MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION PIN CONFIGURATION (TOP VIEW) The M52732SP is a semiconductor integrated circuit that has 3channels of built-in amplifiers in the broad-band video amplifier 1 28 OUTPUT (B) amplifier, contrast control (main and sub), and brightness control. It INPUT (B) 2 27 HOLD (B) accordingly has an optimal configuration for use with high SUB CONTRAST CONTROL (B) GND (B) 3 26 NC 4 25 GND (B) VCC (G) 5 24 OUTPUT (G) 23 HOLD (G) resolution color display monitors. FEATURES • • • It realize low power dissipation so that 3-channels are built in. (VCC=12V, ICC=63mA) Input..........................................................................0.7V P-P (typ.) Output.....................................................................4.5V P-P (max.) Frequency band.................................................75MHz (at 3V P-P) To adjust contrast, two types of controls are provided, main and sub. The main controls adjusts 3-channels of contrast concurrently. The sub contrast controls adjusts either channel independentry. INPUT (G) 6 SUB CONTRAST CONTROL (G) GND (G) 7 VCC (R) 9 M52732SP VCC (B) having a 75MHz band. Every channel is provided with a broad-band 8 21 GND (G) 20 OUTPUT (R) 19 HOLD (R) INPUT (R) 10 SUB CONTRAST 11 CONTROL (R) GND (R) 12 18 NC 17 GND (R) MAIN CONTRAST CONTROL 13 CP IN 14 APPLICATION 22 NC 16 VCC 15 BRIGHTNESS CONTROL Display monitor Outline 28P4B RECOMMENDED OPERATING CONDITION NC : NO CONNECTION Supply voltage range....................................................11.5 to 12.5V Rated supply voltage................................................................12.0V BLOCK DIAGRAM HOLD (B) OUTPUT (B) 28 NC 27 1 1 HOLD(G) OUTPUT (G) 26 25 24 22 21 20 19 VCC 18 G-ch Brt R-ch Brt B-ch Hold G-ch Hold R-ch Hold B-ch Amp G-ch Amp R-ch Amp B-ch CONTRAST G-ch CONTRAST R-ch CONTRAST 2 3 4 5 GND (B) SUB CONTRAST CONTROL (B) 6 INPUT (G) VCC (G) 7 8 9 GND (G) SUB CONTRAST CONTROL (G) 10 INPUT (R) VCC (R) BRIGHTNESS CONTROL GND (R) NC OUTPUT (R) NC 23 HOLD (R) GND (G) B-ch Brt INPUT (B) VCC (B) GND (B) 11 17 16 12 13 GND (R) 15 14 CP IN SUB CONTRAST MAIN CONTRAST CONTROL (R) CONTROL MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ABSOLUTE MAXIMUM RATINGS (Ta=25°C) Symbol VCC Pd Topr Tstg Vopr Vopr’ Surge Parameter Supply voltage Power dissipation Ambient temperature Storage temperature Recommended supply voltage Recommended supply voltage range Electrostatic discharge Ratings Unit 13.0 1580 -20 to +85 -40 to +150 12.0 11.5 to 12.5 ±200 V mW °C °C V V V ELECTRICAL CHARACTERISTICS (VCC=12V, Ta=25°C, unless otherwise noted) Test conditions Symbol Parameter ICC Circuit current Vomax Output dynamic range Vimax Maximum input Gv Maximum gain ∆Gv Relative maximum gain VCR1 ∆VCR1 VCR2 Contrast control characteristics (typical) Contrast control relative characteristics (typical) Contrast control characteristics (minimum) ∆VCR2 Contrast control relative characteristics (minimum) VSCR1 Sub contrast control characteristics (typical) ∆VSCR1 Sub contrast control relative characteristics (typical) VSCR2 Sub contrast control characteristics (minimum) ∆VSCR2 Sub contrast control relative characteristics (minimum) VCR2 Contrast/sub contrast control characteristics (typical) ∆VCR2 Contrast/sub contrast control relative characteristics (typical) VB1 Brightness control characteristics (maximum) ∆VB1 Brightness control relative characteristics (maximum) Test point (s) SW10 R-ch A T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 Input External power supply (V) SW6 