MC68HC908KX8 MC68HC908KX2 MC68HC08KX8 Technical Data M68HC08 Microcontrollers MC68HC908KX8/D Rev. 1, 2/2002 WWW.MOTOROLA.COM/SEMICONDUCTORS R E Q U I R E D To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://www.motorola.com/semiconductors/ The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Motorola and are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA © Motorola, Inc., 2002 Technical Data 3 A G R E E M E N T Technical Data N O N - D I S C L O S U R E MC68HC908KX8 MC68HC908KX2 MC68HC08KX8 R E Q U I R E D Technical Data Revision History Date Revision Level Description Label for pin 9 corrected in Figure 1-1 and Figure 1-2 $FF is the erase state of the FLASH, not $00. 0.1 A G R E E M E N T April, 2001 N O N - D I S C L O S U R E February, 2002 1 82, 252, 255 233 Revision to the description of the CHxMAX bit and the note that follows that description 242 Forced monitor mode information added to Table 18-1. 257 In Figure 18-1, resistor value for connection between VTST and IRQ1 changed from 10 kΩ to 1 kΩ. 258 7.3 Features — Corrected third bullet 101 7.8.3 ICG Trim Register — Corrected description of the TRIM7:TRIM0 bits 134 15.3 Features — Corrected divide by factors in first bullet 216 Figure 15-1. Timebase Block Diagram — Corrected divide-by-2 blocks 217 Table 15-1. Timebase Divider Selection — Corrected last divider tap entry 218 Section 16. Timer Interface Module (TIM) — Timer discrepancies corrected throughout this section 223 20.5 Thermal Characteristics — Corrected SOIC thermal resistance and maximum junction temperature 281 Appendix B. MC68HC08KX8 Overview — Added to supply exception information for the MC68HC08KX8 4 32, 33 First bulleted paragraph under the subsection 16.5 Interrupts reworded for clarity 20.6 5.0-Vdc DC Electrical Characteristics and 20.7 3.0-Vdc DC Electrical Characteristics — Corrected footnote for VDD supply current in stop mode Technical Data Page Number(s) 282 and 283 297 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 29 R E Q U I R E D Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . 49 Section 5. Central Processor Unit (CPU) . . . . . . . . . . . . 59 Section 6. System Integration Module (SIM) . . . . . . . . . 77 Section 7. Internal Clock Generator Module (ICG). . . . . 99 Section 8. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . . 137 Section 9. Configuration Register (CONFIG) . . . . . . . . 143 Section 10. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 149 Section 11. Computer Operating Properly Module (COP) . . . . . . . . . . . . . . . . . . . . . . . 159 Section 12. External Interrupt (IRQ) . . . . . . . . . . . . . . . 165 Section 13. Keyboard Interrupt Module (KBI). . . . . . . . 171 Section 14. Serial Communications Interface Module (SCI) . . . . . . . . . . . . . . . . . . . . . . . . 179 Section 15. Timebase Module (TBM). . . . . . . . . . . . . . . 215 Section 16. Timer Interface Module (TIM) . . . . . . . . . . . 223 Section 17. Analog-to-Digital Converter (ADC) . . . . . . 245 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA List of Sections Technical Data 3 N O N - D I S C L O S U R E Section 3. Random-Access Memory (RAM) . . . . . . . . . . 47 A G R E E M E N T Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 37 R E Q U I R E D Section 18. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 255 A G R E E M E N T List of Sections Appendix B. MC68HC08KX8 Overview . . . . . . . . . . . . . 297 Section 19. Break (BRK) Module . . . . . . . . . . . . . . . . . . 269 Section 20. Electrical Specifications. . . . . . . . . . . . . . . 279 Section 21. Mechanical Specifications . . . . . . . . . . . . . 291 Section 22. Ordering Information . . . . . . . . . . . . . . . . . 293 N O N - D I S C L O S U R E Appendix A. MC68HC908KX2 Overview . . . . . . . . . . . . 295 Technical Data 4 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 List of Sections MOTOROLA 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5.1 Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .33 1.5.3 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .34 1.5.4 Port A Input/Output (I/O) Pins (PTA4/KBD4–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.5 Analog Reference Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . 35 1.5.6 Port B Input/Output (I/O) Pins (PTB7/(OSC2)/RST–PTB0/AD0) . . . . . . . . . . . . . . . . . . 35 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 7 R E Q U I R E D Section 1. General Description A G R E E M E N T Table of Contents N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D Table of Contents A G R E E M E N T Section 4. FLASH Memory 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7 FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 N O N - D I S C L O S U R E Section 5. Central Processor Unit (CPU) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 5.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Technical Data 8 5.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.8 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 81 6.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 6.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 81 6.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 82 6.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 83 6.4.1.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.1.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 85 6.4.1.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.1.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.1.5 Forced Monitor Mode Entry Reset (MENRST). . . . . . . . . 86 6.4.1.6 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .86 6.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 86 6.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 87 6.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 87 6.6 Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 6.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 6.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 6.8.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.8.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.8.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .97 6.8.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .97 6.8.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .98 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 9 A G R E E M E N T 6.1 N O N - D I S C L O S U R E Section 6. System Integration Module (SIM) R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents Section 7. Internal Clock Generator Module (ICG) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 N O N - D I S C L O S U R E A G R E E M E N T 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 108 7.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .108 7.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 110 7.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 111 7.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .112 7.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.4.5.1 Clock Selection Switches . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 117 7.5.3 Using Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . 118 7.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 119 7.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 119 7.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 120 7.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 120 7.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 121 7.5.5 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 121 7.5.6 Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 122 7.5.6.1 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 123 7.5.6.2 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 123 7.5.6.3 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.5.7 Trimming Frequency on the Internal Clock Generator . . . . 125 Technical Data 10 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA 7.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Section 8. Low-Voltage Inhibit (LVI) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 140 8.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 8.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 11 A G R E E M E N T 7.7 CONFIG or MOR Options. . . . . . . . . . . . . . . . . . . . . . . . . . . .127 7.7.1 External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . . 127 7.7.2 External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . . 127 7.7.3 Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . . 128 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . . 128 N O N - D I S C L O S U R E 7.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents Section 9. Configuration Register (CONFIG) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 A G R E E M E N T Section 10. Input/Output (I/O) Ports 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 10.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 154 10.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 156 N O N - D I S C L O S U R E Section 11. Computer Operating Properly Module (COP) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.5.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 11.5.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 11.5.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 11.5.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 162 11.6 Technical Data 12 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA 11.8 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 11.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 11.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 Section 12. External Interrupt (IRQ) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 168 Section 13. Keyboard Interrupt Module (KBI) 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 13.7 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 176 13.7.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 178 Section 14. Serial Communications Interface Module (SCI) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 13 A G R E E M E N T Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 N O N - D I S C L O S U R E 11.7 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 A G R E E M E N T 14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 14.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .187 14.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 14.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 14.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.5.3.8 Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 N O N - D I S C L O S U R E 14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.7.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.7.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 14.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 14.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 14.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.8.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 14.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 14.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 Technical Data 14 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.6 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 15.8 Timebase Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Section 16. Timer Interface Module (TIM) 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16.4.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 16.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 16.4.4 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .228 16.4.5 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.4.6 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 229 16.4.7 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . 230 16.4.8 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . 231 16.4.9 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 16.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 15 A G R E E M E N T 15.1 N O N - D I S C L O S U R E Section 15. Timebase Module (TBM) R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents 16.8.1 16.8.2 16.8.3 16.8.4 16.8.5 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 235 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 238 TIM Channel Status and Control Registers . . . . . . . . . . . . 239 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .243 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 A G R E E M E N T 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 N O N - D I S C L O S U R E Section 17. Analog-to-Digital Converter (ADC) 17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.7.1 ADC Analog Power and ADC Voltage Reference Pins . . . 250 17.7.2 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 17.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 251 17.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 17.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 253 Section 18. Monitor ROM (MON) Technical Data 16 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA Monitor Mode Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.7 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.8 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.9 Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.9.1 Force Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.9.2 Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.10 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 18.11 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 Section 19. Break (BRK) Module 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 19.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 272 19.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .272 19.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 272 19.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .272 19.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 19.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 19.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 19.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 19.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .273 19.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 276 19.6.5 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 17 A G R E E M E N T 18.6 N O N - D I S C L O S U R E 18.5 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 18.5.1 Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 R E Q U I R E D Table of Contents R E Q U I R E D Table of Contents A G R E E M E N T Section 20. Electrical Specifications 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 280 20.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 281 20.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 20.6 5.0-Vdc DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .282 20.7 3.0-Vdc DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .283 20.8 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 284 20.9 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . 284 20.10 Trimmed Accuracy of the Internal Clock Generator . . . . . . . . 285 20.10.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 285 20.10.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . 285 20.11 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .288 N O N - D I S C L O S U R E 20.12 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 Section 21. Mechanical Specifications 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 21.3 16-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .292 21.4 16-Pin Small Outline Package (SOIC) . . . . . . . . . . . . . . . . . .292 Section 22. Ordering Information Technical Data 18 22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 22.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 Appendix B. MC68HC08KX8 Overview B.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297 B.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 B.3 FLASH x ROM Module Changes . . . . . . . . . . . . . . . . . . . . . . 298 B.3.1 FLASH for ROM Substitution . . . . . . . . . . . . . . . . . . . . . . .298 B.3.2 Partial Use of FLASH-Related Module. . . . . . . . . . . . . . . . 300 B.4 Configuration Register Programming . . . . . . . . . . . . . . . . . . .300 B.5 Electrical Specifiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 B.5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 302 B.5.2 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .303 B.5.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 B.5.4 5.0-Vdc DC Electrical Characteristics . . . . . . . . . . . . . . . . 304 B.5.5 3.0-Vdc DC Electrical Characteristics . . . . . . . . . . . . . . . . 305 B.5.6 Internal Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . 306 B.5.7 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . .306 B.5.8 Trimmed Accuracy of the Internal Clock Generator . . . . . . 307 B.5.8.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . 307 B.5.8.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . 307 B.5.9 Analog-to-Digital Converter (ADC) Characteristics . . . . . . 308 B.5.10 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table of Contents Technical Data 19 A G R E E M E N T A.1 N O N - D I S C L O S U R E Appendix A. MC68HC908KX2 Overview R E Q U I R E D Table of Contents N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Table of Contents Technical Data 20 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Table of Contents MOTOROLA Title 1-1 1-2 1-3 MC68HC908KX8 MCU Block Diagram. . . . . . . . . . . . . . . . . . . 32 PDIP and SOIC Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . 33 Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 39 4-1 4-2 4-3 4-4 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 50 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . .56 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 57 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . . 57 5-1 5-2 5-3 5-4 5-5 5-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .64 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 System Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 90 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Page List of Figures Technical Data 21 R E Q U I R E D Figure A G R E E M E N T List of Figures N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D List of Figures N O N - D I S C L O S U R E A G R E E M E N T Figure Title Page 6-11 6-12 6-13 6-14 6-15 6-16 6-17 6-18 6-19 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Wait Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 92 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . 94 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 95 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 97 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 97 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . . 98 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 7-10 7-11 7-12 7-13 7-14 7-15 ICG Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Internal Clock Generator Block Diagram . . . . . . . . . . . . . . . . 104 External Clock Generator Block Diagram . . . . . . . . . . . . . . . . 107 Clock Monitor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 109 Internal Clock Activity Detector. . . . . . . . . . . . . . . . . . . . . . . . 111 External Clock Activity Detector . . . . . . . . . . . . . . . . . . . . . . .112 Clock Selection Circuit Block Diagram . . . . . . . . . . . . . . . . . . 113 Code Example for Switching Clock Sources . . . . . . . . . . . . . 116 Code Example for Enabling the Clock Monitor . . . . . . . . . . . . 117 ICG Module I/O Register Summary . . . . . . . . . . . . . . . . . . . . 129 ICG Control Register (ICGCR) . . . . . . . . . . . . . . . . . . . . . . . . 131 ICG Multiplier Register (ICGMR) . . . . . . . . . . . . . . . . . . . . . . 133 ICG Trim Register (ICGTR) . . . . . . . . . . . . . . . . . . . . . . . . . . 134 ICG DCO Divider Control Register (ICGDVR) . . . . . . . . . . . . 134 ICG DCO Stage Control Register (ICGDSR) . . . . . . . . . . . . . 135 8-1 8-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9-1 9-2 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . 144 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 144 10-1 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10-2 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10-3 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 152 10-4 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Technical Data 22 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 List of Figures MOTOROLA Page 10-5 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 154 10-6 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10-7 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 156 10-8 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11-1 11-2 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 163 12-1 12-2 IRQ Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166 IRQ Status and Control Register (ISCR) . . . . . . . . . . . . . . . . 169 13-1 13-2 13-3 13-4 Keyboard Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . 172 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 177 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 178 14-1 14-2 14-3 14-4 14-5 14-6 14-7 14-8 14-9 14-10 14-11 14-12 14-13 14-14 14-15 14-16 SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . 182 SCI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 SCI Transmitter Break Characters . . . . . . . . . . . . . . . . . . . . . 185 SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 188 Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 198 SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 201 SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 204 SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 206 Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 210 SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 211 15-1 15-2 Timebase Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Timebase Control Register (TBCR) . . . . . . . . . . . . . . . . . . . . 220 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA List of Figures Technical Data 23 A G R E E M E N T Title N O N - D I S C L O S U R E Figure R E Q U I R E D List of Figures R E Q U I R E D List of Figures Figure N O N - D I S C L O S U R E A G R E E M E N T 16-1 16-2 16-3 16-4 16-5 16-6 16-7 Technical Data 24 Title Page 16-8 16-9 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .224 TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 230 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 235 TIM Counter Registers (TCNTH and TCNTL) . . . . . . . . . . . . 237 TIM Counter Modulo Registers (TMODH and TMODL) . . . . . 238 TIM Channel Status and Control Registers (TSC0 and TSC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242 TIM Channel Registers (TCH0H/L and TCH1H/L) . . . . . . . . .243 17-1 17-2 17-3 17-4 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .247 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . .251 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 253 18-1 18-2 18-3 18-4 18-5 18-6 18-7 Normal Monitor Mode Circuit . . . . . . . . . . . . . . . . . . . . . . . . . 258 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 266 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 267 19-1 19-2 19-3 19-4 19-5 19-6 19-7 19-8 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 271 I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 273 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .274 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .274 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 275 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 276 Break Auxiliary Register (BRKAR) . . . . . . . . . . . . . . . . . . . . . 277 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 List of Figures MOTOROLA 20-1 20-2 20-3 20-4 Title Page Example of Frequency Variation Across Temperature, Trimmed at Nominal 3 Volts, 25°C, and N = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286 Example of Frequency Variation Across Temperature, Trimmed at Nominal 3 Volts, 25°C, and N = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 Example of Frequency Variation Across Temperature, Trimmed at Nominal 5 Volts, 25°C, and N = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287 Example of Frequency Variation Across Temperature, Trimmed at Nominal 5 Volts, 25°C, and N = 104 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 MC68HC908KX2 Memory Map . . . . . . . . . . . . . . . . . . . . . . .296 B-1 B-2 B-3 M68HC08KX8 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . 299 Mask Option Register 2 (MOR2) . . . . . . . . . . . . . . . . . . . . . . 301 Mask Option Register 1 (MOR1) . . . . . . . . . . . . . . . . . . . . . . 301 N O N - D I S C L O S U R E A-1 A G R E E M E N T Figure R E Q U I R E D List of Figures MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA List of Figures Technical Data 25 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D List of Figures Technical Data 26 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 List of Figures MOTOROLA Title 2-1 Vector Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4-1 Protect Start Address Examples. . . . . . . . . . . . . . . . . . . . . . . .58 5-1 5-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6-1 6-2 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7-1 7-2 7-3 7-4 Correction Sizes from DLF to DCO . . . . . . . . . . . . . . . . . . . . 106 Quantization Error in ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Typical Settling Time Examples . . . . . . . . . . . . . . . . . . . . . . .124 ICG Module Register Bit Interaction Summary. . . . . . . . . . . . 130 8-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 9-1 External Clock Option Settings . . . . . . . . . . . . . . . . . . . . . . . . 145 10-1 10-2 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 14-1 14-2 14-3 14-4 14-5 14-6 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 200 SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Page List of Tables Technical Data 27 R E Q U I R E D Table A G R E E M E N T List of Tables N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D List of Tables N O N - D I S C L O S U R E A G R E E M E N T Table Technical Data 28 Title Page 14-7 14-8 SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . . 213 15-1 Timebase Divider Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 218 16-1 16-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .236 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 241 17-1 17-2 Mux Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18-1 18-2 18-3 18-4 18-5 18-6 18-7 18-8 18-9 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 Monitor Mode Vector Relocation . . . . . . . . . . . . . . . . . . . . . . 260 Normal Monitor Mode Baud Rate Selection . . . . . . . . . . . . . .261 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 263 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 263 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 264 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 264 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 265 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .265 22-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 List of Tables MOTOROLA 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5.1 Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . . . . . . 33 1.5.2 Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . .33 1.5.3 External Interrupt Pin (IRQ1) . . . . . . . . . . . . . . . . . . . . . . . .34 1.5.4 Port A Input/Output (I/O) Pins (PTA4/KBD4–PTA0/KBD0) . . . . . . . . . . . . . . . . . . . . . . . 34 1.5.5 Analog Reference Pin (VREFH). . . . . . . . . . . . . . . . . . . . . . . 35 1.5.6 Port B Input/Output (I/O) Pins (PTB7/(OSC2)/RST–PTB0/AD0). . . . . . . . . . . . . . . . . . . 35 1.2 Introduction The MC68HC908KX8 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCU). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. The information contained is this document pertains to the MC68HC908KX2 and the MC68HC08KX8 with the exceptions found in: • Appendix A. MC68HC908KX2 Overview • Appendix B. MC68HC08KX8 Overview MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA General Description Technical Data 29 R E Q U I R E D 1.1 Contents A G R E E M E N T Section 1. General Description N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 1.3 Features Features of the MC68HC908KX8 MCU include: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 Families • Maximum internal bus frequencies of: – 8 MHz at 5.0 V – 4 MHz at 3.0 V • Internal oscillator requiring no external components: – Software selectable bus frequencies – 25 percent accuracy with trim capability to 2 percent – Clock monitor – Option to allow use of external clock source or external crystal/ceramic resonator • Eight Kbytes of on-chip, in-circuit programmable FLASH memory • FLASH program memory security(1) • On-chip programming firmware for use with host personal computer which does not require high voltage for entry • 192 bytes of on-chip random-access memory (RAM) • 16-bit, 2-channel timer interface (TIM) module • 4-channel, 8-bit, analog-to-digital converter (ADC) with highvoltage reference (VREFH) double bonded to VDD pin • Serial communications interface (SCI) module • 5-bit keyboard interrupt (KBI) with wakeup feature • 13 general-purpose input/output (I/O) ports: – Five shared with KBI and TIM, with 15-mA source/15-mA sink capabilities and with programmable pullups on generalpurpose input ports – Four shared with ADC – Two shared with SCI 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 30 General Description MOTOROLA Low-voltage inhibit (LVI) module with software selectable trip points, 2.6-V or 4.3-V trip point • Timebase module (TBM) with – Clock prescalar for eight user-selectable, periodic real-time interrupts – Active clock source in stop mode for periodic wakeup from stop using external crystal or internal oscillator • External asynchronous interrupt pin with internal pullup (IRQ1) • System protection features: – Computer operating properly (COP) reset – Low-voltage detection with reset – Illegal opcode detection with reset – Illegal address detection with reset • 16-pin plastic dual in-line (PDIP) or small outline (SOIC) package • Low-power design fully static with stop and wait modes • Internal power-up reset circuit requiring no external pins • –40°C to +125°C operation • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes, eight more than the M68HC05 • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Third party C language support N O N - D I S C L O S U R E Features of the CPU08 include: 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908KX8 MCU. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA General Description A G R E E M E N T • R E Q U I R E D General Description MCU Block Diagram Technical Data 31 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D M68HC08 CPU CONTROL AND STATUS REGISTERS — 78 BYTES SECURITY MODULE USER FLASH — 7680 BYTES COMPUTER OPERATING PROPERLY MODULE USER RAM — 192 BYTES PTB0/AD0 PTB1/AD1 PTB2/AD2 POWER-ON RESET MODULE PTB ARITHMETIC/LOGIC UNIT DDRB CPU REGISTERS LOW-VOLTAGE INHIBIT MODULE MOTOROLA MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 General Description USER FLASH VECTOR SPACE — 36 BYTES FLASH BURN-IN ROM — 1024 BYTES INTERNAL CLOCK GENERATOR MODULE KEYBOARD INTERRUPT MODULE ANALOG-TO-DIGITAL CONVERTER MODULE 62)7:$5(6(/(&7$%/( SERIAL COMMUNICATION INTERFACE MODULE SYSTEM INTEGRATION MODULE ,54 IRQ MODULE VDD VSS PROGRAMMABLE TIME BASE MODULE BREAK MODULE POWER Notes: 1. Pin contains integrated pullup resistor 2. High-current source/sink pin 3. Pin contains software selectable pullup resistor if general function I/O pin is configured as input. 4. Pins are used for external clock source or crystal/ceramic resonator option. Figure 1-1. MC68HC908KX8 MCU Block Diagram PTA 2-CHANNEL TIMER INTERFACE MODULE DDRA MONITOR ROM — 295 BYTES PTB3/AD3 PTB4/RxD PTB5/TxD PTB6/(OSC1)(4) PTB7/(OSC2)/RST(4) PTA0/KBD0(2), (3) PTA1/KBD1(2), (3) PTA2/KBD2/TCH0(2), (3) PTA3/KBD3/TCH1(2), (3) PTA4/KBD4(2), (3) General Description Technical Data 32 INTERNAL BUS Figure 1-2 shows the pin assignments for MC68HC908KX8. VSS 1 16 VDD PTA1/KBD1 2 15 PTA4/KBD4 PTA0/KBD0 3 14 PTA3/KBD3/TCH1 IRQ1 4 13 PTA2/KBD2/TCH0 PTB0/AD0 5 12 PTB4/RxD PTB1/AD1 6 11 PTB5/TxD PTB2/AD2 7 10 PTB6/(OSC1) PTB3/AD3 8 9 PTB7/(OSC2)/RST Figure 1-2. PDIP and SOIC Pin Assignments 1.5.1 Supply Pins (VDD and VSS) VDD and VSS are the power supply and ground pins. The MCU operates from a single power supply. Fast signal transitions on MCU pins place high, short-duration current demands on the power supply. To prevent noise problems, take special care to provide power supply bypassing at the MCU as shown in Figure 1-3. Place the bypass capacitors as close to the MCU power pins as possible. Use high-frequency response ceramic capacitors for CBypass. CBulk are optional bulk current bypass capacitors for use in applications that require the port pins to source high-current levels. 1.5.2 Oscillator Pins (OSC1 and OSC2) The OSC1 and OSC2 pins are available through programming options in the configuration register. These pins then become the connections to an external clock source or crystal/ceramic resonator. PTB7 and PTB6 are not available for the crystal/ceramic resonator option and PTB6 is unavailable for the external clock source option. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA General Description Technical Data 33 N O N - D I S C L O S U R E 1.5 Pin Assignments A G R E E M E N T R E Q U I R E D General Description Pin Assignments R E Q U I R E D General Description MCU VDD VSS CBypass 0.1 µF + N O N - D I S C L O S U R E A G R E E M E N T CBulk 9'' Note: Component values shown represent typical applications. Figure 1-3. Power Supply Bypassing 1.5.3 External Interrupt Pin (IRQ1) IRQ1 is an asynchronous external interrupt pin with an internal pullup resistor. See Section 12. External Interrupt (IRQ). 1.5.4 Port A Input/Output (I/O) Pins (PTA4/KBD4–PTA0/KBD0) PTA4/KBD4–PTA0/KBD0 is a 5-bit special-function port that shares its pins with the keyboard interrupt (KBI) module and the 2-channel timer module (TIM). • Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. The respective pin utilizes an internal pullup resistor when enabled. See Section 13. Keyboard Interrupt Module (KBI). • Each port A pin contains a software selectable internal pullup resistor when the general-function I/O port is configured as an input. See Section 10. Input/Output (I/O) Ports. The pullup resistor is automatically disabled once a TIM special function is enabled for that pin. • All port A pins are high-current source/sink pins. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 34 General Description MOTOROLA Any unused inputs and I/O ports should be tied to an appropriate logic level (either VDD or VSS). Although the I/O ports of the MC68HC908KX8 do not require termination, termination is recommended to reduce the possibility of static damage. 1.5.5 Analog Reference Pin (VREFH) The VREFH pin is the analog reference voltage for the analog-to-digital converter (ADC) module. The voltage is supplied through a double-bond to the VDD pin. See Section 20. Electrical Specifications for ADC parameters. 