characteristics +2.2V ≤ VV+ ≤ 10V, VV– = 0V, VCM = VOUT = V+/2; RL = 1MΩ; TJ = 25°C, bold values indicate –40°C ≤ TJ ≤ +85°C; unless noted Symbol Parameter VOS Input Offset Voltage 0.11 mV TCVOS Input Offset Voltage Drift 1.0 µV/°C IB Input Bias Current 1.0 pA IOS Input Offset Current 0.5 pA RIN Input Resistance >1 TΩ CMRR Common-Mode Rejection Ratio 0V ≤ VCM ≤ VV+ 80 dB VCM Input Common-Mode Voltage input low –0.3 V input high VV++0.3 V 60 dB PSRR Power Supply Rejection Ratio Condition Min VV+ = VV– = 1.1V to 1.65V, VCM = 0V Typ Max Units General Note: Devices are ESD protected; however, handling precautions are recommended. All limits guaranteed by testing or statistical analysis. Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside its recommended operating ratings. Note 2: I/O pin voltage is any external voltage to which an input or output is referenced. Note 3: The maximum allowable power dissipation is a function of the maximum junction temperature, TJ(max); the junction-to-ambient thermal resistance, θJA; and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated using: PD = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature. Note 4: Thermal resistance, θJA, applies to a part soldered on a printed-circuit board. Note 5: Human body model, 1.5k in series with 100pF. Note 6: Short circuit may cause the device to exceed maximum allowable power dissipation. See Note 3. Note 7: Shorting VOUT to V+ when V+ > 10V may damage the device. Note 8: Limited by internal bias-network resistors. Power supply must be “clean.” Power supply should be bypassed as shown in typical application circuit. Note 9: The gain error specification applies to differential, inverting, and noninverting gains. Note 10: Since the part is specified in a single-supply configuration, the output load (RL) is a Thevenin equivalent value. The actual load consists of 2 × RL to ground and 2 × RL to the supply (V+). December 1998 5 MIC7201 MIC7201 Micrel VV+ Applications Information V+ Input Common Mode Voltage The MIC7201 tolerates overdriving the inputs by at least 300mV beyond either rail without producing phase inversion. If the absolute maximum input voltage is exceeded, the input current should be limited to ±5mA to prevent reducing reliability. A 10kΩ series input resistor, used as a current limiter will protect the input structure from voltages as large as 50V above the supply or below ground. Output Voltage Swing Output resistance of the MIC7201 is symmetric; sink and source output resistances are equal. Output voltage swing is determined by the load and, given the approximate output resistance, which may be readily calculated with the following formula: IN+ VIN 2 100k 50k OUT 3 100k IN– 4 50k MIC7201 V– 5 Figure 2. Gain of One-Half VV+ 2 VDROP ILOAD IN+ VDROP is the voltage dropped within the amplifier output stage. VDROP and ILOAD can be determined from the VOUT (output swing) portion of the appropriate Electrical Characteristics table. ILOAD is equal to the typical output high voltage minus V+/2 and divided by RLOAD. For example, using the Electrical Characteristics DC (5V) table, the typical output voltage drop using a 2kΩ load (connected to V+/2) is 0.015V, which produces an ILOAD of (2.5V – 0.015V) / 2kΩ ≈ 1.243mA. Then: VIN 50k 100k OUT 3 VV+ IN– 4 2 50k 50k MIC7201 V– 5 Figure 3. Voltage Follower 15mV = 12.1 ≈ 12Ω 1.243mA Driving Capacitive Loads Driving a capacitive load introduces phase-lag into the output signal, and this in turn reduces system phase margin. The application that is least forgiving of reduced phase margin is a unity gain amplifier. The MIC7201 typically can drive a 500pF capacitive load connected directly to its output. VV+ V+ IN+ 50k 100k OUT 0.1µF 1 IN– VIN 50k 4 50k MIC7201 VV+ VOUT MIC7201 V+ IOUT 0.1µF 5 Figure 4. Inverting Unity Gain 4.7µF 0.1µF IOUT VOUT = –VIN 100k V– DAC 2 3 VSUPPLY 0.1µF VOUT = VIN 1 100k ROUT = Digital Input VIN 2 50k V+ ROUT ≈ VOUT = 1 2 RL 0.1µF IN+ 50k 100k OUT 3 0.1µF 1 VOUT = 100k Figure 1. Audio DAC IN– VV+ 2 50k 4 50k MIC7201 V– 5 Figure 5. Virtual Ground Generator MIC7201 6 December 1998 MIC7201 Micrel Package Information 1.90 (0.075) REF 0.95 (0.037) REF 1.75 (0.069) 1.50 (0.059) 3.00 (0.118) 2.60 (0.102) DIMENSIONS: MM (INCH) 3.02 (0.119) 2.80 (0.110) 0.50 (0.020) 0.35 (0.014) 1.30 (0.051) 0.90 (0.035) 0.20 (0.008) 0.09 (0.004) 10° 0° 0.15 (0.006) 0.00 (0.000) 0.60 (0.024) 0.10 (0.004) SOT-23-5 (M5) December 1998 7 MIC7201 MIC7201 Micrel MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL USA + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 1998 Micrel Incorporated MIC7201 8 December 1998