G-ch SW2 B-ch V3 V13 V15 SW14 a − a − a − 12 12 5 b SG1 b SG1 b SG1 12 12 b SG1 b SG1 b SG1 12 b SG1 b SG1 b SG1 12 b SG1 b SG1 b SG1 12 Typ. Max. b SG6 45 72 110 mA Variable a − 5.8 6.8 9.0 VP-P 6 Variable a − 1.9 2.4 2.9 VP-P 12 VT a − 13 17 20 dB 0.8 1 1.2 − 4.0 7.4 10.1 dB 0.8 1 1.2 − 5 30 70 mVP-P 0.8 1 1.3 − 9.9 14 18.1 dB 0.8 1 1.2 − 50 300 600 mVP-P 0.8 1 1.2 − 0.9 1.3 1.7 VP-P 0.8 1 1.2 − 3.6 4.3 5.0 V -100 0 100 mV 6 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 12 3.5 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 6 12 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 3 12 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 b SG1 b SG1 b SG1 6 6 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 a − a − a − 12 Unit Min. Relative to measured values above T.P.20 T.P.24 T.P.28 Limits Pulse input 12 5.5 Relative to measured values above b SG6 2 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ELECTRICAL CHARACTERISTICS (cont.) Test conditions Symbol VB2 Brightness control characteristics (typical) ∆VB2 Brightness control relative characteristics (typical) VB3 Brightness control characteristics (minimum) ∆VB3 Brightness control relative characteristics (minimum) FC1 Frequency characteristics 1 (f=50MHz;maximum) ∆FC1 Frequency relative characteristics 1 (f=50MHz;maximum) FC1’ Frequency characteristics 1 (f=75MHz;maximum) ∆FC1’ Frequency relative characteristics 1 (f=75MHz;maximum) FC2 ∆FC2’ 3 Parameter Frequency characteristics 2 (f=50MHz; maximum) Frequency relative characteristics 2 (f=75MHz; maximum) C.T.1 Crosstalk 1 (f=50MHz) C.T.1’ Crosstalk 1 (f=75MHz) C.T.2 Crosstalk 2 (f=50MHz) C.T.2’ Crosstalk 2 (f=75MHz) C.T.3 Crosstalk 3 (f=50MHz) C.T.3’ Crosstalk 3 (f=75MHz) Tr Pulse characteristics 1 Tf Pulse characteristics 2 V14th Clamp pulse threshold voltage W14 Clamp pulse minimum width V27 Hold voltage Test point (s) SW10 R-ch T.P.20 T.P.24 T.P.28 a − Input External power supply (V) a − SW2 B-ch V3 V13 V15 SW14 Min. Typ. Max. a − a − 12 12 5 b SG6 3.0 3.7 4.4 V -100 0 100 mV 2.5 3.2 4.0 VDC -100 0 100 mV -2 0 3 dB -1 0 1 dB -3 0 3 dB -1 0 1 dB a − a − 12 12 4.5 b SG6 Relative to measured values above T.P.20 T.P.24 T.P.28 b SG3 b SG3 b SG3 12 7.5 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 b SG4 b SG4 b SG4 12 7.5 VT a − Relative to measured values above T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 T.P.20 T.P.24 T.P.28 Unit SW6 G-ch Relative to measured values above T.P.20 T.P.24 T.P.28 Limits Pulse input b SG3 b SG3 b SG3 12 5 VT a − -0.5 0 3 dB b SG4 b SG4 b SG4 12 5 VT a − -0.5 0 3 dB b SG3 a − a − 12 12 VT a − − -36 -24 dB b SG4 a − a − 12 12 VT a − − -28 -18 dB a − b SG3 a − 12 12 VT a − − -36 -24 dB a − b SG4 a − 12 12 VT a − − -28 -18 dB a − a − b SG3 12 12 VT a − − -36 -24 dB a − a − b SG4 12 12 VT a − − -28 -18 dB b SG5 b SG5 b SG5 12 7 3 b SG6 − 3 7 nsec b SG5 b SG5 b SG5 12 7 3 b SG6 − 6 9 nsec a − a − a − 12 12 3 b SG6 0.7 1.5 2.5 VDC a − a − a − 12 12 3 b SG6 − 0.3 1.5 µsec a − a − a − 12 12 3 b SG6 5.2 6.4 VDC 4 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION ELECTRICAL CHARACTERISTICS TEST METHOD 1. About switch numbers (SW Nos.) since those for the signal and Gv Maximum gain ∆Gv Relative maximum gain pulse input pins are listed in Attached Table 1, the following 1. Under conditions in attached Table. notes omit them. Only SW Nos. for the external power supply will 2. Input SG1 to pin 10 (pin 6, 2). Read amplitude of the output at be indicated in the Notes. 2. since sub contrast voltges V3, V7, and V11, they are also set to T.P20 (T.P24, 28), which is VOR1 (VOG1, VOB1). 