1.5.6 Port B Input/Output (I/O) Pins (PTB7/(OSC2)/RST–PTB0/AD0) PTB7/(OSC2)/RST–PTB0/AD0 are general-purpose bidirectional I/O port pins, all sharing special functions. PTB7 and PTB6 share with the on-chip oscillator circuit through configuration options. See 7.4.3 External Clock Generator. • PTB5 and PTB4 share with the SCI module. See Section 14. Serial Communications Interface Module (SCI). • PTB3–PTB0 share with the ADC module. See Section 17. Analog-to-Digital Converter (ADC). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA General Description N O N - D I S C L O S U R E • A G R E E M E N T NOTE: R E Q U I R E D General Description Pin Assignments Technical Data 35 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 36 General Description MOTOROLA 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.3 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.4 Monitor ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 2.2 Introduction The central processor unit (CPU08) can address 64 Kbytes of memory space. • 7680 bytes of FLASH memory • 192 bytes of random-access memory (RAM) • 36 bytes of user-defined vectors • 295 bytes of monitor read-only memory (ROM) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Memory Map N O N - D I S C L O S U R E The memory map, shown in Figure 2-1, includes: R E Q U I R E D Section 2. Memory Map A G R E E M E N T Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 Technical Data 37 R E Q U I R E D Memory Map $0000 ↓ $003F $0040 ↓ $00FF A G R E E M E N T $0100 ↓ $0FFF $1000 ↓ $13FF I/O REGISTERS (64 BYTES) RAM (192 BYTES) UNIMPLEMENTED (3839 BYTES) FLASH BURN-IN ROM (1024 BYTES) UNIMPLEMENTED (52,224 BYTES) $E000 ↓ $FDFF USER FLASH MEMORY (7680 BYTES) N O N - D I S C L O S U R E $1400 ↓ $DFFF $FE00 RESERVED $FE01 SIM RESET STATUS REGISTER (SRSR) $FE02 RESERVED $FE03 RESERVED $FE04 INTERRUPT STATUS REGISTER 1 (INT1) $FE05 INTERRUPT STATUS REGISTER 2 (INT2) $FE06 INTERRUPT STATUS REGISTER 3 (INT3) $FE07 RESERVED $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 BREAK ADDRESS REGISTER HIGH (BRKH) $FE0A BREAK ADDRESS REGISTER LOW (BRKL) $FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR) $FE0C LVI STATUS REGISTER (LVISR) $FE0D ↓ $FE1F UNIMPLEMENTED (18 BYTES) $FE20 ↓ $FF46 MONITOR ROM (295 BYTES) $FF47 ↓ $FF7D UNIMPLEMENTED (57 BYTES) $FF7E FLASH BLOCK PROTECT REGISTER (FLBPR) $FF7F ↓ $FFDB UNIMPLEMENTED (90 BYTES) $FFDC ↓ $FFFF FLASH VECTORS (36 BYTES) Figure 2-1. Memory Map Technical Data 38 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Memory Map MOTOROLA 2.3 I/O Registers $FE01 — SIM reset status register, SRSR • $FE04 — Interrupt status register 1, INT1 • $FE05 — Interrupt status register 2, INT2 • $FE06 — Interrupt status register 3, INT3 • $FE08 — FLASH control register, FLCR • $FE09 — Break address register high, BRKH • $FE0A — Break address register low, BRKL • $FE0B — Break status and control register, BRKSCR • $FE0C — LVI status register, LVISR • $FF7E — FLASH block protect register, FLBPR in non-volatile FLASH memory • $FFFF — COP control register, COPCTL A summary of the registers available on the MC68HC908KX8 is provided in Figure 2-2. Table 2-1 is a list of vector locations. Addr. $0000 $0001 Register Name Read: Port A Data Register (PTA) Write: See page 151. Reset: Read: Port B Data Register (PTB) Write: See page 155. Reset: $0002 Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset Unimplemented = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 7) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Memory Map Technical Data 39 N O N - D I S C L O S U R E • A G R E E M E N T Most of the control, status, and data registers are in the zero-page area of $0000–$003F. Additional input/output (I/O) registers have the following addresses: R E Q U I R E D Memory Map I/O Registers N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Map Addr. Register Name $0003 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 R R ORIE NEIE FEIE PEIE Unimplemented Read: Data Direction Register A $0004 (DDRA) Write: See page 152. Reset: Read: Data Direction Register B DDRB7 $0005 (DDRB) Write: See page 156. Reset: 0 $0006 Unimplemented ↓ ↓ $000C Unimplemented Read: Port A Input Pullup Enable $000D Register (PTAPUE) Write: See page 154. Reset: $000E Unimplemented ↓ ↓ $0012 $0013 $0014 $0015 $0016 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Unimplemented Read: SCI Control Register 1 LOOPS (SCC1) Write: See page 198. Reset: 0 Read: SCI Control Register 2 (SCC2) Write: See page 201. Reset: Read: SCI Control Register 3 (SCC3) Write: See page 204. Reset: R8 U U 0 0 0 0 0 0 Read: SCI Status Register 1 (SCS1) Write: See page 206. Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 7) Technical Data 40 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Memory Map MOTOROLA Read: SCI Status Register 2 (SCS2) Write: See page 210. Reset: Read: SCI Data Register (SCDR) Write: See page 211. Reset: $0018 $0019 Read: SCI Baud Rate Register (SCBR) Write: See page 211. Reset: Keyboard Status and Read: Control Register (KBSCR) Write: $001A See page 177. Reset: Read: Keyboard Interrupt Enable $001B Register (KBIER) Write: See page 178. Reset: Timebase Control Read: Register (TBCR) Write: See page 220. Reset: $001C $001D Read: IRQ Status and Control Register (ISCR) Write: See page 169. Reset: Read: Configuration Register 2 (1) $001E (CONFIG2) Write: See page 144. Reset: $001F Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Unaffected by reset 0 0 0 0 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 0 0 0 0 KEYF 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 TBR2 TBIF 0 0 0 0 0 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 TBR1 TBR0 TBIE TBON R 0 0 IMASK1 MODE1 0 TACK 0 0 0 0 0 0 0 0 0 0 IRQF1 0 R R R R R ACK1 0 0 0 0 0 0 0 0 EXTXTALEN EXTSLOW EXTCLKEN 0 OSCENINSTOP SCIBDSRC 0 0 0 0 0 0 SSREC STOP COPD 0 0 0 0 0 0 0 R 0 Configuration Register 1 (1) Read: COPRS (CONFIG1) See page 144. Write: POR Reset: Other Resets: SCP1 0 0 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 0 0 0 0 0 U 1. LVI5OR3 is only writable after a power-on reset (POR). Bit 6 of CONFIG1 is read-only and will read 0. All other bits in CONFIG1 and CONFIG2 are one-time writable after any reset. = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 7) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Memory Map Technical Data 41 A G R E E M E N T $0017 Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map I/O Registers R E Q U I R E D Memory Map Addr. $0020 $0021 N O N - D I S C L O S U R E A G R E E M E N T $0022 $0023 $0024 $0025 Register Name 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: Timer Status and Control Register (TSC) Write: See page 235. Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer Counter Register High (TCNTH) Write: See page 237. Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer Counter Register Low (TCNTL) Write: See page 237. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Read: Timer Counter Modulo Register High (TMODH) Write: See page 238. Reset: Read: Timer Counter Modulo Register Low (TMODL) Write: See page 238. Reset: Read: Timer Channel 0 Status and Control Register Write: (TSC0) See page 239. Reset: Read: Timer Channel 0 Register $0026 High (TCH0H) Write: See page 243. Reset: Read: Timer Channel 0 Register $0027 Low (TCH0L) Write: See page 243. Reset: $0028 Bit 7 Read: Timer Channel 1 Status and Control Register Write: (TSC1) See page 239. Reset: Read: Timer Channel 1 Register $0029 High (TCH1H) Write: See page 243. Reset: 0 CH0F TRST 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 Indeterminate after reset = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 7) Technical Data 42 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Memory Map MOTOROLA Read: Timer Channel 1 Register $002A Low (TCH1L) Write: See page 243. Reset: $002B 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Indeterminate after reset Unimplemented ↓ ↓ $0035 $0036 Bit 7 Unimplemented Read: ICG Control Register (ICGCR) Write: See page 131. Reset: CMIE CMF ICGS ECGON ECGS CMON CS ICGON 0 0 1 0 0 0 N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 DDIV3 DDIV2 DDIV1 DDIV0 0* 0 0 *See 7.8.1 ICG Control Register for method of clearing the CMF bit. $0037 Read: ICG Multiplier Register (ICGMR) Write: See page 133. Reset: Read: ICG Trim Register (ICGTR) Write: See page 134. Reset: $0038 Read: ICG Divider Control Register (ICGDVR) Write: See page 134. Reset: $0039 $003A $003D 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 R R R R R R R U U U U U U U R R R R R R R AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 R R R R R R R R Read: DSTG7 ICG DCO Stage Control Register (ICGDSR) Write: R See page 135. Reset: U $003B $003C 0 Reserved Read: Analog-to-Digital Status and Control Register Write: (ADSCR) See page 251. Reset: Read: Analog-to-Digital Data Register (ADR) Write: See page 253. Reset: R COCO R Indeterminate after reset = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 7) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Memory Map Technical Data 43 A G R E E M E N T Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Map I/O Registers R E Q U I R E D Memory Map Addr. $003E Register Name Read: Analog-to-Digital Input Clock Register (ADCLK) Write: See page 253. Reset: $003F A G R E E M E N T 6 5 4 3 2 1 ADIV2 ADIV1 ADIV0 ADICLK 0 0 0 0 0 R Bit 0 0 0 0 0 0 0 0 0 0 1 0 0 BW 0 R R R R R NOTE R 0 0 0 1 0 0 0 0 POR 0 COP ILOP ILAD MENRST LVI 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BCFE R R R R R R R R Unimplemented Read: SIM Break Status Register $FE00 (SBSR)(1) Write: See page 275. N O N - D I S C L O S U R E Bit 7 Reset: 1. Writing a logic 0 clears BW. Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 95. POR: $FE02 $FE03 Read: Break Auxiliary Register (BRKAR) Write: See page 277. Reset: Read: SIM Break Flag Control Register (SBFCR) Write: See page 276. Reset: BDCOP 0 Read: Interrupt Status Register 1 $FE04 (INT1) Write: See page 97. Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: See page 97. Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 (INT3) Write: See page 98. Reset: IF22 IF21 IF20 IF19 IF18 IF17 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R = Unimplemented R = Reserved $FE07 Read: FLASH Test Control Write: Register (FLTCR) Reset: U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 7) Technical Data 44 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Memory Map MOTOROLA $FE08 $FE09 $FE0A Register Name Read: FLASH Control Register (FLCR) Write: See page 50. Reset: Read: Break Addres Register High (BRKH) Write: See page 274. Reset: Read: Break Addres Register Low (BRKL) Write: See page 274. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 273. Reset: 6 5 4 3 2 1 Bit 0 0 0 0 0 HVEN MARGIN ERASE PGM 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 Read: LVIOUT LVI Status Register (LVISR) Write: See page 141. Reset: 0 $FE0C $FF7E Bit 7 Read: FLASH Block Protect (1) Register (FLBPR) Write: See page 57. Reset: BPR7 A G R E E M E N T Addr. Unaffected by reset $FFFF N O N - D I S C L O S U R E 1. Non-volatile FLASH register Read: COP Control Register (COPCTL) Write: See page 163. Reset: Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 7) 2.4 Monitor ROM The 295 bytes at addresses $FE20–$FF46 are reserved ROM addresses that contain the instructions for the monitor functions. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA R E Q U I R E D Memory Map Monitor ROM Memory Map Technical Data 45 R E Q U I R E D Memory Map Table 2-1. Vector Locations High N O N - D I S C L O S U R E Priority A G R E E M E N T Low Address Technical Data 46 Vector $FFDC Timebase module vector (high) $FFDD Timebase module vector (low) $FFDE ADC conversion complete vector (high) $FFDF ADC conversion complete vector (low) $FFE0 Keyboard vector (high) $FFE1 Keyboard vector (low) $FFE2 SCI transmit vector (high) $FFE3 SCI transmit vector (low) $FFE4 SCI receive vector (high) $FFE5 SCI receive vector (low) $FFE6 SCI receive error vector (high) $FFE7 SCI receive error vector (low) $FFE8 Reserved $FFE9 Reserved $FFEA Reserved $FFEB Reserved $FFEC Reserved $FFED Reserved $FFEE Reserved $FFEF Reserved $FFF0 Reserved $FFF1 Reserved $FFF2 TIM overflow vector (high) $FFF3 TIM overflow vector (low) $FFF4 TIM channel 1 vector (high) $FFF5 TIM channel 1 vector (low) $FFF6 TIM channel 0 vector (high) $FFF7 TIM channel 0 vector (low) $FFF8 CMIREQ vector (high) $FFF9 CMIREQ vector (low) $FFFA IRQ1 vector (high) $FFFB IRQ1 vector (low) $FFFC SWI vector (high) $FFFD SWI vector (low) $FFFE Reset vector (high) $FFFF Reset vector (low) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Memory Map MOTOROLA 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Introduction This section describes the 192 bytes of random-access memory (RAM). 3.3 Functional Description Addresses $0040–$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805, M146805 and M68HC05compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines. The CPU could overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Random-Access Memory (RAM) Technical Data 47 R E Q U I R E D 3.1 Contents A G R E E M E N T Section 3. Random-Access Memory (RAM) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Random-Access Memory (RAM) Technical Data 48 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Random-Access Memory (RAM) MOTOROLA 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7 FLASH Program/Read Operation . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2 Introduction This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program, erase, and read operations are enabled through the use of an internal charge pump. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA FLASH Memory Technical Data 49 R E Q U I R E D 4.1 Contents A G R E E M E N T Section 4. FLASH Memory N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 4.3 Functional Description The FLASH memory is an array of 7,680 bytes with an additional 36 bytes of user vectors and one byte used for block protection. NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0. The program and erase operations are facilitated through control bits in the FLASH control register (FLCR). See 4.4 FLASH Control Register. The FLASH is organized internally as an 8192-word by 8-bit complementary metal-oxide semiconductor (CMOS) page erase, byte (8-bit) program embedded FLASH memory. Each page consists of 64 bytes. The page erase operation erases all words within a page. A page is composed of two adjacent rows. A security feature prevents viewing of the FLASH contents.(1) 4.4 FLASH Control Register The FLASH control register (FLCR) controls FLASH program and erase operations. Address: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D FLASH Memory Read: $FE08 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 Write: Reset: 0 0 0 0 = Unimplemented Figure 4-1. FLASH Control Register (FLCR) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 50 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 FLASH Memory MOTOROLA This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can be set only if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit Setting this read/write bit configures the 8-Kbyte FLASH array for mass erase operation. 1 = MASS erase operation selected 0 = MASS erase operation unselected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected A G R E E M E N T HVEN — High-Voltage Enable Bit R E Q U I R E D FLASH Memory FLASH Control Register This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA FLASH Memory Technical Data 51 N O N - D I S C L O S U R E PGM — Program Control Bit 4.5 FLASH Page Erase Operation Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to read as logic 1: 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH address within the page address range desired. A G R E E M E N T R E Q U I R E D FLASH Memory 4. Wait for a time, tNVS (minimum of 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum of 1 ms). 7. Clear the ERASE bit. 8. Wait for a time, tNVH (minimum of 5 µs). 9. Clear the HVEN bit. 10. After a time, tRCV (typically 1 µs), the memory can be accessed again in read mode. N O N - D I S C L O S U R E NOTE: Technical Data 52 While these operations must be performed in the order shown, other unrelated operations may occur between the steps. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 FLASH Memory MOTOROLA 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address(1) within the FLASH memory address range. 4. Wait for a time, tNVS (minimum of 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tMErase (minimum of 4 ms). 7. Clear the ERASE bit. 8. Wait for a time, tNVHL (minimum of 100 µs). 9. Clear the HVEN bit. 10. After a time, tRCV (minimum of 1 µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. 1. When in monitor mode, with security sequence failed (see Section 18. Monitor ROM (MON)), write to the FLASH block protect register instead of any FLASH address. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA FLASH Memory Technical Data 53 A G R E E M E N T Use this step-by-step procedure to erase entire FLASH memory to read as logic 1: N O N - D I S C L O S U R E 4.6 FLASH Mass Erase Operation R E Q U I R E D FLASH Memory FLASH Mass Erase Operation 4.7 FLASH Program/Read Operation Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40 ,$XX60, $XX80, $XXA0, $XXC0, and $XXE0. Use this step-by-step procedure to program a row of FLASH memory (Figure 4-2 is a flowchart representation). NOTE: To avoid program disturbs, the row must be erased before any byte on that row is programmed. 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. A G R E E M E N T R E Q U I R E D FLASH Memory 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address within the row address range desired. 4. Wait for a time, tNVS (minimum of 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tPGS (minimum of 5 µs). 7. Write data to the FLASH address(1) to be programmed. N O N - D I S C L O S U R E 8. Wait for a time, tPROG (minimum of 30 µs). 9. Repeat steps 7 and 8 until all the bytes within the row are programmed. 10. Clear the PGM bit.(1) 11. Wait for a time, tNVH (minimum of 5 µs). 12. Clear the HVEN bit. 13. After a time, tRCV (minimum of 1 µs), the memory can be accessed in read mode again. 1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing the PGM bit, must not exceed the maximum programming time, tPROG maximum. Technical Data 54 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 FLASH Memory MOTOROLA Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum. See 20.12 Memory Characteristics. 4.8 FLASH Block Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using the FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either erase or program operations. NOTE: In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit. When FLBPR is programmed with all 0s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1s), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory address ranges as shown in 4.9 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA FLASH Memory Technical Data 55 A G R E E M E N T NOTE: N O N - D I S C L O S U R E This program sequence is repeated throughout the memory until all data is programmed. R E Q U I R E D FLASH Memory FLASH Block Protection R E Q U I R E D FLASH Memory Algorithm for programming a row (32 bytes) of FLASH memory 1 SET PGM BIT 2 READ THE FLASH BLOCK PROTECT REGISTER 3 WRITE ANY DATA TO ANY FLASH ADDRESS WITHIN THE ROW ADDRESS RANGE DESIRED 4 WAIT FOR A TIME, tNVS A G R E E M E N T 5 SET HVEN BIT 6 WAIT FOR A TIME, tPGS 7 WRITE DATA TO THE FLASH ADDRESS TO BE PROGRAMMED 8 WAIT FOR A TIME, tPROG N O N - D I S C L O S U R E COMPLETED PROGRAMMING THIS ROW? YES NO 10 11 CLEAR PGM BIT WAIT FOR A TIME, tNVH Notes: The time between each FLASH address change (step 7 to step 7), or the time between the last FLASH address programmed to clearing PGM bit (step 7 to step 10) must not exceed the maximum programming time, tPROG maximum. This row program algorithm assumes the row/s to be programmed are initially erased. 12 13 CLEAR HVEN BIT WAIT FOR A TIME, tRCV END OF PROGRAMMING Figure 4-2. FLASH Programming Flowchart Technical Data 56 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 FLASH Memory MOTOROLA 4.9 FLASH Block Protect Register The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can be written only during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory. Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 U U U U U U U U A G R E E M E N T $FF7E Read: Write: Reset: U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory. Figure 4-3. FLASH Block Protect Register (FLBPR) BPR7–BPR0 — FLASH Block Protect Bits These eight bits represent bits 13–6 of a 16-bit memory address. Bits 15 and 14 are logic 1s and bits 5–0 are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be $XX00, $XX40, etc., (64 bytes page boundaries) within the FLASH memory. See Figure 4-4 and Table 4-1. 16-BIT MEMORY ADDRESS START ADDRESS OF FLASH BLOCK PROTECT 1 1 FLBPR VALUE 0 0 0 0 0 0 Figure 4-4. FLASH Block Protect Start Address MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA FLASH Memory Technical Data 57 N O N - D I S C L O S U R E Address: R E Q U I R E D FLASH Memory FLASH Block Protect Register N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D FLASH Memory Table 4-1. Protect Start Address Examples BPR7–BPR0 Start of Address of Protect Range(1) $80 The entire FLASH memory is protected. $81 (1000 0001) $E040 (1110 0000 0100 0000) $82 (1000 0010) $E080 (1110 0000 1000 0000) and so on... $FE (1111 1110) $FF80 (1111 1111 1000 0000) $FF The entire FLASH memory is not protected. 1. The end address of the protected range is always $FFFF. 4.10 Wait Mode Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode. 4.11 Stop Mode Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode NOTE: Technical Data 58 Standby mode is the power-saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 FLASH Memory MOTOROLA 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 5.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 5.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 5.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 5.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 5.7 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.8 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 Introduction The M68HC08 central processor unit (CPU08) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Central Processor Unit (CPU) Technical Data 59 R E Q U I R E D 5.1 Contents A G R E E M E N T Section 5. Central Processor Unit (CPU) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 5.3 Features Features of the CPU08 include: • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with X-register manipulation instructions • 8-MHz internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 5.4 CPU Registers Figure 5-1 shows the five CPU registers. CPU registers are not part of the memory map. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) 0 7 ACCUMULATOR (A) 0 15 H X 15 INDEX REGISTER (H:X) 0 STACK POINTER (SP) 15 0 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 5-1. CPU Registers Technical Data 60 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA 5.4.1 Accumulator The accumulator (A) is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Unaffected by reset Figure 5-2. Accumulator (A) 5.4.2 Index Register The 16-bit index register (H:X) allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. A G R E E M E N T Reset: R E Q U I R E D Central Processor Unit (CPU) CPU Registers Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 5-3. Index Register (H:X) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Central Processor Unit (CPU) Technical Data 61 N O N - D I S C L O S U R E The index register can serve also as a temporary data storage location. 5.4.3 Stack Pointer The stack pointer (SP) is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte (LSB) to $FF and does not affect the most significant byte (MSB). The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 5-4. Stack Pointer (SP) N O N - D I S C L O S U R E NOTE: Technical Data 62 The location of the stack is arbitrary and may be relocated anywhere in the random-access memory (RAM). Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA The program counter (PC) is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with vector from $FFFE and $FFFF N O N - D I S C L O S U R E Figure 5-5. Program Counter (PC) A G R E E M E N T 5.4.4 Program Counter R E Q U I R E D Central Processor Unit (CPU) CPU Registers MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Central Processor Unit (CPU) Technical Data 63 R E Q U I R E D Central Processor Unit (CPU) 5.4.5 Condition Code Register The 8-bit condition code register (CCR) contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Read: Write: A G R E E M E N T Reset: Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X X = Indeterminate Figure 5-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag N O N - D I S C L O S U R E The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I — Interrupt Mask Bit When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled Technical Data 64 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative Flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero Flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test, branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Central Processor Unit (CPU) Technical Data 65 A G R E E M E N T To maintain M6805 compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the push-H-onto-stack (PSHH) and pull-H-from-stack (PULH) instructions. N O N - D I S C L O S U R E NOTE: R E Q U I R E D Central Processor Unit (CPU) CPU Registers R E Q U I R E D Central Processor Unit (CPU) 5.5 Arithmetic/Logic Unit (ALU) The arithmetic/logic unit (ALU) performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. N O N - D I S C L O S U R E A G R E E M E N T 5.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. 5.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock 5.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. Technical Data 66 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry – IMM DIR EXT IX2 IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) – – – – – – IMM AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP A ← (A) & (M) Logical AND Arithmetic Shift Left (Same as LSL) ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear A ← (A) + (M) C 0 – – 0 b7 b0 PC ← (PC) + 2 + rel ? (C) = 0 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA – – IMM DIR EXT IX2 – IX1 IX SP1 SP2 Central Processor Unit (CPU) – – 2 3 4 4 3 2 4 5 ff ee ff 2 3 4 4 3 2 4 5 A7 ii 2 AF ii 2 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ff ee ff DIR INH INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 37 dd 47 57 67 ff 77 9E67 ff 4 1 1 4 3 5 b0 C b7 – ff ee ff Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 1 of 8) – – – – – – REL 24 rr 3 Technical Data 67 A G R E E M E N T Table 5-1 provides a summary of the M68HC08 instruction set. N O N - D I S C L O S U R E 5.7 Instruction Set Summary R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 Mn ← 0 DIR DIR DIR DIR – – – – – – DIR DIR DIR DIR Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BCLR n, opr Clear Bit n in M BCS rel BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel (A) & (M) 0 – – IMM DIR EXT IX2 – IX1 IX SP1 SP2 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) Cycles Operation Effect on CCR Opcode Source Form Operand Table 5-1. Instruction Set Summary (Sheet 2 of 8) Address Mode R E Q U I R E D Central Processor Unit (CPU) A5 B5 C5 D5 E5 F5 9EE5 9ED5 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 Technical Data 68 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 21 rr 3 BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr Set Bit n in M BSR rel Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel – – – – – DIR DIR DIR DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) – – – – – – REL DIR DIR DIR DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR DIR DIR – – – – – – DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel – – – – – – REL AD rr 4 DIR IMM – – – – – – IMM IX1+ IX+ SP1 31 41 51 61 71 9E61 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 PC ← (PC) + 3 + rel ? (Mn) = 1 PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) + 3 + rel ? (A) + 3 + rel ? (A) + 3 + rel ? (X) + 3 + rel ? (A) + 2 + rel ? (A) + 4 + rel ? (A) – (M) – (M) – (M) – (M) – (M) – (M) = $00 = $00 = $00 = $00 = $00 = $00 – – – – – CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Central Processor Unit (CPU) 3F dd 4F 5F 8C 6F ff 7F 9E6F ff 3 1 1 1 3 2 4 Technical Data 69 A G R E E M E N T BNE rel N O N - D I S C L O S U R E V H I N Z C Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 3 of 8) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Compare A with M (A) – (M) COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A Decrement DIV Divide EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP Exclusive OR M with A Technical Data 70 (M) = $FF – (M) (A) = $FF – (M) (X) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (H:X) – (M:M + 1) (X) – (M) (A) 10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP M← A← X← M← M← M← – – IMM DIR EXT IX2 IX1 IX SP1 SP2 DIR INH INH 1 IX1 IX SP1 A ← (H:A)/(X) H ← Remainder A ← (A ⊕ M) ii dd hh ll ee ff ff ff ee ff 33 dd 43 53 63 ff 73 9E63 ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 0 – – IMM DIR 65 75 ii ii+1 dd 3 4 IMM DIR EXT IX2 IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 INH 72 – – – – U – – A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A1 B1 C1 D1 E1 F1 9EE1 9ED1 Cycles Operation Effect on CCR Operand Source Form Opcode Table 5-1. Instruction Set Summary (Sheet 4 of 8) Address Mode R E Q U I R E D Central Processor Unit (CPU) – – – – – – 0 – – DIR INH INH – IX1 IX SP1 INH IMM DIR EXT – IX2 IX1 IX SP1 SP2 3B 4B 5B 6B 7B 9E6B ff ee ff 2 dd rr rr rr ff rr rr ff rr 3A dd 4A 5A 6A ff 7A 9E6A ff 52 A8 B8 C8 D8 E8 F8 9EE8 9ED8 5 3 3 5 4 6 4 1 1 4 3 5 7 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA JMP JMP JMP JMP JMP opr opr opr,X opr,X ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA LDA LDA LDA LDA LDA LDA LDA #opr opr opr opr,X opr,X ,X opr,SP opr,SP LDHX #opr LDHX opr LDX LDX LDX LDX LDX LDX LDX LDX #opr opr opr opr,X opr,X ,X opr,SP opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Increment Jump to Subroutine Move MUL PC ← Jump Address 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 IMM DIR EXT IX2 – IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 – IMM DIR 45 55 ii jj dd 3 4 IMM DIR EXT IX2 – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 A ← (M) 0 – – X ← (M) 0 – – C 0 b7 – – C (M)Destination ← (M)Source 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 34 dd 44 54 64 ff 74 9E64 ff 4 1 1 4 3 5 – – 0 H:X ← (H:X) + 1 (IX+D, DIX+) X:A ← (X) × (A) Central Processor Unit (CPU) 0 – – ff ee ff DIR INH INH IX1 IX SP1 b0 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA b0 0 b7 Unsigned multiply 0 – – H:X ← (M:M + 1) Load X from M MOV MOV MOV MOV 4 1 1 4 3 5 dd hh ll ee ff ff Load H:X from M Logical Shift Right – – 3C dd 4C 5C 6C ff 7C 9E6C ff BC CC DC EC FC Load A from M Logical Shift Left (Same as ASL) DIR INH – INH IX1 IX SP1 DIR EXT – – – – – – IX2 IX1 IX Jump LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP opr,opr opr,X+ #opr,opr X+,opr M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 DD DIX+ – IMD IX+D – 0 – – – 0 INH 4E 5E 6E 7E 42 dd dd dd ii dd dd 5 4 4 4 5 Technical Data 71 A G R E E M E N T INC opr INCA INCX INC opr,X INC ,X INC opr,SP N O N - D I S C L O S U R E V H I N Z C Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 5 of 8) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation NSA Nibble Swap A M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) – – DIR INH INH IX1 IX SP1 30 dd 40 50 60 ff 70 9E60 ff Cycles Operation Effect on CCR Operand Source Form Opcode Table 5-1. Instruction Set Summary (Sheet 6 of 8) Address Mode R E Q U I R E D Central Processor Unit (CPU) 4 1 1 4 3 5 None – – – – – – INH 9D 1 A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Rotate Left through Carry A ← (A) | (M) 0 – – C b7 Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) RTS Return from Subroutine Technical Data 72 C – – ff ee ff 39 dd 49 59 69 ff 79 9E69 ff 4 1 1 4 3 5 DIR INH INH IX1 IX SP1 36 dd 46 56 66 ff 76 9E66 ff 4 1 1 4 3 5 b0 SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) AA BA CA DA EA FA 9EEA 9EDA DIR INH INH IX1 IX SP1 b0 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP b7 – – IMM DIR EXT – IX2 IX1 IX SP1 SP2 – – – – – – INH 9C 1 INH 80 7 – – – – – – INH 81 4 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA #opr opr opr opr,X opr,X ,X opr,SP opr,SP Subtract with Carry A ← (A) – (M) – (C) – – IMM DIR EXT IX2 IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX STX STX STX STX STX STX opr opr opr,X opr,X ,X opr,SP opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Store X in M Subtract M ← (A) (M:M + 1) ← (H:X) I ← 0; Stop Oscillator M ← (X) A ← (A) – (M) SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) TAX Transfer A to X TPA Transfer CCR to A B7 C7 D7 E7 F7 9EE7 9ED7 – DIR 35 – – 0 – – – INH 8E 0 – – 0 – – 0 – – – – dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 dd 4 1 DIR EXT IX2 – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF dd hh ll ee ff ff IMM DIR EXT IX2 IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff ff ee ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 – – 1 – – – INH 83 9 INH 84 2 X ← (A) – – – – – – INH 97 1 A ← (CCR) – – – – – – INH 85 1 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA DIR EXT IX2 – IX1 IX SP1 SP2 Central Processor Unit (CPU) Technical Data 73 A G R E E M E N T SBC SBC SBC SBC SBC SBC SBC SBC N O N - D I S C L O S U R E V H I N Z C Cycles Description Operand Operation Effect on CCR Opcode Source Form Address Mode Table 5-1. Instruction Set Summary (Sheet 7 of 8) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP WAIT Enable Interrupts; Stop Processor A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N (A) – $00 or (X) – $00 or (M) – $00 0 – – DIR INH – INH IX1 IX SP1 3D dd 4D 5D 6D ff 7D 9E6D ff Cycles Operation Effect on CCR Operand Source Form Opcode Table 5-1. Instruction Set Summary (Sheet 8 of 8) Address Mode R E Q U I R E D Central Processor Unit (CPU) 3 1 1 3 2 4 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 I bit ← 0 – – 0 – – – INH 8F 1 Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : — Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected 5.8 Opcode Map See Table 5-2. Technical Data 74 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA Central Processor Unit (CPU) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Table 5-2. Opcode Map Bit Manipulation DIR DIR MSB Branch REL DIR INH 3 4 0 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL Read-Modify-Write INH IX1 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 IMM DIR EXT A B C Register/Memory IX2 SP2 D 9ED IX1 SP1 IX E 9EE F LSB 0 1 2 3 4 5 6 7 8 9 A B C E F Technical Data 75 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 3 5 NEG NEG IX 3 SP1 1 4 6 CBEQ CBEQ IX+ 4 SP1 2 2 DAA 1 INH 3 5 COM COM IX 3 SP1 1 3 5 LSR LSR IX 3 SP1 1 4 CPHX 2 DIR 3 5 ROR ROR IX 3 SP1 1 3 5 ASR ASR IX 3 SP1 1 3 5 LSL LSL IX 3 SP1 1 3 5 ROL ROL IX 3 SP1 1 3 5 DEC DEC IX 3 SP1 1 4 6 DBNZ DBNZ IX 4 SP1 2 3 5 INC INC IX 3 SP1 1 2 4 TST TST IX 3 SP1 1 4 MOV 2 IX+D 2 4 CLR CLR IX 3 SP1 1 SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment N O N - D I S C L O S U R E 3 7 BGE RTI 1 INH 2 REL 3 4 BLT RTS 1 INH 2 REL 3 BGT 2 REL 3 9 BLE SWI 1 INH 2 REL 2 2 TXS TAP INH 1 INH 1 2 1 TSX TPA INH 1 INH 1 2 PULA 1 INH 1 2 TAX PSHA INH 1 INH 1 1 2 CLC PULX INH 1 INH 1 1 2 SEC PSHX INH 1 INH 1 2 2 CLI PULH INH 1 INH 1 2 2 SEI PSHH INH 1 INH 1 1 1 RSP CLRH INH 1 INH 1 1 NOP 1 INH 1 STOP * 1 INH 1 1 TXA WAIT INH 1 INH 1 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 2 2 2 2 2 2 2 2 2 2 2 2 2 4 BSR REL 2 2 LDX 2 IMM 2 2 AIX 2 IMM 2 2 3 SUB DIR 3 CMP DIR 3 SBC DIR 3 CPX DIR 3 AND DIR 3 BIT DIR 3 LDA DIR 3 STA DIR 3 EOR DIR 3 ADC DIR 3 ORA DIR 3 ADD DIR 2 JMP DIR 4 JSR DIR 3 LDX DIR 3 STX DIR 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 4 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 5 JSR EXT 4 LDX EXT 4 STX EXT MSB 0 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 4 4 4 4 4 4 4 4 4 4 4 4 5 SUB SP2 5 CMP SP2 5 SBC SP2 5 CPX SP2 5 AND SP2 5 BIT SP2 5 LDA SP2 5 STA SP2 5 EOR SP2 5 ADC SP2 5 ORA SP2 5 ADD SP2 5 LDX SP2 5 STX 4 SP2 4 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 3 LDX 2 IX1 3 STX 2 IX1 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB SP1 4 CMP SP1 4 SBC SP1 4 CPX SP1 4 AND SP1 4 BIT SP1 4 LDA SP1 4 STA SP1 4 EOR SP1 4 ADC SP1 4 ORA SP1 4 ADD SP1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 LDX SP1 1 4 STX 3 SP1 1 3 2 SUB IX 2 CMP IX 2 SBC IX 2 CPX IX 2 AND IX 2 BIT IX 2 LDA IX 2 STA IX 2 EOR IX 2 ADC IX 2 ORA IX 2 ADD IX 2 JMP IX 4 JSR IX 2 LDX IX 2 STX IX High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) Opcode Map D 1 4 NEGA NEG INH 2 DIR 1 4 5 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 1 4 COMA COM INH 2 DIR 1 1 4 LSRA LSR INH 2 DIR 1 3 4 LDHX STHX 2 DIR 3 IMM 1 4 RORA ROR INH 2 DIR 1 1 4 ASRA ASR INH 2 DIR 1 1 4 LSLA LSL INH 2 DIR 1 1 4 ROLA ROL INH 2 DIR 1 1 4 DECA DEC INH 2 DIR 1 3 5 DBNZ DBNZA INH 3 DIR 2 1 4 INCA INC INH 2 DIR 1 1 3 TSTA TST INH 2 DIR 1 5 MOV 3 DD 1 3 CLRA CLR INH 2 DIR 1 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) Technical Data 76 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Central Processor Unit (CPU) MOTOROLA Section 6. System Integration Module (SIM) 6.1 Contents 6.