MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS DESCRIPTION M52337SP is a video preamplifier provided with OSD mixing function, and a semi-conductor IC having three channels of a builtin amplifier in the 110MHz band. PIN CONFIGURATION (TOP VIEW) VCC1 (B) 2 Each channel has the functions of OSD blanking, OSD mixing, INPUT (B) 3 wideband amplifier, main and sub-contrast control, and main and SUB CONTRSAST (B) 4 sub brightness. Accordingly, it is structured to best fit the OSDprovided high-resolution display. • Frequency band: RGB ...................................110MHz (at 3V P-P) OSD......................................................50MHz : RGB...........................................................0.7V P-P (Typ.) OSD.............................3.0 to 5.0 VP-P (positive polarity) BLK..........................4.0 VP-P or more (positive polarity) Output : RGB........................................................4.0 V P-P (max.) OSD..............................3.5 VP-P (max., black level=2V) Input • • • Each control of contrast and brightness includes a main which allows three channels to be variable simultaneously, and a sub which allows each channel to be variable independently. Each control pin can be controlled within a range of 0 to 5V. A built-in feedback circuit inside IC provides a stable DC level at IC output pins. Pin arrangement of M52337SP is the same as that of M52321SP. APPLICATION CRT display RECOMMENDED OPERATING CONDITION Supply voltage range...........................................Vcc=11.5 to 12.5V Rated supply voltage........................................................Vcc=12.0V 1 35 OUTPUT (B) 34 VCC2 (B) 33 HOLD (B) OSD IN (B) 5 32 SUB BRIGHTNESS (B) GND 1 (B) 6 31 GND2 (B) VCC1 (G) 7 INPUT (G) 8 SUB CONTRST (G) 9 OSD IN (G) 10 GND 1 (G) 11 VCC1 (R) 12 INPUT (R) 13 SUB CONTRAST (R) 14 OSD IN (R) 15 GND 1 (R) 16 MAIN CONTRAST 17 CP IN 18 30 OUTPUT (G) M52337SP FEATURES 36 OSD ADJUST BLK IN 1 29 VCC2 (G) 28 HOLD (G) 27 SUB BRIGHTNESS (G) 26 GND2 (G) 25 OUTPUT (R) 24 VSS2 (R) 23 HOLD (R) 22 SUB BRIGHTNESS (R) 21 GND2 (B) 20 NC 19 MAIN BRIGHTNESS Outline 36P4E NC:NO CONNECTION BLK IN 1 36 OSD ADJUST (B) VCC1 2 4 32 (B) OSD IN 5 B CONTRAST B BLANKING B HOLD (B) GND1 6 31 (G) GND2 B BRIGHTNESS (B) SUB NONTRAST (B) INPUT 3 B CLAMP B AMP B OSD MIX 33 35 34 (B) HOLD (B) SUB BRIGHTNESS (B) OUTPUT (B) VCC2 (G) VCC1 7 29 (G) VCC2 27 9 (G) OSD IN 10 G CONTRAST G BLANKING G HOLD 11 26 (G) GND1 G BRIGHTNESS 28 (G) GND2 (G) SUB BRIGHTNESS (G) HOLD (G) SUB CONTRAST (G) INPUT 8 G CLAMP G AMP G OSD MIX 30 (G) OUTPUT (R) VCC1 12 24 (R) INPUT 13 R CLAMP R AMP R OSD MIX 25 (R) OUTPUT (R) VCC2 22 15 (R) OSD IN (R) SUB CONTRAST 14 (R) GND1 16 21 (R) GND2 R CONTRAST R BLANKING R HOLD R BRIGHTNESS 23 (R) HOLD (R) SUB BRIGHTNESS CP IN 18 19 MAIN BRIGHTNESS MAIN CONTRAST 17 20 NC MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS BLOCK DIAGRAM 2 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS ABSOLUTE MAXIMUM RATINGS (Ta=25˚C) Symbol Vcc Pd Surge Vopr Vopr’ Topr Tstg Parameter Supply voltage Power dissipation Surge pressure Recommended supply voltage Recommended supply voltage range Operating temperature Storage temperature Ratings 13.0 2016 ±200 12.0 11.5 to12.5 -20 to +85 -40 to +150 Unit V mW V V V ˚C ˚C ELECTRICAL