3. The maximum gain G is: the same value, so that V3 in attached Table 1 represents all. GV=20LOG ICC Circuit current Conditions shall be as indicated in Attached Table 1. Measure 4. The maximum relative gain ∆G is calculated by the equation below: these conditions using ampere meter A with SW1 set to a. Vomax Output dynamic range 1. Follow the procedure below to set V15. Input SG1 to pin 10 (pin 6, 2) and raise V15 slowly. Read the voltage of V15 when the higher peak of output waveform of T.P20 (T.P24, 28) begins distortion. This voltage is V TR1 (VTG1, VTB1) Next, reduce V15 slowly. Read the voltage of V15 when the lower peak of output waveform of T.P20 (T.P24, 28) begins distortion. VOR1 (VOG1, VOB1) [VP-P] [VP-P] 0.7 ∆GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1 VCR1 Contrast control characteristics (typical) ∆VCR1 Contrast control relative characteristics (typical) 1. Conditions are identical with those in Attached Table except setting V13 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR2 (VOG2, VOB2) 3. The contrast control characteristics VCR1 and relative contrast This voltage is VTR2 (VTG2, VTB2). control characteristics ∆VCR1 are calculated by the equations (V) below: VCR1=20LOG VOR2 (VOG2, VOB2) [VP-P] [VP-P] 0.7 ∆VCR1=VOR2/VOG2, VOG2/VOB2, VOB2/VOR2 5.0 VCR2 Contrast control characteristics (minimum) ∆VCR2 Contrast control relative characteristics (minimum) 1. Conditions are identical with those in Attached Table except setting V13 to 3.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is 0.0 Waveform output at T.P20 (Identical to output at T.P24 and T.P28.) From the above result, VT (VTR, VTG, VTB) is determined as VOR3 (VOG3, VOB3) and also VCR2. 3. The relative contrast control characteristics ∆VCR2 is: ∆VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3 follows: VTR (VTG, VTB)= VTR1 (VTG1, VTB1) + VTR2 (VTG2, VTB2) 2 Change the procedure according to output pins. Use VTR1 when measuring T.P20. Similarly, VTG1 for T.P24, VTB1 for T.P28. 2. Set V15 to VTR (VTG, VTB), then slowly raise SG1 amplitude starting from 700mV. Measure the output amplitude when the VSCR1 Sub contrast control characteristics (typical) ∆VSCR1 Sub contrast control relative characteristics (typical) 1. Conditions are identical with those in Attached Table except setting V3, V7, and V11 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is VOR4 (VOG4, VOB4). 3. The sub contrast control characteristics V SCR1 and relative sub contrast control characteristics ∆VSCR1 are: higher and lower peaks of T.P20 (T.P24, T.P28) output waveform simultaneously begin distortion. VSCR1=20LOG VOR4 (VOG4, VOB4) [VP-P] [VP-P] 0.7 ∆VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4 Vimax Maximum input Under the conditions in Note 2, vary V13 to 6.7V as indicated in Attached Table 1, then slowly raise amplitude of the input signal starting from 700mVP-P. Read the amplitude of the input signal when the output signal begins distortion. 4 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION VSCR2 Sub contrast control characteristics (minimum) ∆VSCR2 Sub contrast control relative characteristics (minimum) VB3 Brightness control characteristics (minimum) ∆VB3 Brightness control relative characteristics (minimum) 1. Conditions are identical with those in Attached Table expect 1. Under conditions in Attached Table. setting V3, V7, and V11 to 3.0V. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is which is VOR7'' (VOG7'', VOB7''). This value is VB3. 