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 81 6.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 6.3.2 Clock Startup from POR or LVI Reset . . . . . . . . . . . . . . . . . 81 6.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 82 6.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 82 6.4.1 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 83 6.4.1.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.4.1.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 85 6.4.1.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.1.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.4.1.5 Forced Monitor Mode Entry Reset (MENRST). . . . . . . . . 86 6.4.1.6 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .86 6.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 86 6.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 87 6.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 87 6.6 Program Exception Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90 6.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.6.2 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91 6.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 77 A G R E E M E N T Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 N O N - D I S C L O S U R E 6.2 R E Q U I R E D Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 6.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 6.8.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.8.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 96 6.8.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .97 6.8.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .97 6.8.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .98 6.2 Introduction This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. The SIM is a system state controller that coordinates the central processor unit (CPU) and exception timing. Together with the CPU, the SIM controls all microcontroller unit (MCU) activities. A G R E E M E N T R E Q U I R E D System Integration Module (SIM) A block diagram of the SIM is shown in Figure 6-1. Figure 6-2 is a summary of the SIM input/output (I/O) registers. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset entry and recovery N O N - D I S C L O S U R E – Internal clock control • Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation Technical Data 78 • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO ICG) SIM COUNTER COP CLOCK CGMXCLK (FROM ICG) CGMOUT (FROM ICG) CLOCK CONTROL CLOCK GENERATORS A G R E E M E N T ÷2 INTERNAL CLOCKS FORCED MON MODE ENTRY (FROM MENRST MODULE) POR CONTROL MASTER RESET CONTROL SIM RESET STATUS REGISTER LVI (FROM LVI MODULE) ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) INTERRUPT CONTROL AND PRIORITY DECODE N O N - D I S C L O S U R E RESET INTERRUPT SOURCES CPU INTERFACE Figure 6-1. SIM Block Diagram MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 79 A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 95. POR: POR 0 COP ILOP ILAD MENRST LVI 0 1 0 0 0 0 0 0 0 Read: Interrupt Status Register 1 $FE04 (INT1) Write: See page 97. Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: See page 97. Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 (INT3) Write: See page 98. Reset: IF22 IF21 IF20 IF19 IF18 IF17 IF16 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Figure 6-2. SIM I/O Register Summary N O N - D I S C L O S U R E Table 6-1 shows the internal signal names used in this section. Table 6-1. Signal Name Conventions Signal Name Description CGMXCLK Selected clock source from internal clock generator module (ICG) CGMOUT Clock output from ICG module (bus clock = CGMOUT divided by two) IAB Internal address bus IDB Internal data bus PORRST Technical Data 80 Signal from the power-on reset (POR) module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA 6.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, CGMOUT, as shown in Figure 6-3. This clock originates from either an external oscillator or from the internal clock generator. ECLK CLOCK SELECT CIRCUIT ÷2 ICLK ICG *(1(5$725 A CGMOUT B S* *:+(1 S = 1, CGMOUT = B SIM COUNTER ÷2 A G R E E M E N T CGMXCLK BUS CLOCK GENERATORS SIM CS R E Q U I R E D System Integration Module (SIM) SIM Bus Clock Control and Generation MONITOR MODE USER MODE ICG Figure 6-3. System Clock Signals In user mode, the internal bus frequency is the internal clock generator output (CGMXCLK) divided by four. 6.3.2 Clock Startup from POR or LVI Reset When the power-on reset (POR) module or the low-voltage inhibit (LVI) module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after 4096 CGMXCLK cycles. The MCU is held in reset by the SIM during this entire period. The bus clocks start upon completion of the timeout. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 81 N O N - D I S C L O S U R E 6.3.1 Bus Timing 6.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt or reset, the SIM allows CGMXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. Stop mode recovery timing is discussed in detail in 6.7.2 Stop Mode. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 6.4 Reset and System Initialization The MCU has these internal reset sources: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) • Power-on reset (POR) module • Computer operating properly (COP) module • Low-voltage inhibit (LVI) module • Illegal opcode • Illegal address • Forced monitor mode entry reset (MENRST) module All of these resets produce the vector $FFFE–$FFFF ($FEFE–$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. These internal resets clear the SIM counter and set a corresponding bit in the SIM reset status register (SRSR). See 6.5 SIM Counter and 6.8.1 SIM Reset Status Register. Technical Data 82 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA 6.4.1 Active Resets from Internal Sources An internal reset can be caused by an illegal address, illegal opcode, COP timeout, LVI, POR, or MENRST as shown in Figure 6-4. NOTE: For LVI or POR resets, the SIM cycles through 4096 CGMXCLK cycles during which the SIM asserts IRST. The internal reset signal then follows with the 64-cycle phase as shown in Figure 6-5. ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST LVI POR MENRST A G R E E M E N T The COP reset is asynchronous to the bus clock. R E Q U I R E D System Integration Module (SIM) Reset and System Initialization INTERNAL RESET Figure 6-4. Sources of Internal Reset IRST N O N - D I S C L O S U R E 64 CYCLES CGMXCLK IAB VECTOR HIGH Figure 6-5. Internal Reset Timing MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 83 6.4.1.1 Power-On Reset When power is first applied to the MCU, the power-on reset (POR) module generates a pulse to indicate that power-on has occurred. The MCU is held in reset while the SIM counter counts out 4096 CGMXCLK cycles. Another 64 CGMXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, these events occur: A G R E E M E N T R E Q U I R E D System Integration Module (SIM) • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables CGMOUT. • Internal clocks to the CPU and modules are held inactive for 4096 CGMXCLK cycles to allow stabilization of the internal clock generator. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. PORRST N O N - D I S C L O S U R E 4096 CYCLES 64 CYCLES CGMXCLK CGMOUT IRST IAB $FFFE $FFFF Figure 6-6. POR Recovery Technical Data 84 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least every 212–24 CGMXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the IRQ1 pin is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high-voltage signal on the IRQ1 pin. This prevents the COP from becoming disabled as a result of external noise. 6.4.1.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the configuration register (CONFIG1) is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. 6.4.1.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 85 A G R E E M E N T An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the reset status register (SRSR). N O N - D I S C L O S U R E 6.4.1.2 Computer Operating Properly (COP) Reset R E Q U I R E D System Integration Module (SIM) Reset and System Initialization N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) 6.4.1.5 Forced Monitor Mode Entry Reset (MENRST) The MENRST module is monitoring the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode. See Section 18. Monitor ROM (MON). 6.4.1.6 Low-Voltage Inhibit (LVI) Reset The low-voltage inhibit module (LVI) asserts its output to the SIM when the VDD voltage falls to the VTRIPF voltage. The LVI bit in the SIM reset status register (SRSR) is set and a chip reset is asserted if the LVIPWRD and LVIRSTD bits in the CONFIG register are at logic 0. The MCU is held in reset until VDD rises above VTRIPR. The MCU remains in reset until the SIM counts 4096 CGMXCLK to begin a reset recovery. Another 64 CGMXCLK cycles later, the CPU is released from reset to allow the reset vector sequence to occur. See Section 8. Low-Voltage Inhibit (LVI). 6.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of CGMXCLK. 6.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the internal clock generator to drive the bus clock state machine. Technical Data 86 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA 6.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register. If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32 CGMXCLK cycles. 6.5.3 SIM Counter and Reset States The SIM counter is free-running after all reset states. See 6.4.1 Active Resets from Internal Sources for counter control and internal reset recovery sequences. 6.6 Program Exception Control Normal, sequential program execution can be changed in two ways: 1. Interrupts A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Program Exception Control N O N - D I S C L O S U R E a. Maskable hardware CPU interrupts b. Non-maskable software interrupt instruction (SWI) 2. Reset MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 87 A G R E E M E N T R E Q U I R E D System Integration Module (SIM) 6.6.1 Interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the return-from-interrupt (RTI) instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 6-7 shows interrupt entry timing. Figure 6-8 shows interrupt recovery timing. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. As shown in Figure 6-9, once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced or the I bit is cleared. MODULE INTERRUPT I BIT IAB N O N - D I S C L O S U R E IDB DUMMY SP DUMMY SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L START ADDR V DATA H V DATA L OPCODE R/: Figure 6-7. Interrupt Entry MODULE INTERRUPT I BIT IAB IDB SP – 4 SP – 3 CCR SP – 2 A SP – 1 X SP PC PC + 1 PC – 1 [7:0] PC – 1 [15:8] OPCODE OPERAND R/: Figure 6-8. Interrupt Recovery Technical Data 88 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) Program Exception Control FROM RESET YES BITSET? SET? IIBIT NO ICG CLK MON INTERRUPT ? NO OTHER INTERRUPTS ? NO YES YES A G R E E M E N T IRQ1 INTERRUPT ? NO YES STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR SWI INSTRUCTION ? N O N - D I S C L O S U R E FETCH NEXT INSTRUCTION YES NO RTI INSTRUCTION ? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 6-9. Interrupt Processing MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 89 6.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 6-10 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the load-accumulator- frommemory (LDA) instruction is executed. A G R E E M E N T R E Q U I R E D System Integration Module (SIM) CLI BACKGROUND ROUTINE LDA #$FF N O N - D I S C L O S U R E INT1 PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 6-10. Interrupt Recognition Example Technical Data 90 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA To maintain compatibility with the M68HC05, M6805, and M146805 Families the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. 6.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 6.6.2 Reset All reset sources always have higher priority than interrupts and cannot be arbitrated. 6.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. Low-power modes are exited via an interrupt or reset. 6.7.1 Wait Mode In wait mode, the CPU clocks are inactive while one set of peripheral clocks continues to run. Figure 6-11 shows the timing for wait mode entry. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 91 A G R E E M E N T NOTE: N O N - D I S C L O S U R E The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. R E Q U I R E D System Integration Module (SIM) Low-Power Modes R E Q U I R E D System Integration Module (SIM) A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. A G R E E M E N T Wait mode can also be exited by a reset. If the COP disable bit, COPD, in the configuration register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB WAIT ADDR IDB WAIT ADDR + 1 PREVIOUS DATA SAME SAME NEXT OPCODE SAME SAME R/: Note: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 6-11. Wait Mode Entry Timing Figure 6-12 and Figure 6-13 show the timing for WAIT recovery. N O N - D I S C L O S U R E IAB $DE0B IDB $A6 $A6 $DE0C $A6 $01 $00FF $0B $00FE $00FD $00FC $DE EXITSTOPWAIT Note: EXITSTOPWAIT = CPU interrupt Figure 6-12. Wait Recovery from Interrupt 64 &<&/(6 IAB IDB $DE0B $A6 $A6 RST VCT H RST VCT L $A6 IRST CGMXCLK Figure 6-13. Wait Recovery from Internal Reset Technical Data 92 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA The CPU and peripheral clocks do not become active until after the stop delay timeout. Stop mode is exited via an interrupt request from a module that is still active in stop mode or from a system reset. An interrupt request from a module that is still active in stop mode can cause an exit from stop mode. Stop recovery time is selectable using the SSREC bit in the configuration register. If SSREC is set, stop recovery is reduced from the normal delay of 4096 CGMXCLK cycles down to 32. Stacking for interrupts begins after the selected stop recovery time has elapsed. When stop mode is exited due to a reset condition, the SIM forces a long stop recovery time of 4096 CGMXCLK cycles. NOTE: Short stop recovery is ideal for applications using canned oscillators that do not require long startup times for stop mode. External crystal applications should use the full stop recovery time by clearing the SSREC bit. The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 6-14 shows stop mode entry timing. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/: Note: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 6-14. Stop Mode Entry Timing MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 93 A G R E E M E N T In stop mode, the SIM counter is held in reset and the CPU and peripheral clocks are held inactive. If the STOPOSCEN bit in the configuration register is not enabled, the SIM also disables the internal clock generator module outputs (CGMOUT and CGMXCLK). N O N - D I S C L O S U R E 6.7.2 Stop Mode R E Q U I R E D System Integration Module (SIM) Low-Power Modes STOP RECOVERY PERIOD CGMXCLK INT IAB STOP +1 STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 6-15. Stop Mode Recovery from Interrupt 6.8 SIM Registers The SIM has four memory mapped registers described here. 1. SIM reset status register (SRSR) 2. Interrupt status register 1 (INT1) 3. Interrupt status register 2 (INT2) 4. Interrupt status register 2 (INT3) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Technical Data 94 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA 6.8.1 SIM Reset Status Register This register contains five bits that show the source of the last reset. The status register will clear automatically after reading it. A power-on reset sets the POR bit and clears all other bits in the register. Bit 7 6 5 4 3 2 1 Bit 0 POR 0 COP ILOP ILAD MENRST LVI 0 1 0 0 0 0 0 0 0 A G R E E M E N T Read: $FE01 Write: POR: = Unimplemented Figure 6-16. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MENRST — Forced Monitor Mode Entry Reset Bit 1 = Last reset was caused by the MENRST circuit 0 = POR or read of SRSR LVI — Low-Voltage Inhibit Reset Bit 1 = Last reset was caused by the LVI circuit 0 = POR or read of SRSR MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) Technical Data 95 N O N - D I S C L O S U R E Address: R E Q U I R E D System Integration Module (SIM) SIM Registers R E Q U I R E D System Integration Module (SIM) 6.8.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 6-2 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 6-2. Interrupt Sources Flag Mask(1) INT Register Flag Priority(2) Vector Address — — — 0 $FFFC–$FFFD IRQF1 IMASK1 IF1 1 $FFFA–$FFFB ICG clock monitor CMF CMIE IF2 2 $FFF8–$FFF9 TIM channel 0 CH0F CH0IE IF3 3 $FFF6–$FFF7 TIM channel 1 CH1F CH1IE IF4 4 $FFF4–$FFF5 TIM overflow TOF TOIE IF5 5 $FFF2–$FFF3 SCI receiver overrun error OR ORIE SCI receiver noise error NF NEIE IF11 6 $FFE6–$FFE7 SCI receiver framing error FE FEIE SCI receiver parity error PE PEIE SCI receiver full SCRF SCRIE IF12 7 $FFE4–$FFE5 SCI receiver idle IDLE ILIE SCI transmitter empty SCTE SCTIE IF13 8 $FFE2–$FFE3 TC TCIE KEYF IMASKK IF14 9 $FFE0–$FFE1 — AIEN IF15 10 $FFDE–$FFDF TBIE TBF IF16 11 $FFDC–$FFDD N O N - D I S C L O S U R E A G R E E M E N T Source SWI instruction IRQ1 pin SCI transmission complete Keyboard pins ADC conversion complete Timebase module 1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority Technical Data 96 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) SIM Registers 6.8.2.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved IF5–IF1 — Interrupt Flags 5, 4, 3, 2, and 1 These flags indicate the presence of interrupt requests from the sources shown in Table 6-2. 1 = Interrupt request present 0 = No interrupt request present IF6 — Interrupt Flag 6 Since the MC68HC908KX8 parts do not use this interrupt flag, this bit will always read 0. N O N - D I S C L O S U R E Bit 0 and Bit 1 — Always read 0 6.8.2.2 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 6-18. Interrupt Status Register 2 (INT2) IF14–IF11 — Interrupt Flags 14–11 These flags indicate the presence of interrupt requests from the sources shown in Table 6-2. 1 = Interrupt request present 0 = No interrupt request present MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA System Integration Module (SIM) A G R E E M E N T Figure 6-17. Interrupt Status Register 1 (INT1) Technical Data 97 IF10–IF7 — Interrupt Flags 10–7 Since the MC68HC908KX8 parts do not use these interrupt flags, these bits will always read 0. 6.8.2.3 Interrupt Status Register 3 Address: A G R E E M E N T R E Q U I R E D System Integration Module (SIM) $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF22 IF21 IF20 IF19 IF18 IF17 IF16 IF15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 6-19. Interrupt Status Register 3 (INT3) IF22–IF17 — Interrupt Flags 22–17 Since the MC68HC908KX8 parts do not use these interrupt flags, these bits will always read 0. IF16–IF15 — Interrupt Flags 16–15 N O N - D I S C L O S U R E These flags indicate the presence of interrupt requests from the sources shown in Table 6-2. 1 = Interrupt request present 0 = No interrupt request present Technical Data 98 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 System Integration Module (SIM) MOTOROLA 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.4.1 Clock Enable Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.4.2 Internal Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 104 7.4.2.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.2 Modulo N Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.3 Frequency Comparator . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.4.2.4 Digital Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 7.4.3 External Clock Generator . . . . . . . . . . . . . . . . . . . . . . . . . . 107 7.4.3.1 External Oscillator Amplifier . . . . . . . . . . . . . . . . . . . . . . 108 7.4.3.2 External Clock Input Path . . . . . . . . . . . . . . . . . . . . . . .108 7.4.4 Clock Monitor Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 7.4.4.1 Clock Monitor Reference Generator . . . . . . . . . . . . . . . 110 7.4.4.2 Internal Clock Activity Detector . . . . . . . . . . . . . . . . . . . 111 7.4.4.3 External Clock Activity Detector . . . . . . . . . . . . . . . . . . .112 7.4.5 Clock Selection Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 7.4.5.1 Clock Selection Switches . . . . . . . . . . . . . . . . . . . . . . . . 114 7.4.5.2 Clock Switching Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.5 Usage Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.5.1 Switching Clock Sources . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7.5.2 Enabling the Clock Monitor . . . . . . . . . . . . . . . . . . . . . . . . 117 7.5.3 Using Clock Monitor Interrupts . . . . . . . . . . . . . . . . . . . . . . 118 7.5.4 Quantization Error in DCO Output . . . . . . . . . . . . . . . . . . . 119 7.5.4.1 Digitally Controlled Oscillator . . . . . . . . . . . . . . . . . . . . . 119 7.5.4.2 Binary Weighted Divider . . . . . . . . . . . . . . . . . . . . . . . . 120 7.5.4.3 Variable-Delay Ring Oscillator . . . . . . . . . . . . . . . . . . . . 120 7.5.4.4 Ring Oscillator Fine-Adjust Circuit . . . . . . . . . . . . . . . . . 121 7.5.5 Switching Internal Clock Frequencies . . . . . . . . . . . . . . . . 121 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 99 R E Q U I R E D 7.1 Contents A G R E E M E N T Section 7. Internal Clock Generator Module (ICG) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D Internal Clock Generator Module (ICG) 7.5.6 7.5.6.1 7.5.6.2 7.5.6.3 7.5.7 7.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 7.7 CONFIG or MOR Options. . . . . . . . . . . . . . . . . . . . . . . . . . . .127 7.7.1 External Clock Enable (EXTCLKEN) . . . . . . . . . . . . . . . . . 127 7.7.2 External Crystal Enable (EXTXTALEN) . . . . . . . . . . . . . . . 127 7.7.3 Slow External Clock (EXTSLOW) . . . . . . . . . . . . . . . . . . . 128 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) . . . . . . . . . . . 128 A G R E E M E N T N O N - D I S C L O S U R E Nominal Frequency Settling Time . . . . . . . . . . . . . . . . . . . 122 Settling to Within 15 Percent . . . . . . . . . . . . . . . . . . . . . 123 Settling to Within 5 Percent . . . . . . . . . . . . . . . . . . . . . . 123 Total Settling Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Trimming Frequency on the Internal Clock Generator . . . . 125 7.8 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.8.1 ICG Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.8.2 ICG Multiplier Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 7.8.3 ICG Trim Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.8.4 ICG DCO Divider Register . . . . . . . . . . . . . . . . . . . . . . . . . 134 7.8.5 ICG DCO Stage Register . . . . . . . . . . . . . . . . . . . . . . . . . . 135 7.2 Introduction The internal clock generator module (ICG) is used to create a stable clock source for the microcontroller without using any external components. The ICG generates the oscillator output clock (CGMXCLK), which is used by the computer operating properly (COP), low-voltage inhibit (LVI), and other modules. The ICG also generates the clock generator output (CGMOUT), which is fed to the system integration module (SIM) to create the bus clocks. The bus frequency will be one-fourth the frequency of CGMXCLK and one-half the frequency of CGMOUT. Finally, the ICG generates the timebase clock (TBMCLK), which is used in the timebase module (TBM). Technical Data 100 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA The ICG has these features: NOTE: • Selectable external clock generator, either 1-pin external source or 2-pin crystal, multiplexed with port pins • Internal clock generator with programmable frequency output in integer multiples of a nominal frequency (307.2 kHz ± 25 percent) • Frequency adjust (trim) register to improve variability • Bus clock software selectable from either internal or external clock (bus frequency range from 76.8 kHz ± 25 percent to 9.75 MHz ± 25 percent in 76.8-kHz increments For the MC68HC908KX8, do not exceed the maximum bus frequency of 8 MHz at 5.0 V and 4 MHz at 3.0 V. • Timebase clock automatically selected from external if external clock is available • Clock monitor for both internal and external clocks A G R E E M E N T 7.3 Features R E Q U I R E D Internal Clock Generator Module (ICG) Features N O N - D I S C L O S U R E 7.4 Functional Description The ICG, shown in Figure 7-1, contains these major submodules: • Clock enable circuit • Internal clock generator • External clock generator • Clock monitor circuit • Clock selection circuit MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 101 R E Q U I R E D Internal Clock Generator Module (ICG) CS CGMOUT RESET CGMXCLK CLOCK SELECTION CIRCUIT TBMCLK IOFF EOFF CMON ECGS ICGS A G R E E M E N T CLOCK MONITOR CIRCUIT FICGS DDIV[3:0] INTERNAL CLOCK GENERATOR N[6:0} DSTG[7:0] TRIM[7:0] ICLK IBASE ICGEN SIMOSCEN CLOCK/PIN ENABLE CIRCUIT N O N - D I S C L O S U R E OSCENINSTOP EXTCLKEN ECGON ICGON ECGEN EXTXTALEN EXTERNAL CLOCK GENERATOR EXTSLOW INTERNAL TO MCU ECLK PTB7 LOGIC PTB6 LOGIC OSC1 PTB6 OSC2 PTB7 EXTERNAL NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-1. ICG Module Block Diagram Technical Data 102 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA The internal clock enable signal (ICGEN) turns on the internal clock generator which generates ICLK. ICGEN is set (active) whenever the ICGON bit is set and the ICGSTOP signal is clear. When ICGEN is clear, ICLK and IBASE are both low. The external clock enable signal (ECGEN) turns on the external clock generator which generates ECLK. ECGEN is set (active) whenever the ECGON bit is set and the ICGSTOP signal is clear. ECGON cannot be set unless the external clock enable (EXTCLKEN) bit in the CONFIG or MOR is set. when ECGEN is clear, ECLK is low. The port B6 enable signal (PB6EN) turns on the port B6 logic. Since port B6 is on the same pin as OSC1, this signal is only active (set) when the external clock function is not desired. Therefore, PB6EN is clear when ECGON is set. PB6EN is not gated with ICGSTOP, which means that if the ECGON bit is set, the port B6 logic will remain disabled in stop mode. The port B7 enable signal (PB7EN) turns on the port B7 logic. Since port B7 is on the same pin as OSC2, this signal is only active (set) when 2pin oscillator function is not desired. Therefore, PB7EN is clear when ECGON and the external crystal enable (EXTXTALEN) bit in the CONFIG or MOR are both set. PB6EN is not gated with ICGSTOP, which means that if ECGON and EXTXTALEN are set, the port B7 logic will remain disabled in stop mode. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 103 A G R E E M E N T The clock enable circuit is used to enable the internal clock (ICLK) or external clock (ECLK) and the port logic which is shared with the oscillator pins (OSC1 and OSC2). The clock enable circuit generates an ICG stop (ICGSTOP) signal which stops all clocks (ICLK, ECLK, and the low-frequency base clock, IBASE). ICGSTOP is set and the ICG is disabled in stop mode if the oscillator enable stop bit (OSCENINSTOP) in the configuration (CONFIG) register or mask option register (MOR) is clear. The ICG clocks will be enabled in stop mode if OSCENINSTOP is high. N O N - D I S C L O S U R E 7.4.1 Clock Enable Circuit R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description 7.4.2 Internal Clock Generator The internal clock generator, shown in Figure 7-2, creates a low frequency base clock (IBASE), which operates at a nominal frequency (fNOM) of 307.2 kHz ± 25 percent, and an internal clock (ICLK) which is an integer multiple of IBASE. This multiple is the ICG multiplier factor (N), which is programmed in the ICG multiplier register (ICGMR). The internal clock generator is turned off and the output clocks (IBASE and ICLK) are held low when the internal clock generator enable signal (ICGEN) is clear. A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) The internal clock generator contains: • A digitally controlled oscillator • A modulo N divider • A frequency comparator, which contains voltage and current references, a frequency to voltage converter, and comparators • A digital loop filter ICGEN N O N - D I S C L O S U R E VOLTAGE AND CURRENT REFERENCES FICGS ++ DSTG[7:0] + DDIV[3:0] DIGITAL LOOP FILTER DIGITALLY CONTROLLED OSCILLATOR – ICLK –– TRIM[7:0] FREQUENCY COMPARATOR CLOCK GENERATOR N[6:0] MODULO N DIVIDER IBASE NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-2. Internal Clock Generator Block Diagram Technical Data 104 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.4.2.2 Modulo N Divider The modulo N divider creates the low-frequency base clock (IBASE) by dividing the internal clock (ICLK) by the ICG multiplier factor (N), contained in the ICG multiplier register (ICGMR). When N is programmed to a $01 or $00, the divider is disabled and ICLK is passed through to IBASE undivided. When the internal clock generator is stable, the frequency of IBASE will be equal to the nominal frequency (fNOM) of 307.2 kHz ± 25 percent. 7.4.2.3 Frequency Comparator The frequency comparator effectively compares the low-frequency base clock (IBASE) to a nominal frequency, fNOM. First, the frequency comparator converts IBASE to a voltage by charging a known capacitor with a current reference for a period dependent on IBASE. This voltage is compared to a voltage reference with comparators, whose outputs are fed to the digital loop filter. The dependence of these outputs on the capacitor size, current reference, and voltage reference causes up to ±25 percent error in fNOM. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 105 A G R E E M E N T The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK). The clock period of ICLK is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of only a limited number of bits in DDIV and DSTG, the precision of the output (ICLK) is restricted to a precision of approximately ±0.202 percent to ±0.368 percent when measured over several cycles (of the desired frequency). Additionally, since the propagation delays of the devices used in the DCO ring oscillator are a measurable fraction of the bus clock period, reaching the long-term precision may require alternately running faster and slower than desired, making the worst case cycle-to-cycle frequency variation ±6.45 percent to ±11.8 percent (of the desired frequency). The valid values of DDIV:DSTG range from $000 to $9FF. For more information on the quantization error in the DCO, see 7.5.4 Quantization Error in DCO Output. N O N - D I S C L O S U R E 7.4.2.1 Digitally Controlled Oscillator R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description 7.4.2.4 Digital Loop Filter The digital loop filter (DLF) uses the outputs of the frequency comparator to adjust the internal clock (ICLK) clock period. The DLF generates the DCO divider control bits (DDIV[3:0]) and the DCO stage control bits (DSTG[7:0]), which are fed to the DCO. The DLF first concatenates the DDIV and DSTG registers (DDIV[3:0]:DSTG[7:0]) and then adds or subtracts a value dependent on the relative error in the low-frequency base clock’s period, as shown in Table 7-1. In some extreme error conditions, such as operating at a VDD level which is out of specification, the DLF may attempt to use a value above the maximum ($9FF) or below the minimum ($000). In both cases, the value for DDIV will be between $A and $F. In this range, the DDIV value will be interpreted the same as $9 (the slowest condition). Recovering from this condition requires subtracting (increasing frequency) in the normal fashion until the value is again below $9FF. (If the desired value is $9xx, the value may settle at $Axx through $Fxx. This is an acceptable operating condition.) If the error is less than ±5 percent, the internal clock generator’s filter stable indicator (FICGS) is set, indicating relative frequency accuracy to the clock monitor. A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) N O N - D I S C L O S U R E Table 7-1. Correction Sizes from DLF to DCO Frequency Error of IBASE Compared to fNOM DDVI[3:0]:DSTG[7:0] Correction IBASE < 0.85 fNOM –32 (–$020) 0.85 fNOM < IBASE IBASE < 0.95 fNOM –8 (–$008) 0.95 fNOM < IBASE IBASE < fNOM –1 (–$001) fNOM < IBASE IBASE < 1.05 fNOM +1 (+$001) 1.05 fNOM < IBASE IBASE < 1.15 fNOM +8 (+$008) 1.15 fNOM < IBASE +32 (+$020) Current to New DDIV[3:0]:DSTG[7:0](1) Relative Correction in DCO Minimum $xFF to $xDF –2/31 –6.45% Maximum $x20 to $x00 –2/19 –10.5% Minimum $xFF to $xF7 –0.5/31 –1.61% Maximum $x08 to $x00 –0.5/17.5 –2.86% Minimum $xFF to $xFE –0.0625/31 –0.202% Maximum $x01 to $x00 –0.0625/17.0625 –0.366% Minimum $xFE to $xFF +0.0625/30.9375 +0.202% Maximum $x00 to $x01 +0.0625/17 +0.368% Minimum $xF7 to $xFF +0.5/30.5 +1.64% Maximum $x00 to $x08 +0.5/17 +2.94% Minimum $xDF to $xFF +2/29 +6.90% Maximum $x00 to $x20 +2/17 +11.8% 1. x = Maximum error is independent of value in DDIV[3:0]. DDIV increments or decrements when an addition to DSTG[7:0] carries or borrows. Technical Data 106 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.4.3 External Clock Generator The ICG also provides for an external oscillator or external clock source, if desired. The external clock generator, shown in Figure 7-3, contains an external oscillator amplifier and an external clock input path. ECGEN ECLK INPUT PATH R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description EXTSLOW INTERNAL TO MCU OSC1 PTB6 OSC2 PTB7 EXTERNAL NAME NAME RB RS CONFIGURATION (OR MOR) BIT X1 TOP LEVEL SIGNAL NAME REGISTER BIT NAME MODULE SIGNAL C1 *RS can be 0 (shorted) when used with higherfrequency crystals. Refer to manufacturer’s data. C2 These components are required for external crystal use only. Figure 7-3. External Clock Generator Block Diagram MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 107 N O N - D I S C L O S U R E AMPLIFIER EXTERNAL CLOCK GENERATOR A G R E E M E N T EXTXTALEN 7.4.3.1 External Oscillator Amplifier The external oscillator amplifier provides the gain required by an external crystal connected in a Pierce oscillator configuration. The amount of this gain is controlled by the slow external (EXTSLOW) bit in the CONFIG or MOR. When EXTSLOW is set, the amplifier gain is reduced for operating low-frequency crystals (32 kHz to 100 kHz). When EXTSLOW is clear, the amplifier gain will be sufficient for 1-MHz to 8MHz crystals. EXTSLOW must be configured correctly for the given crystal or the circuit may not operate. A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) The amplifier is enabled when the external clock generator enable (ECGEN) signal is set and when the external crystal enable (EXTXTALEN) bit in the CONFIG or MOR is set. ECGEN is controlled by the clock enable circuit (see 7.4.1 Clock Enable Circuit) and indicates that the external clock function is desired. When enabled, the amplifier will be connected between the PTB6/(OSC1) and PTB7/(OSC2) pins. Otherwise, the PTB7/(OSC2) pin reverts to its port function. In its typical configuration, the external oscillator requires five external components: 1. Crystal, X1 N O N - D I S C L O S U R E 2. Fixed capacitor, C1 3. Tuning capacitor, C2 (can also be a fixed capacitor) 4. Feedback resistor, RB 5. Series resistor, RS (included in Figure 7-3 to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information.) 7.4.3.2 External Clock Input Path The external clock input path is the means by which the microcontroller uses an external clock source. The input to the path is the PTB6/(OSC1) pin and the output is the external clock (ECLK). The path, which contains input buffering, is enabled when the external clock generator enable signal (ECGEN) is set. When not enabled, the PTB6/(OSC1) pin reverts to its port function. Technical Data 108 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.4.4 Clock Monitor Circuit • Clock monitor reference generator • Internal clock activity detector • External clock activity detector IOFF IOFF EREF ICGS ICGS IBASE EREF CMON FICGS FICGS IBASE IBASE ICGEN ICGEN ICLK ACTIVITY DETECTOR ICGON EXTXTALEN EXTSLOW EXTXTALEN EXTSLOW REFERENCE GENERATOR ECGS ESTBCLK ECLK ECGEN IREF ESTBCLK ECGS ECGS IREF ECGEN ECLK ECGEN ECLK ECLK ACTIVITY DETECTOR CMON EOFF EOFF NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-4. Clock Monitor Block Diagram MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 109 N O N - D I S C L O S U R E CMON A G R E E M E N T The ICG contains a clock monitor circuit which, when enabled, will continuously monitor both the external clock (ECLK) and the internal clock (ICLK) to determine if either clock source has been corrupted. The clock monitor circuit, shown in Figure 7-4, contains these blocks: R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description 7.4.4.1 Clock Monitor Reference Generator The clock monitor uses a reference based on one clock source to monitor the other clock source. The clock monitor reference generator generates the external reference clock (EREF) based on the external clock (ECLK) and the internal reference clock (IREF) based on the internal clock (ICLK). To simplify the circuit, the low-frequency base clock (IBASE) is used in place of ICLK because it always operates at or near 307.2 kHz. For proper operation, EREF must be at least twice as slow as IBASE and IREF must be at least twice as slow as ECLK. A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) To guarantee that IREF is slower than ECLK and EREF is slower than IBASE, one of the signals is divided down. Which signal is divided and by how much is determined by the external slow (EXTSLOW) and external crystal enable (EXTXTALEN) bits in the CONFIG or MOR, according to the rules in Table 7-2. NOTE: Each signal (IBASE and ECLK) is always divided by four. A longer divider is used on either IBASE or ECLK based on the EXTSLOW bit. N O N - D I S C L O S U R E To conserve size, the long divider (divide by 4096) is also used as an external crystal stabilization divider. The divider is reset when the external clock generator is turned off or in stop mode (ECGEN is clear). When the external clock generator is first turned on, the external clock generator stable bit (ECGS) will be clear. This condition automatically selects ECLK as the input to the long divider. The external stabilization clock (ESTBCLK) will be ECLK divided by 16 when EXTXTALEN is low or 4096 when EXTXTALEN is high. This timeout allows the crystal to stabilize. The falling edge of ESTBCLK is used to set ECGS, which will set after a full 16 or 4096 cycles. When ECGS is set, the divider returns to its normal function. ESTBCLK may be generated by either IBASE or ECLK, but any clocking will only reinforce the set condition. If ECGS is cleared because the clock monitor determined that ECLK was inactive, the divider will revert to a stabilization divider. Since this will change the EREF and IREF divide ratios, it is important to turn the clock monitor off (CMON = 0) after inactivity is detected to ensure valid recovery. Technical Data 110 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA The internal clock activity detector, shown in Figure 7-5, looks for at least one falling edge on the low-frequency base clock (IBASE) every time the external reference (EREF) is low. Since EREF is less than half the frequency of IBASE, this should occur every time. If it does not occur two consecutive times, the internal clock inactivity indicator (IOFF) is set. IOFF will be cleared the next time there is a falling edge of IBASE while EREF is low. The internal clock stable bit (ICGS) is also generated in the internal clock activity detector. ICGS is set when the internal clock generator’s filter stable signal (FICGS) indicates that IBASE is within about 5 percent of the target 307.2 kHz ± 25 percent for two consecutive measurements. ICGS is cleared when FICGS is clear, the internal clock generator is turned off or is in stop mode (ICGEN is clear), or when IOFF is set. CMON CK EREF IOFF Q 1/4 R R D DFFRS IBASE CK Q S R Q DFFRR CK D Q ICGS N O N - D I S C L O S U R E R D DFFRR CK R R DLF MEASURE OUTPUT CLOCK ICGEN FICGS NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-5. Internal Clock Activity Detector MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) A G R E E M E N T 7.4.4.2 Internal Clock Activity Detector R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description Technical Data 111 7.4.4.3 External Clock Activity Detector The external clock activity detector, shown in Figure 7-6, looks for at least one falling edge on the external clock (ECLK) every time the internal reference (IREF) is low. Since IREF is less than half the frequency of ECLK, this should occur every time. If it does not occur two consecutive times, the external clock inactivity indicator (EOFF) is set. EOFF will be cleared the next time there is a falling edge of ECLK while IREF is low. The external clock stable bit (ECGS) is also generated in the external clock activity detector. ECGS is set on a falling edge of the external stabilization clock (ESTBCLK). This will be 4096 ECLK cycles after the external clock generator on bit is set, or the MCU exits stop mode (ECGEN = 1) if the external crystal enable (EXTXTALEN) in the CONFIG or MOR is set, or 16 cycles when EXTXTALEN is clear. ECGS is cleared when the external clock generator is turned off or in stop mode (ECGEN is clear) or when EOFF is set. A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) CMON CK IREF EOFF Q N O N - D I S C L O S U R E 1/4 R R R D D DFFRS ECLK CK Q S DFFRR CK Q EGGS R ESTBCLK ECGEN NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL Figure 7-6. External Clock Activity Detector Technical Data 112 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.4.5 Clock Selection Circuit The clock selection circuit, shown in Figure 7-7, contains two clock switches which generate the oscillator output clock (CGMXCLK) and the timebase clock (TBMCLK) from either the internal clock (ICLK) or the external clock (ECLK). The clock selection circuit also contains a divideby-two circuit which creates the clock generator output clock (CGMOUT), which generates the bus clocks. ICLK ICLK ECLK ECLK IOFF IOFF EOFF EOFF RESET VSS ECGON CGMXCLK OUTPUT SELECT SYNCHRONIZING CLOCK SWITCHER A G R E E M E N T CS DIV2 CGMOUT FORCE_I FORCE_E TBMCLK OUTPUT SELECT ICLK ECLK IOFF EOFF R E Q U I R E D Internal Clock Generator Module (ICG) Functional Description SYNCHRONIZING CLOCK SWITCHER FORCE_I NAME CONFIGURATION (OR MOR) REGISTER BIT NAME REGISTER BIT NAME TOP LEVEL SIGNAL NAME MODULE SIGNAL N O N - D I S C L O S U R E FORCE_E Figure 7-7. Clock Selection Circuit Block Diagram MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 113 7.4.5.1 Clock Selection Switches The first switch creates the oscillator output clock (CGMXCLK) from either the internal clock (ICLK) or the external clock (ECLK), based on the clock select bit (CS; set selects ECLK, clear selects ICLK). When switching the CS bit, both ICLK and ECLK must be on (ICGON and ECGON set). The clock being switched to also must be stable (ICGS or ECGS set). The second switch creates the timebase clock (TBMCLK) from ICLK or ECLK based on the external clock on bit. When ECGON is set, the switch automatically selects the external clock, regardless of the state of the ECGS bit. 7.4.5.2 Clock Switching Circuit To robustly switch between the internal clock (ICLK) and the external clock (ECLK), the switch assumes the clocks are completely asynchronous, so a synchronizing circuit is required to make the transition. When the select input (the clock select bit for the oscillator output clock switch or the external clock on bit for the timebase clock switch) is changed, the switch will continue to operate off the original clock for between one and two cycles as the select input is transitioned through one side of the synchronizer. Next, the output will be held low for between one and two cycles of the new clock as the select input transitions through the other side. Then the output starts switching at the new clock’s frequency. This transition guarantees that no glitches will be seen on the output even though the select input may change asynchronously to the clocks. The unpredictably of the transition period is a necessary result of the asynchronicity. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) The switch automatically selects ICLK during reset. When the clock monitor is on (CMON is set) and it determines one of the clock sources is inactive (as indicated by the IOFF or EOFF signals), the circuit is forced to select the active clock. There are no clocks for the inactive side of the synchronizer to properly operate, so that side is forced deselected. However, the active side will not be selected until one to two clock cycles after the IOFF or EOFF signal transitions. Technical Data 114 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA The ICG has several features which can provide protection to the microcontroller if properly used. Other features can greatly simplify usage of the ICG if certain techniques are employed. This section describes several possible ways to use the ICG and its features. These techniques are not the only ways to use the ICG and may not be optimum for all environments. In any case, these techniques should be used only as a template, and the user should modify them according to the application’s requirements. These notes include: Switching clock sources • Enabling the clock monitor • Using clock monitor interrupts • Quantization error in digitally controlled oscillator (DCO) output • Switching internal clock frequencies • Nominal frequency settling time • Improving frequency settling time • Trimming frequency MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) N O N - D I S C L O S U R E • A G R E E M E N T 7.5 Usage Notes R E Q U I R E D Internal Clock Generator Module (ICG) Usage Notes Technical Data 115 7.5.1 Switching Clock Sources Switching from one clock source to another requires both clock sources to be enabled and stable. A simple flow requires: • Enable desired clock source • Wait for it to become stable • Switch clocks • Disable previous clock source The key point to remember in this flow is that the clock source cannot be switched (CS cannot be written) unless the desired clock is on and stable. A short assembly code example of how to employ this flow is shown in Figure 7-8. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda #$13 loop ** ** sta icgcr cmpa bne icgcr loop N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) ;Clock Switching Code Example ;This code switches from Internal to External clock ;Clock Monitor and interrupts are not enabled ;Mask for CS, ECGON, ECGS ; If switching from External to Internal, mask is $0C. ;Other code here, such as writing the COP, since ECGS may ; take some time to set ;Try to set CS, ECGON and clear ICGON. ICGON will not ; clear until CS is set, and CS will not set until ; ECGON and ECGS are set. ;Check to see if ECGS set, then CS set, then ICGON clear ;Keep looping until ICGON is clear. Figure 7-8. Code Example for Switching Clock Sources Technical Data 116 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA Enabling the clock monitor and clock monitor interrupts requires a flow similar to this: • Enable the alternate clock source • Wait for both clock sources to be stable • Switch to the desired clock source if necessary • Enable the clock monitor • Enable clock monitor interrupts These events must happen in sequence. A short assembly code example of how to employ this flow is shown in Figure 7-9. This code is for illustrative purposes only and does not represent valid syntax for any particular assembler. start lda loop ** sta brset cmpa bne ;Clock Monitor Enabling Code Example ;This code turns on both clocks, selects the desired ; one, then turns on the Clock Monitor and Interrupts #$AF ;Mask for CMIE, CMON, ICGON, ICGS, ECGON, ECGS ; If Internal Clock desired, mask is $AF ; If External Clock desired, mask is $BF ; If interrupts not desired mask is $2F int; $3F ext ** ;Other code here, such as writing the COP, since ECGS ; and ICGS may take some time to set. icgcr ;Try to set CMIE. CMIE wont set until CMON set; CMON ; won’t set until ICGON, ICGS, ECGON, ECGS set. 6,ICGCR,error ;Verify CMF is not set icgcr ;Check if ECGS set, then CMON set, then CMIE set loop ;Keep looping until CMIE is set. Figure 7-9. Code Example for Enabling the Clock Monitor MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 117 A G R E E M E N T Many applications require the clock monitor to determine if one of the clock sources has become inactive, so the other can be used to recover from a potentially dangerous situation. Using the clock monitor requires both clocks to be active (ECGON and ICGON both set). To enable the clock monitor, both clocks also must be stable (ECGS and ICGS both set). This is to prevent the use of the clock monitor when a clock is first turned on and potentially unstable. N O N - D I S C L O S U R E 7.5.2 Enabling the Clock Monitor R E Q U I R E D Internal Clock Generator Module (ICG) Usage Notes 7.5.3 Using Clock Monitor Interrupts The clock monitor circuit can be used to recover from perilous situations such as crystal loss. To use the clock monitor effectively, these points should be observed: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) Technical Data 118 • Enable the clock monitor and clock monitor interrupts. • The first statement in the clock monitor interrupt service routine (CMISR) should be a read to the ICG control register (ICGCR) to verify that the clock monitor flag (CMF) is set. This is also the first step in clearing the CMF bit. • The second statement in the CMISR should be a write to the ICGCR to clear the CMF bit (write the bit low). Writing the bit high will not affect it. This statement does not need to immediately follow the first, but must be contained in the CMISR. • The third statement in the CMISR should be to clear the CMON bit. This is required to ensure proper reconfiguration of the reference dividers. This statement also must be contained in the CMISR. • Although the clock monitor can be enabled only when both clocks are stable (ICGS is set or ECGS is set), it will remain set if one of the clocks goes unstable. • The clock monitor only works if the external slow (EXTSLOW) bit in the CONFIG or MOR is set to the correct value. • The internal and external clocks must both be enabled and running to use the clock monitor. • When the clock monitor detects inactivity, the inactive clock is automatically deselected and the active clock selected as the source for CGMXCLK and TBMCLK. The CMISR can use the state of the CS bit to check which clock is inactive. • When the clock monitor detects inactivity, the application may have been subjected to extreme conditions which may have affected other circuits. The CMISR should take any appropriate precautions. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 1. Binary weighted divider 2. Variable-delay ring oscillator 3. Ring oscillator fine-adjust circuit Each of these blocks affects the clock period of the internal clock (ICLK). Since these blocks are controlled by the digital loop filter (DLF) outputs DDIV and DSTG, the output of the DCO can change only in quantized steps as the DLF increments or decrements its output. The following sections describe how each block will affect the output frequency. 7.5.4.1 Digitally Controlled Oscillator The digitally controlled oscillator (DCO) is an inaccurate oscillator which generates the internal clock (ICLK), whose clock period is dependent on the digital loop filter outputs (DSTG[7:0] and DDIV[3:0]). Because of the digital nature of the DCO, the clock period of ICLK will change in quantized steps. This will create a clock period difference or quantization error (Q-ERR) from one cycle to the next. Over several cycles or for longer periods, this error is divided out until it reaches a minimum error of 0.202 percent to 0.368 percent. The dependence of this error on the DDIV[3:0] value and the number of cycles the error is measured over is shown in Table 7-2. Table 7-2. Quantization Error in ICLK DDIV[3:0] ICLK Cycles Bus Cycles τICLK Q-ERR %0000 (min) 1 NA 6.45%–11.8% %0000 (min) 4 1 1.61%–2.94% %0000 (min) ≥ 32 ≥8 0.202%–0.368% %0001 1 NA 3.23%–5.88% %0001 4 1 0.806%–1.47% %0001 ≥ 16 ≥4 0.202%–0.368% MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 119 A G R E E M E N T The digitally controlled oscillator (DCO) is comprised of three major subblocks: N O N - D I S C L O S U R E 7.5.4 Quantization Error in DCO Output R E Q U I R E D Internal Clock Generator Module (ICG) Usage Notes N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) Table 7-2. Quantization Error in ICLK (Continued) DDIV[3:0] ICLK Cycles Bus Cycles τICLK Q-ERR %0010 1 NA 1.61%–2.94% %0010 4 1 0.403%–0.735% %0010 ≥8 ≥2 0.202%–0.368% %0011 1 NA 0.806%–1.47% %0011 ≥4 ≥1 0.202%–0.368% %0100 1 NA 0.403%–0.735% %0100 ≥2 ≥1 0.202%–0.368% %0101–%1001 (max) ≥1 ≥1 0.202%–0.368% 7.5.4.2 Binary Weighted Divider The binary weighted divider divides the output of the ring oscillator by a power of two, specified by the DCO divider control bits (DDIV[3:0]). DDIV maximizes at %1001 (values of %1010 through %1111 are interpreted as %1001), which corresponds to a divide by 512. When DDIV is %0000, the ring oscillator’s output is divided by 1. Incrementing DDIV by one will double the period; decrementing DDIV will halve the period. The DLF cannot directly increment or decrement DDIV; DDIV is only incremented or decremented when an addition or subtraction to DSTG carries or borrows. 7.5.4.3 Variable-Delay Ring Oscillator The variable-delay ring oscillator’s period is adjustable from 17 to 31 stage delays, in increments of two, based on the upper three DCO stage control bits (DSTG[7:5]). A DSTG[7:5] of %000 corresponds to 17 stage delays; DSTG[7:5] of %111 corresponds to 31 stage delays. Adjusting the DSTG[5] bit has a 6.45 percent to 11.8 percent effect on the output frequency. This also corresponds to the size correction made when the frequency error is greater than ±15 percent. The value of the binary weighted divider does not affect the relative change in output clock period for a given change in DSTG[7:5]. Technical Data 120 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA • When DSTG[7:5] is %011, the ring oscillator nominally operates at 23 stage delays. • When DSTG[4:0] is %00000, the ring will always operate at 23 stage delays. • When DSTG[4:0] is %00001, the ring will operate at 25 stage delays for one of 32 cycles and at 23 stage delays for 31 of 32 cycles. • Likewise, when DSTG[4:0] is %11111, the ring operates at 25 stage delays for 31 of 32 cycles and at 23 stage delays for one of 32 cycles. • When DSTG[7:5] is %111, similar results are achieved by including a variable divide-by-two, so the ring operates at 31 stages for some cycles and at 17 stage delays, with a divide-bytwo for an effective 34 stage delays, for the remainder of the cycles. Adjusting the DSTG[0] bit has a 0.202 percent to 0.368 percent effect on the output clock period. This corresponds to the minimum size correction made by the DLF, and the inherent, long-term quantization error in the output frequency. 7.5.5 Switching Internal Clock Frequencies The frequency of the internal clock (ICLK) may need to be changed for some applications. For example, if the reset condition does not provide the correct frequency, or if the clock is slowed down for a low-power mode (or sped up after a low-power mode), the frequency must be changed by programming the internal clock multiplier factor (N). The frequency of ICLK is N times the frequency of IBASE, which is 307.2 kHz ±25 percent. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 121 A G R E E M E N T The ring oscillator fine-adjust circuit causes the ring oscillator to effectively operate at non-integer numbers of stage delays by operating at two different points for a variable number of cycles specified by the lower five DCO stage control bits (DSTG[4:0]). For example: N O N - D I S C L O S U R E 7.5.4.4 Ring Oscillator Fine-Adjust Circuit R E Q U I R E D Internal Clock Generator Module (ICG) Usage Notes Before switching frequencies by changing the N value, the clock monitor must be disabled. This is because when N is changed, the frequency of the low-frequency base clock (IBASE) will change proportionally until the digital loop filter has corrected the error. Since the clock monitor uses IBASE, it could erroneously detect an inactive clock. The clock monitor cannot be re-enabled until the internal clock is stable again (ICGS is set). The following flow is an example of how to change the clock frequency: • Verify there is no clock monitor interrupt by reading the CMF bit. • Turn off the clock monitor. • If desired, switch to the external clock (see 7.5.1 Switching Clock Sources). • Change the value of N. • Switch back to internal (see 7.5.1 Switching Clock Sources), if desired. • Turn on the clock monitor (see 7.5.2 Enabling the Clock Monitor), if desired. 7.5.6 Nominal Frequency Settling Time Because the clock period of the internal clock (ICLK) is dependent on the digital loop filter outputs (DDIV and DSTG) which cannot change instantaneously, ICLK temporarily will operate at an incorrect clock period when any operating condition changes. This happens whenever the part is reset, the ICG multiply factor (N) is changed, the ICG trim factor (TRIM) is changed, or the internal clock is enabled after inactivity (stop mode or disabled operation). The time that the ICLK takes to adjust to the correct period is known as the settling time. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) Settling time depends primarily on how many corrections it takes to change the clock period and the period of each correction. Since the corrections require four periods of the low-frequency base clock (4*τIBASE), and since ICLK is N (the ICG multiply factor for the desired frequency) times faster than IBASE, each correction takes 4*N*τICLK. The period of ICLK, however, will vary as the corrections occur. Technical Data 122 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA If the clock period needs more than doubled or halved, the same relationship applies, only for each time the clock period needs doubled, the total number of cycles doubles. That is, when transitioning from fast to slow, going from the initial speed to half speed takes 44*N*τICLKFAST; from half speed to quarter speed takes 88*N*τICLKFAST; going from quarter speed to eighth speed takes 176*N*τICLKFAST; and so on. This series can be expressed as (2x–1)*44*N*τICLKFAST, where x is the number of times the speed needs doubled or halved. Since 2x happens to be equal to τICLKSLOW/τICLKFAST, the equation reduces to 44*N*(τICLKSLOW–τICLKFAST). Note that increasing speed takes much longer than decreasing speed since N is higher. This can be expressed in terms of the initial clock period (τ1) minus the final clock period (τ2) as such: τ 15 = abs [ 44N ( τ 1 – τ2 ) ] 7.5.6.2 Settling to Within 5 Percent Once the clock period is within 15 percent of the desired clock period, the filter starts making smaller adjustments. When between 15 percent and 5 percent error, each correction will adjust the clock period between 1.61 percent and 2.94 percent. In this mode, a maximum of eight corrections will be required to get to less than 5 percent error. Since the clock period is relatively close to desired, each correction takes approximately the same period of time, or 4*τIBASE. At this point, the internal clock stable bit (ICGS) will be set and the clock frequency is MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 123 A G R E E M E N T When the error is greater than 15 percent, the filter takes eight corrections to double or halve the clock period. Due to how the DCO increases or decreases the clock period, the total period of these eight corrections is approximately 11 times the period of the fastest correction. (If the corrections were perfectly linear, the total period would be 11.5 times the minimum period; however, the ring must be slightly nonlinear.) Therefore, the total time it takes to double or halve the clock period is 44*N*τICLKFAST. N O N - D I S C L O S U R E 7.5.6.1 Settling to Within 15 Percent R E Q U I R E D Internal Clock Generator Module (ICG) Usage Notes usable, although the error will be as high as 5 percent. The total time to this point is: τ5 = abs [ 44N ( τ 1 – τ2 ) ] + 32 τ IBASE 7.5.6.3 Total Settling Time Once the clock period is within 5 percent of the desired clock period, the filter starts making minimum adjustments. In this mode, each correction will adjust the frequency between 0.202 percent and 0.368 percent. A maximum of 24 corrections will be required to get to the minimum error. Each correction takes approximately the same period of time, or 4*τIBASE. Added to the corrections for 15 percent to 5 percent, this makes 32 corrections (128*τIBASE) to get from 15 percent to the minimum error. The total time to the minimum error is: A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) τtot = abs [ 44N ( τ1 – τ 2 ) ] + 128 τ IBASE N O N - D I S C L O S U R E The equations for τ15, τ5, and τtot are dependent on the actual initial and final clock periods τ1 and τ2, not the nominal. This means the variability in the ICLK frequency due to process, temperature, and voltage must be considered. Additionally, other process factors and noise can affect the actual tolerances of the points at which the filter changes modes. This means a worst case adjustment of up to 35 percent (ICLK clock period tolerance plus 10 percent) must be added. This adjustment can be reduced with trimming. Table 7-3 shows some typical values for settling time. Table 7-3. Typical Settling Time Examples Technical Data 124 τ1 τ2 N τ15 τ5 τtot 1/ (6.45 MHz) 1/ (25.8 MHz) 84 430 µs 535 µs 850 µs 1/ (25.8 MHz) 1/ (6.45 MHz) 21 107 µs 212 µs 525 µs 1/ (25.8 MHz) 1/ (307.2 kHz) 1 141 µs 246 µs 560 µs 1/ (307.2 kHz) 1/ (25.8 MHz) 84 11.9 ms 12.0 ms 12.3 ms MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA The method of changing the unadjusted operating point is by changing the size of the capacitor. This capacitor is designed with 639 equally sized units. Of that number, 384 of these units are always connected. The remaining 255 units are put in by adjusting the ICG trim factor (TRIM). The default value for TRIM is $80, or 128 units, making the default capacitor size 512. Each unit added or removed will adjust the output frequency by about ±0.195 percent of the unadjusted frequency (adding to TRIM will decrease frequency). Therefore, the frequency of IBASE can be changed to ±25 percent of its unadjusted value, which is enough to cancel the process variability mentioned before. The best way to trim the internal clock is to use the timer to measure the width of an input pulse on an input capture pin (this pulse must be supplied by the application and should be as long or wide as possible). Considering the prescale value of the timer and the theoretical (zero error) frequency of the bus (307.2 kHz *N/4), the error can be calculated. This error, expressed as a percentage, can be divided by 0.195 percent and the resultant factor added or subtracted from TRIM. This process should be repeated to eliminate any residual error. 7.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 125 A G R E E M E N T The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, will vary as much as ±25 percent due to process, temperature, and voltage dependencies. These dependencies are in the voltage and current references, the offset of the comparators, and the internal capacitor. N O N - D I S C L O S U R E 7.5.7 Trimming Frequency on the Internal Clock Generator R E Q U I R E D Internal Clock Generator Module (ICG) Low-Power Modes 7.6.1 Wait Mode The ICG remains active in wait mode. If enabled, the ICG interrupt to the CPU can bring the MCU out of wait mode. In some applications, low power-consumption is desired in wait mode and a high-frequency clock is not needed. In these applications, reduce power consumption by either selecting a low-frequency external clock and turn the internal clock generator off or reduce the bus frequency by minimizing the ICG multiplier factor (N) before executing the WAIT instruction. 7.6.2 Stop Mode The value of the oscillator enable in stop (OSCENINSTOP) bit in the CONFIG or MOR determines the behavior of the ICG in stop mode. If OSCENINSTOP is low, the ICG is disabled in stop and, upon execution of the STOP instruction, all ICG activity will cease and the output clocks (CGMXCLK, CGMOUT, and TBMCLK) will be held low. Power consumption will be minimal. If OSCENINSTOP is high, the ICG is enabled in stop and activity will continue. This is useful if the timebase module (TBM) is required to bring the MCU out of stop mode. ICG interrupts will not bring the MCU out of stop mode in this case. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) During stop mode, if OSCENINSTOP is low, several functions in the ICG are affected. The stable bits (ECGS and ICGS) are cleared, which will enable the external clock stabilization divider upon recovery. The clock monitor is disabled (CMON = 0) which will also clear the clock monitor interrupt enable (CMIE) and clock monitor flag (CMF) bits. The CS, ICGON, ECGON, N, TRIM, DDIV, and DSTG bits are unaffected. Technical Data 126 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.7 CONFIG or MOR Options Four CONFIG or MOR options affect the functionality of the ICG. These options are: 1. EXTCLKEN, external clock enable 2. EXTXTALEN, external crystal enable 3. EXTSLOW, slow external clock R E Q U I R E D Internal Clock Generator Module (ICG) CONFIG or MOR Options All CONFIG or MOR options will have a default setting. Refer to Section 9. Configuration Register (CONFIG) on how the CONFIG or MOR is used. 7.7.1 External Clock Enable (EXTCLKEN) External clock enable (EXTCLKEN), when set, enables the ECGON bit to be set. ECGON turns on the external clock input path through the PTB6/(OSC1) pin. When EXTCLKEN is clear, ECGON cannot be set and PTB6/(OSC1) will always perform the PTB6 function. A G R E E M E N T 4. OSCENINSTOP, oscillator enable in stop 7.7.2 External Crystal Enable (EXTXTALEN) External crystal enable (EXTXTALEN), when set, will enable an amplifier to drive the PTB7/(OSC2) pin from the PTB6/(OSC1) pin. The amplifier will drive only if the external clock enable (EXTCLKEN) bit and the ECGON bit are also set. If EXTCLKEN or ECGON are clear, PTB7/(OSC2) will perform the PTB7 function. When EXTXTALEN is clear, PTB7/(OSC2) will always perform the PTB7 function. EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the valid range of crystals (30 kHz to 100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock monitor will expect an external clock source in the valid range for externally generated clocks when using the clock monitor (60 Hz to 32 MHz). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 127 N O N - D I S C L O S U R E The default state for this option is clear. EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for a 4096 cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear, the stabilization divider is configured to 16 cycles since an external clock source does not need a startup time. The default state for this option is clear. A G R E E M E N T 7.7.3 Slow External Clock (EXTSLOW) Slow external clock (EXTSLOW), when set, will decrease the drive strength of the oscillator amplifier, enabling low-frequency crystal operation (30 kHz–100 kHz) if properly enabled with the external clock enable (EXTCLKEN) and external crystal enable (EXTXTALEN) bits. When clear, EXTSLOW enables high-frequency crystal operation (1 MHz to 8 MHz). N O N - D I S C L O S U R E R E Q U I R E D Internal Clock Generator Module (ICG) The default state for this option is clear. EXTSLOW, when set, also configures the clock monitor to expect an external clock source that is slower than the low-frequency base clock (60 Hz to 307.2 kHz). When EXTSLOW is clear, the clock monitor will expect an external clock faster than the low-frequency base clock (307.2 kHz to 32 MHz). 7.7.4 Oscillator Enable In Stop (OSCENINSTOP) Oscillator enable in stop (OSCENINSTOP), when set, will enable the ICG to continue to generate clocks (either CGMXCLK, CGMOUT, or TBMCLK) in stop mode. This function is used to keep the timebase running while the rest of the microcontroller stops. When OSCENINSTOP is clear, all clock generation will cease and CGMXCLK, CGMOUT, and TBMCLK will be forced low during stop mode. The default state for this option is clear. Technical Data 128 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA R E Q U I R E D Internal Clock Generator Module (ICG) Input/Output (I/O) Registers 7.8 Input/Output (I/O) Registers The ICG contains five registers, summarized in Figure 7-10. These registers are: 1. ICG control register (ICGCR) 2. ICG multiplier register (ICGMR) 3. ICG trim register (ICGTR) 5. ICG DCO stage control register (ICGDSR) Several of the bits in these registers have interaction where the state of one bit may force another bit to a particular state or prevent another bit from being set or cleared. A summary of this interaction is shown in Table 7-4. Addr. Register Name Bit 7 $0036 Read: ICG Control Register (ICGCR) Write: See page 131. Reset: 5 4 3 CMON CS ICGON 0 0 1 0 0 0 N6 N5 N4 N3 N2 N1 N0 0 0 0 1 0 1 0 1 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 DDIV3 DDIV2 DDIV1 DDIV0 CMIE 6 CMF 2 ICGS 1 ECGON Bit 0 ECGS 0* 0 0 A G R E E M E N T 4. ICG DCO divider control register (ICGDVR) $0037 Read: ICG Multiply Register (ICGMR) Write: See page 133. Reset: Read: ICG Trim Register (ICGTR) Write: See page 134. Reset: $0038 Read: ICG Divider Control Register (ICGDVR) Write: See page 134. Reset: $0039 $003A 0 Read: DSTG7 ICG DCO Stage Control Register (ICGDSR) Write: R See page 135. Reset: U 0 0 0 U U U U DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 R R R R R R R U U U U U U U = Unimplemented R = Reserved U = Unaffected Figure 7-10. ICG Module I/O Register Summary MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 129 N O N - D I S C L O S U R E *See 7.8.1 ICG Control Register for method of clearing the CMF bit. Table 7-4. ICG Module Register Bit Interaction Summary CMF CMON CS ICGON ICGS ECGON ECGS N[6:0] TRIM[7:0] DDIV[3:0] DSTG[7:0] Register Bit Results for Given Condition CMIE N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) Reset 0 0 0 0 1 0 0 0 $15 $80 — — OSCENINSTOP = 0, STOP = 1 0 0 0 — — 0 — 0 — — — — EXTCLKEN = 0 0 0 0 0 1 — 0 0 — — uw uw CMF = 1 — (1) 1 — 1 — 1 — uw uw uw uw CMON = 0 0 0 (0) — — — — — — — — — CMON = 1 — — (1) — 1 — 1 — uw uw uw uw CS = 0 — — — (0) 1 — — — — — uw uw CS = 1 — — — (1) — — 1 — — — — — ICGON = 0 0 0 0 1 (0) 0 1 — — — — — ICGON = 1 — — — — (1) — — — — — uw uw ICGS = 0 us — us uc — (0) — — — — — — ECGON = 0 0 0 0 0 1 — (0) 0 — — uw uw ECGS = 0 us — us us — — — (0) — — — — IOFF = 1 — 1* (1) 1 (1) 0 (1) — uw uw uw uw EOFF = 1 — 1* (1) 0 (1) — (1) 0 uw uw uw uw N = written (0) (0) (0) — — 0* — — — — — — TRIM = written (0) (0) (0) — — 0* — — — — — — Condition — 0, 1 0*, 1* (0), (1) us, uc, uw Technical Data 130 Register bit is unaffected by the given condition. Register bit is forced clear or set (respectively) in the given condition. Register bit is temporarily forced clear or set (respectively) in the given condition. Register bit must be clear or set (respectively) for the given condition to occur. Register bit cannot be set, cleared, or written (respectively) in the given condition. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 7.8.1 ICG Control Register The ICG control register (ICGCR) contains the control and status bits for the internal clock generator, external clock generator, and clock monitor as well as the clock select and interrupt enable bits. Address: $0036 4 3 CMON CS ICGON 0 0 1 CMF CMIE Write: Reset: 5 2 1 ICGS Bit 0 ECGS ECGON 0* 0 0 0 0 0 *See CMF bit description for method of clearing CMF bit. = Unimplemented Figure 7-11. ICG Control Register (ICGCR) CMIE — Clock Monitor Interrupt Enable Bit This read/write bit enables clock monitor interrupts. An interrupt will occur when both CMIE and CMF are set. CMIE can be set when the CMON bit has been set for at least one cycle. CMIE is forced clear when CMON is clear or during reset. 1 = Clock monitor interrupts enabled 0 = Clock monitor interrupts disabled CMF — Clock Monitor Interrupt Flag This read-only bit is set when the clock monitor determines that either ICLK or ECLK becomes inactive and the CMON bit is set. This bit is cleared by first reading the bit while it is set, followed by writing the bit low. This bit is forced clear when CMON is clear or during reset. 1 = Either ICLK or ECLK has become inactive. 0 = ICLK and ECLK have not become inactive since the last read of the ICGCR, or the clock monitor is disabled. CMON — Clock Monitor On Bit This read/write bit enables the clock monitor. CMON can be set when both ICLK and ECLK have been on and stable for at least one bus cycle. (ICGON, ECGON, ICGS, and ECGS are all set.) CMON is MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 131 A G R E E M E N T Read: 6 N O N - D I S C L O S U R E Bit 7 R E Q U I R E D Internal Clock Generator Module (ICG) Input/Output (I/O) Registers R E Q U I R E D Internal Clock Generator Module (ICG) forced set when CMF is set, to avoid inadvertent clearing of CMF. CMON is forced clear when either ICGON or ECGON is clear, during stop mode with OSCENINSTOP low, or during reset. 1 = Clock monitor output enabled 0 = Clock monitor output disabled CS — Clock Select Bit A G R E E M E N T This read/write bit determines which clock will generate the oscillator output clock (CGMXCLK). This bit can be set when ECGON and ECGS have been set for at least one bus cycle and can be cleared when ICGON and ICGS have been set for at least one bus cycle. This bit is forced set when the clock monitor determines the internal clock (ICLK) is inactive or when ICGON is clear. This bit is forced clear when the clock monitor determines that the external clock (ECLK) is inactive, when ECGON is clear, or during reset. 1 = External clock (ECLK) sources CGMXCLK 0 = Internal clock (ICLK) sources CGMXCLK ICGON — Internal Clock Generator On Bit N O N - D I S C L O S U R E This read/write bit enables the internal clock generator. ICGON can be cleared when the CS bit has been set and the CMON bit has been clear for at least one bus cycle. ICGON is forced set when the CMON bit is set, the CS bit is clear, or during reset. 1 = Internal clock generator enabled 0 = Internal clock generator disabled ICGS — Internal Clock Generator Stable Bit This read-only bit indicates when the internal clock generator has determined that the internal clock (ICLK) is within about 5 percent of the desired value. This bit is forced clear when the clock monitor determines the ICLK is inactive, when ICGON is clear, when the ICG multiplier register (ICGMR) is written, when the ICG TRIM register (ICGTR) is written, during stop mode with OSCENINSTOP low, or during reset. 1 = Internal clock is within 5 percent of the desired value. 0 = Internal clock may not be within 5 percent of the desired value. Technical Data 132 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA This read/write bit enables the external clock generator. ECGON can be cleared when the CS and CMON bits have been clear for at least one bus cycle. ECGON is forced set when the CMON bit or the CS bit is set. ECGON is forced clear during reset. 1 = External clock generator enabled 0 = External clock generator disabled ECGS — External Clock Generator Stable Bit This read-only bit indicates when at least 4096 external clock (ECLK) cycles have elapsed since the external clock generator was enabled. This is not an assurance of the stability of ECLK but is meant to provide a startup delay. This bit is forced clear when the clock monitor determines ECLK is inactive, when ECGON is clear, during stop mode with OSCENINSTOP low, or during reset. 1 = 4096 ECLK cycles have elapsed since ECGON was set. 0 = External clock is unstable, inactive, or disabled. 7.8.2 ICG Multiplier Register A G R E E M E N T ECGON — External Clock Generator On Bit R E Q U I R E D Internal Clock Generator Module (ICG) Input/Output (I/O) Registers Bit 7 6 5 4 3 2 1 Bit 0 N6 N5 N4 N3 N2 N1 N0 0 0 1 0 1 0 1 Read: Write: Reset: 0 = Unimplemented Figure 7-12. ICG Multiplier Register (ICGMR) N6:N0 — ICG Multiplier Factor Bits These read/write bits change the multiplier used by the internal clock generator. The internal clock (ICLK) will be: (307.2 kHz ± 25 percent) * N A value of $00 in this register is interpreted the same as a value of $01. This register cannot be written when the CMON bit is set. Reset sets this factor to $15 (decimal 21) for default frequency of 6.45 MHz ± 25 percent (1.613 MHz ± 25 percent bus). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 133 N O N - D I S C L O S U R E Address: $0037 R E Q U I R E D Internal Clock Generator Module (ICG) 7.8.3 ICG Trim Register Address: $0038 Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 Read: Write: Reset: Figure 7-13. ICG Trim Register (ICGTR) N O N - D I S C L O S U R E A G R E E M E N T TRIM7:TRIM0 — ICG Trim Factor Bits These read/write bits change the size of the internal capacitor used by the internal clock generator. By testing the frequency of the internal clock and incrementing or decrementing this factor accordingly, the accuracy of the internal clock can be improved per electrical specifications found in 20.10 Trimmed Accuracy of the Internal Clock Generator. Incrementing this register by one decreases the frequency by 0.195 percent of the unadjusted value. Decrementing this register by one increases the frequency by 0.195 percent. This register cannot be written when the CMON bit is set. Reset sets these bits to $80, centering the range of possible adjustment. 7.8.4 ICG DCO Divider Register Address: $0039 Bit 7 6 5 4 Read: 3 2 1 Bit 0 DDIV3 DDIV2 DDIV1 DDIV0 U U U U Write: Reset: 0 0 0 = Unimplemented 0 U = Unaffected Figure 7-14. ICG DCO Divider Control Register (ICGDVR) DDIV3:DDIV0 — ICG DCO Divider Control Bits These bits indicate the number of divide-by-twos (DDIV) that follow the digitally controlled oscillator. When ICGON is set, DDIV is controlled by the digital loop filter. The range of valid values for DDIV Technical Data 134 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA Address: $003A Bit 7 6 5 4 3 2 1 Bit 0 Read: DSTG7 DSTG6 DSTG5 DSTG4 DSTG3 DSTG2 DSTG1 DSTG0 Write: R R R R R R R R Reset: U U U U U U U U R = Reserved U = Unaffected Figure 7-15. ICG DCO Stage Control Register (ICGDSR) DSTG7:DSTG0 — ICG DCO Stage Control Bits These bits indicate the number of stages (above the minimum) in the digitally controlled oscillator. The total number of stages is approximately equal to $1FF, so changing DSTG from $00 to $FF will approximately double the period. Incrementing DSTG will increase the period (decrease the frequency) by 0.202 percent to 0.368 percent (decrementing has the opposite effect). DSTG cannot be written when ICGON is set to prevent inadvertent frequency shifting. When ICGON is set, DSTG is controlled by the digital loop filter. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Internal Clock Generator Module (ICG) Technical Data 135 A G R E E M E N T 7.8.5 ICG DCO Stage Register N O N - D I S C L O S U R E is from $0 to $9. Values of $A through $F are interpreted the same as $9. Since the DCO is active during reset, reset has no effect on DSTG and the value may vary. R E Q U I R E D Internal Clock Generator Module (ICG) Input/Output (I/O) Registers N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Internal Clock Generator Module (ICG) Technical Data 136 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Internal Clock Generator Module (ICG) MOTOROLA 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 8.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 140 8.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 8.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 8.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 8.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 8.2 Introduction This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Low-Voltage Inhibit (LVI) Technical Data 137 R E Q U I R E D 8.1 Contents A G R E E M E N T Section 8. Low-Voltage Inhibit (LVI) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D 8.3 Features A G R E E M E N T Low-Voltage Inhibit (LVI) 8.4 Functional Description Features of the LVI module include: • Programmable LVI reset • Programmable power consumption • Selectable LVI trip voltage • Programmable stop mode operation Figure 8-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are user selectable options found in the configuration register (CONFIG1). See Section 9. Configuration Register (CONFIG). N O N - D I S C L O S U R E The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip thresholds are specified in 20.6 5.0-Vdc DC Electrical Characteristics and 20.7 3.0-Vdc DC Electrical Characteristics. NOTE: After a power-on reset, the LVI’s default mode of operation is 3 volts. If a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation. If the user requires 5-V mode and sets the LVI5OR3 bit after power-on reset while the VDD supply is not above the VTRIPR for 5-V mode, the MCU will immediately go into reset. The next time the LVI releases the reset, the supply will be above the VTRIPR for 5-V mode. Technical Data 138 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Low-Voltage Inhibit (LVI) MOTOROLA Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See Section 6. System Integration Module (SIM) for the reset recovery sequence. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and can be used for polling LVI operation when the LVI reset is disabled. R E Q U I R E D Low-Voltage Inhibit (LVI) Functional Description A G R E E M E N T VDD STOP INSTRUCTION LVISTOP FROM CONFIG FROM CONFIG LVIRSTD LVIPWRD FROM CONFIG VDD > LVITRIP = 0 LOW VDD DETECTOR LVI RESET VDD ≤ LVITRIP = 1 LVIOUT LVI5OR3 Figure 8-1. LVI Module Block Diagram 8.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Low-Voltage Inhibit (LVI) Technical Data 139 N O N - D I S C L O S U R E FROM CONFIG A G R E E M E N T R E Q U I R E D Low-Voltage Inhibit (LVI) 8.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets. 8.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS. 8.4.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection. N O N - D I S C L O S U R E NOTE: Technical Data 140 The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See 20.6 5.0-Vdc DC Electrical Characteristics and 20.7 3.0-Vdc DC Electrical Characteristics for the actual trip point voltages. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Low-Voltage Inhibit (LVI) MOTOROLA The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level while LVI resets have been disabled. Address: $FE0C Bit 7 Read: LVIOUT 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented R = Reserved Figure 8-2. LVI Status Register (LVISR) LVIOUT — LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared when VDD voltage rises above VTRIPR. N O N - D I S C L O S U R E The difference in these threshold levels results in a hysteresis that prevents oscillation into and out of reset. (See Table 8-1.) Reset clears the LVIOUT bit. Table 8-1. LVIOUT Bit Indication VDD LVIOUT VDD > VTRIPR 0 VDD < VTRIPF 1 VTRIPF < VDD < VTRIPR Previous value 8.6 LVI Interrupts The LVI module does not generate interrupt requests. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Low-Voltage Inhibit (LVI) A G R E E M E N T 8.5 LVI Status Register R E Q U I R E D Low-Voltage Inhibit (LVI) LVI Status Register Technical Data 141 8.7 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. 8.7.1 Wait Mode If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. 8.7.2 Stop Mode When the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the cofiguration register is set, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Low-Voltage Inhibit (LVI) Technical Data 142 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Low-Voltage Inhibit (LVI) MOTOROLA 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 9.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9.2 Introduction • Stop mode recovery time, 32 CGMXCLK cycles or 4096 CGMXCLK cycles • Computer operating properly (COP) timeout period, 218–24 or 213–24 CGMXCLK cycles • STOP instruction • Computer operating properly (COP) module • Low-voltage inhibit (LVI) module control and voltage trip point selection • Enable/disable the oscillator (OSC) during stop mode • Serial communications interface (SCI) clock source selection • External clock/crystal source control • Enable/disable for the FLASH charge-pump regulator MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Configuration Register (CONFIG) N O N - D I S C L O S U R E This section describes the configuration registers, CONFIG1 and CONFIG2. The configuration registers control these options: R E Q U I R E D Section 9. Configuration Register (CONFIG) A G R E E M E N T Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 Technical Data 143 9.3 Functional Description The configuration registers are used in the initialization of various options and can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU), it is recommended that these registers be written immediately after reset. The configuration registers are located at $001E and $001F. For compatibility, a write to a read-only memory (ROM) version of the MCU at this location will have no effect. The configuration register may be read at anytime. A G R E E M E N T R E Q U I R E D Configuration Register (CONFIG) NOTE: The CONFIG module is known as an MOR (mask option register) on a ROM device. On a ROM device, the options are fixed at the time of device fabrication and are neither writable nor changeable by the user. On a FLASH device, the CONFIG registers are special registers containing one-time writable latches after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 9-1 and Figure 9-2. Address: $001E Bit 7 N O N - D I S C L O S U R E Read: R 6 5 4 3 2 1 Bit 0 0 EXTXTALEN EXTSLOW EXTCLKEN 0 OSCENINSTOP SCIBDSRC 0 0 0 0 0 0 0 2 1 Bit 0 SSREC STOP COPD Write: Reset: 0 = Unimplemented R = Reserved Figure 9-1. Configuration Register 2 (CONFIG2) Address: $001F Bit 7 6 5 COPRS LVISTOP LVIRSTD Reset: 0 0 0 0 0 0 0 0 Other Resets: 0 0 0 0 U 0 0 0 Read: 4 3 LVIPWRD LVI5OR3 (1) Write: 1. The LVI5OR3 bit is cleared only by a power-on reset (POR). = Unimplemented U = Unaffected Figure 9-2. Configuration Register 1 (CONFIG1) Technical Data 144 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Configuration Register (CONFIG) MOTOROLA EXTSLOW — Slow External Crystal Enable Bit The EXTSLOW bit has two functions. It configures the ICG module for a fast (1 MHz to 8 MHz) or slow (30 kHz to 100 kHz) speed crystal. The option also configures the clock monitor operation in the ICG module to expect an external frequency higher (307.2 kHz to 32 MHz) or lower (60 Hz to 307.2 kHz) than the base frequency of the internal oscillator. See Section 7. Internal Clock Generator Module (ICG). 1 = ICG set for slow external crystal operation 0 = ICG set for fast external crystal operation Table 9-1. External Clock Option Settings External Clock Configuration Bits Pin Function Description EXTCLKEN EXTXTALEN PTB6/(OSC1) PTB7/(OSC2) 0 0 PTB6 PTB7 Default setting — external oscillator disabled 0 1 PTB6 PTB7 External oscillator disabled since EXTCLKEN not set 1 0 OSC1 PTB7 External oscillator configured for an external clock source input (square wave) on OSC1 OSC2 External oscillator configured for an external crystal configuration on OSC1 and OSC2. System will also operate with square-wave clock source in OSC1. 1 1 OSC1 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Configuration Register (CONFIG) Technical Data 145 A G R E E M E N T EXTCLKEN enables an external clock source or crystal/ceramic resonator to be used as a clock input. Setting this bit enables PTB6/(OSC1) pin to be a clock input pin. Clearing this bit (default setting) allows the PTB6/(OSC1) and PTB7/(OSC2) pins to function as a general-purpose input/output (I/O) pin. Refer to Table 9-1 for configuration options for the external source. See Section 7. Internal Clock Generator Module (ICG) for a more detailed description of the external clock operation. 1 = Allows PTB6/(OSC1) to be an external clock connection 0 = PTB6/(OSC1) and PTB7/(OSC2) function as I/O port pins (default). N O N - D I S C L O S U R E EXTCLKEN — External Clock Enable Bit R E Q U I R E D Configuration Register (CONFIG) Functional Description R E Q U I R E D Configuration Register (CONFIG) EXTXTALEN — External Crystal Enable Bit EXTXTALEN enables the external oscillator circuits to be configured for a crystal configuration where the PTB6/(OSC1) and PTB7/(OSC2) pins are the connections for an external crystal. NOTE: This bit does not function without setting the EXTCLKEN bit also. A G R E E M E N T Clearing the EXTXTALEN bit (default setting) allows the PTB7/(OSC2) pin to function as a general-purpose I/O pin. Refer to Table 9-1 for configuration options for the external source. See Section 7. Internal Clock Generator Module (ICG) for a more detailed description of the external clock operation. EXTXTALEN, when set, also configures the clock monitor to expect an external clock source in the valid range of crystals (30 kHz to 100 kHz or 1 MHz to 8 MHz). When EXTXTALEN is clear, the clock monitor will expect an external clock source in the valid range for externally generated clocks when using the clock monitor (60 Hz to 32 MHz). N O N - D I S C L O S U R E EXTXTALEN, when set, also configures the external clock stabilization divider in the clock monitor for a 4096-cycle timeout to allow the proper stabilization time for a crystal. When EXTXTALEN is clear, the stabilization divider is configured to 16 cycles since an external clock source does not need a startup time. 1 = Allows PTB7/(OSC2) to be an external crystal connection. 0 = PTB7/(OSC2) functions as an I/O port pin (default). OSCENINSTOP — Oscillator Enable In Stop Mode Bit OSCENINSTOP, when set, will enable the internal clock generator module to continue to generate clocks (either internal, ICLK, or external, ECLK) in stop mode. See Section 7. Internal Clock Generator Module (ICG). This function is used to keep the timebase running while the rest of the microcontroller stops. See Section 15. Timebase Module (TBM). When clear, all clock generation will cease and both ICLK and ECLK will be forced low during stop mode. The default state for this option is clear, disabling the ICG in stop mode. 1 = Oscillator enabled to operate during stop mode 0 = Oscillator disabled during stop mode (default) NOTE: Technical Data 146 This bit has the same functionality as the OSCSTOPENB CONFIG bit in MC68HC908GP20 and MC68HC908GR8 parts. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Configuration Register (CONFIG) MOTOROLA COPRS — COP Rate Select Bit COPD selects the COP timeout period. Reset clears COPRS. See Section 11. Computer Operating Properly Module (COP). 1 = COP timeout period = 213 – 24 CGMXCLK cycles 0 = COP timeout period = 218 – 24 CGMXCLK cycles LVISTOP — LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRSTD — LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. See Section 8. Low-Voltage Inhibit (LVI). 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD — LVI Power Disable Bit LVIPWRD disables the LVI module. See Section 8. Low-Voltage Inhibit (LVI). 1 = LVI module power disabled 0 = LVI module power enabled LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. See Section 8. Low-Voltage Inhibit (LVI). The voltage mode selected for the LVI should match the operating VDD. See Section 20. Electrical Specifications for the LVI’s voltage trip points for each of the modes. 1 = LVI operates in 5-V mode. 0 = LVI operates in 3-V mode. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Configuration Register (CONFIG) Technical Data 147 A G R E E M E N T SCIBDSRC controls the clock source used for the SCI. The setting of this bit affects the frequency at which the SCI operates. 1 = Internal data bus clock is used as clock source for SCI. 0 = CGMXCLK is used as clock source for SCI. N O N - D I S C L O S U R E SCIBDSRC — SCI Baud Rate Clock Source Bit R E Q U I R E D Configuration Register (CONFIG) Functional Description R E Q U I R E D Configuration Register (CONFIG) NOTE: The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected. SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 CGMXCLK cycles instead of a 4096-CGMXCLK cycle delay. 1 = Stop mode recovery after 32 CGMXCLK cycles 0 = Stop mode recovery after 4096 CGMXCLCK cycles A G R E E M E N T NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery. If the system clock source selected is the internal oscillator or the external crystal and the OSCENINSTOP configuration bit is not set, the oscillator will be disabled during stop mode. The short stop recovery does not provide enough time for oscillator stabilization and thus the SSREC bit should not be set. N O N - D I S C L O S U R E When using the LVI during normal operation but disabling during stop mode, the LVI will have an enable time of tEN. The system stabilization time for power-on reset and long stop recovery (both 4096 CGMXCLK cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32-CGMXCLK delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU. STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. See Section 11. Computer Operating Properly Module (COP). 1 = COP module disabled 0 = COP module enabled Technical Data 148 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Configuration Register (CONFIG) MOTOROLA Section 10. Input/Output (I/O) Ports 10.1 Contents 10.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 10.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 10.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 152 10.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 154 10.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 10.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 10.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 156 10.2 Introduction Thirteen bidirectional input/output (I/O) pins form two parallel ports in the 16-pin plastic dual in-line package (PDIP) and small outline integrated circuit (SOIC) package in the MC68HC908KX8 part. All I/O pins are programmable as inputs or outputs. Port A has software selectable pullup resistors if the port is used as a general-function input port. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. See Figure 10-1 for a summary of the I/O port registers. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Input/Output (I/O) Ports Technical Data 149 A G R E E M E N T Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 N O N - D I S C L O S U R E 10.2 R E Q U I R E D Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Addr. Register Name $0000 Read: Port A Data Register (PTA) Write: See page 151. Reset: $0001 Read: Port B Data Register (PTB) Write: See page 155. Reset: Read: Data Direction Register A $0004 (DDRA) Write: See page 152. Reset: Bit 7 6 5 0 0 0 3 2 1 Bit 0 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 Unaffected by reset 0 0 Read: Data Direction Register B DDRB7 $0005 (DDRB) Write: See page 156. Reset: 0 Read: Port A Input Pullup Enable $000D Register (PTAPUE) Write: See page 154. Reset: 4 0 0 0 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 0 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 0 0 0 0 0 0 0 0 = Unimplemented Figure 10-1. I/O Port Register Summary 10.3 Port A Port A is a 5-bit special function port on the MC68HC908KX8 that shares all of its pins with the keyboard interrupt module (KBI) and the 2-channel timer. Port A contains software programmable pullup resistors enabled when a port pin is used as a general-function input. Port A pins are also high-current port pins with 15-mA source/15-mA sink capabilities. Technical Data 150 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Input/Output (I/O) Ports MOTOROLA 10.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the five port A pins. Address: Read: $0000 Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 PTA4 PTA3 PTA2 PTA1 PTA0 KBD1 KBD0 R E Q U I R E D Input/Output (I/O) Ports Port A Unaffected by reset Alternate Function: KBD4 KBD3 KBD2 Alternate Function: VREFH TCH1 TCH0 = Unimplemented Figure 10-2. Port A Data Register (PTA) PTA4–PTA0 — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBD4–KBD0 — Keyboard Wakeup Bits The keyboard interrupt enable bits, KBIE4–KBIE0, in the keyboard interrupt control register, enable the port A pins as external interrupt pins. See Section 13. Keyboard Interrupt Module (KBI). TCH1 and TCH0 — Timer Channel I/O Bits The PTA3/KBD3/TCH1 and PTA2/KBD2/TCH0 pins are the TIM input capture/output compare pins. The edge/level select bits, ELSxB and ELSxA, determine whether the pins are timer channel I/O pins or general-purpose I/O pins. See Section 16. Timer Interface Module (TIM). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Input/Output (I/O) Ports Technical Data 151 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: R E Q U I R E D Input/Output (I/O) Ports 10.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: $0004 A G R E E M E N T Read: Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 Write: Reset: 0 0 0 = Unimplemented Figure 10-3. Data Direction Register A (DDRA) DDRA4–DDRA0 — Data Direction Register A Bits N O N - D I S C L O S U R E These read/write bits control port A data direction. Reset clears DDRA4–DDRA0, configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 10-4 shows the port A I/O logic. Technical Data 152 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Input/Output (I/O) Ports MOTOROLA DDRAx RESET WRITE PTA ($0000) PTAx PTAx VDD PTAPUEx READ PTA ($0000) INTERNAL PULLUP DEVICE Figure 10-4. Port A I/O Circuit When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 10-1 summarizes the operation of the port A pins. Table 10-1. Port A Pin Functions PTAPUE Bit DDRA Bit PTA Bit I/O Pin Mode Accesses to DDRA Accesses to PTA Read/Write Read Write 1 0 X Input, VDD(1) DDRA4–DDRA0 Pin PTA4–PTA0(2) 0 0 X Input, Hi-Z DDRA4–DDRA0 Pin PTA4–PTA0(3) X 1 X Output DDRA4–DDRA0 PTA4–PTA0 PTA4–PTA0 X = Don’t care Hi-Z = High impedance 1. I/O pin pulled up to VDD by internal pulllup device 2. Writing affects data register, but does not affect input. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Input/Output (I/O) Ports Technical Data 153 A G R E E M E N T INTERNAL DATA BUS WRITE DDRA ($0004) N O N - D I S C L O S U R E READ DDRA ($0004) R E Q U I R E D Input/Output (I/O) Ports Port A 10.3.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each of the five port A pins. Each bit is individually configurable and requires that the data direction register, DDRA, bit be configured as an input. Each pullup is automatically disabled when a port bit’s DDRA is configured for output mode. Address: Read: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports $000D Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 10-5. Port A Input Pullup Enable Register (PTAPUE) PTAPUE4–PTAPUE0 — Port A Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. 1 = Corresponding port A pin configured to have internal pullup 0 = Corresponding port A pin has internal pullup disconnected 10.4 Port B Port B is an 8-bit special-function port that shares four of its pins with the analog-to-digital converter module (ADC), two with the serial communication interface module (SCI) and two with an optional external clock source. Technical Data 154 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Input/Output (I/O) Ports MOTOROLA 10.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port B pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 AD2 AD1 AD0 Read: R E Q U I R E D Input/Output (I/O) Ports Port B Alternate Function: Unaffected by reset OSC2 OSC1 TxD RxD AD3 Figure 10-6. Port B Data Register (PTB) PTB7–PTB0 — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. OSC2 and OSC1 — OSC2 and OSC1 Bits Under software control, PTB7 and PTB6 can be configured as external clock inputs and outputs. PTB7 will become an output clock, OSC2, if selected in the configuration registers and enabled in the ICG registers. PTB6 will become an external input clock source, OSC1, if selected in the configuration registers and enabled in the ICG registers. See Section 7. Internal Clock Generator Module (ICG) and Section 9. Configuration Register (CONFIG). RxD — SCI Receive Data Input Bit The PTB1/RxD pin is the receive data input for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTB1/RxD pin is available for general-purpose I/O. See Section 14. Serial Communications Interface Module (SCI). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Input/Output (I/O) Ports Technical Data 155 N O N - D I S C L O S U R E Reset: A G R E E M E N T Write: A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports TxD — SCI Transmit Data Output Bit The PTB0/TxD pin is the transmit data output for the SCI module. When the enable SCI bit, ENSCI, is clear, the SCI module is disabled, and the PTB0/TxD pin is available for general-purpose I/O. See Section 14. Serial Communications Interface Module (SCI). AD3–AD0 — Analog-to-Digital Input Bits AD3–AD0 are pins used for the input channels to the analog-to-digital converter (ADC) module. The channel select bits in the ADC status and control register define which port B pin will be used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. See Section 17. Analog-toDigital Converter (ADC). 10.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. N O N - D I S C L O S U R E Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 10-7. Data Direction Register B (DDRB) DDRB7–DDRB0 — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB7–DDRB0, configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Technical Data 156 Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Input/Output (I/O) Ports MOTOROLA READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) DDRBx RESET WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 10-8. Port B I/O Circuit When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 10-2 summarizes the operation of the port B pins. A G R E E M E N T Figure 10-8 shows the port B I/O logic. R E Q U I R E D Input/Output (I/O) Ports Port B DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Accesses to PTB Read/Write Read Write 0 X Input, Hi-Z DDRB7–DDRB0 Pin PTB7–PTB0(1) 1 X Output DDRB7–DDRB0 PTB7–PTB0 PTB7–PTB0 X = Don’t care Hi-Z = High impedance 1. Writing affects data register, but does not affect input. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Input/Output (I/O) Ports Technical Data 157 N O N - D I S C L O S U R E Table 10-2. Port B Pin Functions N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Technical Data 158 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Input/Output (I/O) Ports MOTOROLA 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.3 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.5 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 11.5.1 CGMXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 11.5.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 11.5.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.4 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 11.5.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 11.5.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 162 11.6 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.8 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 11.9 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 11.9.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 11.9.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Computer Operating Properly Module (COP) Technical Data 159 R E Q U I R E D 11.1 Contents A G R E E M E N T Section 11. Computer Operating Properly Module (COP) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 11.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software to recover from a runaway code. Periodically clearing the COP counter will prevent a COP reset from occurring. The COP module can be disabled through the COPD bit in the configuration (CONFIG) register. 11.3 Block Diagram RESET STATUS REGISTER COP TIMEOUT STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH RESET CIRCUIT 12-BIT COP PRESCALER CLEAR STAGES 5–12 CGMXCLK CLEAR ALL STAGES A G R E E M E N T R E Q U I R E D Computer Operating Properly Module (COP) SIM MODULE COPCTL WRITE N O N - D I S C L O S U R E COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (FROM CONFIG) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (FROM CONFIG) Figure 11-1. COP Block Diagram Technical Data 160 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Computer Operating Properly Module (COP) MOTOROLA NOTE: Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. A COP reset pulls an internal reset for 64 CGMXCLK cycles and sets the COP bit in the system integration module (SIM) reset status register (SRSR). In monitor mode, the COP is disabled if the IRQ1 pin is held at VTST. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 11.5 I/O Signals The following paragraphs describe the signals shown in Figure 11-1. 11.5.1 CGMXCLK CGMXCLK is the internal clock generator (ICG) module’s oscillator output signal. CGMXCLK is selected from either the internal clock source or the external crystal. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Computer Operating Properly Module (COP) Technical Data 161 A G R E E M E N T The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 213–24 or 218–24 CGMXCLK cycles, depending on the state of the COP rate select bit, COPRS, in the configuration register. With a 218–24 CGMXCLK cycle overflow option, a 4.9152-MHz CGMXCLK frequency gives a COP timeout period of 53.3 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 5–12 of the prescaler. N O N - D I S C L O S U R E 11.4 Functional Description R E Q U I R E D Computer Operating Properly Module (COP) Functional Description N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Computer Operating Properly Module (COP) 11.5.2 STOP Instruction The STOP instruction clears the COP prescaler. 11.5.3 COPCTL Write Writing any value to the COP control register (COPCTL) clears the COP counter and clears stages 12–5 of the COP prescaler. Reading the COP control register returns the low byte of the reset vector. 11.5.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 CGMXCLK cycles after power-up. 11.5.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 11.5.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 11.5.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register. See Section 9. Configuration Register (CONFIG). 11.5.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register. See Section 9. Configuration Register (CONFIG). Technical Data 162 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Computer Operating Properly Module (COP) MOTOROLA 11.6 COP Control Register The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and stages 12–5 of the COP prescaler and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. R E Q U I R E D Computer Operating Properly Module (COP) COP Control Register 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 11-2. COP Control Register (COPCTL) 11.7 Interrupts The COP does not generate CPU interrupt requests. 11.8 Monitor Mode The COP is disabled in monitor mode when VTST is present on the IRQ1 pin. 11.9 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 11.9.1 Wait Mode The COP remains active in wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Computer Operating Properly Module (COP) Technical Data 163 N O N - D I S C L O S U R E Bit 7 A G R E E M E N T Address: $FFFF 11.9.2 Stop Mode Stop mode holds the 12-bit prescaler counter in reset until after stop mode is exited. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertantly turning off the COP with a STOP instruciton, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration has the STOP instruction disabled, execution of a STOP instruction results in an illegal opcode reset. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Computer Operating Properly Module (COP) Technical Data 164 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Computer Operating Properly Module (COP) MOTOROLA 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 12.5 IRQ1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.6 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 168 12.2 Introduction The external interrupt (IRQ) module provides a maskable interrupt input. 12.3 Features Features of the IRQ module include: • A dedicated external interrupt pin (IRQ1) • IRQ1 interrupt control bits • Internal pullup resistor • Hysteresis buffer • Programmable edge-only or edge- and level-interrupt sensitivity • Automatic interrupt acknowledge MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA External Interrupt (IRQ) Technical Data 165 R E Q U I R E D 12.1 Contents A G R E E M E N T Section 12. External Interrupt (IRQ) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 12.4 Functional Description A logic 0 applied to the external interrupt pin can latch a central processor unit (CPU) interrupt request. Figure 12-1 shows the structure of the IRQ module. Interrupt signals on the IRQ1 pin are latched into the IRQ1 latch. An interrupt latch remains set until one of these actions occurs: A G R E E M E N T R E Q U I R E D External Interrupt (IRQ) • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch. • Software clear — Software can clear an interrupt latch by writing to the appropriate acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ1 latch. • Reset — A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge triggered and is softwareconfigurable to be both falling-edge and low-level triggered. The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ1 pin. INTERNAL ADDRESS BUS N O N - D I S C L O S U R E ACK1 TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER V'' INTERNAL PULLUP DEVICE V'' IRQF1 D CLR Q SYNCHRONIZER IRQ1 CK IRQ1 INTERRUPT REQUEST IRQ1 LATCH IMASK1 MODE1 HIGH VOLTAGE DETECT TO MODE SELECT LOGIC Figure 12-1. IRQ Block Diagram Technical Data 166 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 External Interrupt (IRQ) MOTOROLA • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK1 bit in the ISCR masks all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK1 bit is clear. NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. 12.5 IRQ1 Pin A logic 0 on the IRQ1 pin can latch an interrupt request into the IRQ1 latch. A vector fetch, software clear, or reset clears the IRQ1 latch. If the MODE1 bit is set, the IRQ1 pin is both falling-edge sensitive and low-level sensitive. With MODE1 set, both of the following actions must occur to clear the IRQ1 latch: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ1 pin and require software to clear the IRQ1 latch. Writing to the ACK1 bit can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ1 pin. A falling edge on the IRQ1 pin that occurs after writing to the ACK1 bit MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA External Interrupt (IRQ) Technical Data 167 A G R E E M E N T When an interrupt pin is both falling-edge and low-level triggered, the interrupt latch remains set until both of these occur: N O N - D I S C L O S U R E When an interrupt pin is edge-triggered only, the interrupt latch remains set until a vector fetch, software clear, or reset occurs. R E Q U I R E D External Interrupt (IRQ) IRQ1 Pin R E Q U I R E D External Interrupt (IRQ) latches another interrupt request. If the IRQ1 mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • A G R E E M E N T The vector fetch or software clear and the return of the IRQ1 pin to logic 1 can occur in any order. The interrupt request remains pending as long as the IRQ1 pin is at logic 0. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. If the MODE1 bit is clear, the IRQ1 pin is falling-edge sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ1 latch. The IRQF1 bit in the ISCR can be used to check for pending interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes it useful in applications where polling is preferred. Use the branch if interrupt pin is high (BIH) or branch if interrupt pin is low (BIL) instruction to read the logic level on the IRQ1 pin. NOTE: N O N - D I S C L O S U R E Return of the IRQ1 pin to logic 1 — As long as the IRQ1 pin is at logic 0, the IRQ1 latch remains set. When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. 12.6 IRQ Status and Control Register The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module. The ISCR has these functions: Technical Data 168 • Shows the state of the IRQ1 interrupt flag • Clears the IRQ1 interrupt latch • Masks IRQ1 interrupt request • Controls triggering sensitivity of the IRQ1 interrupt pin MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 External Interrupt (IRQ) MOTOROLA Bit 7 6 5 4 3 2 Read: 0 0 0 0 IRQF1 0 Write: R R R R R ACK1 Reset: 0 0 0 0 U 0 R = Reserved 1 Bit 0 IMASK1 MODE1 0 0 U = Unaffected Figure 12-2. IRQ Status and Control Register (ISCR) IRQF1 — IRQ1 Flag Bit This read-only status bit is high when the IRQ1 interrupt is pending. 1 = IRQ1 interrupt pending 0 = IRQ1 interrupt not pending ACK1 — IRQ1 Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ1 latch. ACK1 always reads as logic 0. Reset clears ACK1. IMASK1 — IRQ1 Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ1 interrupt requests. Reset clears IMASK1. 1 = IRQ1 interrupt requests disabled 0 = IRQ1 interrupt requests enabled MODE1 — IRQ1 Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ1 pin. Reset clears MODE1. 1 = IRQ1 interrupt requests on falling edges and low levels 0 = IRQ1 interrupt requests on falling edges only MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA External Interrupt (IRQ) Technical Data 169 A G R E E M E N T $001D N O N - D I S C L O S U R E Address: R E Q U I R E D External Interrupt (IRQ) IRQ Status and Control Register N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D External Interrupt (IRQ) Technical Data 170 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 External Interrupt (IRQ) MOTOROLA 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 13.5 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 N O N - D I S C L O S U R E 13.7 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 176 13.7.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 178 13.2 Introduction The keyboard interrupt module (KBI) provides five independently maskable external interrupt pins. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Keyboard Interrupt Module (KBI) R E Q U I R E D Section 13. Keyboard Interrupt Module (KBI) A G R E E M E N T Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 Technical Data 171 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Keyboard Interrupt Module (KBI) 13.3 Features KBI features include: • Five keyboard interrupt pins, on the MC68HC908KX8, are with separate keyboard interrupt enable bits and one keyboard interrupt mask • Hysteresis buffers • Programmable edge-only or edge- and level-interrupt sensitivity • Automatic interrupt acknowledge • Exit from low-power modes INTERNAL BUS ACKK KBD0 RESET V'' TO PULLUP ENABLE KB0IE KEYF D CLR Q SYNCHRONIZER CK KEYBOARD INTERRUPT FF KBD4 or KBD3 TO PULLUP ENABLE VECTOR FETCH DECODER IMASKK KEYBOARD INTERRUPT REQUEST MODEK KB4IE or KB3IE Figure 13-1. Keyboard Module Block Diagram Technical Data 172 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Keyboard Interrupt Module (KBI) MOTOROLA Bit 7 6 5 4 3 2 Read: Keyboard Status and $001A Control Register (KBSCR) Write: See page 177. Reset: 0 0 0 0 KEYF 0 Read: Keyboard Interrupt Enable $001B Register (KBIER) Write: See page 178. Reset: 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 = Unimplemented Figure 13-2. I/O Register Summary 13.4 Functional Description Writing to the KBIE4–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 173 A G R E E M E N T Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Keyboard Interrupt Module (KBI) Functional Description A G R E E M E N T R E Q U I R E D Keyboard Interrupt Module (KBI) • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine also can prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE0 and $FFE1. • Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. N O N - D I S C L O S U R E If the MODEK bit is clear, the keyboard interrupt pin is falling edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. NOTE: Technical Data 174 Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Keyboard Interrupt Module (KBI) MOTOROLA When a keyboard interrupt pin is enabled, the pin may initially be low and cause a false interrupt to occur. A false interrupt on an edge-triggered pin can be acknowledged immediately after enabling the pin. A false interrupt on an edge- and level-triggered interrupt pin must be acknowledged after the pin has been pulled high. The internal pullup device, the pin capacitance, as well as the external load will factor into the actual amount of time it takes for the pin to pull high. Considering only an internal pullup of 48 kΩ and pin capacitance of 8 pF, the pullup time will be on the order of 1 µs. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. A G R E E M E N T 13.5 Keyboard Initialization R E Q U I R E D Keyboard Interrupt Module (KBI) Keyboard Initialization Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 175 N O N - D I S C L O S U R E 4. Clear the IMASKK bit. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Keyboard Interrupt Module (KBI) 13.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 13.6.1 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 13.6.2 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. 13.7 I/O Registers Two registers control and monitor operation of the keyboard module: • Keyboard status and control register, KBSCR • Keyboard interrupt enable register, KBIER 13.7.1 Keyboard Status and Control Register The keyboard status and control register (KBSCR): Technical Data 176 • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Keyboard Interrupt Module (KBI) MOTOROLA 6 5 4 3 2 0 0 0 0 KEYF 0 Bit 0 IMASKK MODEK 0 0 ACKK Write: Reset: 1 0 0 0 0 0 0 = Unimplemented Figure 13-3. Keyboard Status and Control Register (KBSCR) Bits 7–4 — Not used These read-only bits always read as logic 0s. KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Keyboard Interrupt Module (KBI) Technical Data 177 A G R E E M E N T Read: Bit 7 N O N - D I S C L O S U R E Address: $001A R E Q U I R E D Keyboard Interrupt Module (KBI) I/O Registers R E Q U I R E D Keyboard Interrupt Module (KBI) 13.7.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register (KBIER) enables or disables each port A pin to operate as a keyboard interrupt pin. Address: $001B Read: Bit 7 6 5 0 0 0 4 3 2 1 Bit 0 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 Write: A G R E E M E N T Reset: 0 0 0 = Unimplemented Figure 13-4. Keyboard Interrupt Enable Register (KBIER) KBIE4–KBIE0 — Keyboard Interrupt Enable Bits N O N - D I S C L O S U R E Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PAx pin enabled as keyboard interrupt pin 0 = PAx pin not enabled as keyboard interrupt pin Technical Data 178 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Keyboard Interrupt Module (KBI) MOTOROLA 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.5.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184 14.5.2.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2.2 Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 184 14.5.2.3 Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.5.2.4 Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.5.2.5 Inversion of Transmitted Output. . . . . . . . . . . . . . . . . . .187 14.5.2.6 Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 14.5.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 14.5.3.1 Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.2 Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.3 Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 14.5.3.4 Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.3.5 Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.5.3.6 Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 14.5.3.7 Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.5.3.8 Error Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 14.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 14.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 14.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 14.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.7.1 TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.7.2 RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 179 R E Q U I R E D 14.1 Contents A G R E E M E N T Section 14. Serial Communications Interface Module (SCI) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 14.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 14.8.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .198 14.8.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .201 14.8.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . .204 14.8.4 SCI Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 14.8.5 SCI Status Register 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 14.8.6 SCI Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 14.8.7 SCI Baud Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 14.2 Introduction The serial communications interface (SCI) allows asynchronous communications with peripheral devices and other microcontroller unit (MCU). 14.3 Features The SCI module’s features include: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) • Full-duplex operation • Standard mark/space non-return-to-zero (NRZ) format • Choice of baud rate clock source: – Internal bus clock – CGMXCLK • 32 programmable baud rates • Programmable 8-bit or 9-bit character length • Separately enabled transmitter and receiver • Separate receiver and transmitter central processor unit (CPU) interrupt requests • Programmable transmitter output polarity • Two receiver wakeup methods: – Idle line wakeup – Address mark wakeup Technical Data 180 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA • R E Q U I R E D Serial Communications Interface Module (SCI) Pin Name Conventions Interrupt-driven operation with eight interrupt flags: – Transmitter empty – Transmission complete – Receiver full – Idle receiver input – Receiver overrun – Noise error – Parity error • Receiver framing error detection • Hardware parity checking • 1/16 bit-time noise detection 14.4 Pin Name Conventions The generic names of the SCI input/output (I/O) pins are: • RxD, receive data • TxD, transmit data SCI I/O lines are implemented by sharing parallel I/O port pins. The full name of an SCI input or output reflects the name of the shared port pin. Table 14-1 shows the full names and the generic names of the SCI I/O pins.The generic pin names appear in the text of this section. Table 14-1. Pin Name Conventions Generic Pin Names RxD TxD Full Pin Names PTB4/RxD PTB5/TxD MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 181 N O N - D I S C L O S U R E A G R E E M E N T – Framing error 14.5 Functional Description Figure 14-1 shows the structure of the SCI module. The SCI allows fullduplex, asynchronous, NRZ serial communication between the MCU and remote devices, including other MCUs. The transmitter and receiver of the SCI operate independently, although they use the same baud rate generator. INTERNAL BUS RECEIVE SHIFT REGISTER RxD SCI DATA REGISTER ERROR INTERRUPT CONTROL TRANSMITTER INTERRUPT CONTROL SCI DATA REGISTER RECEIVER INTERRUPT CONTROL A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) TRANSMIT SHIFT REGISTER TxD TXINV SCTIE R TCIE T SCRIE ILIE TE SCTE RE TC RWU N O N - D I S C L O S U R E SBK SCRF OR ORIE IDLE NF NEIE FE FEIE PE PEIE LOOPS LOOPS WAKEUP CONTROL RECEIVE CONTROL ENSCI ENSCI TRANSMIT CONTROL FLAG CONTROL BKF M RPF WAKE ILTY BAUDCLK ÷4 CGMXCLK A BUSCLK B PRESCALER BAUD RATE GENERATOR ÷ 16 PEN PTY DATA SELECTION CONTROL S SCIBDSRC Figure 14-1. SCI Module Block Diagram Technical Data 182 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA Addr. $0013 $0014 $0015 $0016 $0017 Register Name 6 5 4 3 2 1 Bit 0 ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 T8 R R ORIE NEIE FEIE PEIE Read: SCI Control Register 1 LOOPS (SCC1) Write: See page 198. Reset: 0 Read: SCI Control Register 2 (SCC2) Write: See page 201. Reset: Read: SCI Control Register 3 (SCC3) Write: See page 204. Reset: R8 U U 0 0 0 0 0 0 Read: SCI Status Register 1 (SCS1) Write: See page 206. Reset: SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Read: SCI Status Register 2 (SCS2) Write: See page 210. Reset: 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 R7 R6 R5 R4 R3 R2 R1 R0 T7 T6 T5 T4 T3 T2 T1 T0 Read: SCI Data Register (SCDR) Write: See page 211. Reset: $0018 $0019 Bit 7 Read: SCI Baud Rate Register (SCBR) Write: See page 211. Reset: Unaffected by reset 0 0 0 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 14-2. SCI I/O Register Summary MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 183 A G R E E M E N T During normal operation, the CPU monitors the status of the SCI, writes the data to be transmitted, and processes received data. N O N - D I S C L O S U R E The source of the baud rate clock is determined by the configuration register 2 bit, SCIBDSRC. If SCIBDSRC is set then the source of the SCI is the internal data bus clock. If SCIBDSRC is cleared, the source of the SCI is oscillator output CGMXCLK. R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) 14.5.1 Data Format The SCI uses the standard non-return-to-zero mark/space data format illustrated in Figure 14-3. 8-BIT DATA FORMAT BIT M IN SCC1 CLEAR START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 PARITY OR DATA BIT BIT 6 9-BIT DATA FORMAT BIT M IN SCC1 SET START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 NEXT START STOP BIT BIT PARITY OR DATA BIT BIT 7 BIT 8 STOP BIT NEXT START BIT Figure 14-3. SCI Data Formats 14.5.2 Transmitter Figure 14-4 shows the structure of the SCI transmitter. 14.5.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is the ninth bit (bit 8). 14.5.2.2 Character Transmission During an SCI transmission, the transmit shift register shifts a character out to the TxD pin. The SCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an SCI transmission: 1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI) in SCI control register 1 (SCC1). 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in SCI control register 2 (SCC2). Technical Data 184 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description INTERNAL BUS ÷ 16 SCI DATA REGISTER SCP1 SCR1 H 8 7 6 5 4 3 2 1 0 L TxD TXINV A G R E E M E N T MSB PARITY GENERATION T8 BREAK ALL 0s PTY PREAMBLE ALL 1s PEN SHIFT ENABLE M LOAD FROM SCDR TRANSMITTER CPU INTERRUPT REQUEST SCR2 TRANSMITTER CONTROL LOGIC SCTE SCTE SCTIE TC TCIE SBK LOOPS SCTIE ENSCI TC TE TCIE Figure 14-4. SCI Transmitter Break Characters 3. Clear the SCI transmitter empty bit by first reading SCI status register 1 (SCS1) and then writing to the SCDR. 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit position of the transmit shift register. A logic 1 stop bit goes into the most significant bit position. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 185 N O N - D I S C L O S U R E SCP0 SCR0 11-BIT TRANSMIT SHIFT REGISTER STOP BAUDCLK BAUD DIVIDER START PRESCALER ÷4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port B pins. Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. A break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. 14.5.2.3 Break Characters The SCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be. Receiving a break character has these effects on SCI registers: • Sets the framing error bit (FE) in SCS1 • Sets the SCI receiver full bit (SCRF) in SCS1 • Clears the SCI data register (SCDR) • Clears the R8 bit in SCC3 • Sets the break flag bit (BKF) in SCS2 • May set the overrun (OR), noise flag (NF), parity error (PE), or reception-in-progress flag (RPF) bits 14.5.2.4 Idle Characters An idle character contains all logic 1s and has no start, stop, or parity bit. Idle character length depends on the M bit in SCC1. The preamble is a synchronizing idle character that begins every transmission. Technical Data 186 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA When queueing an idle character, return the TE bit to logic 1 before the stop bit of the current character shifts out to the TxD pin. Setting TE after the stop bit appears on TxD causes data previously written to the SCDR to be lost. A good time to toggle the TE bit for a queued idle character is when the SCTE bit becomes set and just before writing the next byte to the SCDR. 14.5.2.5 Inversion of Transmitted Output The transmit inversion bit (TXINV) in SCI control register 1 (SCC1) reverses the polarity of transmitted data. All transmitted values, including idle, break, start, and stop bits, are inverted when TXINV is at logic 1. See 14.8.1 SCI Control Register 1. 14.5.2.6 Transmitter Interrupts These conditions can generate CPU interrupt requests from the SCI transmitter: • SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates that the SCDR has transferred a character to the transmit shift register. SCTE can generate a transmitter CPU interrupt request. Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2 enables the SCTE bit to generate transmitter CPU interrupt requests. • Transmission complete (TC) — The TC bit in SCS1 indicates that the transmit shift register and the SCDR are empty and that no break or idle character has been generated. The transmission complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to generate transmitter CPU interrupt requests. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 187 A G R E E M E N T NOTE: N O N - D I S C L O S U R E If the TE bit is cleared during a transmission, the TxD pin becomes idle after completion of the transmission in progress. Clearing and then setting the TE bit during a transmission queues an idle character to be sent after the character currently being transmitted. R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description 14.5.3 Receiver Figure 14-5 shows the structure of the SCI receiver. INTERNAL BUS SCR1 SCP0 SCR0 BAUD DIVIDER ÷ 16 DATA RECOVERY RxD CPU INTERRUPT REQUEST 8 7 6 5 M WAKE ILTY PEN PTY 4 3 2 1 0 L MSB RPF ERROR CPU INTERRUPT REQUEST H 11-BIT RECEIVE SHIFT REGISTER ALL 0s BKF N O N - D I S C L O S U R E STOP PRESCALER SCI DATA REGISTER START SCR2 ÷4 BAUDCLK A G R E E M E N T SCP1 ALL 1s R E Q U I R E D Serial Communications Interface Module (SCI) SCRF WAKEUP LOGIC PARITY CHECKING IDLE ILIE RWU IDLE R8 ILIE SCRF SCRIE SCRIE OR OR ORIE ORIE NF NF NEIE NEIE FE FE FEIE FEIE PE PE PEIE PEIE Figure 14-5. SCI Receiver Block Diagram Technical Data 188 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA The receiver can accommodate either 8-bit or 9-bit data. The state of the M bit in SCI control register 1 (SCC1) determines character length. When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth bit (bit 7). 14.5.3.2 Character Reception During an SCI reception, the receive shift register shifts characters in from the RxD pin. The SCI data register (SCDR) is the read-only buffer between the internal data bus and the receive shift register. After a complete character shifts into the receive shift register, the data portion of the character transfers to the SCDR. The SCI receiver full bit, SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the received byte can be read. If the SCI receive interrupt enable bit, SCRIE, in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt request. A G R E E M E N T 14.5.3.1 Character Length R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description The receiver samples the RxD pin at the RT clock rate. The RT clock is an internal signal with a frequency 16 times the baud rate. To adjust for baud rate mismatch, the RT clock is resynchronized at these times (see Figure 14-6): • After every start bit • After the receiver detects a data bit change from logic 1 to logic 0 (after the majority of data bit samples at RT8, RT9, and RT10 returns a valid logic 1 and the majority of the next RT8, RT9, and RT10 samples returns a valid logic 0) To locate the start bit, data recovery logic does an asynchronous search for a logic 0 preceded by three logic 1s. When the falling edge of a possible start bit occurs, the RT clock begins to count to 16. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 189 N O N - D I S C L O S U R E 14.5.3.3 Data Sampling R E Q U I R E D Serial Communications Interface Module (SCI) START BIT RxD START BIT QUALIFICATION SAMPLES LSB START BIT DATA VERIFICATION SAMPLING RT CLOCK STATE RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT1 RT2 RT3 RT4 RT5 RT6 RT7 RT8 RT9 RT10 RT11 RT12 RT13 RT14 RT15 RT16 RT1 RT2 RT3 RT4 RT CLOCK A G R E E M E N T RT CLOCK RESET Figure 14-6. Receiver Data Sampling To verify the start bit and to detect noise, data recovery logic takes samples at RT3, RT5, and RT7. Table 14-2 summarizes the results of the start bit verification samples. N O N - D I S C L O S U R E Table 14-2. Start Bit Verification RT3, RT5, and RT7 Samples Start Bit Verification Noise Flag 000 Yes 0 001 Yes 1 010 Yes 1 011 No 0 100 Yes 1 101 No 0 110 No 0 111 No 0 If start bit verification is not successful, the RT clock is reset and a new search for a start bit begins. Technical Data 190 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA NOTE: RT8, RT9, and RT10 Samples Data Bit Determination Noise Flag 000 0 0 001 0 1 010 0 1 011 1 1 100 0 1 101 1 1 110 1 1 111 1 0 The RT8, RT9, and RT10 samples do not affect start bit verification. If any or all of the RT8, RT9, and RT10 start bit samples are logic 1s following a successful start bit verification, the noise flag (NF) is set and the receiver assumes that the bit is a start bit. To verify a stop bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 14-4 summarizes the results of the stop bit samples. Table 14-4. Stop Bit Recovery RT8, RT9, and RT10 Samples Framing Error Flag Noise Flag 000 1 0 001 1 1 010 1 1 011 0 1 100 1 1 101 0 1 110 0 1 111 0 0 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 191 A G R E E M E N T Table 14-3. Data Bit Recovery N O N - D I S C L O S U R E To determine the value of a data bit and to detect noise, recovery logic takes samples at RT8, RT9, and RT10. Table 14-3 summarizes the results of the data bit samples. R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description 14.5.3.4 Framing Errors If the data recovery logic does not detect a logic 1 where the stop bit should be in an incoming character, it sets the framing error bit, FE, in SCS1. A break character also sets the FE bit because a break character has no stop bit. The FE bit is set at the same time that the SCRF bit is set. 14.5.3.5 Baud Rate Tolerance A transmitting device may be operating at a baud rate below or above the receiver baud rate. Accumulated bit time misalignment can cause one of the three stop bit data samples to fall outside the actual stop bit. Then a noise error occurs. If more than one of the samples is outside the stop bit, a framing error occurs. In most applications, the baud rate tolerance is much more than the degree of misalignment that is likely to occur. A G R E E M E N T As the receiver samples an incoming character, it resynchronizes the RT clock on any valid falling edge within the character. Resynchronization within characters corrects misalignments between transmitter bit times and receiver bit times. N O N - D I S C L O S U R E Slow Data Tolerance Figure 14-7 shows how much a slow received character can be misaligned without causing a noise error or a framing error. The slow stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit data samples at RT8, RT9, and RT10. MSB STOP RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT1 RECEIVER RT CLOCK RT2 R E Q U I R E D Serial Communications Interface Module (SCI) DATA SAMPLES Figure 14-7. Slow Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. Technical Data 192 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA 154 – 147 × 100 = 4.54% -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 14-7, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a slow 9-bit character with no errors is 170 – 163 × 100 = 4.12% -------------------------170 Fast Data Tolerance Figure 14-8 shows how much a fast received character can be misaligned without causing a noise error or a framing error. The fast stop bit ends at RT10 instead of RT16 but is still there for the stop bit data samples at RT8, RT9, and RT10. STOP IDLE OR NEXT CHARACTER RT16 RT15 RT14 RT13 RT12 RT11 RT10 RT9 RT8 RT7 RT6 RT5 RT4 RT3 RT2 RT1 RECEIVER RT CLOCK DATA SAMPLES Figure 14-8. Fast Data For an 8-bit character, data sampling of the stop bit takes the receiver 9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 193 A G R E E M E N T The maximum percent difference between the receiver count and the transmitter count of a slow 8-bit character with no errors is N O N - D I S C L O S U R E With the misaligned character shown in Figure 14-7, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles. R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description With the misaligned character shown in Figure 14-8, the receiver counts 154 RT cycles at the point when the count of the transmitting device is 10 bit times × 16 RT cycles = 160 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 8-bit character with no errors is 154 – 160 × 100 = 3.90%. -------------------------154 For a 9-bit character, data sampling of the stop bit takes the receiver 10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles. With the misaligned character shown in Figure 14-8, the receiver counts 170 RT cycles at the point when the count of the transmitting device is 11 bit times × 16 RT cycles = 176 RT cycles. The maximum percent difference between the receiver count and the transmitter count of a fast 9-bit character with no errors is 170 – 176 × 100 = 3.53%. -------------------------170 14.5.3.6 Receiver Wakeup So that the MCU can ignore transmissions intended only for other receivers in multiple-receiver systems, the receiver can be put into a standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the receiver into a standby state during which receiver interrupts are disabled. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) Depending on the state of the WAKE bit in SCC1, either of two conditions on the RxD pin can bring the receiver out of the standby state: 1. Address mark — An address mark is a logic 1 in the most significant bit position of a received character. When the WAKE bit is set, an address mark wakes the receiver from the standby state by clearing the RWU bit. The address mark also sets the SCI receiver full bit, SCRF. Software can then compare the character containing the address mark to the user-defined address of the receiver. If they are the same, the receiver remains awake and processes the characters that follow. If they are not the same, Technical Data 194 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA NOTE: With the WAKE bit clear, setting the RWU bit after the RxD pin has been idle may cause the receiver to wake up immediately. 14.5.3.7 Receiver Interrupts These sources can generate CPU interrupt requests from the SCI receiver: • SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that the receive shift register has transferred a character to the SCDR. SCRF can generate a receiver CPU interrupt request. Setting the SCI receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit to generate receiver CPU interrupts. • Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11 consecutive logic 1s shifted in from the RxD pin. The idle line interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate CPU interrupt requests. 14.5.3.8 Error Interrupts These receiver error flags in SCS1 can generate CPU interrupt requests: • Receiver overrun (OR) — The OR bit indicates that the receive shift register shifted in a new character before the previous character was read from the SCDR. The previous character remains in the SCDR, and the new character is lost. The overrun interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI error CPU interrupt requests. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 195 A G R E E M E N T 2. Idle input line condition — When the WAKE bit is clear, an idle character on the RxD pin wakes the receiver from the standby state by clearing the RWU bit. The idle character that wakes the receiver does not set the receiver idle bit, IDLE, or the SCI receiver full bit, SCRF. The idle line type bit, ILTY, determines whether the receiver begins counting logic 1s as idle character bits after the start bit or after the stop bit. N O N - D I S C L O S U R E software can set the RWU bit and put the receiver back into the standby state. R E Q U I R E D Serial Communications Interface Module (SCI) Functional Description N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) • Noise flag (NF) — The NF bit is set when the SCI detects noise on incoming data or break characters, including start, data, and stop bits. The noise error interrupt enable bit, NEIE, in SCC3 enables NF to generate SCI error CPU interrupt requests. • Framing error (FE) — The FE bit in SCS1 is set when a logic 0 occurs where the receiver expects a stop bit. The framing error interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI error CPU interrupt requests. • Parity error (PE) — The PE bit in SCS1 is set when the SCI detects a parity error in incoming data. The parity error interrupt enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU interrupt requests. 14.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 14.6.1 Wait Mode The SCI module remains active in wait mode. Any enabled CPU interrupt request from the SCI module can bring the MCU out of wait mode. If SCI module functions are not required during wait mode, reduce power consumption by disabling the module before executing the WAIT instruction. 14.6.2 Stop Mode The SCI module is inactive in stop mode. The STOP instruction does not affect SCI register states. SCI module operation resumes after the MCU exits stop mode. Because the internal clock is inactive during stop mode, entering stop mode during an SCI transmission or reception results in invalid data. Technical Data 196 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA 14.7 I/O Signals Port B shares two of its pins with the SCI module. The two SCI I/O pins are: • TxD — Transmit data • RxD — Receive data R E Q U I R E D Serial Communications Interface Module (SCI) I/O Signals The TxD pin is the serial data output from the SCI transmitter. The SCI shares the TxD pin with port B. When the SCI is enabled, the TxD pin is an output regardless of the state of the DDRB5 bit in data direction register B (DDRB). 14.7.2 RxD (Receive Data) N O N - D I S C L O S U R E The RxD pin is the serial data input to the SCI receiver. The SCI shares the RxD pin with port B. When the SCI is enabled, the RxD pin is an input regardless of the state of the DDRB4 bit in data direction register B (DDRB). 14.8 I/O Registers These I/O registers control and monitor SCI operation: • SCI control register 1 (SCC1) • SCI control register 2 (SCC2) • SCI control register 3 (SCC3) • SCI status register 1 (SCS1) • SCI status register 2 (SCS2) • SCI data register (SCDR) • SCI baud rate register (SCBR) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) A G R E E M E N T 14.7.1 TxD (Transmit Data) Technical Data 197 14.8.1 SCI Control Register 1 SCI control register 1 (SCC1): A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) • Enables loop mode operation • Enables the SCI • Controls output polarity • Controls character length • Controls SCI wakeup method • Controls idle character detection • Enables parity function • Controls parity type Address: $0013 Bit 7 6 5 4 3 2 1 Bit 0 LOOPS ENSCI TXINV M WAKE ILTY PEN PTY 0 0 0 0 0 0 0 0 Read: Write: Reset: N O N - D I S C L O S U R E Figure 14-9. SCI Control Register 1 (SCC1) LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the SCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. 1 = Loop mode enabled 0 = Normal operation enabled ENSCI — Enable SCI Bit This read/write bit enables the SCI and the SCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in SCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. 1 = SCI enabled 0 = SCI disabled Technical Data 198 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. 1 = Transmitter output inverted 0 = Transmitter output not inverted NOTE: Setting the TXINV bit inverts all transmitted values, including idle, break, start, and stop bits. R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers WAKE — Wakeup Condition Bit This read/write bit determines which condition wakes up the SCI: a logic 1 (address mark) in the most significant bit position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. 1 = Address mark wakeup 0 = Idle line wakeup ILTY — Idle Line Type Bit This read/write bit determines when the SCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. 1 = Idle character bit count begins after stop bit. 0 = Idle character bit count begins after start bit. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 199 N O N - D I S C L O S U R E This read/write bit determines whether SCI characters are eight or nine bits long. (See Table 14-5.) The ninth bit can serve as an extra stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears the M bit. 1 = 9-bit SCI characters 0 = 8-bit SCI characters A G R E E M E N T M — Mode (Character Length) Bit R E Q U I R E D Serial Communications Interface Module (SCI) PEN — Parity Enable Bit This read/write bit enables the SCI parity function. (See Table 14-5.) When enabled, the parity function inserts a parity bit in the most significant bit position. (See Figure 14-3.) Reset clears the PEN bit. 1 = Parity function enabled 0 = Parity function disabled PTY — Parity Bit A G R E E M E N T This read/write bit determines whether the SCI generates and checks for odd parity or even parity. (See Table 14-5.) Reset clears the PTY bit. 1 = Odd parity 0 = Even parity NOTE: Changing the PTY bit in the middle of a transmission or reception can generate a parity error. Table 14-5. Character Format Selection N O N - D I S C L O S U R E Control Bits Technical Data 200 Character Format M PEN–PTY Start Bits Data Bits Parity Stop Bits Character Length 0 0X 1 8 None 1 10 Bits 1 0X 1 9 None 1 11 Bits 0 10 1 7 Even 1 10 Bits 0 11 1 7 Odd 1 10 Bits 1 10 1 8 Even 1 11 Bits 1 11 1 8 Odd 1 11 Bits MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA 14.8.2 SCI Control Register 2 SCI control register 2 (SCC2): Enables these CPU interrupt requests: – Enables the SCTE bit to generate transmitter CPU interrupt requests – Enables the TC bit to generate transmitter CPU interrupt requests A G R E E M E N T – Enables the SCRF bit to generate receiver CPU interrupt requests – Enables the IDLE bit to generate receiver CPU interrupt requests • Enables the transmitter • Enables the receiver • Enables SCI wakeup • Transmits SCI break characters Address: $0014 Bit 7 6 5 4 3 2 1 Bit 0 SCTIE TCIE SCRIE ILIE TE RE RWU SBK 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 14-10. SCI Control Register 2 (SCC2) SCTIE — SCI Transmit Interrupt Enable Bit This read/write bit enables the SCTE bit to generate SCI transmitter CPU interrupt requests. Setting the SCTIE bit in SCC3 enables the SCTE bit to generate CPU interrupt requests. Reset clears the SCTIE bit. 1 = SCTE enabled to generate CPU interrupt 0 = SCTE not enabled to generate CPU interrupt MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 201 N O N - D I S C L O S U R E • R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers R E Q U I R E D Serial Communications Interface Module (SCI) TCIE — Transmission Complete Interrupt Enable Bit This read/write bit enables the TC bit to generate SCI transmitter CPU interrupt requests. Reset clears the TCIE bit. 1 = TC enabled to generate CPU interrupt requests 0 = TC not enabled to generate CPU interrupt requests SCRIE — SCI Receive Interrupt Enable Bit A G R E E M E N T This read/write bit enables the SCRF bit to generate SCI receiver CPU interrupt requests. Setting the SCRIE bit in SCC3 enables the SCRF bit to generate CPU interrupt requests. Reset clears the SCRIE bit. 1 = SCRF enabled to generate CPU interrupt 0 = SCRF not enabled to generate CPU interrupt ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate SCI receiver CPU interrupt requests. Reset clears the ILIE bit. 1 = IDLE enabled to generate CPU interrupt requests 0 = IDLE not enabled to generate CPU interrupt requests TE — Transmitter Enable Bit N O N - D I S C L O S U R E Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. 1 = Transmitter enabled 0 = Transmitter disabled NOTE: Technical Data 202 Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA NOTE: Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is clear. ENSCI is in SCI control register 1. RWU — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. 1 = Standby state 0 = Normal operation SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. 1 = Transmit break characters 0 = No break characters being transmitted NOTE: Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the SCI to send a break character instead of a preamble. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 203 A G R E E M E N T Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. 1 = Receiver enabled 0 = Receiver disabled N O N - D I S C L O S U R E RE — Receiver Enable Bit R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers R E Q U I R E D Serial Communications Interface Module (SCI) 14.8.3 SCI Control Register 3 SCI control register 3 (SCC3): • Stores the ninth SCI data bit received and the ninth SCI data bit to be transmitted. • Enables these interrupts: – Receiver overrun interrupts – Noise error interrupts A G R E E M E N T – Framing error interrupts – Parity error interrupts Address: $0015 Bit 7 Read: 6 5 4 3 2 1 Bit 0 T8 R R ORIE NEIE FEIE PEIE U 0 0 0 0 0 0 = Unimplemented R R8 Write: Reset: U = Reserved U = Unaffected N O N - D I S C L O S U R E Figure 14-11. SCI Control Register 3 (SCC3) R8 — Received Bit 8 When the SCI is receiving 9-bit characters, R8 is the read-only ninth bit (bit 8) of the received character. R8 is received at the same time that the SCDR receives the other eight bits. When the SCI is receiving 8-bit characters, R8 is a copy of the eighth bit (bit 7). Reset has no effect on the R8 bit. T8 — Transmitted Bit 8 When the SCI is transmitting 9-bit characters, T8 is the read/write ninth bit (bit 8) of the transmitted character. T8 is loaded into the transmit shift register at the same time that the SCDR is loaded into the transmit shift register. Reset has no effect on the T8 bit. Technical Data 204 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers ORIE — Receiver Overrun Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the receiver overrun bit, OR. 1 = SCI error CPU interrupt requests from OR bit enabled 0 = SCI error CPU interrupt requests from OR bit disabled NEIE — Receiver Noise Error Interrupt Enable Bit FEIE — Receiver Framing Error Interrupt Enable Bit This read/write bit enables SCI error CPU interrupt requests generated by the framing error bit, FE. Reset clears FEIE. 1 = SCI error CPU interrupt requests from FE bit enabled 0 = SCI error CPU interrupt requests from FE bit disabled PEIE — Receiver Parity Error Interrupt Enable Bit This read/write bit enables SCI receiver CPU interrupt requests generated by the parity error bit, PE. Reset clears PEIE. 1 = SCI error CPU interrupt requests from PE bit enabled 0 = SCI error CPU interrupt requests from PE bit disabled NOTE: Bits 5 and 4 are reserved for MCUs with a direct-memory access (DMA) module. Because the MC68HC908KX8 does not have a DMA module, these bits should not be set. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 205 N O N - D I S C L O S U R E A G R E E M E N T This read/write bit enables SCI error CPU interrupt requests generated by the noise error bit, NE. Reset clears NEIE. 1 = SCI error CPU interrupt requests from NE bit enabled 0 = SCI error CPU interrupt requests from NE bit disabled 14.8.4 SCI Status Register 1 SCI status register 1 (SCS1) contains flags to signal these conditions: A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) • Transfer of SCDR data to transmit shift register complete • Transmission complete • Transfer of receive shift register data to SCDR complete • Receiver input idle • Receiver overrun • Noisy data • Framing error • Parity error Address: Read: $0016 Bit 7 6 5 4 3 2 1 Bit 0 SCTE TC SCRF IDLE OR NF FE PE 1 1 0 0 0 0 0 0 Write: Reset: N O N - D I S C L O S U R E = Unimplemented Figure 14-12. SCI Status Register 1 (SCS1) SCTE — SCI Transmitter Empty Bit This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an SCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an SCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit. 1 = SCDR data transferred to transmit shift register 0 = SCDR data not transferred to transmit shift register Technical Data 206 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit. 1 = No transmission in progress 0 = Transmission in progress SCRF — SCI Receiver Full Bit This clearable, read-only bit is set when the data in the receive shift register transfers to the SCI data register. SCRF can generate an SCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF. 1 = Received data available in SCDR 0 = Data not available in SCDR A G R E E M E N T TC — Transmission Complete Bit R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an SCI error CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it must receive a valid character that sets the SCRF bit before an idle condition can set the IDLE bit. Also, after the IDLE bit has been cleared, a valid character must again set the SCRF bit before an idle condition can set the IDLE bit. Reset clears the IDLE bit. 1 = Receiver input idle 0 = Receiver input active (or idle since the IDLE bit was cleared) OR — Receiver Overrun Bit This clearable, read-only bit is set when software fails to read the SCDR before the receive shift register receives the next character. The OR bit generates an SCI error CPU interrupt request if the ORIE MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 207 N O N - D I S C L O S U R E IDLE — Receiver Idle Bit R E Q U I R E D Serial Communications Interface Module (SCI) bit in SCC3 is also set. The data in the shift register is lost, but the data already in the SCDR is not affected. Clear the OR bit by reading SCS1 with OR set and then reading the SCDR. Reset clears the OR bit. 1 = Receive shift register full and SCRF = 1 0 = No receiver overrun A G R E E M E N T Software latency may allow an overrun to occur between reads of SCS1 and SCDR in the flag-clearing sequence. Figure 14-13 shows the normal flag-clearing sequence and an example of an overrun caused by a delayed flag-clearing sequence. The delayed read of SCDR does not clear the OR bit because OR was not set when SCS1 was read. Byte 2 caused the overrun and is lost. The next flag-clearing sequence reads byte 3 in the SCDR instead of byte 2. In applications that are subject to software latency or in which it is important to know which byte is lost due to an overrun, the flag-clearing routine can check the OR bit in a second read of SCS1 after reading the data register. N O N - D I S C L O S U R E BYTE 1 BYTE 2 BYTE 3 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 SCRF = 0 SCRF = 1 1250$ /)/$*&/($5,1*6(48(1&( BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 0 READ SCDR BYTE 1 READ SCDR BYTE 2 READ SCDR BYTE 3 BYTE 1 BYTE 2 BYTE 3 SCRF = 0 OR = 0 SCRF = 1 OR = 1 SCRF = 0 OR = 1 SCRF = 1 SCRF = 1 OR = 1 ' (/$<(')/$*&/($5,1*6(48 (1&( BYTE 4 READ SCS1 SCRF = 1 OR = 0 READ SCS1 SCRF = 1 OR = 1 READ SCDR BYTE 1 READ SCDR BYTE 3 Figure 14-13. Flag Clearing Sequence Technical Data 208 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA FE — Receiver Framing Error Bit This clearable, read-only bit is set when a logic 0 is accepted as the stop bit. FE generates an SCI error CPU interrupt request if the FEIE bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set and then reading the SCDR. Reset clears the FE bit. 1 = Framing error detected 0 = No framing error detected PE — Receiver Parity Error Bit This clearable, read-only bit is set when the SCI detects a parity error in incoming data. PE generates a PE CPU interrupt request if the PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with PE set and then reading the SCDR. Reset clears the PE bit. 1 = Parity error detected 0 = No parity error detected MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 209 A G R E E M E N T This clearable, read-only bit is set when the SCI detects noise on the RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in SCC3 is also set. Clear the NF bit by reading SCS1 and then reading the SCDR. Reset clears the NF bit. 1 = Noise detected 0 = No noise detected N O N - D I S C L O S U R E NF — Receiver Noise Flag Bit R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers R E Q U I R E D Serial Communications Interface Module (SCI) 14.8.5 SCI Status Register 2 SCI status register 2 (SCS2) contains flags to signal these conditions: • Break character detected • Incoming data Address: A G R E E M E N T Read: $0017 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 BKF RPF 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 14-14. SCI Status Register 2 (SCS2) BKF — Break Flag Bit N O N - D I S C L O S U R E This clearable, read-only bit is set when the SCI detects a break character on the RxD pin. In SCS1, the FE and SCRF bits are also set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared. BKF does not generate a CPU interrupt request. Clear BKF by reading SCS2 with BKF set and then reading the SCDR. Once cleared, BKF can become set again only after logic 1s again appear on the RxD pin followed by another break character. Reset clears the BKF bit. 1 = Break character detected 0 = No break character detected RPF — Reception-in-Progress Flag Bit This read-only bit is set when the receiver detects a logic 0 during the RT1 time period of the start bit search. RPF does not generate an interrupt request. RPF is reset after the receiver detects false start bits (usually from noise or a baud rate mismatch), or when the receiver detects an idle character. Polling RPF before disabling the SCI module or entering stop mode can show whether a reception is in progress. 1 = Reception in progress 0 = No reception in progress Technical Data 210 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA The SCI data register (SCDR) is the buffer between the internal data bus and the receive and transmit shift registers. Reset has no effect on data in the SCI data register. Address: $0018 Bit 7 6 5 4 3 2 1 Bit 0 Read: R7 R6 R5 R4 R3 R2 R1 R0 Write: T7 T6 T5 T4 T3 T2 T1 T0 Reset: Unaffected by reset Figure 14-15. SCI Data Register (SCDR) R7/T7–R0/T0 — Receive/Transmit Data Bits Reading address $0018 accesses the read-only received data bits, R7–R0. Writing to address $0018 writes the data to be transmitted, T7–T0. Reset has no effect on the SCI data register. NOTE: Do not use read-modify-write instructions on the SCI data register. A G R E E M E N T 14.8.6 SCI Data Register R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers The baud rate register (SCBR) selects the baud rate for both the receiver and the transmitter. Address: Read: $0019 Bit 7 6 5 4 3 2 1 Bit 0 0 0 SCP1 SCP0 R SCR2 SCR1 SCR0 0 0 0 0 0 0 = Unimplemented R Write: Reset: 0 0 = Reserved Figure 14-16. SCI Baud Rate Register (SCBR) SCP1 and SCP0 — SCI Baud Rate Prescaler Bits These read/write bits select the baud rate prescaler divisor as shown in Table 14-6. Reset clears SCP1 and SCP0. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) Technical Data 211 N O N - D I S C L O S U R E 14.8.7 SCI Baud Rate Register R E Q U I R E D Serial Communications Interface Module (SCI) Table 14-6. SCI Baud Rate Prescaling SCP[1:0] Prescaler Divisor (PD) 00 1 01 3 10 4 11 13 A G R E E M E N T SCR2–SCR0 — SCI Baud Rate Select Bits These read/write bits select the SCI baud rate divisor as shown in Table 14-7. Reset clears SCR2–SCR0. N O N - D I S C L O S U R E Table 14-7. SCI Baud Rate Selection SCR[2:1:0] Baud Rate Divisor (BD) 000 1 001 2 010 4 011 8 100 16 101 32 110 64 111 128 Use this formula to calculate the SCI baud rate: f BAUDCLK Baud rate = -----------------------------------64 × PD × BD where: fBAUDCLK = baud clock frequency PD = prescaler divisor BD = baud rate divisor Table 14-8 shows the SCI baud rates that can be generated with a 4.9152-MHz CGMXCLK frequency. Technical Data 212 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA Table 14-8. SCI Baud Rate Selection Examples Prescaler Divisor (PD) SCR[2:1:0] Baud Rate Divisor (BD) Baud Rate (fBAUDCLK = 4.9152 MHz) 00 1 000 1 76,800 00 1 001 2 38,400 00 1 010 4 19,200 00 1 011 8 9600 00 1 100 16 4800 00 1 101 32 2400 00 1 110 64 1200 00 1 111 128 600 01 3 000 1 25,600 01 3 001 2 12,800 01 3 010 4 6400 01 3 011 8 3200 01 3 100 16 1600 01 3 101 32 800 01 3 110 64 400 01 3 111 128 200 10 4 000 1 19,200 10 4 001 2 9600 10 4 010 4 4800 10 4 011 8 2400 10 4 100 16 1200 10 4 101 32 600 10 4 110 64 300 10 4 111 128 150 11 13 000 1 5908 11 13 001 2 2954 11 13 010 4 1477 11 13 011 8 739 11 13 100 16 369 11 13 101 32 185 11 13 110 64 92 11 13 111 128 46 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Serial Communications Interface Module (SCI) N O N - D I S C L O S U R E A G R E E M E N T SCP[1:0] R E Q U I R E D Serial Communications Interface Module (SCI) I/O Registers Technical Data 213 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Serial Communications Interface Module (SCI) Technical Data 214 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Serial Communications Interface Module (SCI) MOTOROLA 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 15.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 15.6 TBM Interrupt Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218 15.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 15.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 15.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .219 Timebase Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 N O N - D I S C L O S U R E 15.8 15.2 Introduction This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by either the internal or external clock sources. This TBM version uses 15 divider stages, eight of which are user selectable. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timebase Module (TBM) R E Q U I R E D Section 15. Timebase Module (TBM) A G R E E M E N T Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 Technical Data 215 R E Q U I R E D 15.3 Features A G R E E M E N T Timebase Module (TBM) 15.4 Functional Description Features of the TBM module include: • Software configurable periodic interrupts with divide-by-8, 16, 128, 256, 1024, 2048, 4096, and 32,768 taps of the selected clock source • Configurable for operation during stop mode to allow periodic wake up from stop This module can generate a periodic interrupt by dividing the clock source supplied from the internal clock generator module, TBMCLK. Note that this clock source is the external clock ECLK when the ECGON bit in the ICG control register (ICGCR) is set. Otherwise, TBMCLK is driven at the internally generated clock frequency (ICLK). In other words, if the external clock is enabled it will be used as the TBMCLK, even if the MCU bus clock is based on the internal clock. N O N - D I S C L O S U R E The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 15-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period. The timebase module may remain active after execution of the STOP instruction if the internal clock generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. Technical Data 216 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timebase Module (TBM) MOTOROLA R E Q U I R E D Timebase Module (TBM) Interrupts TBON ÷2 7%0&/. ÷2 ÷2 ÷2 128 64 32 8 16 FROM ICG MODULE ÷2 TBIF 000 TBIE R 001 010 100 SEL 011 101 110 A G R E E M E N T ÷2 TACK ÷2 TBR0 ÷2 TBR1 ÷2 ÷ 32,768 ÷2 ÷ 8192 ÷2 ÷ 2048 ÷2 TBR2 TBMINT Figure 15-1. Timebase Block Diagram 15.5 Interrupts The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timebase Module (TBM) Technical Data 217 N O N - D I S C L O S U R E 111 R E Q U I R E D Timebase Module (TBM) 15.6 TBM Interrupt Rate The interrupt rate is determined by the equation: Divider 1 t TBMRATE = --------------------------- = ----------------------f TBMCLK f TBMRATE where: fTBMCLK = Frequency supplied from the internal clock generator (ICG) module A G R E E M E N T Divider = Divider value as determined by TBR2–TBR0 settings. See Table 15-1. As an example, a clock source of 4.9152 MHz and the TBR2–TBR0 set to {011}, the divider tap is 128 and the interrupt rate calculates to 128/4.9152 x 106 = 26 µs. N O N - D I S C L O S U R E Table 15-1. Timebase Divider Selection NOTE: Technical Data 218 TBR2 TBR1 TBR0 Divider Tap 0 0 0 32768 0 0 1 8192 0 1 0 2048 0 1 1 128 1 0 0 64 1 0 1 32 1 1 0 16 1 1 1 8 Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timebase Module (TBM) MOTOROLA 15.7.1 Wait Mode The timebase module remains active after execution of the WAIT instruction. In wait mode the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before executing the WAIT instruction. 15.7.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the internal clock generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wake up from stop mode. If the internal clock generator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce power consumption by disabling the timebase module before executing the STOP instruction. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timebase Module (TBM) Technical Data 219 A G R E E M E N T The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. N O N - D I S C L O S U R E 15.7 Low-Power Modes R E Q U I R E D Timebase Module (TBM) Low-Power Modes R E Q U I R E D Timebase Module (TBM) 15.8 Timebase Control Register The timebase has one register, the timebase control register (TBCR), which is used to enable the timebase interrupts and set the rate. Address: $001C Bit 7 Read: 5 4 TBR2 TBR1 TBR0 0 0 0 TBIF Write: Reset: 6 0 2 1 Bit 0 TBIE TBON R 0 0 0 0 = Unimplemented A G R E E M E N T 3 TACK 0 R = Reserved Figure 15-2. Timebase Control Register (TBCR) TBIF — Timebase Interrupt Flag This read-only flag bit is set when the timebase counter has rolled over. 1 = Timebase interrupt pending 0 = Timebase interrupt not pending TBR2–TBR0 — Timebase Divider Selection Bits N O N - D I S C L O S U R E These read/write bits select the tap in the counter to be used for timebase interrupts as shown in Table 15-1. NOTE: Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1). TACK— Timebase ACKnowledge Bit The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect. 1 = Clear timebase interrupt flag 0 = No effect TBIE — Timebase Interrupt Enabled Bit This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit. 1 = Timebase interrupt is enabled. 0 = Timebase interrupt is disabled. Technical Data 220 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timebase Module (TBM) MOTOROLA TBON — Timebase Enabled Bit N O N - D I S C L O S U R E A G R E E M E N T This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit. 1 = Timebase is enabled. 0 = Timebase is disabled and the counter initialized to 0s. R E Q U I R E D Timebase Module (TBM) Timebase Control Register MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timebase Module (TBM) Technical Data 221 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timebase Module (TBM) Technical Data 222 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timebase Module (TBM) MOTOROLA 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16.4.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 16.4.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 16.4.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 16.4.4 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .228 16.4.5 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . 228 16.4.6 Pulse-Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 229 16.4.7 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . . . 230 16.4.8 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . . . 231 16.4.9 PWM Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 16.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233 16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234 16.8.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 235 16.8.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .237 16.8.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 238 16.8.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 239 16.8.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .243 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 223 R E Q U I R E D 16.1 Contents A G R E E M E N T Section 16. Timer Interface Module (TIM) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D Timer Interface Module (TIM) 16.2 Introduction This section describes the timer interface module (TIM). The TIM is a 2channel timer that provides a timing reference with input capture, output compare, and pulse-width modulation functions. Figure 16-1 is a block diagram of the TIM. PRESCALER SELECT A G R E E M E N T INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE 16-BIT COMPARATOR TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX PORT LOGIC PTA2/KBD2/TCH0 16-BIT COMPARATOR TCH0H:TCH0L CH0F 16-BIT LATCH MS0A CH0IE INTERRUPT LOGIC MS0B TOV1 INTERNAL BUS N O N - D I S C L O S U R E INTERRUPT LOGIC CHANNEL 1 ELS1B ELS1A CH1MAX PORT LOGIC PTA3/KBD3/TCH1 16-BIT COMPARATOR TCH1H:TCH1L CH1F 16-BIT LATCH MS1A CH1IE INTERRUPT LOGIC Figure 16-1. TIM Block Diagram Technical Data 224 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA $0020 $0021 $0022 $0023 $0024 $0025 Register Name Bit 7 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: Timer Status and Control Register (TSC) Write: See page 235. Reset: TOF 0 0 1 0 0 0 0 0 Read: Timer Counter Register High (TCNTH) Write: See page 237. Reset: Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Timer Counter Register Low (TCNTL) Write: See page 237. Reset: Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Read: Timer Counter Modulo Register High (TMODH) Write: See page 238. Reset: Read: Timer Counter Modulo Register Low (TMODL) Write: See page 238. Reset: Timer Channel 0 Status Read: and Control Register Write: (TSC0) See page 239. Reset: Read: Timer Channel 0 Register $0026 High (TCH0H) Write: See page 243. Reset: Read: Timer Channel 0 Register $0027 Low (TCH0L) Write: See page 243. Reset: 0 TRST CH0F 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 16-2. TIM I/O Register Summary MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 225 A G R E E M E N T Addr. N O N - D I S C L O S U R E Figure 16-2 summarizes the timer registers. R E Q U I R E D Timer Interface Module (TIM) Introduction Addr. $0028 Register Name Bit 7 Timer Channel 1 Status Read: and Control Register Write: (TSC1) See page 239. Reset: Read: Timer Channel 1 Register $0029 High (TCH1H) Write: See page 243. Reset: Read: Timer Channel 1 Register $002A Low (TCH1L) Write: See page 243. Reset: 6 CH1F 5 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 CH1IE 0 0 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 2 1 Bit 0 Indeterminate after reset Bit 7 6 5 4 3 Indeterminate after reset = Unimplemented Figure 16-2. TIM I/O Register Summary (Continued) 16.3 Features Features of the TIM include: • Two input capture/output compare channels: – Rising-edge, falling-edge, or any-edge input capture trigger N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) – Set, clear, or toggle output compare action Technical Data 226 • Buffered and unbuffered pulse-width modulation (PWM) signal generation • Programmable TIM clock input — 7-frequency internal bus clock prescaler selection • Free-running or modulo up-counter operation • Toggle either channel pin on overflow • TIM counter stop and reset bits MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA Figure 16-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH and TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels are programmable independently as input capture or output compare channels. 16.4.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS2–PS0, in the TIM status and control register select the TIM clock source. A G R E E M E N T 16.4 Functional Description R E Q U I R E D Timer Interface Module (TIM) Functional Description With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH and TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. 16.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 227 N O N - D I S C L O S U R E 16.4.2 Input Capture 16.4.4 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 16.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Use these methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. 16.4.5 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Technical Data 228 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. 16.4.6 Pulse-Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 16-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin on overflow if the state of the PWM pulse is logic 0. The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is $000. See 16.8.1 TIM Status and Control Register. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 229 A G R E E M E N T NOTE: N O N - D I S C L O S U R E Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the 1s written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. R E Q U I R E D Timer Interface Module (TIM) Functional Description OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH PTAx/TCH OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 16-3. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50 percent. 16.4.7 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 16.4.6 Pulse-Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Use these methods to synchronize unbuffered changes in the PWM pulse width on channel x: Technical Data 230 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA • When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 16.4.8 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the 1s written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 231 A G R E E M E N T When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. N O N - D I S C L O S U R E NOTE: • R E Q U I R E D Timer Interface Module (TIM) Functional Description R E Q U I R E D Timer Interface Module (TIM) currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. 16.4.9 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use this initialization procedure: 1. In the TIM status and control register (TSC): A G R E E M E N T a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH and TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH and TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): N O N - D I S C L O S U R E a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB and MSxA. See Table 16-2. b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB and ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 16-2. NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0 percent duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Technical Data 232 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100 percent duty cycle output. See 16.8.4 TIM Channel Status and Control Registers. 16.5 Interrupts These TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The timer overflow flag (TOF) bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow interrupt requests. TOF and TOIE are in the TIM status and control registers. • TIM channel flags (CH1F and CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM channel x status and control register. 16.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 233 A G R E E M E N T Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0 percent duty cycle output. N O N - D I S C L O S U R E Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H and TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. R E Q U I R E D Timer Interface Module (TIM) Interrupts R E Q U I R E D Timer Interface Module (TIM) 16.6.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. N O N - D I S C L O S U R E A G R E E M E N T 16.6.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. 16.7 I/O Signals Port A shares two of its pins with the TIM, PTA3/KBD3/TCH1and PTA2/KBD2/TCH0. Each channel input/output (I/O) pin is programmable independently as an input capture pin or an output compare pin. TCH0 can be configured as buffered output compare or buffered PWM pins. 16.8 I/O Registers These I/O registers control and monitor operation of the TIM: Technical Data 234 • TIM status and control register (TSC) • TIM control registers (TCNTH and TCNTL) • TIM counter modulo registers (TMODH and TMODL) • TIM channel status and control registers (TSC0 and TSC1) • TIM channel registers (TCH0H and TCH0L, TCH1H and TCH1L) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA 16.8.1 TIM Status and Control Register The TIM status and control register (TSC): • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: $0020 Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 16-4. TIM Status and Control Register (TSC) A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) I/O Registers This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value. 0 = TIM counter has not reached modulo value. TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 235 N O N - D I S C L O S U R E TOF — TIM Overflow Flag Bit R E Q U I R E D Timer Interface Module (TIM) TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. A G R E E M E N T TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS2–PS0 — Prescaler Select Bits N O N - D I S C L O S U R E These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 16-1 shows. Reset clears the PS2–PS0 bits. Table 16-1. Prescaler Selection Technical Data 236 PS2–PS0 TIM Clock Source 000 Internal bus clock ÷1 001 Internal bus clock ÷ 2 010 Internal bus clock ÷ 4 011 Internal bus clock ÷ 8 100 Internal bus clock ÷ 16 101 Internal bus clock ÷ 32 110 Internal bus clock ÷ 64 111 Not available MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA 16.8.2 TIM Counter Registers The two read-only TIM counter registers (TCNTH and TCNTL) contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. Read: TCNTH — $0021 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: Register name and address: Read: TCNTL — $0022 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Reset: N O N - D I S C L O S U R E Write: = Unimplemented Figure 16-5. TIM Counter Registers (TCNTH and TCNTL) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) A G R E E M E N T Register name and address: R E Q U I R E D Timer Interface Module (TIM) I/O Registers Technical Data 237 R E Q U I R E D Timer Interface Module (TIM) 16.8.3 TIM Counter Modulo Registers The read/write TIM modulo registers (TMODH and TMODL) contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. A G R E E M E N T Register name and address: TMODH — $0023 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 1 1 1 1 1 1 1 1 Read: Write: Reset: Register name and address: TMODL — $0024 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 1 1 1 1 1 1 1 1 Read: Write: N O N - D I S C L O S U R E Reset: Figure 16-6. TIM Counter Modulo Registers (TMODH and TMODL) NOTE: Technical Data 238 Reset the TIM counter before writing to the TIM counter modulo registers. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 0 percent and100 percent PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Register name and address: Bit 7 Read: CH0F Write: 0 Reset: 0 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Register name and address: Bit 7 Read: CH1F Write: 0 Reset: 0 TSC0 — $0025 TSC1 — $0028 6 CH1IE 0 5 0 0 = Unimplemented Figure 16-7. TIM Channel Status and Control Registers (TSC0 and TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 239 A G R E E M E N T Each of the TIM channel status and control registers (TSC0 and TSC1): N O N - D I S C L O S U R E 16.8.4 TIM Channel Status and Control Registers R E Q U I R E D Timer Interface Module (TIM) I/O Registers R E Q U I R E D Timer Interface Module (TIM) When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x A G R E E M E N T CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupts on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests 0 = Channel x CPU interrupt requests disabled MS0B — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MS0B exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. N O N - D I S C L O S U R E Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 16-2. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 16-2. Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high Technical Data 240 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port A, and pin PTAx/TCHx is available as a general-purpose I/O pin. Table 16-2 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 16-2. Mode, Edge, and Level Selection MSxB:MSxA ELSxB:ELSxA X0 00 Mode Configuration Pin under port control; initial output level high Output preset NOTE: X1 00 Pin under port control; initial output level low 00 01 Capture on rising edge only 00 10 00 11 01 01 01 10 01 11 1X 01 1X 10 1X 11 Input capture Capture on rising or falling edge Output compare or PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Buffered output compare or Clear output on compare buffered PWM Set output on compare Before enabling a TIM channel register for input capture operation, make sure that the PTAx/TCHx pin is stable for at least two bus clocks. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Capture on falling edge only Timer Interface Module (TIM) Technical Data 241 A G R E E M E N T Before changing a channel function by writing to the MS0B or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). N O N - D I S C L O S U R E NOTE: R E Q U I R E D Timer Interface Module (TIM) I/O Registers R E Q U I R E D Timer Interface Module (TIM) TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. A G R E E M E N T NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1 and clear output on compare is selected, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100 percent. As Figure 16-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at 100 percent duty cycle level until the cycle after CHxMAX is cleared. N O N - D I S C L O S U R E NOTE: The PWM 0 percent duty cycle is defined as output low all of the time. To generate the 0 percent duty cycle, select clear output on compare and then clear the TOVx bit (CHxMAX = 0). The PWM 100 percent duty cycle is defined as output high all of the time. To generate the 100 percent duty cycle, use the CHxMAX bit in the TSCx register. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD PTAx/TCH OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 16-8. CHxMAX Latency Technical Data 242 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Register name and address: Read: TCH0H — $0026 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Write: Reset: Indeterminate after reset Register name and address: Read: TCH0L — $0027 Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Write: Reset: Indeterminate after reset Register name and address: Read: TCH1H — $0029 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 Write: Reset: Indeterminate after reset Register name and address: Read: TCH1L — $002A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 Write: Reset: Indeterminate after reset Figure 16-9. TIM Channel Registers (TCH0H/L and TCH1H/L) MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Timer Interface Module (TIM) Technical Data 243 A G R E E M E N T These read/write registers (TCH0H/L and TCH1H/L) contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. N O N - D I S C L O S U R E 16.8.5 TIM Channel Registers R E Q U I R E D Timer Interface Module (TIM) I/O Registers N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Technical Data 244 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Timer Interface Module (TIM) MOTOROLA 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 17.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248 17.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 17.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249 17.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.7.1 ADC Analog Power and ADC Voltage Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.7.2 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 17.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 251 17.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 17.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 253 17.2 Introduction This section describes the 8-bit analog-to-digital converter (ADC). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 245 R E Q U I R E D 17.1 Contents A G R E E M E N T Section 17. Analog-to-Digital Converter (ADC) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) 17.3 Features Features of the ADC module include: • Four channels with multiplexed input • Linear successive approximation • 8-bit resolution • Single or continuous conversion • Conversion complete flag or conversion complete interrupt • Selectable ADC clock 17.4 Functional Description The ADC provides four pins for sampling external sources at pins PTB3–PTB0. An analog multiplexer allows the single ADC converter to select one of four ADC channels as ADC voltage in (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 17-1. N O N - D I S C L O S U R E The MC68HC908KX8 uses VDD as the high voltage reference. 17.4.1 ADC Port I/O Pins PTB3–PTB0 are general-purpose input/output (I/O) pins that are shared with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or DDR will not have any effect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. Technical Data 246 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Analog-to-Digital Converter (ADC) MOTOROLA WRITE DISABLE DDRBx RESET WRITE PTB PTBx PTBx ADC CHANNEL x READ PTB DISABLE READ ADR CONVERSION COMPLETE INTERRUPT LOGIC AIEN ADC DATA REGISTER ADC ADC VOLTAGE IN ADCVIN CHANNEL SELECT ADCH[4:0] ADC CLOCK COCO CGMXCLK BUS CLOCK CLOCK GENERATOR ADIV[2:0] ADICLK Figure 17-1. ADC Block Diagram 17.4.2 Voltage Conversion When the input voltage to the ADC equals VREFH (see 20.10 Trimmed Accuracy of the Internal Clock Generator), the ADC converts the signal to $FF (full scale). If the input voltage equals VSS, the ADC converts it to $00. Input voltages between VREFH and VSS are a straightline linear conversion. All other input voltages will result in $FF if greater than VREFH and $00 if less than VSS. NOTE: Input voltage should not exceed the high-voltage reference, which in turn should not exceed supply voltages. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 247 A G R E E M E N T READ DDRB N O N - D I S C L O S U R E INTERNAL DATA BUS R E Q U I R E D Analog-to-Digital Converter (ADC) Functional Description N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) 17.4.3 Conversion Time Conversion starts after a write to the ADSCR (ADC status control register, $003C) and requires between 16 and 17 ADC clock cycles to complete. Conversion time in terms of the number of bus cycles is a function of CGMXCLK frequency, bus frequency, the ADIV prescaler bits, and the ADICLK bit. For example, with a CGMXCLK frequency of 8 MHz, bus frequency of 2 MHz, and fixed ADC clock frequency of 1 MHz, one conversion will take between 16 and 17 µs and there will be 32 bus cycles between each conversion. Sample rate is approximately 60 kHz. Refer to 20.10 Trimmed Accuracy of the Internal Clock Generator. 16 to 17 ADC clock cycles Conversion time = ADC clock frequency Number of bus cycles = conversion time x bus frequency 17.4.4 Continuous Conversion In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit (ADC status control register, $003C) is cleared. The COCO bit is set after the first conversion and will stay set until the next write of the ADC status and control register or the next read of the ADC data register. 17.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. See 20.10 Trimmed Accuracy of the Internal Clock Generator for accuracy information. Technical Data 248 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Analog-to-Digital Converter (ADC) MOTOROLA NOTE: Because the MC68HC908KX8 does not have a DMA module, the COCO bit should not be set while interrupts are enabled (AIEN = 1). The COCO bit is not used as a conversion complete flag when interrupts are enabled. 17.6 Low-Power Modes The following subsections describe the low-power modes. 17.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register before executing the WAIT instruction. 17.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 249 A G R E E M E N T When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit (ADC status control register, $003C) is at logic 0. If the COCO bit is set, a direct-memory access (DMA) interrupt is generated. N O N - D I S C L O S U R E 17.5 Interrupts R E Q U I R E D Analog-to-Digital Converter (ADC) Interrupts A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) 17.7 I/O Signals The ADC module has four channels that are shared with port B pins. Refer to 20.10 Trimmed Accuracy of the Internal Clock Generator for voltages referenced here. 17.7.1 ADC Analog Power and ADC Voltage Reference Pins The ADC analog portion uses VDD as its power pin and VSS as its ground pin. Due to pin limitations, the VREFL signal is internally connected to VSS on the MC68HC908KX8. On the MC68HC908KX8, the VREFH signal is internally connected to VDD. 17.7.2 ADC Voltage In (ADCVIN) ADCVIN is the input voltage signal from one of the four ADC channels to the ADC module. N O N - D I S C L O S U R E 17.8 I/O Registers These I/O registers control and monitor ADC operation: Technical Data 250 • ADC status and control register, ADSCR • ADC data register, ADR • ADC clock register, ADICLK MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Analog-to-Digital Converter (ADC) MOTOROLA Address: $003C Bit 7 Read: COCO Write: R Reset: 0 R 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 = Reserved Figure 17-2. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written or whenever the ADC data register is read. When the AIEN bit is a logic 1, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit (ADC status control register, $003C) is at logic 0. If the COCO bit is at logic 1, a DMA interrupt is generated. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) or CPU interrupts enabled (AIEN = 1) NOTE: Because the MC68HC908KX8 does not have a DMA module, the COCO bit should not be set while interrupts are enabled (AIEN = 1). AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the ADR register is read or the ADSCR register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 251 A G R E E M E N T The following paragraphs describe the function of the ADC status and control register (ADSCR). N O N - D I S C L O S U R E 17.8.1 ADC Status and Control Register R E Q U I R E D Analog-to-Digital Converter (ADC) I/O Registers R E Q U I R E D Analog-to-Digital Converter (ADC) ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH4–ADCH0 — ADC Channel Select Bits A G R E E M E N T ADCH4–ADCH0 form a 5-bit field which is used to select the input for the A/D measurement. The choices are one of four ADC channels, as well as VREFH and VSS. Input selection is detailed in Table 17-1. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets these bits. NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. N O N - D I S C L O S U R E Table 17-1. Mux Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 Input Select 0 0 0 0 0 PTB0 0 0 0 0 1 PTB1 0 0 0 1 0 PTB2 0 0 0 1 1 PTB3 0 0 1 0 0 ~ ~ ~ ~ ~ 1 1 1 0 0 Unused(1) ~ Unused (1) 1 1 1 0 1 VREFH(2) 1 1 1 1 0 VSSAD (2) 1 1 1 1 1 ADC power off 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of the ADC converter both in production test and for user applications. Technical Data 252 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Analog-to-Digital Converter (ADC) MOTOROLA 17.8.2 ADC Data Register One 8-bit result register is provided. This register is updated each time an ADC conversion completes. $003D 6 5 4 3 2 1 Bit 0 Read: AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: R R R R R R R R Bit 0 Reset: A G R E E M E N T Bit 7 Indeterminate after reset R = Reserved Figure 17-3. ADC Data Register (ADR) 17.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC. Address: $003E Bit 7 6 5 4 ADIV2 ADIV1 ADIV0 ADICLK 0 0 0 0 Read: 3 2 1 0 0 0 R Write: Reset: = Unimplemented 0 R 0 0 0 = Reserved Figure 17-4. ADC Input Clock Register (ADICLK) ADIV2–ADIV0 — ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 17-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Analog-to-Digital Converter (ADC) Technical Data 253 N O N - D I S C L O S U R E Address: R E Q U I R E D Analog-to-Digital Converter (ADC) I/O Registers R E Q U I R E D Analog-to-Digital Converter (ADC) Table 17-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 ADC input clock ÷ 1 0 0 1 ADC input clock ÷ 2 0 1 0 ADC input clock ÷ 4 0 1 1 ADC input clock ÷ 8 1 X X ADC input clock ÷ 16 A G R E E M E N T X = don’t care ADICLK — ADC Input Clock Select Bit ADICLK selects either bus clock or the oscillator output clock (CGMXCLK) as the input clock source to generate the internal ADC rate clock. Reset selects CGMXCLK as the ADC clock source. 1 = Internal bus clock 0 = Oscillator output clock (CGMXCLK) N O N - D I S C L O S U R E The ADC requires a clock rate of approximately 1 MHz for correct operation. If the selected clock source is not fast enough, the ADC will generate incorrect conversions. See 20.10 Trimmed Accuracy of the Internal Clock Generator. fCGMXCLK or bus frequency fADIC = ≅ 1 MHz ADIV[2:0] NOTE: Technical Data 254 During the conversion process, changing the ADC clock will result in an incorrect conversion. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Analog-to-Digital Converter (ADC) MOTOROLA 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 18.5 Monitor Mode Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .256 18.5.1 Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 18.5.2 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.6 Monitor Mode Vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259 18.7 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.8 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 18.9 Baud Rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.9.1 Force Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.9.2 Normal Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 18.10 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 18.11 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 18.2 Introduction This section describes the monitor read-only memory (MON). The monitor ROM allows complete testing of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing hardware requirements for in-circuit programming. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 255 R E Q U I R E D 18.1 Contents A G R E E M E N T Section 18. Monitor ROM (MON) N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Monitor ROM (MON) 18.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in random-access memory (RAM) or FLASH • FLASH memory security(1) • FLASH memory programming interface • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage, VTST, is applied to IRQ 18.4 Functional Description The monitor ROM receives and executes commands from a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the microcontroller unit (MCU) can execute host-computer code in RAM while all MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. 18.5 Monitor Mode Entry There are two methods for entering monitor mode. The first is the traditional M68HC08 method where VTST is applied to IRQ1 and the 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 256 Monitor ROM (MON) MOTOROLA 18.5.1 Normal Monitor Mode Normal monitor mode is useful for MCU evaluation, factory testing, and development tool programming operation. Figure 18-1 shows an example circuit used for normal monitor mode. Table 18-1 shows the pin conditions for entering this mode. Table 18-1. Monitor Mode Entry Bus $FFFE/ IRQ1 PTB1 Pin PTB0 Pin PTA1 PTA0 CGMOUT Frequency $FFFF Pin (PTXMOD1) (PTXMOD0) Pin Pin (fOP) NOTE: X VTST 0 1 0 1 CGMXCLK ----------------------------2 CGMOUT -------------------------2 $FF blank VDD X X 0 1 CGMXCLK ----------------------------2 CGMOUT -------------------------2 PTA1 = 0 and PTA0 = 1 allow normal serial communications. PTA1 = 1 allows parallel communications during security code entry. (For parallel communications, configure PTA0 = 0 or PTA0 = 1.) The MCU initially comes out of reset using the external clock for its clock source. This overrides the user mode operation of the oscillator circuits where the part comes up using the internally generated oscillator. Running from an external clock allows the MCU, using an appropriate frequency clock source, to communicate with host software at standard baud rates. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 257 A G R E E M E N T Both of these methods require that the PTA1 pin be pulled low for the first 24 CGMXCLK cycles after the part comes out of reset. This check is used by the monitor code to configure the MCU for serial communication. N O N - D I S C L O S U R E mode pins are configured appropriately. A second method, intended for in-circuit programming applications, will force entry into monitor mode without requiring high voltage on the IRQ1 pin when the reset vector locations of the FLASH are erased ($FF). R E Q U I R E D Monitor ROM (MON) Monitor Mode Entry R E Q U I R E D Monitor ROM (MON) NOTE: While the voltage on IRQ1 is at VTST, the ICG module is bypassed and the external square-wave clock becomes the clock source. Dropping IRQ1 to below VTST will remove the bypass and the MCU will revert to the clock source selected by the ICG (as determined by the settings in the ICG registers). VDD 68HC908KX8 10 kΩ RST (PTB7/OSC2) A G R E E M E N T 0.1 µF VTST 1 kΩ IRQ1 1 10 µF 10 µF + + 3 18 4 17 2 19 5 16 VDD 10 µF VDD 7 6 VSS 9.8304-MHz CANNED OSCILLATOR 0.1 µF OSC1 VDD 1 3 VDD 10 µF 0.1 µF + + DB-25 2 N O N - D I S C L O S U R E MC145407 20 15 MC74HC125 14 2 3 6 5 VDD 10 kΩ PTA0 4 37%37;02' 7 VDD 10 kΩ PTB0 (PTXMOD0) PTA1 (6(5,$/6(/(&7 Figure 18-1. Normal Monitor Mode Circuit Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 258 Monitor ROM (MON) MOTOROLA The computer operating properly (COP) module is disabled in normal monitor mode whenever VTST is applied to the IRQ1 pin. If the voltage on IRQ1 is less than VTST, the COP module is controlled by the COPD configuration bit. 18.5.2 Forced Monitor Mode If the voltage applied to the IRQ1 is less than VTST, the MCU will come out of reset in user mode. The MENRST module is monitoring the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high voltage on the IRQ1 pin. Once out of reset, the monitor code is initially executing off the internal clock at its default frequency. The monitor code reconfigures the ICG module to use the external square-wave clock source. Switching to an external clock source allows the MCU, using an appropriate clock frequency, to communicate with host software at standard baud rates. The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will automatically force the MCU to come back to the forced monitor mode. 18.6 Monitor Mode Vectors Monitor mode uses alternate vectors for reset and SWI interrupts. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 259 A G R E E M E N T In normal monitor mode with VTST on IRQ1, the MCU alters PTB7/(OSC2) to function as a RST pin. This is useful for testing the MCU. Dropping IRQ1 voltage to below VTST will revert PTB7/(OSC2) to its user mode function. N O N - D I S C L O S U R E NOTE: R E Q U I R E D Monitor ROM (MON) Monitor Mode Vectors N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Monitor ROM (MON) Table 18-2 shows vector differences between user mode and monitor mode. Table 18-2. Monitor Mode Vector Relocation Modes Reset Vector High Reset Vector Low SWI Vector High SWI Vector Low User $FFFE $FFFF $FFFC $FFFD Monitor $FEFE $FEFF $FEFC $FEFD 18.7 Data Format The MCU waits for the host to send eight security bytes (see 18.11 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host computer, indicating that it is ready to receive a command. Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT Figure 18-2. Monitor Data Format 18.8 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 18-3. Break Transaction Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 260 Monitor ROM (MON) MOTOROLA The communication baud rate is controlled by the CGMXCLK frequency output of the internal clock generator module. 18.9.1 Force Monitor Mode In forced monitor mode, the baud rate is fixed at CGMXCLK/1024. A CMGXCLK frequency of 4.9152 MHz results in a 4800 baud rate. A 9.8304-MHz frequency produces a 9600 baud rate. 18.9.2 Normal Monitor Mode N O N - D I S C L O S U R E In normal monitor mode, the communication baud rate is controlled by the CGMXCLK frequency output of the internal clock generator module. Table 18-3 lists CGMXCLK frequencies required to achieve standard baud rates. Other standard baud rates can be accomplished using other clock frequencies. The internal clock can be used as the clock source by programming the internal clock generator registers however, monitor mode will always be entered using the external clock as the clock source. Table 18-3. Normal Monitor Mode Baud Rate Selection CGMXCLK Frequency (MHz) Baud Rate 9.8304 9600 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) A G R E E M E N T 18.9 Baud Rate R E Q U I R E D Monitor ROM (MON) Baud Rate Technical Data 261 18.10 Commands The monitor ROM firmware uses these commands: A G R E E M E N T R E Q U I R E D Monitor ROM (MON) • READ, read memory • WRITE, write memory • IREAD, indexed read • IWRITE, indexed write • READSP, read stack pointer • RUN, run user program The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command. NOTE: Wait one bit time after each echo before sending the next byte. FROM HOST N O N - D I S C L O S U R E READ 4 READ 1 ADDRESS ADDRESS ADDRESS ADDRESS HIGH HIGH LOW LOW 4 1 4 1 '$7$ 3, 2 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte. RETURN Figure 18-4. Read Transaction FROM HOST WRITE 4 ADDRESS HIGH WRITE 1 4 ADDRESS ADDRESS ADDRESS HIGH LOW LOW 1 4 1 DATA 4 DATA 1 3, 4 ECHO Notes: 1 = Echo delay, 2 bit times 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte. Figure 18-5. Write Transaction Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 262 Monitor ROM (MON) MOTOROLA A brief description of each monitor mode command is given here. Table 18-4. READ (Read Memory) Command Description Read byte from memory Operand 2-byte address in high byte:low byte order Data returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ ADDRESS ADDRESS ADDRESS HIGH HIGH LOW READ ADDRESS LOW DATA ECHO RETURN A G R E E M E N T R E Q U I R E D Monitor ROM (MON) Commands Description N O N - D I S C L O S U R E Table 18-5. WRITE (Write Memory) Command Write byte to memory Operand 2-byte address in high byte:low byte order; low byte followed by data byte Data returned None Opcode $49 Command Sequence FROM HOST WRITE WRITE ADDRESS HIGH ADDRESS ADDRESS ADDRESS HIGH LOW LOW DATA DATA ECHO MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 263 R E Q U I R E D Monitor ROM (MON) Table 18-6. IREAD (Indexed Read) Command Description Read next 2 bytes in memory from last address accessed Operand 2-byte address in high byte:low byte order Data returned Returns contents of next two addresses Opcode $1A Command Sequence A G R E E M E N T FROM HOST IREAD IREAD DATA ECHO DATA RETURN Table 18-7. IWRITE (Indexed Write) Command N O N - D I S C L O S U R E Description Write to last address accessed + 1 Operand Single data byte Data returned None Opcode $19 Command Sequence FROM HOST IWRITE IWRITE DATA DATA A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 264 Monitor ROM (MON) MOTOROLA Table 18-8. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data returned Returns incremented stack pointer value (SP + 1) in high byte:low byte order Opcode $0C Command Sequence R E Q U I R E D Monitor ROM (MON) Commands READSP SP HIGH READSP ECHO A G R E E M E N T FROM HOST SP LOW RETURN Table 18-9. RUN (Run User Program) Command Executes PULH and RTI instructions Operand None Data returned None Opcode $28 N O N - D I S C L O S U R E Description Command Sequence FROM HOST RUN RUN ECHO MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 265 R E Q U I R E D Monitor ROM (MON) The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6. HIGH BYTE OF INDEX REGISTER SP + 1 CONDITION CODE REGISTER SP + 2 ACCUMULATOR SP + 3 LOW BYTE OF INDEX REGISTER SP + 4 HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7 Figure 18-6. Stack Pointer at Monitor Mode Entry 18.11 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data. N O N - D I S C L O S U R E A G R E E M E N T SP NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. If FLASH is erased, the eight security byte values to be sent to the MCU are $FF, the unprogrammed state of the FLASH. During monitor mode entry, a reset must be asserted. PTA1 must be held low during the reset and 24 CGMXCLK cycles after the end of the reset. Then the MCU will wait for eight security bytes on PTA0. Each byte will be echoed back to the host. See Figure 18-7. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 266 Monitor ROM (MON) MOTOROLA R E Q U I R E D Monitor ROM (MON) Security VDD 4096 + 64 CGMXCLK CYCLES IRST 24 CGMXCLK CYCLES PTA1 COMMAND BYTE 8 BYTE 2 BYTE 1 256 CGMXCLK CYCLES (ONE BIT TIME) PTA0 4 BREAK 2 Notes: 1 = Echo delay (2 bit times) 2 = Data return delay (2 bit times) 4 = Wait 1 bit time before sending next byte. 1 COMMAND ECHO 1 BYTE 8 ECHO BYTE 1 ECHO FROM MCU 1 BYTE 2 ECHO 4 1 Figure 18-7. Monitor Mode Entry Timing If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a reset occurs. After any reset, security will be locked. To bypass security again, the host must resend the eight security bytes on PTA0. If the received bytes do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading FLASH locations returns undefined data, and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character signalling that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Monitor ROM (MON) Technical Data 267 N O N - D I S C L O S U R E A G R E E M E N T FROM HOST N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Monitor ROM (MON) Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 268 Monitor ROM (MON) MOTOROLA 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 19.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 19.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 272 19.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .272 19.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 272 19.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .272 19.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 19.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 19.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .273 19.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273 19.6.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .273 19.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 274 19.6.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 19.6.4 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . 276 19.6.5 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 277 19.2 Introduction This section describes the break (BRK) module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Break (BRK) Module Technical Data 269 R E Q U I R E D 19.1 Contents A G R E E M E N T Section 19. Break (BRK) Module N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 19.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break interrupt • Central processor unit (CPU) generated break interrupts • