MOTOROLA MC13027P

Order this document from Analog Marketing
The MC13027 and MC13122 have been specifically designed for AM
radio which can meet the EIA/NAB AMAX requirements. They are
essentially the same as the MC13022A and MC13025 with the addition of
noise blanking circuitry. The noise blanker consists of a wide band amplifier
with an RF switch for blanking ahead the IF amplifier and a stereo audio
blanker with adjustable delay and blanking times.
• Operating Voltage Range of 6.0 V to 10 V
•
•
•
•
•
•
•
•
•
•
•
•
AMAX STEREO
IC CHIPSET
MC13027
RF Blanker with Built–In Wide Band AGC Amplifier
Audio Noise Blanker with Audio Track and Hold
Mixer Third Order Intercept of 8.0 dBm (115 dBµV)
20
20
Wide Band AGC Detector for RF Amplifier
1
1
Local Oscillator VCO Divide–by–4 for Better Phase Noise
P SUFFIX
PLASTIC PACKAGE
CASE 738
Buffered Local Oscillator Output at the Fundamental Frequency
Fast Stereo Decoder Lock
DW SUFFIX
PLASTIC PACKAGE
CASE 751D
(SO–20L)
Soft Stereo Blend
Signal Quality Detector to Control Variable Q–Notch Filters for Adaptive
Audio Bandwidth and Whistle Reduction
Signal Quality Detector for AM Stereo
MC13122
Very Low Distortion Envelope and Synchronous Detectors
Variable Bandwidth IF
ORDERING INFORMATION
Device
P SUFFIX
PLASTIC PACKAGE
CASE 710
28
Operating
Temperature Range
1
Package
MC13027DW
SO–20L
MC13027P
Plastic DIP
40 ° to +85°C
85°C
TA = –40
MC13122DW
28
SO–28L
MC13122P
DW SUFFIX
PLASTIC PACKAGE
CASE 751F
(SO–28L)
1
Plastic DIP
Functional Block Diagram
To Synthesizer
Osc
Tank
AGC
Input
Oscillator
Buffer
Voltage
Controlled
Oscillator
÷4
Wide Band
AGC
AGC
Output
RF Input
450 kHz IF
Pulse Length
Timer
AM
Detector
RF
Input
Automatic
Gain Controlled
RF Amplifier
IF Amplifier
Mixer
RF
Blanking
Shunt
Switch
L
IF Amplifier
AGC
Decoder
Track & Hold
R
Fast
AGC
Control
Post Detector
Filter
Left Audio
Right Audio
450 kHz Blend cosθ
Fast Lock
Pilot
Control
Detector
Q
Pulse
Detector
Stereo Indicator Lamp
Fast/
Slow
Pulse Delay
Timer
Pulse Length
Timer
I
Yes/No
Signal Quality
Detector
Signal Level
MC13027
This device contains 428 active transistors.
This document contains information on a product under development. Motorola reserves the
right to change or discontinue this product without notice.
MOTOROLA ANALOG IC DEVICE DATA
Audio
Blanking
Stop–Sense
RF AGC Meter Drive
MC13122
This device contains 670 active transistors.
 Motorola, Inc. 1996
Issue 1
1
MC13027 MC13122
MC13027
MAXIMUM RATINGS
Rating
Power Supply Input Voltage
Ambient Operating Temperature
Storage Temperature Range
Operating Junction Temperature
NOTE:
Symbol
Value
Unit
VCC
12
Vdc
TA
–40 to +85
°C
Tstg
–60 to +150
°C
TJ
150
°C
ESD data available upon request.
MC13027
ELECTRICAL CHARACTERISTICS (TA = 25°C, 8.0 VCC Test Circuit as shown in Figure 1.)
Characteristic
Min
Typ
Max
Unit
Supply Voltage Range (Pin 8)
–
6.0 to 10
–
V
Wideband (WB) AGC Threshold
–
1.0
–
mVrms
IF Output DC Current
–
1.0
–
mAdc
Mixer DC Current Output
–
0.83
–
mAdc
Local Oscillator Output
–
600
–
mVpp
Wideband AGC Pull–Down Current (Pin 20)
–
1.0
–
mAdc
Power Supply Current
–
16
–
mAdc
Mixer 3rd Order Intercept Point (Pin 6)
–
8.0
–
dBm
Mixer Conversion Gain
–
2.9
–
mS
IF Amplifier Input Impedance (Pin 14)
–
2.2
–
kΩ
IF Amplifier Transconductance
–
2.8
–
mS
IF Amplifier Load Resistance (Pin 16)
–
5.7
–
kΩ
IF Amplifier Collector Current (Pin 16)
–
990
–
µA
2
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Figure 1. MC13027 Test Circuit
VCC
AGC
On
VCC
+
RL1
51 C5
RF
RF In
RM1
16.7
+
Pulse On
1
R4
47
Q4
MMBT3904L
Mixer In
Blanker In R200
560 k
CM1
RM5
0.01
16.7
RL2
51
C10
0.01
R10
56 k
22 µF
WB AGC
RM2
16.7
C14
47 µF
Feedback
R1
100 k
RF Module
RF In
R11
47
Q1
MMBFJ309L
R2
82
VCC
Gnd
C87
0.1
Pulse In
Mixer In
R299
51
Mixer 4.0 V
+
1
C16
10 µF
C26
1.0 µF
2
C9
47 µF
3
VCLO
VCLO 4.0 V
C293
10 µF
5
Audio 18
Blank Pulse
4
5
7
+
4.0 V Reg
7
9
R201
120
R18
2.35 k
Audio Blank 17
Delay Time
IF Out
RF Gnd
R2b
10 k
16
IF In
14
10
VCC
Gnd2
VCO
RF Blank
LO Out
Mixer Out
C37
0.01
LO Out
13
Audio Blank
Q3
(Note 1)
Q2
(Note 1)
VCC
R16
3.3 k
R1b
10 k
RF Blank 15
Time
4.0 Filter
WB AGC Out
R19
500 k
RT1
39 k
R3b
10 k
Murata
SFG450E
R21
510
C16 120
VCC
5
C6
0.1
Tuning Voltage
MOTOROLA ANALOG IC DEVICE DATA
3
Feedback
R20
47 k
C90
0.1
Audio 19
Blank Time
8
6
WB AGC
Out
20
2 Blanker
AGC
6 Mixer In
Blanker RF In
100
NOTE:
WB AGC
In
+
4
8
MC13027
+
C11
0.1
Tuning V
VCC
C103
0.1
R17
500 k
L2 1.0 mH
IF Out
R15
500 k
R12
1.8 k
432 1
12
RF Blank
Q1b
(Note 1)
11
R5b
390 k
4.0 V Reg
1. General purpose NPN transistor 2N3904 or equivalent.
3
MC13027 MC13122
MC13122
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
VCC
12
Vdc
–
30
mAdc
TA
–40 to +85
°C
Power Supply Input Voltage
Stereo (Pilot) Indicator Lamp Current (Pin 21)
Operating Ambient Temperature
Tstg
–65 to +150
°C
TJ(max)
150
°C
PD
1.25
10
Ω
mW/C
Storage Temperature Range
Operating Junction Temperature
Power Dissipation
p
Derated above 25°C
NOTE:
ESD data available upon request.
MC13122
ELECTRICAL CHARACTERISTICS (VCC = 8.0 V, TA = 25°C, Test Circuit of Figure 2.)
Characteristic
Min
Typ
Max
Unit
Power Supply Operating Range
6.0
8.0
10
V
Supply Current Drain (Pin 25)
10
20
25
mA
Minimum Input Signal Level, Unmodulated, for AGC Start
–
5.0
–
mV
Audio Output Level, 50% Modulation, L Only or R Only
290
400
530
mVrms
Audio Output Level, 50% Mono
140
200
265
mVrms
Output
p THD,, 50% Modulation ((Monaural Stereo))
–
–
0.3
0.5
0.8
1.6
%
Channel Separation, L Only or R Only, 50% Modulation
22
35
–
dB
IF Input Voltage Range
–
1.0–1000
–
mV
IF Input Resistance Range
–
10 to 50
–
kΩ
IF Amplifier Transconductance
–
9.6
–
mS
IF Detector Circuit Impedance
–
8.3
–
kΩ
Input AGC Threshold
–
5.0
–
mV
Stop–Sense Output Range
–
2.2 to 4.0
–
V
Audio Output Impedance at 1.0 kHz (Pins 7 and 14)
–
300
–
Ω
Stereo Indicator Lamp Leakage
–
–
1.0
µA
Stereo Indicator Saturation Voltage @ 3.0 mA
–
–
200
mVdc
Oscillator Capture Range
–
±3.0
–
kHz
4
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Figure 2. MC13122 Test Circuit
Envelope Det Out
I Detector Out
Q Detector Out
8.0 V
C1
1000
R10
13 k
C2
120
L1
1.0 mH
1
2
C3
47 µF
3
C4
450 kHz IF In
10 µF
10 k
100 k
4
5
.01
R5
6
R6
7
U2
C6
1.0 µF
Ch2 Out
Ch2 Cont
Ch2 In
Ch1 In
Ch1 Cont
Ch1 Out
6
8
5
9
4
10
3
11
2
12
1
13
14
THB122
C28
1000
MC13122
IC2
E Det
I Det
Det In
L–R Det
3.0 V Reg
AGC
IF In
SS
L Out
L Filt In
L Filt Ctr
L Mat Out
R Mat Out
R Filt Ctr
R Filt In
R Out
Q Det
C27
1000
C22
220 µF
28
27
2.2 k
26
C16
0.47 µF
1000
R26
25
VCC
24
Loop Filt
47 µF
23 C24
Blend
22
Gnd
1.0 k
21
Pilot Ind
3.6
MHz
R20
20
Osc Out
X1
19
Osc In
18
Pilot Det I
17
Pilot I
16
Pilot Q
15
Audio Blank
22 µF
C23
D1
Stereo
C
A
3.9 k 51 C29
1000 C30
R12
C18
22 µF
C31
1.0 µF
C17
10 µF
1000
AF Blank
SS Out
Left
Audio Out
Right
Audio Out
C
E
MOTOROLA ANALOG IC DEVICE DATA
33 k
B
MPS6515
Q3
R11
Blend Disable
5
MC13027 MC13122
AMAX STEREO CHIPSET
ignitions, using multiple spark coils, along with increased use
of plastic in the auto body, have increased the noise energy
at the radio. Also, the consumer has learned to expect higher
quality audio due to advances in many other media. For the
AM band to sustain interest to the consumer, a truly effective
noise blanker is required.
The block diagram below shows the Motorola AMAX
stereo chipset. It offers a two–pronged approach to noise
blanking which is believed to be the most effective yet offered
in the consumer market. The initial blanking takes place in
the output of the mixer, using a shunt circuit triggered by a
carefully defined wideband receiver. For most noises, some
residual audible disturbance is almost always still present
after this process. The disturbance becomes stretched and
delayed as it passes through the rest of the selectivity in the
receiver. The stretching and delay are predictable, so the
MC13027 can provide a noise blanking pulse with the correct
delay and stretch to the output stages of the MC13122
decoder. The MC13122 has a Track and Hold circuit which
receives the blanking signal from the Front End and uses it to
gently hold the audio wherever it is as the pulse arrives, and
hold that value until the noise has passed. The combined
effect is dramatic. A wide range of types of noise is
successfully suppressed and the resulting audio seems
almost clean until the noise is so intense that the blanking
approaches full–time.
The amount of extra circuitry to accomplish noise blanking
is relatively small. The external components for this added
capability are shown in Figure 3. In the MC13027 Front end,
the noise receiver/detector requires two capacitors. The
presettings for blanking timing and blanking delay require
three external fixed resistors. Finally the decoder requires
two track and hold capacitors to store the “audio” voltage
during the track and hold function.
What is AMAX?
In 1993, a joint proposal by the EIA (Electronic Industries
Association) and the NAB (National Association of
Broadcasters) was issued. It included a unified standard for
pre–emphasis and distortion for broadcasters as well as a set
of criteria for the certification of receivers. The purpose of this
proposal was to restore quality and uniformity to the AM band
and to make it possible for the consumer to receive high
quality signals using the AM band. The FCC has been
supportive of this initiative and has required all new
broadcast licensees to meet AMAX standards. The NAB and
EIA have continued to encourage receiver manufacturers by
offering the AMAX certification logo to be displayed on all
qualifying radios. This logo is shown below.
or
The Receiver Criteria
An AMAX receiver must have wide bandwidth: 7.5kHz for
home and auto, 6.5 kHz for portables. It must have some
form of bandwidth control, either manual or automatic,
including at least two bandwidth provisions, such as “narrow”
and “wide”. It must meet NRSC receiver standards for
distortion and deemphasis. It must have provisions for an
external antenna. It must be capable of tuning the expanded
AM band (up to 1700 kHz). And finally, home and auto
receivers must have effective noise blanking. All of these
requirements, except the noise blanking, have been met by
Motorola’s previous AM radio products, such as MC13025
Front End and the MC13022A C–QUAM stereo decoder. It is
the Noise Blanker requirement which is met by the two
devices on this data sheet, the MC13027 and MC13122.
Noise blanking, especially in AM auto radios, has become
extremely important. The combination of higher energy
Figure 3. AMAX Stereo Receiver with Noise Blanker
MC13027
RF In
RF
Amplifier
Mixer
MC13122
IF
Amplifier
AGC’d IF
Amplifier
AM
Stereo
Decoder
Left
Track
and
Hold
Variable
Notch Filter
Right
Divide
by 4
Pin
Diode
RF Attenuate
450 kHz
Filter
Audio Blank
Wideband
AGC
RF
Attenuator
Switch
VCO
RF Blank
Timer
Reset
4.0 V
Regulator
AGC’d RF
Amplifier
AM
Detector
Audio
Reject
Filter
Pulse
Detector
Delay
Timer
Audio Blank
Timer
Audio
Blank
Switch
AGC
6
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Figure 4. MC13027 Internal Block Diagram
WB AGC
Out
Audio
Blank Time
Audio
Blank Pulse
Audio Blank
Delay Time
IF Out
RF Blank
Time
IF In
Gnd2
RF Blank
Mixer Out
20
19
18
17
16
15
14
13
12
11
IF Amp
AF Time
MV
AF Del
MV
VCC
Mixer
RF Time
MV
X1
NB Amp
÷4
WB AGC Amp
Reg
X1
1
2
3
4
5
6
7
8
9
10
WB AGC
In
Blanker
AGC
Feedback
4.0 V Reg
RF Gnd
Mixer In
Blanker RF In
4.0 Filter
VCC
VCO
LO Out
MC13027 FUNCTIONAL DESCRIPTION
The MC13027 contains the mixer, wide band AGC
system, local oscillator, IF pre–amplifier and noise blanker for
an AM radio receiver. It is designed to be used with the
MC13122 to produce a complete AM stereo receiver. The
VCO runs at 4 (Fin+FIF) and is divided internally by 4 for the
mixer input and local oscillator buffered output. Dividing the
VCO reduces the phase noise for AM stereo applications.
The noise blanker input is connected in parallel with the
mixer input at Pin 6. The noise blanker circuitry contains a
high gain amplifier with its own AGC so it remains linear
throughout the mixer’s linear range. It can detect noise
pulses as low as 120 µV and generates three pulses when
the noise threshold is exceeded. The width and timing of the
blanking pulses is set by the resistors connected to Pins 15,
17 and 19. The resistor on Pin 15 sets the length of the RF
blanking pulse and determines the time the transistor on
MOTOROLA ANALOG IC DEVICE DATA
Pin 12 is “on”. The audio blanking pulse delay is set by the
resistor on Pin 17 and the width by the resistor on Pin 19.
This is necessary because the IF filtering delays and
stretches the noise as it arrives at the detector. The transistor
on Pin 18 goes “on” to cause noise blanking in the track and
hold circuit in the MC13122 (Pin 15).
Wideband AGC is used in auto receivers to prevent
overload – it drives the base of a cascode transistor RF
amplifier and also a pin diode at the antenna (See Figures 6
and 7).
A low gain IF amplifier between Pins 14 and 16 is used as
a buffer amplifier between the mixer output filter and IF filter.
The input resistance of the IF amplifier is designed to match
a ceramic IF filter. The gain of the IF amplifier is determined
by the impedance of the load on Pin 16.
7
MC13027 MC13122
Figure 5. MC13122 Internal Block Diagram
I Det
28
L–R Det
27
Q Det
26
L–R
Q
I
VCC
25
Loop
Filt
24
Blend
23
Gnd
22
Pilot Ind
21
Osc Out
20
Osc In
19
Pilot Det I
18
Pilot I
17
Pilot Q
16
330
VCC
VCO
450 <90°
÷8
Pilot I
Det
Loop
Driver
450 <0°
Blend
Pilot
Level
Det
Fast Lock
Pilot Q
Det
25.6 Hz
24.4 Hz
Clamp
Count
Control
Disable
C–QUAM
Comparator
÷32
Signal
Quality
Detector
cosθ
L–R
L+R
Fast AGC
AGC
÷137/144
÷4
Level
Matrix
IF Amp
3.0 V
Audio
Blank
15
L
1.0 V
R
VGA
±0.9
VGA
±0.9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
E Det
Det In
3.0 V
Reg
AGC
IF In
SS
L Out
L Filt In
L Filt Ctr
L Mat
Out
R Mat
Out
R Filt
Ctr
R Filt In
R Out
MC13122 FUNCTIONAL DESCRIPTION
The MC13122 is designed to accept a 450 kHz C–QUAM
input signal from approximately 1.0 mV to 1.0 V and produce
L and R audio output signals. It has additional features: stop
signal, variable bandwidth IF and audio response, stereo
indicator driver and track and hold noise blanking.
The IF amplifier on Pin 5 has its own AGC system. It
operates by varying the input resistance on Pin 5. With weak
signals below approximate 5.0 mV, the input resistance is
very high and the amplifier is at maximum gain. For this AGC
to be effective, it is necessary to feed the IF input signal from
a relatively high impedance. The input resistance variation
also reduces the Q of the coil (T1 in the application) so the
receiver bandwidth is narrow for weak signals and wide for
strong signals. The value of the input resistor (R5) is selected
for the desired loading of the IF coil. The impedance of the IF
coil on Pin 2 determines the IF gain. Pin 2 is also the input to
the C–QUAM decoder.
The IF signal drives the envelope (E), in–phase (I),
quadrature (Q) and (L–R) detectors. The E detector is a
quasi–synchronous true envelope detector. The others are
true synchronous detectors. The E detector output provides
the L+R portion of the C–QUAM signal directly to the matrix.
The AGC signal of the IF amplifier drives the signal strength
output at Pin 6. An external resistor on Pin 6 (sets the gain of
the AGC). The Pin 6 voltage is used to control the Q of the
audio notch filter, causing the audio bandwidth and depth of
the 10 kHz notch to change with signal strength. It is also
used as one of the inputs to the signal quality detector which
generates the stop–sense and blend signal on Pins 6 and 23
respectively and tells the signal quality detector that the RF
input is below the AGC threshold.
8
VCO
The 3.6 MHz ceramic resonator on Pins 19 and 20 is part
of a phase locked loop which locks to the 450 kHz IF signal.
The 3.6 MHz is divided by 8 to produce in–phase and
quadrature signals for the I, Q and L–R detectors. It is also
divided by 32, and 137/144 to provide signals for the pilot I
and Q detectors. The pilot detector is a unique circuit which
does not need filtering to detect the 25 Hz pilot.
Blend Circuit
The purpose of the blend circuit is to provide an AM stereo
radio with the capability of very fast lock times, protection
against stereo falsing when there is no pilot present and
control of the L–R signal so as to provide as much stereo
information as possible, while still sounding good in the
presence of noise or interference. The circuit also provides
an optional stop–sense usable by a radio with seek and/or
scan. The stop–sense signal provides a “stop” signal only
when the radio is locked on station, signal strength is above
minimum level, and the level of interference is less than a
predetermined amount. The last feature prevents stopping
on frequencies where there is is a multiplicity of strong
co–channel stations. It is common for AM radios without this
capability to stop on many frequencies with unlistenable
stations, especially at night.
The blend circuit controls the PLL fast lock, pilot detector,
IF amplifier AGC rate, decoder L–R gain, cosθ compensation
and stop–sense as a function of the voltage on a signal
external blend capacitor. Timing is determined by the rate of
change of voltage on the blend cap. Timing is changed by
varying charge and discharge current and pulled down by a
current source, switch, and optionally an external switch. The
current sources and switches are controlled by various
measures of signal quality, signal strength, and presence or
absence of pilot tone.
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Detectors
Sequence For Seek Scan
In AM stereo operation, the Q detector delivers pilot signal
via an external low–pass filter to the pilot detector input (Pin
18). The E and I detectors drive the C–QUAM comparator.
The L–R signal and the output of the envelope detector are
combined in the matrix to produce the L and R signals. The
C–QUAM system modifies the in–phase and quadrature
components of the transmitted signal by the cosine of the
phase angle of the resultant carrier, for proper stereo
decoding. An uncompensated L–R would be distorted,
primarily by second harmonics. Where there is noise or
interference in the L–R, it has been subjectively determined
that reducing the cosθ compensation at the expense of
increased distortion sounds better than full decoding. The
blend line operates over a small voltage range to eliminate
cosine compensation.
• Change Station – Pull–Down Blend
• Wait Approximately 50 ms for Synthesizer and Decoder
PLL to Lock
• Observe Pin 6 Voltage
• If it is Above 2.0 V and Stays Above 2.0 V for
Approximately 800 ms, Stay on the Station
• No IF Count Now Needed
• No AGC Level Detector Needed
Table 1. Normal Sequence When Changing Stations
External Pull–Down of
Blend Capacitor to Under
0.47 V
– Increased Current Supplied to
Loop Driver for Fast Lock
– Fast AGC Activated
– Extra Current Pull–Up Activated
on Blend Capacitor
– Pilot Detector Disabled
– Loop Locks
– Stop–Sense Activated
Blend Released
– Blend Capacitor Pulled Up to
0.7 V – Stops
– Fast Lock Current Removed
– Fast AGC Turned Off
– Pilot Detector Enabled
Pilot Detected
– Stereo Indicator Pin Pulled Low
– Blend Voltage Pulled Positive
Rapidly
Blend Voltage Reaches
1.4 V
– Audio Starts Into Stereo
– 10% Negative I Detector
Enabled
Blend Voltage Reaches
2.2 V
– Stereo Separator Reaches 20
to 25 dB
– Rapid Current Pull–Up Turned
Off
– 4% Negative I Detector Enabled
Blend Voltage Reaches
3.0 V
– cosθ Enabled – Full C–QUAM
Decoding
– Blend Voltage Continues to Rise
to 3.6 V and Stops
Signal Quality Detector – Blend Voltage Control
The signal quality detector output is dependent on signal
strength, over–modulation, and whether or not the blend pin
has been pulled low prior to searching. Over–modulation
usually occurs when a radio is tuned one channel away from
a desired strong signal, so this prevents stopping one
channel away from a strong signal.
In a radio tuned to a strong, interference free C–QUAM
station, the blend voltage will be approximately 3.6 V. In the
presence of noise or interference, when the modulation
envelope is at a minimum, it is possible for the I detector to
produce a negative, or below zero carrier signal. The Signal
Quality Detector produces an output each time the negative
I exceeds 4%. The output of the detector sets a latch. The
output of the latch turns on current source which pulls down
the voltage of the blend cap at a predetermined rate. The
latch is then reset by a low frequency signal from the pilot
detector logic. This produces about a 200 mV change each
time 4% negative I is detected. Tables 1 and 2 describe the
blend behavior under various conditions.
When the blend voltage reaches 2.2 V a blend control
circuit starts to reduce the amplitude of the L–R signal fed to
the decoder matrix. By 1.5 V the L–R has been reduced by
about 40 dB. At lower voltages it is entirely off and the
decoder output is monaural. This reduction of L–R signal, or
blend as it is commonly called when done in FM stereo
radios, reduces undesirable interference effects as a function
of the amount of interference present.
Table 2. Operation In Adverse Conditions
4% Negative I Detected
– Blend Pulls Down
Approximately 200 mV for Each
Event – Acts Like One–Shot
– Stops at 2.2 V – cosθ Has Been
Defeated, Almost Full Stereo
Remains
10% Negative I Detected
– Blend Pulls Down 200 mV for
Each Event
– Stops at 1.4 V – Stereo Has
Blended to Mono
– Resets Fast Pull–Up if Blend
Has Not Been Above 2.2 V
50% Negative I Detected
(Out of Lock)
– Blend Pulls Down Fast During
Event
– Stops at 0.47 V
– Resets Fast Pull–Up
– Pilot Indicator Turned Off
Minimum Signal Level
Detected
– Resets Fast Pull–Up
– Pulls Down to 0.7 V
Stop–Sense
Stop–sense is enabled when the blend voltage is
externally pulled below 0.45 V. An input from the AGC
indicating minimum signal, or detection of 10% negative I will
cause the stop–sense pin to be pulled low. With signals
greater than the AGC corner and less than 10% interference
the stop–sense will be a minimum of 1.0 V below the 3.0 V
line. Very rapid scanning is possible because the radio can
scan to the next frequency as soon as the stop–sense goes
low. The maximum wait time, set by the radio, is only reached
on good stations.
The decoder will not lock on an adjacent channel because
it is out of the lock range of the PLL. The beat note produced
in the I detector by the out of lock condition will trigger the
10% negative I detector.
MOTOROLA ANALOG IC DEVICE DATA
9
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13027 PIN FUNCTION DESCRIPTION
Pin
Name
1
WB AGC In
Internal Equivalent Circuit
VCC
Description
3.3 V
R2
15 k
WB AGC In
1
20 k
2
Blanker AGC
NB AGC
2
D1
Wideband AGC Input
The input impedance to the WB AGC detector is
15 k and is internally biased so it must be coupled
through a capacitor. The threshold can be
increased by adding a resistor in series with the
input. The WB AGC begins at about 1.0 mV. In car
radios, this input should be connected to the
collector of the RF amplifier cascode stage through
a resistor and capacitor. A 68 pF to ground will
prevent undesired high frequency signals from
activating the WB AGC and make the sensitivity
more uniform across the band.
Blanker AGC
The capacitor to ground is the bypass for the noise
blanker AGC circuit. The noise blanker can be
disabled by grounding this pin. 10 µF is used in the
application, but it can be changed to match the
time constant of the main IF AGC in the MC13122,
Pin 4.
D2
3
Feedback
Blanker Feedback
This pin is the dc feedback to the input stage of the
wide band amplifier.
NB Feedback
3
11 k
4
4.0 V Reg
4.0 V Regulator
The 4.0 V regulator supplies low impedance bias to
many of the circuits in the IC. It should be
bypassed to a ground near Pin 5.
4.0 V Reg
4
Buffer
4.0 V Filter
7
7
4.7 k
4.0 V Filt
4.0 V Filter
The external capacitor works with internal 4.7 k to
filter noise from the bandgap regulator.
Reg
VCC
5
Gnd
RF Ground
This pin is the ground for the RF section, blanker
RF, filters and all radio circuits except the IF. In the
PCB layout, the ground pin should be used as the
internal return ground in the RF circuits.
RF Gnd
5
6
BlkRF/MixIn
4.0 V
50 Ω
11
Mixer Out
VCC
50 Ω
50 Ω
LO
LO–
750
10
50 Ω
LO +
VCC
Mixer Out
11
Mixer/
Blanker In
6
Mixer Input/Blanker RF Input
The blanker RF input must be biased from the
4.0 V on Pin 4. The mixer input is to two bases of
the upper mixer transistors. A low impedance dc
path to the 4.0 V on Pin 4 is required. Normally,
this would be a coil secondary connected between
Pins 6 and 4.
Mixer Output
A single ended output of a double balanced mixer.
A load resistor to supply is chosen to match the
ceramic filter, typically 1.5 k to 1.8 k. Output
current is 830 µA.
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13027 PIN FUNCTION DESCRIPTION (continued)
Pin
8
Name
Internal Equivalent Circuit
VCC
Supply Voltage
The normal operating voltage range is 6.0 to 10 V.
VCC
8
VCC
9
Description
VCLO
VCC
4.0 V
VCLO
1.5 k
9
Voltage Control Local Oscillator
The oscillator is a cross coupled negative
resistance type and this pin must be connected
through a low dc resistance to Pin 4, the 4.0 V
regulator. Normally, this would be the secondary of
the oscillator coil.
The impedance of the secondary winding should
be around 2.8 kΩ to guarantee that the oscillator
will run. It operates at 4 times the LO frequency:
fosc = 4(Fin+FIF).
10
LO Out
390
12
Local Oscillator Output
This is an emitter follower for LO output to drive a
synthesizer. It is a square wave output, the internal
series resistance and allows a small bypass to
reduce high frequency harmonics.
VCC
RF Blank
LO Out
10
RF Blanker
An unbiased NPN acts as a SHUNT impedance
when turned on. The 100 k resistor provides a dc
path for the capacitor.
RF Blk
12
100 k
13
Gnd2
IF Ground
Pin 13 is the ground for the IF section and the
timing and switching circuits in the blanker.
Gnd
13
In the application circuit this should be common to
the MC13122 ground.
14
IF In
4.0 V
IF Out
16
VCC
2.2 k
220 Ω
16
3.4 k
IF Out
3.4 k
IF In
14
15
RF Time
4.0 V
10 k
RF Blk Time
15
MOTOROLA ANALOG IC DEVICE DATA
IF Input
A degenerated differential amplifier internally
biased to 4.0 V. The IF input impedance is
approximately 1.8 k to match a ceramic filter. The
IF amplifier is used as a buffer between the
ceramic filter and the detector coil and has a fixed
gain determined by the impedance of the output
coil.
IF Output
An open collector provides high–impedance drive
to the MC13122; the IF gain is set by the ac
impedance on this pin.
RF Blank Time
A resistor to ground sets the RF blanking time. The
time is set to the minimum required to attenuate
the pulse received. This is normally longest at the
low end of the band. The value is best approved by
ear. A fixed value can be chosen for production.
(50 µs is typical.)
11
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13027 PIN FUNCTION DESCRIPTION (continued)
Pin
Name
17
Delay Time
Internal Equivalent Circuit
4.0 k
Audio
Delay Time
17
10 k
18
Audio Blank
Cntl
VCC
4.7 k
19
Audio Blank
18
Audio Time
VCC
Audio
Blk Time
19
10 k
20
WB AGC Out
VCC
440 Ω
WB AGC Out
20
Description
Audio Blank Delay Time
A resistor to ground sets the delay time from the
beginning of the RF blanking pulse to the
beginning of the audio blanking pulse. This
normally is about 50 µs for a wide AMAX filter. The
ear is the most sensitive measure of the correct
delay; start low, say 20 µs, and vary delay until
noise is heard, and then reduce somewhat.
Audio Blank Pulse
When the blanker is operating, a positive pulse
from this pin is fed to Pin 15 of the MC13122 to
blank the audio signal.
Audio Blank Time
A resistor to ground sets the width of the blanking
pulse on Pin 18. This is usually selected by
applying a pulse to the antenna of the receiver and
adjusting a variable resistor. The blanking signal
should be just long enough to suppress the audio
pulse. Again the ear is the most sensitive tool.
Start long, approximately 250 µs and reduce until
noise is audible then increase.
Wideband AGC Output
A push–pull current output. The resistor to voltage
source (normally VCC) determines the gain. Used
to bias a cascode transistor in series with the input
FET and can also be used to drive a PNP
transistor which drives a pin diode attenuator (refer
to Application Circuit Figure 6.)
330 Ω
12
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13122 PIN FUNCTION DESCRIPTION
Pin
1
Name
Internal Equivalent Circuit
E Detector
VCC
6.2 k
2
Envelope Det
1
Detector In
Det In
2
VCC
Description
Envelope Detector
This is the output of the envelope detector and is
used for one input to the comparator that
generates cosθ signal and the L+R input to the
matrix. It is a quasi–synchronous full wave detector
with very low distortion (<1% at 100% modulation).
The output impedance is 6.2 k, and it is bypassed
to VCC with 1.0 nF to eliminate 900 kHz
components. The bypass capacitor must be the
same as the one on Pin 27 and 28 for lowest
stereo distortion and best separation.
IF Out/Decoder Input
The IF coil is connected from Pin 2 to Pin 3, the
3.0 V regulator. The IF amplifier output is a current
source. The gain is determined by the impedance
between Pins 2 and 3. Bandwidth and gain is set
by the resistance across the coil.
120
3
3.0 V Reg
3.0 V Reg
3
3.0 V Regulator
This bandgap regulator supplies bias to many of
the circuits in the IC.
3.0 V
4
AGC Byp
IF AGC Bypass
The AGC has a fast and slow time constant. The
fast AGC is 18X the slow one and is active when
the 450 kHz loop is not locked. This allows for fast
scanning in car radios. This capacitor should be
selected for distortion for low frequencies at 80%
modulation.
2.3 V
IF AGC
4
5
IF In
AGC Current
IF In
5
10 k
MOTOROLA ANALOG IC DEVICE DATA
IF Input
The IF AGC varies the current through attenuator
diodes. The diodes vary the input impedance
shunting the IF signal. The varying impedance also
varies the Q and therefore the bandwidth. The IF
AGC is accomplished by turning on the diodes and
lowering the IF input impedance.
13
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13122 PIN FUNCTION DESCRIPTION (continued)
Pin
6
Name
Internal Equivalent Circuit
SS
V
3.0 V CC
20 k
Stop–Sense
6
Signal
Strength
Description
Signal Strength/Stop–Sense
The signal strength is a push–pull circuit. The
voltage is 2.2 V at minimum signal and 3.5 to 5.0 V
at strong signal. This dc voltage is also used to
control the audio output notch filters. If the Blend
pin is low the stop–sense is activated and this pin
can go low. This can be used to control the
seek–scan in the radio.
1.0 k
Stop–Sense
Pull–Down
7
14
Left Out
Right Out
VCC
L Out
7
8
13
L Filt In
R Filt In
9
12
L Filt Ctr
R Filt Ctr
L Filter In
8
Op Amp
L Filter Ctr
9
20 k
10
11
L Matrix Out
R Matrix Out
AF Blank In
L
Left Filter and Right Filter Center
Drives the center leg of a twin–T filter, varying the
Q. At strong signal, positive feedback narrows the
notch, and there is little HF roll–off. At weak signal,
negative feedback produces a broad notch and HF
roll–off.
4.7 k
Track and Hold Output
This is a unity gain operational amplifier output.
The current is turned off by the blanking pulse. The
capacitor holds output voltage constant until
unblanked. Internal feedback causes the output
impedance to be low.
Audio Blank Control
The current to the output drivers is turned off.
4.7 k
R
14
Input to Notch Filter
DC bias is supplied through the external filter
components.
20 k
L Matix Out
10
15
Filtered Left and Filtered Right Output
This can drive a de–emphasis filter to bring audio
contour to AMAX specifications. Since the output is
an emitter follower, the output impedance is low,
and a series R should be used with the
de–emphasis network as shown on the application
circuit.
Audio Blank
15
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13122 PIN FUNCTION DESCRIPTION (continued)
Pin
16
Name
Internal Equivalent Circuit
Pilot Q
Pilot Q
This is the output of a quadrature detector of a
narrowband phase locked loop system.
3.0 V
Pilot Q
16
17
Pilot I
3.0 V
47 k
18
Pilot Det In
VCC
Pilot I
17
3.0 V
47 k
Pilot Det In
18
39 k
19
Osc In
Description
VCC
3.0 V
Osc Input
10 k
19
It is used to control the pilot detector circuitry. The
pilot Q is clamped to the 3.0 V reference when the
blend voltage is pulled low. This results in faster
pilot detection when a stereo station is tuned in. If
the blend is not pulled low, the pilot Q will drift up
approximately 0.5 V when there is no pilot, and it
will take longer to detect the pilot. The capacitor to
ground is the loop filter. It sets the pilot loop
bandwidth: if it is too large, the loop bandwidth
maybe too small, and the pilot may not be
re–acquired if it is lost unless the blend pin is
externally pulled low again.
Pilot I
When the loop is locked to a 25 Hz AM stereo pilot,
this is the output of a an in–phase synchronous
detector. The capacitor filters the output, which is
used to drive the pilot indicator driver on Pin 21.
The time constant for the pilot indicator output is
determined by this capacitor and the internal 47 k
resistor. If the capacitor is too small, it can lead to
pilot falsing due to noise. If the capacitor is too
large, the acquisition time increases. The cap is
charged to 3.0 V when the blend voltage is low to
shorten lock time.
Pilot Detector Input
The pilot detector will detect a pilot tone between
24.4 and 25.6 Hz. The pilot signal is fed from Q
detector through a low pass filter on Pin 26. The
audio signals from the Q detector must be filtered
out, so a low–pass filter is used. The capacitor in
series with Pin 18 blocks dc and prevents large low
frequency transients from knocking the decoder
out of stereo mode.
Oscillator Input
The input impedance is 10 k, but the
recommended circuit adds 3.9 k in parallel with this
to control the capture range of the VCO to be
around ±3.0 kHz. using the recommended ceramic
resonator.
22 k
20
Osc Out
VCC
100
Osc Feedback
Oscillator Output
The internal phase shift of the VCO is 90 degrees,
and the output impedance is low. It is designed to
drive a resonant circuit with a 90 degree phase
shift at the center frequency.
20
MOTOROLA ANALOG IC DEVICE DATA
15
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13122 PIN FUNCTION DESCRIPTION (continued)
Pin
Name
21
Pilot
Indicator
Internal Equivalent Circuit
Pilot Indicator
21
27 k
22
Gnd
Ground
Use good practices to keep oscillator returns and
RF bypasses to good copper near this point
Blend Cont
3.0 V
Blend
23
330
24
Loop Filt
3.0 V
Loop Filter
330
24
25
VCC
VCC
26
VCC
25
Q Detector
3.0 V
11 k
Q Det Out
26
16
Pilot Indicator
The maximum current is internally limited to protect
the IC, but it should be operated with a current
limiting resistor.
10
Gnd
22
23
Description
Blend Control
There are pull–up and pull–down currents provided
to this pin. The external capacitor controls the rate
of change of this voltage and 22 µF is
recommended. This is an important voltage
affecting many functions in the IC.
Loop Filter
The phase detector is a current source, so only a
single RC loop filter is needed for a second order
loop. The internal 330 Ω resistor together with a
47 µF gives the correct corner frequency and
damping for the proper operation on the decoder
loop. The cap should be low leakage to avoid static
phase error.
VCC
The operating voltage is normally 8.0 to 10 V in car
radios. The MC13122 will work from 6.0 to 10 V.
Q Detector Output
This is a synchronous detector in quadrature with
the 450 kHz IF signal. The output impedance is
11 k. This signal is normally used for input to the
pilot detector and internally for the fast lock.
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
MC13122 PIN FUNCTION DESCRIPTION (continued)
Pin
Name
27
L–R Detector
Internal Equivalent Circuit
VCC
6.2 k
L–R Det
27
28
I Detector
VCC
6.2 k
I Det
28
MOTOROLA ANALOG IC DEVICE DATA
Description
L–R Detector
This is similar to the Q detector output but its level
is controlled by the blend circuit. When the blend is
active, the L–R output is reduced in level by
reducing the dc current until mono operation is
reached. It operates in the same way as the blend
circuit in FM stereo decoders. The bypass
capacitor should be 1.0 nF as on Pin 1 for optimum
channel separation.
I Detector
This is a synchronous detector in phase with the
450 kHz IF signal. It is used internally to generate
the cosθ signal and as an input to the signal quality
detector. The bypass capacitor should be the same
as the one on Pin 1 for best separation and lowest
stereo distortion.
17
MC13027 MC13122
CAR RADIO APPLICATION
Figure 6 shows a car radio circuit using a TOKO pre–tuned
RF module. The RF module includes a 4 diode tracking circuit
to eliminate mistracking between the oscillator and RF circuits
over the 530 to 1700 kHz AM band. This is important for stereo
performance because mistracking will cause mono distortion
and will significantly reduce the stereo separation. The
THB122 module contains the variable 10 kHz notch filter. This
module can be replaced with discrete components as shown
in Figure 8, using 1% resistors and 5% capacitors.
Some manufacturers add a PIN diode attenuator at the
antenna input. An example is shown in Figure 7.
The WB AGC sensitivity can be adjusted by changing R4
in series with the WB AGC input, Pin 1. The internal input
resistance is 15 k.
R15, R17 and R19 are the blanker timing resistors. They
were setup for this circuit and can be changed if desired.
FL1 is a linear phase IF filter . We recommend a Gaussian
(rounded) filter, such as SFG or SFH for lower distortion and
better separation than one with a flatter amplitude response.
The SFG types of filters have poorer selectivity than the ones
with flat GDT (group delay time) so some compromise has
been made on adjacent channel selectivity.
The blanker can be disabled for testing by grounding the
blanker AGC on Pin 2 in the MC13027.
The blanker and mixer inputs must be biased from the
4.0 V regulator through a low dc resistance like the
secondary winding of the RF coil.
The receiver VCO operates at 4 times the local oscillator
frequency and is divided internally in the MC13027 so that
both the mixer input and the LO out is the same as in other
receivers. This receiver can be connected to an existing
synthesizer. For AM stereo, the synthesizer must have low
phase noise. The Motorola MC145173 is recommended. For
bench testing of this receiver, the Motorola MC145151
parallel input synthesizer may be useful. It will operate on
9.0 V and the phase detector can provide tuning voltage
without a buffer amplifier.
18
The SS (stop–sense) output can be used for station
searching and scanning. The best way to use it is to connect
the SS signal to a comparator or A–D converter in the control
microprocessor. If Pin 23 is grounded during searching by
turning on Q3, the SS voltage changes from less than 0.5 V
to around 2.2 V when an RF threshold is exceeded, as is
shown in the graph in Figure 15. This system results in very
reliable stopping on usable signals and fast detection of AM
stereo signals. After a station is detected, Q3 should be
turned off.
This receiver is very easy to set up because the TOKO
module is pre–aligned. The only adjustments are to tune T1
and T2 for maximum voltage of the SS out line or maximum
audio with a weak signal. If desired, they can be changed
slightly to maximize stereo separation.
If different components are used, the blanker resistors can
be setup as follows:
Ground Pin 2 of the MC13027. Apply a 1.0 µs pulse or 50
Hz square wave of about 10 mV through a dummy antenna
and synchronize an oscilloscope to the pulse generator.
Observe the signal at the mixer collector (Pin 11). It should be
a sine wave burst. Remove the ground on Pin 2 and adjust
R15 so the burst is just suppressed. Check the performance
at the ends and middle of the band because the width might
change due to RF circuit bandwidth.
Mix the pulse signal with a CW signal of about 300 µV with
a power combiner and connect the oscilloscope to Pin 7 or
Pin 14 of the MC13122. Adjust R17 so the blanking starts at
the beginning of the audio pulse and R19 so the audio
blanking is just long enough to suppress the audio pulse. The
audio blanking time should not be made longer than
necessary because it will be more noticeable in the normal
program. The effectiveness of the blanker can be determined
in field testing by connecting a switch from Pin 2 of the
MC13027 to ground and bringing it outside the radio.
Figures 10 to 19 refer to the performance of the
Application Circuit of Figure 6.
MOTOROLA ANALOG IC DEVICE DATA
MOTOROLA ANALOG IC DEVICE DATA
Ant Gnd
WH1
1
2
3
4
5
6
7
3
1
Osc Bias 8
Osc
VT
Mixer Bias
Gnd
Mixer In
RF VCC
RF Col
FL2
R2
100 k
Ant
WH2 0.01
C6
B
C5
R4
C11
22 µ F
C14
LO Out
WH3
C18
1.0 n
C15
0.1
20
19
18
17
16
15
14
13
12
11
R7
22 k
C13 MC13027
0.01
IC1
1 WB AGC I WB AGC O
C2
10 µF
2 Blk AGC
AFT
3 Blk FB
AF Blk
C3 0.1 4
Delt
4.0 V Reg
5 RF Gnd
IF Out
6 Mix/Blk In
R Filt
7 4.0 V Filt
IF In
8 V
IF Gnd
CC
9 LO
RF Blk
10 LO Out
Mix Out
15 k
47 µ F 10 µ F
R1
100 Ω
C7
1.0 µ F
VT
WH11
120 Ω
R22
G
L1
3.0 mH
D
Q1
3309
S
C8
R3 1.0 µ F
470 Ω
C
Q2
MPS6515
E
1
3
R17
R19
C12
0.01
R15
680 k
33 k
150 k
2
AF Blk
WH13
3.3 k
R9
0.01
C19
R21
1.8 k
G I
O
FL1
SFG450F
C9
0.1
6
4
A7NRES–11148N
T1
450 kHz
C22
47 µ F
C21
0.1
SS Out
C25
.015
FL3
4.7 k
C4
1
6
5
4
3
2
1
10 µ F
C1
1.0 n
6
4
Gnd
Osc In
Osc Out
R14
WH6
R AF Out
WH4
L AF Out
5.6 k
15
C
Q3
C26
.015 MPS6515
E
AF Blk
WH12
A Blk
Pil Q 16
R Mat Out Pil Det I
R Filt Ctr
Pil I
L Mat Out
L Filt Ctr
Pil Ind
Blend
R13
5.6 k
Q Det 26
VCC
Loop Filt
Gnd
C27
1.0 n
WH8
C34 1.0 n
VCC
C17
10 µ F
R11 WH7
Search
G 33 k
C16
47 µ F
Gnd
WH10
C31
1.0 µ F
R26
2.2 k
25
24
23 C24 47 µ F
C23 22 µ F
22
D1
R20
1.0 k
21
20
C29 51 C Stereo A
R12
19 X1
C30
3.9 k
18 3.6 MHz
1.0 n
C18 22 µ F
17
I Det 28
L–R Det 27
L Out
L Filt In
WH9
C28
1.0 n
SS
IF In
AGC
3.0 V Reg
Det In
E Det
MC13122
IC2
C35
100 µ F
13 R Filt In
14 R Out
1
2
3
4
5
6
7
8
9
10
11
12
R18
2.2 k
C33 C32
1.0 n 1.0 n
Ch1 Out
Ch1 Cont
Ch1 In
Ch2 In
Ch2 Cont
Ch2 Out
R5
R18
12 k
2
3
A7NRES–T1370Y
T2
450 kHz
R16
2.2 k
47 µ F
R6
100 k
WH5
C28
R8
10 Ω
THB122
Figure 6.
TMG522E
Figure 6. AMAX Chipset Application Circuit
MC13027 MC13122
19
MC13027 MC13122
Figure 7. RF Pin Diode
R51
820
C18
0.1
R6
27 k
Q25
MMBT3906L
R5
2.7 k
R7
3.3 k
Q2
MMBT3904L
C7
0.01
RF In
BA585
C57
0.01
D1
PIN
1
3
C56
0.047
L1
R3
126ANS 100 k
7594HM
R4
R52
82
390
C6
0.47
C8
0.047
WB AGC In
8 (13)
44.2 k
Filt Ctr
9 (12)
720
44.2 k
Filt Out
10 (11)
20
Figure 9. Overall Selectivity of a Typical Receiver
versus Filter Control Voltage
OVERALL RESPONSE (dB)
Filt In
WB AGC Out
AGC
IF/Audio Response at
Filter Input
0
MC13122 Pins
–10
–20
V at Pin 6 = 3.5 Vdc
–30
2.5 Vdc
1.5 Vdc
–40
–50
–60
–70
–80
1.5
20
1
C14
0.01
Figure 8. MC13027/MC13122
Discrete RF and Notch Filters
360
MC13027
R13
13 k
2
22.1 k
C5 +
68 µF
Q1
MMBFJ309L
AGC
360
R8
220
– – Response at
– – Pins 10 and 11 Due
– – to IF Selectivity
– – Total Response at
– – Output Pins 7 and 14
2.0
3.0
4.0 5.0 6.0 8.0 10
15
AUDIO FREQUENCY (kHz)
20
30
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Figure 10. Blend Voltage versus RF Input Level
Figure 11. Separation versus RF Input Level
40
32
3.0
SEPARATION (dB)
BLEND VOLTAGE, PIN 23 (V)
4.0
2.0
1.0
0
24
16
8.0
20
NOTE:
30
40
50
60
ANTENNA INPUT (dBµV)
70
0
80
The graphs on this page were made using the 15/60 pF
dummy antenna and the Application Circuit of Figure 6.
30
20
NOTE:
5.0 kHz ATTENUATION (dB)
42
400 Hz S/N (dB)
80
The radio stays in mono until the stereo signal is
sufficiently large and then makes a smooth transition to
stereo. This is similar to FM receivers with variable
blend.
0
50
34
26
18
10
20
NOTE:
30
40
50
60
ANTENNA INPUT (dBµV)
70
–5.0
–10
–15
–20
–25
80
The slightly abrupt change at around 25 dBµV is due
to the decoder switching into stereo.
30
20
NOTE:
Figure 14. Audio Output Level
versus RF Input Level
40
50
60
ANTENNA INPUT (dBµV)
70
80
This curve shows the effect of the variable audio
bandwidth control of the MC13122. It is due to the
variable loading of the IF coil and the variable 10 kHz
notch filter in the output.
Figure 15. Stop–Sense Voltage
versus RF Input Level
4.0
SS, STOP–SENSE, PIN 6 (V)
500
400
AF OUTPUT (mV)
70
Figure 13. 5.0 kHz Attentuation
versus RF Input Level
Figure 12. Signal to Noise versus RF Input Level
300
200
100
0
40
50
60
ANTENNA INPUT (dBµV)
20
NOTE:
30
40
50
60
ANTENNA INPUT (dBµV)
70
80
All the curves of performance versus RF input level
were generated using the car radio receiver circuit
shown in Figure 6. Using a 15/60 pF dummy antenna
input and a 50% L only stereo signal.
MOTOROLA ANALOG IC DEVICE DATA
3.0
Pin 23 = Open
2.0
Pin 23 = Grounded
1.0
0
60
NOTE:
70
80
90
RF INPUT LEVEL (dBµV)
100
110
This measurement was made on the MC13122 alone
with a 10 k series input resistor. It will enable the
designer to determine the stop–sense level if the gain
of receiver RF section is known. Note that if Pin 23 is
held low, the SS voltage on Pin 6 rises from about 0.3
to 2.2 V over a small change in RF level. This can be
used to generate a very reliable stop signal. If Pin 23 is
not held low, the SS voltage starts out at 2.2 V and
rises slowly to a maximum of around 4.0 V.
21
MC13027 MC13122
Figure 16. Audio Blanking Delay versus R17
Figure 17. RF Blanking Time versus R15
1000
AF BLANKING TIME (µs)
AF BLANKING DELAY (µs)
1000
100
10
1.0
10
33
100
R17 (kΩ)
330
100
10
1.0
1000
33
10
100
R15 (kΩ)
330
1000
Figure 19. WB AGC Output Voltage (Pin 20)
versus RF Input Level
Figure 18. Audio Blanking Time versus R19
1000
9.0
AGC VOLTAGE (V)
AF BLANKING TIME (µs)
8.0
100
10
7.0
6.0
5.0
4.0
3.0
2.0
1.0
1.0
10
33
100
R19 (kΩ)
330
1000
0
0
NOTE:
22
1.0
2.0
3.0
4.0
RF LEVEL INTO PIN 1 (mV)
5.0
6.0
This was measured by applying an RF signal through
a capacitor directly to Pin 1. The input resistance is
15 k, so the desired threshold can be increased by
adding a resistor in series with the input.
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
AMAX STEREO CHIPSET
power supply connections. This modification is described
below. Motorola will work with TOKO to develop a new part
number incorporating this change. In the meantime, it is
necessary that the user perform these simple changes,
because the radio circuits throughout this data sheet assume
this modified design.
The RF Module
In the early development phase of this AMAX Stereo
Chipset, Motorola worked with TOKO America Inc. to
develop an RF tuning module. Part number TMG522E was
assigned and is available from TOKO now. This module
provides the “tracked” tuning elements for the RF (T1 and T2
and associated capacitors and varicaps) and the VCO (T3 et
al). Some radio designers may prefer to develop their own
tuning system using discrete coils and components, but the
TOKO approach offers good performance, compactness and
ease of application. Motorola recommends that every
designer use this approach at least for initial system
development and evaluation.
As refinement of the application progressed, it was found
that a modification of the TMG522E was needed which would
reduce the amount of VCO leakage into the Mixer through the
Modifying the TMG522E
Referring to Figures 20 and 21, there are three simple
steps to the modification:
1. Cut the thin copper trace from Pin 2 to Pin 5 as shown.
2. Cut the thin copper trace from Pin 8 to the bottom of the
120 Ω resistor. Removal of the resistor is optional.
3. Connect a wire from Pin 5 to the top of the 120 Ω resistor
(or the upper pad for the resistor).
Figure 20. TMG522E Schematic
Add
Wire (3)
Cut
Trace (2)
5
4
8
RF Out
3.0 V
3.9 k
RF In
T2
T1
1
120
7
Osc
Low
Osc
High
X
T3
2
10 k
X
47 k
47 k
Cut Trace (1)
+B
Gnd
5
VT
3
6
Figure 21. TMG522E Physical Modifications
TMG522E
Add Wire (3)
Cut (2)
Cut (1)
8 7 6 5 4 3 2 1
MOTOROLA ANALOG IC DEVICE DATA
TMG522E
Add Wire (3)
Cut (1)
Cut (2)
8 7
6 5 4
3
2
1
23
MC13027 MC13122
Figure 22. AMAX Chipset Printed Circuit Board
(Top View)
Gnd
Osc
VT
WH11
R
SS
+ C20
L
WH3
FL1
+ C31
WH6 WH5
C14 +
+ C17
WH12
WH4
+ C18
FL3
FL2
T1
C5
X1
+
C2
C4 +
WH13
Q2
Gnd
C22
+
C11 +
Q1
C23 +
Gnd
T2
L1
WH1 WH2
WH10
+ C16
WH9
WH8
C35
+
+
C24
Q3
WH7
D1
VCC
Ant
Search
Figure 23. AMAX Chipset Printed Circuit Board
R22
C13
R4
C3
C15
IC1
R15
R19
C6
R2
C7
R1
R3
C8
R7
R8
R11
24
C10
R21
C12
R9
C1
C27
C28
C9
R16
R17
R5
R10
C34
C19
IC2
C29
R26
R20
R12
C30
R13
C25
C26
C32
C33
R18
C21
R6
R14
(Bottom View)
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
Figure 24. AMAX Chipset Printed Circuit Board
(Copper View)
MOTOROLA ANALOG IC DEVICE DATA
25
MC13027 MC13122
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 738–03
ISSUE E
–A–
20
11
1
10
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
B
L
C
–T–
K
SEATING
PLANE
M
N
E
G
F
J
D
20 PL
0.25 (0.010)
20 PL
0.25 (0.010)
M
T A
M
T B
M
M
DIM
A
B
C
D
E
F
G
J
K
L
M
N
INCHES
MIN
MAX
1.010
1.070
0.240
0.260
0.150
0.180
0.015
0.022
0.050 BSC
0.050
0.070
0.100 BSC
0.008
0.015
0.110
0.140
0.300 BSC
0_
15 _
0.020
0.040
MILLIMETERS
MIN
MAX
25.66
27.17
6.10
6.60
3.81
4.57
0.39
0.55
1.27 BSC
1.27
1.77
2.54 BSC
0.21
0.38
2.80
3.55
7.62 BSC
0_
15_
0.51
1.01
DW SUFFIX
PLASTIC PACKAGE
CASE 751D–04
(SO–20L)
ISSUE E
–A–
20
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.150
(0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D DIMENSION
AT MAXIMUM MATERIAL CONDITION.
11
–B–
10X
P
0.010 (0.25)
1
M
B
M
10
20X
D
0.010 (0.25)
M
T A
B
S
J
S
F
R
C
–T–
18X
26
G
K
SEATING
PLANE
X 45 _
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
12.65
12.95
7.40
7.60
2.35
2.65
0.35
0.49
0.50
0.90
1.27 BSC
0.25
0.32
0.10
0.25
0_
7_
10.05
10.55
0.25
0.75
INCHES
MIN
MAX
0.499
0.510
0.292
0.299
0.093
0.104
0.014
0.019
0.020
0.035
0.050 BSC
0.010
0.012
0.004
0.009
0_
7_
0.395
0.415
0.010
0.029
M
MOTOROLA ANALOG IC DEVICE DATA
MC13027 MC13122
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 710–02
ISSUE B
28
NOTES:
1. POSITIONAL TOLERANCE OF LEADS (D), SHALL
BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL
CONDITION, IN RELATION TO SEATING PLANE
AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
15
B
DIM
A
B
C
D
F
G
H
J
K
L
M
N
14
1
L
C
A
N
H
G
F
M
K
D
J
SEATING
PLANE
MILLIMETERS
MIN
MAX
36.45
37.21
13.72
14.22
3.94
5.08
0.36
0.56
1.02
1.52
2.54 BSC
1.65
2.16
0.20
0.38
2.92
3.43
15.24 BSC
0_
15_
0.51
1.02
INCHES
MIN
MAX
1.435
1.465
0.540
0.560
0.155
0.200
0.014
0.022
0.040
0.060
0.100 BSC
0.065
0.085
0.008
0.015
0.115
0.135
0.600 BSC
0_
15_
0.020
0.040
DW SUFFIX
PLASTIC PACKAGE
CASE 751F–04
(SO–28L)
ISSUE E
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A AND B DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15
(0.006) PER SIDE.
5. DIMENSION D DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.13
(0.005) TOTAL IN EXCESS OF D
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
-A28
15
14X
-B1
P
0.010 (0.25)
M
B
M
14
28X D
0.010 (0.25)
M
T A
S
B
M
S
R X 45°
C
-T26X
-T-
G
K
SEATING
PLANE
F
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
17.80 18.05
7.60
7.40
2.65
2.35
0.49
0.35
0.90
0.41
1.27 BSC
0.32
0.23
0.29
0.13
8°
0°
10.05 10.55
0.25
0.75
INCHES
MIN
MAX
0.701 0.711
0.292 0.299
0.093 0.104
0.014 0.019
0.016 0.035
0.050 BSC
0.009 0.013
0.005 0.011
0°
8°
0.395 0.415
0.010 0.029
J
MOTOROLA ANALOG IC DEVICE DATA
27
MC13027 MC13122
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center,
3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: [email protected] – TOUCHTONE 602–244–6609
INTERNET: http://Design–NET.com
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
28
◊
*MC13027/D*
MOTOROLA ANALOG IC DEVICE
DATA
MC13027/D