3. In addition, the relative brightness control characteristic ∆VB3 is VOR5 (VOG5, VOB5) and also VSCR2. 3. The relative sub contrast control characteristics ∆VSCR2 is: ∆VSCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5 determined from VOR7'', VOG7'', and VOB7'' by calculating differences between each channel. ∆VB3 =VOR7''-VOG7'' VCR2 Contrast/sub contrast control characteristics (typical) ∆VCR2 Contrast/sub contrast control relative =VOG7''-VOB7'' [mV] =VOB7''-VOR7'' characteristics (typical) 1. Conditions are identical with those in Attached Table expect setting V13, to 6.0V and V3, V7, and V11 to 6.0V. 2. Then read amplitude of the output at T.P20 (T.P24, 28), which is ∆FC1 Frequency relative characteristics1 (f=50MHz; maximum) FC1' Frequency characteristics1 (f=75MHz; maximum) VOR6 (VOG6, VOB6). 3. The gain and relative gain when the contrast and sub contrast are typical, are: VCR3=20LOG FC1 Frequency characteristics1 (f=50MHz; maximum) VOR6 (VOG6, VOB6) [VP-P] [VP-P] 0.7 ∆VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6 ∆FC1' Frequency relative characteristics1 (f=75MHz; maximum) 1. Under conditions in Attached Table. 2. Use SG3 and SG4. Measure amplitude of the output waveform at T.P20 (T.P24, T.P28) following the procedure in G V, ∆GV. 3. The frequency characteristics FC1, FC1' are calculated by the equations below: VB1 Brightness control characteristics (maximum) ∆VB1 Brightness control relative characteristics (maximum) FC1=20LOG VOR8 (VOG8, VOB8) VOR1 (VOG1, VOB1) [VP-P] [VP-P] FC1'=20LOG VOR9 (VOG9, VOB9) VOR1 (VOG1, VOB1) [VP-P] [VP-P] 1. Under conditions in Attached Table. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7 (VOG7, VOB7). This value is VB1. 3. In addition, the relative brightness control characteristic is determined from VOR7, VOG7, and VOB7 by calculating differences between each channel. above. (VOR1 (VOG1, VOB1) is the value measured in GV, ∆GV.) ∆VB1 =VOR7-VOG7 =VOG7-VOB7 Whre, VOR8 (VOG8, VOB8) is the output amplitude when inputting SG3, and VOR9 (VOG9, VOB9), SG4, which are measured in 2 [mV] =VOB7-VOR7 4. The relative frequency characteristics ∆FC1, ∆FC1' are determined by calculating differences between each channel's FC1 and FC1'. VB2 Brightness control characteristics (typical) ∆VB2 Brightness control relative characteristics (typical) 1. Under conditions in Attached Table. 2. Then use a voltmeter to measure the output at T.P20 (T.P24, 28), which is VOR7' (VOG7', VOB7'). This value is VB2. FC2 Frequency characteristics2 (f=50MHz; maximum) ∆FC2' Frequency relative characteristics2 (f=75MHz; maximum) The procedure is identical with that in FC1, ∆FC1, FC1', ∆FC1' except that the contrast (V13) is reduced to 5.0V. 3. In addition, the relative brightness control characteristic is determined from VOR7', VOG7', and VOB7' by calculating differences between each channel. ∆VB2 =VOR7'-VOG7' =VOG7'-VOB7' =VOB7'-VOR7' C.T.1 Crosstalk1 (f=50MHz) C.T.1' Crosstalk1 (f=75MHz) 1. Under conditions in attached Table. [mV] 2. Input SG2 (or SG4) to pin 10 (R-ch) only. Then measure amplitude of the output waveform at T.P20 (T.P24, T.P28), which are VOR, VOG, and VOB, respectively. 