CHARACTERISTICS (Ta=25˚C, Vcc=12V, unless otherwise noted) Symbol Icc Circuit current Vomax Output dynamic range Vimax Max. allowable input Gv Max. gain ∆Gv Relative max. gain VCR1 Main contrast control characteristics (at typ.) ∆VCR1 Relative main contrast control characteristics (at typ.) VCR2 Main contrast control characteristics (at min.) ∆VCR2 Relative main contrast control characteristics (at min.) VSCR1 Sub-contrast control characteristics (at typ.) ∆VSCR1 Relative sub-contrast control characteristics (at typ.) VSCR2 Sub-contrast control characteristics (at min.) ∆VSCR2 VB1 Relative sub-contrast control characteristics (at min.) Main and sub brightness control characteristics (both main and sub at typ.) Relative main and sub brightness control characteristics (both main and sub at typ.) Main brightness control characteristics (at max.) ∆VB1 Relative main brightness control characteristics (at max.) VSCR3 ∆VSCR3 3 Parameter VB2 Main brightness control characteristics (at typ.) ∆VB2 Relative main brightness control characteristics (at typ.) VB3 Main brightness control characteristics (at min.) ∆VB3 Relative main brightness control characteristics (at min.) Test point A T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 Input External power supply(V) SW13 SW8 SW13 R-ch G-ch B-ch Pulse input V19 V32 5 5 5 5 2 b SG6 a _ 65 95 125 mA b b b SG1 SG1 SG1 5 5 Variable 5 - a _ a _ 5.8 6.8 9.0 VP-P b b b SG1 SG1 SG1 5 2.5 Variable 5 - a _ a _ 1.7 2.4 2.9 VP-P b b b SG1 SG1 SG1 5 5 - a _ a _ 13 17 20 dB 0.8 1 1.2 - 5 8 11 dB 0.8 1 1.2 - 0.5 0.8 1.1 VP-P 0.8 1 1.2 - 5 8 11 dB 0.8 1 1.2 - 0.5 0.8 1.1 VP-P 0.8 1 1.2 - 0.8 1.5 2.2 VP-P 0.8 1 1.2 - 3.0 3.6 4.2 V -0.3 0 0.3 V 1.6 2.2 2.8 V -0.3 0 0.3 V 0.8 1.2 1.6 VDC -0.3 0 0.3 V a _ a _ 5 VT Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG1 SG1 SG1 5 2 VT 5 - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG1 SG1 SG1 5 1 VT 5 - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG1 SG1 SG1 2 5 VT 5 - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG1 SG1 SG1 1 5 VT 5 - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG1 SG1 SG1 3 3 VT 5 - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 a _ a _ a _ 5 5 4 5 - b SG6 a _ Take the ratio of the above values T.P35 T.P30 T.P25 a _ a _ a _ 5 5 2.5 5 - b SG6 a _ Take the ratio of the above values T.P35 T.P30 T.P25 Limits V17 a _ V36 SW18 Unit SW1 Min. Typ. Max. 5,10,15 V4 a _ a _ a _ 5 5 1 5 - Take the ratio of the above values b SG6 a _ MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS ELECTRICAL CHARACTERISTICS (cont.) Symbol Parameter VSB1 Sub-brightness control characteristics (at max.) VSB1 Sub-brightness control characteristics (at min.) FC1 Frequency characteristics 1 (f=50MHz at max.) FC1 Relative frequency characteristics 1 (f=50MHz at max.) FC1’ Frequency characteristics 1 (f=110MHz at max.) FC1’ Relative frequency characteristics (f=110MHz at max.) FC2 Frequency characteristics 2 (f=110MHz at typ.) VC2’ Relative frequency characteristics 2 (f=110MHz at typ.) FC3 Frequency characteristics 3 (f=110MHz at min.) FC3’ Relative frequency characteristics 3 (f=110MHz at min.) C.T.1 Crosstalk1(f=50MHz ) C.T.1’ Crosstalk1(f=110MHz ) C.T.2 Crosstalk2(f=50MHz ) C.T.2’ Crosstalk2(f=110MHz ) C.T.3 Crosstalk3(f=50MHz ) C.T.3’ Crosstalk2(f=110MHz ) Tr Pulse characteristics 1 Tf Pulse characteristics 2 V14th Clamping pulse threshold voltage W14 Clamping pulse min. operating width OTr OSD pulse characteristics 1 OTf OSD pulse characteristics 2 Oaj1 OSD adjustment control characteristics (at max.) ∆Oaj1 Relative OSD adjustment control characteristics (at max.) Oaj2 OSD adjustment Control characteristics (at min.) ∆Oaj2 Relative OSD adjustment Control characteristics (at min.) Test point T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 Input External power supply(V) SW13 SW8 SW13 R-ch G-ch B-ch V4 V17 V19 V32 Pulse input V36 SW18 a _ a _ a _ 5 5 2 5 - b SG6 a _ 1.3 1.8 2.4 VDC a _ a _ a _ 5 5 2 0 - b SG6 a _ 0.8 1.2 1.6 VDC 5 3 VT - - a _ a _ -2.5 -1 3 dB -1 0 1 dB -3 -2 3 dB -2 0 2 dB b b b SG3 SG3 SG3 Take the ratio of the above values T.P35 T.P30 T.P25 b b b SG4 SG4 SG4 5 3 VT - - a _ a _ Take the ratio of the above values T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 b b b SG3 SG3 SG3 5 2 VT - - a _ a _ -3 -2 3 dB b b b SG4 SG4 SG4 5 2 VT - - a _ a _ -2 0 2 dB b b b SG3 SG3 SG3 5 1 VT - - a _ a _ -3 -2 3 dB b b b SG4 SG4 SG4 5 1 VT - - a _ a _ -2 0 2 dB b SG3 a _ a _ 5 5 VT 5 - a _ a _ - -30 -20 dB b SG4 a _ a _ 5 5 VT 5 - a _ a _ - -20 -15 dB a _ b SG3 a _ 5 5 VT 5 - a _ a _ - -30 -20 dB a _ b SG4 a _ 5 5 VT 5 - a _ a _ - -20 -15 dB a _ a _ b SG3 5 5 VT 5 - a _ a _ - -30 -20 dB a _ a _ b SG4 5 5 VT 5 - a _ a _ - -20 -15 dB b b b SG5 SG5 SG5 5 3.3 2 5 - b SG6 a _ - 4 7 nsec b b b SG5 SG5 SG5 5 3.3 2 5 - b SG6 a _ - 7 9 nsec VDC a _ a _ a _ 5 5 2 5 - b SG6 a _ 0.7 1.5 2.5 a _ a _ a _ 5 5 2 5 - b SG6 a _ - 0.3 1.0 µsec a _ a _ a _ 5 5 2 5 4.5 b SG6 b SG8 - 5 10 nsec a _ a _ a _ 5 5 2 5 4.5 b SG6 b SG8 - 5 10 nsec a _ a _ a _ 5 5 2 5 4.5 b SG6 b SG8 2.5 3.1 3.6 VP-P 0.8 1 1.2 - b -0.5 SG8 0 0.5 VP-P 0.8 1 1.2 - Take the ratio of the above values T.P35 T.P30 T.P25 Limits Unit SW1 Min. Typ. Max. 5,10,15 a _ a _ a _ 5 5 2 5 0 Take the ratio of the above values b SG6 4 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS ELECTRICAL CHARACTERISTICS (cont.) Symbol OSDth V1th Test point Parameter OSD input threshold voltage BLK input threshold voltage Input External power supply(V) SW13 SW8 SW13 R-ch G-ch B-ch T.P35 T.P30 T.P25 T.P35 T.P30 T.P25 a _ a _ a _ b b b SG7 SG7 SG7 ELECTRICAL CHARACTERISTICS TEST METHOD V4 V17 V19 V32 5 5 2 5 5 5 2 5 Pulse input 1.7 - Limits Unit SW1 Min. Typ. Max. 5,10,15 V36 SW18 b SG6 b SG8 b SG6 SW1 only b SG8 1.7 2.5 3.5 VDC 1.7 2.5 3.5 VDC 3. After setting VTR (VTG or VTB), gradually increase SG1 amplitude SW/NO of signal input pin and SW/NO of pulse input pin, which from 700mV, and take measurements of output amplitude at a have already been described in the electrical characteristics table, point where the upper and lower parts of T.P25 (T.P30 or T.P35) are omitted, and SW/NO of external power supply will only be described as follows: output waveform start to be distorted simultaneously. Sub-brightness voltages, V32, V27 and V22, which are always set Vimax max. allowable input From the status of Vomax, change V17 into 2.5V as specified in the to the identical value, are represented by V32 in the electrical electrical characteristics table, gradually increase input signal characteristic table. In addition, sub-contract voltages, V4, V9 and amplitude from 700m VP-P, and read input signal amplitude at a V14, which are also set to the identical value, are represented by V4 point where output signal starts to be distorted. in the table. GV and ∆GV max gain and relative max. gain Icc circuit current Conditions shall be as specified in the electrical characteristic table, 1. Input SG1 to pin and take measurements with ammeter A when SW1 is turned to the b side. 13 (pin 8 or pin 3 ), read the output amplitude of T.P25 (T.P30 or T.P35) to let the reading be VOR1 (VOG1 or VOB1). 2. Max. gain GV is found by: Vomax output dynamic range Follow the following procedure to set V19. 1. Input SG1 to pin 13 (pin 8 or pin 3 GV=20log VOR1(VOG1, VOB1) [VP-P] [VP-P] 0.7 ), gradually raise V19, and read V19 voltage when the upper part of the output waveform of T.P25 (T.P30 or T.P35) is distorted to let the reading be VTR1 3. Relative max. gain ∆G is found by ∆GV=VOR1/VOG1, VOG1/VOB1, VOB1/VOR1 through respective calculation. (VTG1 or VTB1). In addition, gradually reduce V19 conversely, and read V19 VCR1 main contrast control characteristics (at typ.) and voltage when the lower part of the output waveform of T.P35 ∆ VCR1 relative main contrast control characteristics (at typ.) 1. Follow the electrical characteristic table except changing V17 to (T.P30 or T.P25) is distorted to let the reading be V TR2 (VTG2 or 2.0V. VTB2). 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time to let the reading be VOR2 (VOG2 or VOB2). (V) 3. Contrast control characteristics VCR1 and relative contrast control characteristics ∆VCR1 are found by VCR1=20log VOR2(VOG2, VOB2) 0.7 5.0 [VP-P] [VP-P] ∆VOR1=VCR2/VOG2, VOG2/VOB2, VOB2/VOR2 through respective calculation. 0.0 Output waveform of T.P25 (T.P30 and T.P35 are also the same) VCR2 main contrast control characteristics (at min.) and ∆VCR2 relative main contrast control characteristics (at min.) 1. Follow the electrical characteristic table except changing V17 to 1.0V. 2. Read the output amplitude of T.P25 (T.SP30 or T.P35) to let the 2. From the above, VT (VTR, VTG or VTB) is found by VTR (VTG, VTB)= reading be VOR3 (VOG3 or VOG3) to let it be VCR2, respective 3. Relative contrast control characteristic ∆VCR2 is found by: VTR1(VTG1, VTB1)+VTR2 (VTG1, VTB1) ∆VCR2=VOR3/VOG3, VOG3/VOB3, VOB3/VOR3 2 which should be used properly depending upon output pins. In measuring, useT.P25 5 VTR1,T.P30 VTG1 and T.P35 VTB1. MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS VSCR1 sub-contrast control characteristics (at typ.) and ∆ VSCR1 relative sub-contrast control characteristics (at typ.) 1. Follow the electrical characteristics table except changing V4, V9 and V14 to 2.0V. 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time This value represents VB2. 3. For relative brightness control characteristics ∆VB2, further, calculate difference between channels from VOR7', VOG7' or VOG7'. ∆VB2=VOR7’ VOG7’ =VOG7’ VOB7’ =VOB7’ VOR7’ to let the reading be VOR4 (VOG4 or VOB4). 3. Sub-contrast control characteristic V SCR1 and relative subcontrast control characteristics ∆VSCR1 is found by: VSCR1=20log VOR4(VOG4, VOB4) 0.7 [VP-P] [VP-P] ∆VSCR1=VOR4/VOG4, VOG4/VOB4, VOB4/VOR4 [mV] VB3 main brightness control characteristics (at min.) and ∆VB3 relative main brightness control characteristics (at min.) 1. The conditions shall be as specified in the electrical characteristics table. 2. Use an ammeter to measure the output of T.P25 (T.P30 or T.P35) at this time to let the value be VOR7" (VOG7" and VOB7"). VSCR2 sub-contrast control characteristics (at min.) and ∆VSCR2 relative sub-contrast control characteristics (at min.) 1. Follow the electrical characteristics table except changing V4, V9 and V14 to 1.0V. This value represents VB3. 3. For relative brightness control characteristics ∆VB3, further, calculate difference between channels from VOR7", VOG7" and VOB7". 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time, and let it be VOR5 (VOG5 or VOB5). 3. Relative sub-contrast control characteristics VCR2 is found by: ∆VCR2=VOR5/VOG5, VOG5/VOB5, VOB5/VOR5 ∆VB3=VOR7’’ VOG7’’ =VOG7’’ VOB7’’ =VOB7’’ [mV] VOR7’’ VSCR3 main and sub-brightness control characteristics (both VSB1 sub-brightness control characteristics (at max.) and (at main and sub at typ.) and ∆VSCR3 relative main and sub-brightness control characteristics (both main and sub at typ.) 1. Follow the electrical characteristics table except changing V7 to min.) Same as VB1 and ∆VB1 except changing sub-brightness (V32, V27 3.0V and V4, V9 and V14 to 3.0V. 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time to let the reading be VOR6 (VOG6 or VOB6). VCR3=20log VOR6(VOG6, VOB6) 0.7 [VP-P] [VP-P] ∆VCR3=VOR6/VOG6, VOG6/VOB6, VOB6/VOR6 and V22) to 5.0V or 0V. However, exclude 3. of V B1 and ∆VB1. FC1 frequency characteristics 1 (f=50MHz at max.), Relative frequency characteristics 1 (F=50MHz at max.), FC1' frequency characteristics 1 (f=110MHz at max.), and Relative frequency characteristics (f=110MHz at max.) 1. The conditions shall be as specified in the electrical characteristics table. 2. Whilst SG3 and SG4 are used, measure the output waveform amplitude of T.P25 (T.P30 or T.P35) as given in G V and ∆GV. 3. Now, when letting this value be: VB1 main brightness control characteristics (at max.) and ∆ VB1 relative main brightness control characteristics (at max.) 1. The conditions shall be as specified in the electrical characteristics table. 2. Use an ammeter to measure the output of T.P25 (T.P30 or T.P35) at this time to let the value be VOR7 (VOG7 or VOB7). This value represents VB1. output amplitude VOR1 (VOG1 or VOB1) when SG1 is input, output amplitude VOR8 (VOG8 or VOB8) when SG3 is input, or output amplitude VOR9 (VOG9 or VOB9) when SG4 is input, frequency characteristics FC1 or FC1' is calculated from: FC1=20log 3. For relative brightness control characteristics, further, calculate difference between channels from VOR7, VOG7 or VOB7. ∆VB1=VOR7 VOG7 VOG7 VOB7 VOG7 VOB7 FC1’=20log VOR8(VOG8, VOB8) [VP-P] VOR1(VOG1, VOB1) [VP-P] VOR9(VOG9, VOB9) [VP-P] VOR1(VOG1, VOB1) [VP-P] [mV] VB2 main brightness control characteristics (at typ.) and ∆VB2 relative main brightness control characteristics (at typ.) 1. The conditions shall be as specified in the electrical characteristic table. 2. Use an ammeter to measure the output of T.P25 (T.P30 or T.P35) 4. For relative frequency bands, ∆FC1 and ∆FC1', calculate difference between FC1 and FC1' for each channel. FC2 frequency characteristics 2 (f=110MHz at typ.) and FC2' relative frequency characteristics 2 (f=110MHz at typ.) Same as FC1 or FC1' except reducing CONTRAST (V17) to 2.0V. FC3 frequency characteristics 3 (f=110MHz at min.) and FC3' relative frequencycharacteristics3 (f=110MHz at min.) Same as FC1 and FC1' except reducing CONTRAST (V17) to 1.0V. at this time to let the value be VOR7' (VOG7' or VOB7'). 6 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS C.T.1, and C.T.1' crosstalk 1 (f=50MHz) and (F=110 MHz) 1. The conditions shall be as specified in the electrical characteristics table. 2. Gradually reduce SG6 level at this time, while monitoring output (in a range of 2.0VDC), and measure SG6 level when output becomes 0V. 2. Input SG3 (or SG4) to pin 13 (R-ch) only, measure the output waveform amplitude of T.P25 (T.P30 or T.P35) at this time to let W14 clamping pulse operating min. width Gradually reduce SG6 pulse width while monitoring output this time the value be VOR, VOG or VOB. under the conditions of V14th. In this case as well, measure SG6 pulse width when output becomes 0V. 3. Crosstalk C.T.1 is found by: C.T.1=20log VOG or VOB [VP-P] VOR (C.T.1’) [dB] [VP-P] OTr OSD pulse characteristics 1 and OTf OSD pulse characterisitics 2 1. The conditions shall be as specified in the electrical characteristics table. C.T.2 and C.T.2' crosstalk 2 (f=50MHz) and (f=110MHz) 1. Change input pin from pin 13 (R-ch) to pin 8 (G-ch), and read output in the same manner as in the case of C.T.1 and C.T.1'. 2. Crosstalk C.T.2 is found by: C.T.2=20log VOR or VOB [VP-P] VOG (C.T.2’) [dB] [VP-P] 2. Use an active probe to measure rise OTr and fall OTf at 10 to 90% of output pulse. Oaj1 OSD adjustment control characteristics (at max.) and ∆Oaj1 relative OSD adjustment control characteristics (at max.) 1. The conditions shall be as specified in the electric characteristics table. 2. Read the output width of T.P25 (T.P30 or T.P35) at this time, and let the reading be VORA (VOGA or VOBA) to let it be Oaj1, C.T.3 and C.T.3' crosstalk 3 (f=50MHz) and (f=110MHz) 1. Change input pin from pin 13 (R-ch) to pin 3 (G-ch), and read output in the same manner as in the case of C.T.1 and C.T.1'. 2. Crosstalk C.T.3 is found by: C.T.3=20log by: ∆Oaj1=VORA/VOGA, VOGA/VOBA, VOBA/VORA VOR or VOG [VP-P] VOB (C.T.3’) respectively. 3. Relative OSD adjustment control characteristics ∆Oaj1 is found [dB] [VP-P] Oaj2 OSD adjustment control characteristics (at min.) and ∆Oaj2 relative OSD adjustment control characteristics (at min.) 1. Follow the electrical characteristics table except changing V36 to 0V. Tr and Tf pulse characteristics 1 and pulse characteristics 2 1. The conditions shall be as specified in the electrical characteristics table. 2. Read the output amplitude of T.P25 (T.P30 or T.P35) at this time, and let the reading be VORB (VOGB or VOBB) to let it be Oaj2, respectively. 2. Use an active probe to measure rise Tr1 and fall Tf1 at 10 to 90% of input pulse. 3. Relative OSD adjustment control characteristics ∆Oaj2 is found by: 3. Then, measure rise Tr2 and fall Tf2 at 10 to 90% of output pulse with an active probe. ∆Oaj2=VORA/VOGA, VOGA/VOBA, VOBA/VORA OSDth OSD input threshold voltage 1. The conditions shall be as specified in the electrical 4. Pulse characteristics Tr and Tf is found by: characteristics table. Tr (nsec) = (Tr2)2- (Tr1)2 2. Gradually reduce SG8 level at this time, while monitoring output, Tf (nsec) = (Tf2)2- (Tf1)2 and measure SG8 level when output is stopped to let the value be OSDth. V1th BLK input threshold voltage 1. The conditions shall be as specified in the electrical 100% 90% characteristics table. 2. Verify at this time that no signal is output with a timing in which output is synchronized with SG8. 3. Gradually reduce SG8 level at this time, while monitoring output, 10% 0% Tr Tf and measure SG8 level when blanking period expires to let the value be V1th. V14th clamping pulse threshold voltage 1. The conditions shall be as specified in the electrical characteristics table. 7 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS INPUT SIGNAL SG No. Signals Sine wave at an amplitude of 0.7VP-P (100 kHz, amplitude partially variable) SG1 0.7VP-P SG2 SG3 SG4 Sine wave at an amplitude of 0.7VP-P (f=10MHz) Sine wave at an amplitude of 0.7VP-P (f=50MHz) Sine wave at an amplitude of 0.7VP-P (f=110MHz) Pulse at an amplitude of 0.7VP-P(f=30kHz, duty=50%) SG5 0.7VP-P Pulse at an amplitude of 2.0VP-P and a pulse width of 3.0µs (pulse width and amplitude partially variable) synchronized with the pedestal section of standard video stage wave SG6 2.0VP-P OV 3.0µs 3.0µs SG7 standard video stage wave Video signal at an amplitude of 0.7VP-P (f=30kHz, amplitude partially variable) Pulse at an amplitude of 4.0VP-P and a pulse width of 15µs synchronized with the image section of standard video stage wave 4V SG8 BLK, OSD signal 0V 8 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS TYPICAL CHARACTERISTICS MAIN CONTRAST CONTROL VS. OUTPUT LEVEL 5 VCC=12V OUTPUT LEVEl (VP-P) 4.5 Input Signal : fH=40kHz All white 0.7VP-P 4 Sub Cont =5V 3.5 Main Bright=1V 3 Sub Bright =5V 2.5 Output 2 1.5 680Ω 1 0.5 0 0 1 2 3 4 5 6 MAIN CONTRAST VOLTAGE (V) SUB CONTRAST CONTROL VS. OUTPUT LEVEL 5 VCC=12V OUTPUT LEVEL (VP-P) 4.5 Input Signal : fH=40kHz All white 0.7VP-P 4 Main Cont =5V 3.5 Main Bright=1V 3 Sub Bright =5V 2.5 Output 2 1.5 680Ω 1 0.5 0 0 1 2 3 4 5 6 SUB CONTRAST VOLTAGE (V) OSD ADJUST VOLTAGE VS. OSD OUTPUT LEVEL OSD OUTPUT LEVEL (VP-P) 4 VCC=12V 3.5 Input Singnal : fH=40kHz 5VP-P TTL Black level 2VDC 3 5V 2.5 BLK IN 2 OSD IN 0 1.5 MEASURE 1 2V 0.5 Output 0 -0.5 0 1 2 3 4 5 OSD ADJUST VOLTAGE (V) 9 6 680Ω MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS MAIN BRIGHTNESS VS.OUTPUT DC LEVEL OUTPUT DC LEVEl (VP-P) 7 Sub Bright=5V Sub Bright=Open 6 Sub Bright=0V VCC=12V Output 5 680Ω 4 3 2 1 Note: It is recommended to arrange that output black level is identical on channels on channels since level in the OSD Mix area does not follow variable brightness. 0 0 1 2 3 4 6 5 7 8 MAIN BRIGHTNESS VOLTAGE (V) INPUT PULSE RESPONSE VIDEO IN : 0.7VP-P, fH=64kHz All White BLK, OSD IN : 5V TTL Video generator Astrodesign VG-819 Oscillo sccpe Iwatsu SS6521(to 500MHz) Probe Tektronix P6202A Video IN BLK, OSD IN 5V 0.7VP-P ∗112mV 1ns ∗740mV 0V 2ns 10 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS OUTPUT PULSE RESPONSE RISE AND FALL OF OUTPUT WAVEFORM (3V P-P) 5V Output 680Ω Output level =3VP-P Black level =2VDC ∗500mV 2V 2ns RISE AND FALL OF BLANKING 5V 5V 2V BLK ∗500mV 2V 2ns RISE AND FALL OF OSD 5V 5V 2V OSD Video IN : No input ∗500mV 11 2V 2ns MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS TYPICAL CHARACTERISTICS THERMAL DERATING (MAXIMUM RATINGS) POWER DISSIPATION PD (mW) 2400 2016 2000 1600 1200 When mounted with standard substrates 800 400 -20 0 25 50 75 85 100 125 150 OPERATING TEMPERATURE Ta (˚C) 12 13 a Units Resistance : Ω Cspacitance : F 12V SW1 b 0.01µ A SG8 a 1 36 SW1 V36 100µ b 2 VCC 35 SG1 SG2 SG3 SG4 SG5 SG7 a 34 3 b 4 4V 33 2.2µ 0.01µ VCC SW3 680 a 5 32 31 SG8 6 GND GND SW5 b V32 7 VCC 30 a 8 b 28 27 V27 9 V9 a 10 b 26 11 GND GND SW10 M52337SP 2.2µ 0.01µ VCC 29 SW8 680 12 VCC 25 a 2.2µ b 0.01µ 13 VCC 24 SW13 680 14 23 a V14 V22 b 21 16 GND GND SW15 15 22 V17 17 NC 20 a V19 b SG6 SW18 18 19 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS TEST CIRCUIT MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS APPLICATION EXAMPLE CRT 110V DC CLAMP 680 680 680 0 to 5V 5V 0.01µ 0.01µ 0.01µ 0.01µ 0.01µ 0.01µ 0.01µ 0to5V 0.01µ 36 35 33 2.2µ 2.2µ 2.2µ 34 32 31 30 29 28 27 26 25 24 23 22 21 NC 20 19 11 12 13 14 15 16 17 18 M52337SP 1 2 3 4 0.01µ 5 0.01µ 6 7 8 9 0.01µ 10 0.01µ 0.01µ 0.01µ 0.01µ 0 to 5V 0 to 5V 0 to 5V 0 to 5V 47µ 12V BLK IN 47µ 0.01µ INPUT (B) OSD IN (B) 47µ 0.01µ INPUT (G) OSD IN (G) 0.01µ INPUT (R) OSD IN (R) CLAMP Units Resistance : Ω Capacitance : F 14 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS DESCRIPTION OF PIN Pin No. Name DC voltage Peripheral circuit of pins Vcc Description of function • Input 3V or more of pulse 3V or More B-ch G-ch 1V or less 1 1 BLK IN - • Ground to GND when not in use. • Apply identical voltage to all 3 chanels. • Clamped to about 2.5V by clamping pulse at pin 18. Input at a low impedance. 2.5V GND 0.9mA 2 VCC (B-ch) 7 VCC (G-ch) 12 VCC (R-ch) 12 Vcc 2k 3 INPUT (B) 8 INPUT (G) 13 INPUT (R) 2k • 2.5 2.5V CP GND 0.24mA Vcc • Use at 5V or less to ensure stable operation. • Input 3V or more and 5V or less of pulse. 2.9k 4 SUB CONTRAST (B) 9 SUB CONTRAST(G) 14 SUB CONTRAST (R) 23.5k 2.5V 2.5 GND Vcc 13k 3 to 5V 5 OSD IN (B) 10 OSD IN (G) 15 OSD IN (R) 1V or less OSD adj - GND 0.9mA 15 • Ground to GND when not in use. MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS DESCRIPTION OF PIN (cont.) Pin No. Name 6 31 GND (B-ch) 11 26 GND (G-ch) 16 21 GND (R-ch) DC voltage Peripheral circuit of pins Description of function GND Vcc • Use at 5V or less to ensure stable operation. • Input 2.2V or more of pulse. 1.5k 17 23.5k MAIN CONTRAST 2.5V 2.5 GND 17 Vcc 48.8k 2.2V or More 47k 1V or less 18 CP IN - 18 • Input at a low impedance. • INormally ground to GND or open. 2.2V 1.5V GND Vcc 20.3k B-ch G-ch 19 MAIN BRIGHTNESS 19 GND 20 NC - 16 MITSUBISHI ICs (Monitor) M52337SP 3-CHANNEL VIDEO PREAMPLIFIER WITH OSD MIXING FUNCTION FOR HIGH-RESOLUTION COLOR DISPLAYS DESCRIPTION OF PIN (cont.) Pin No. Name DC voltage Peripheral circuit of pins Vcc 22 SUB BRIGHTNESS (R) 27 SUB BRIGHTNESS (G) 32 SUB BRIGHTNESS (B) 4k Description of function • Pull up directly to Vcc when not in use. • A power supply dedicated to output emitter follower. Apply identical voltage to all 3 channels. 4k 2.8 72k 2.8V GND 0.2mA Vcc 1k 23 HOLD (R) 28 HOLD (G) 33 HOLD (B) Variable GND 24 VCC2 (R) 29 VCC2 (G) 34 VCC2 (B) • Pin 24 12 Apply Pin 28 Pin 34 • 25 OUTPUT (R) 30 OUTPUT (G) Pin 25 50 Variable Pin 30 35 OUTPUT (B) Pin 35 Vcc 20k 36 OSD ADJUST Apply 1.9k 40k 22k GND 17 Resistor is necessary on the GND side. Use a necessary drive capability to set arbitrarily to provide 15mA or less.