3. Crosstalk C.T. is: C.T. =20LOG (C.T. ') 5 VOG or VOB VOR [VP-P] [dB] [VP-P] MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION C.T.2 Crosstalk2 (f=50MHz) C.T.2' Crosstalk2 (f=75MHz) V14th Clamp pulse threshold voltage 1. Afterthe input pin from 10 (R-ch) to 6 (G-ch) and read the output 2. Then slowly reduce the level of SG6 monitoring the output 1. Under conditions in attached Table. following the procedure in C.T.1, C.T.1'. (approx.2.0VDC) and measure the level of SG6 when the output 2. Crosstalk C.T. is: becomes 0V. C.T. =20LOG (C.T. ') VOR or VOB VOG [VP-P] [dB] [VP-P] W14 Clamp pulse minimum width Under the conditions in V14th, slowly reduce the pulse width of SG6 monitoring the output. C.T.3 Crosstalk3 (f=50MHz) C.T.3' Crosstalk3 (f=75MHz) Then measure the pulse width of SG6 when the output becomes 1. After the input pin from 10 (R-ch) to 2 (B-ch) and read the output following the procedure in C.T.1, C.T.1'. 0V. V27 Hold voltage 2. Crosstalk C.T. is: 1. Under conditions in attached Table. VOR or VOB C.T. =20LOG VOG (C.T. ') [VP-P] [dB] [VP-P] 2. Read T.P19, 23 and 27 with a voltmeter. Tr Pulse characteristics1 Tf Pulse characteristics2 1. Under conditions in attached Table. 2. Measure 10% to 90% rise Tr1 and fall Tf1 of the input pulse using an active probe. 3. Next, measure 10% to 90% rise Tr2 and fall Tf2 of the output pulse using an active probe. 4. Pulse characteristics Tr and Tf are calculated by the equations below : Tr (nsec)= (Tr2)2-(Tr1)2 Tf (nsec)= (Tf2)2-(Tf1)2 100% 90% 10% 0% Tr Tf 6 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION INPUT SIGNAL SG No. Signals Sine wave of amplitude 0.7VP-P (75kHz, amplitude partlym variable∗) SG1 SG2 SG3 SG4 0.7VP-P Sine wave with amplitude of 0.7VP-P (f=10MHz) Sine wave with amplitude of 0.7VP-P (f=50MHz) Sine wave with amplitude of 0.7VP-P (f=75MHz) Pulse with amplitude of 0.7VP-P (f=1MHz, duty=50%) SG5 0.7VP-P Pulses of amplitude 2.0VP-P and width 3.0 synchronizing to the pedestal of the standard video staircase 2.0VP-P SG6 0V 3.0µs 3.0µs SG7 Standard video staircase ∗ See Notes 7 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION TEST CIRCUIT TP28 TP27 TP24 TP23 2.2µ TP19 2.2µ 1k 28 TP20 2.2µ 1k 26 25 NC GND 27 23 24 100µ 1k 22 21 NC GND 20 100 19 18 17 16 NC GND VCC V15 15 M52732SP VCC 1 3 2 100µ GND VCC 4 5 6 100µ 0.01µ 7 VCC 8 9 GND 10 100µ 0.01µ V3 GND 11 12 13 14 0.01µ V7 V11 V13 SW14 a SW2 a SW6 SG1 SG2 SG3 SG4 SG5 A 0.01µ a SW1 b b a SW10 b a SG6 b 50 47µ b Units Resistance : Ω Capacitance : F 12V TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATING) POWER DISSIPATION Pd (mW) 1800 1600 1400 1200 1000 800 600 400 200 -20 0 25 50 75 85 100 125 150 AMBIENT TEMPERATURE Ta (°C) 8 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION APPLICATION EXAMPLE CRT 110V DC CLAMP 1k 28 1k 27 NC 26 25 24 1k 23 NC 22 21 0 to 12V 20 19 NC 18 17 16 15 9 10 11 12 13 14 M52732SP 1 2 3 4 5 6 7 8 0 to 12V 0 to 12V 0 to 12V 0 to 12V 12V INPUT (B) INPUT (G) INPUT (R) CLAMP Units Resistance : Ω Capacitance : F 9 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION OF PIN Pin No. 1 5 9 Name VCC (B-ch) VCC (G-ch) VCC (R-ch) DC voltage (V ) Peripheral circuit of pins Description of function − The voltage to be applied to 3 channels shall be equal. 12 VCC 24.7k 1k 2 6 10 B-IN G-IN R-IN 2.9 3.6k GND Vcc 3 7 11 B SUB CONTRAST G SUB CONTRAST R SUB CONTRAST 4k 4.0 72k GND 0.12mA 4, 25 8, 21 12, 17 GND (B-ch) GND (G-ch) GND (R-ch) − GND Vcc 4k 13 CONTRAST 6.9 72k GND 0.4mA VCC 50k 14 CLAMP PULSE 14 GND 10 MITSUBISHI ICs (Monitor) M52732SP 3-CHANNEL VIDEO AMPLIFICATION DESCRIPTION OF PIN (cont.) Pin No. Name DC voltage (V ) Peripheral circuit of pins Description of function VCC 30k 15 BRIGHT 15 GND 16 18 22 26 VCC − 12 NC Vcc 19 23 27 R HOLD G HOLD B HOLD Variable 1k GND VCC 20 24 28 B OUT G OUT R OUT A resistor is needed at the GND side. Choose any resistance value under 15mA according to the driving capability required. Variable 50 11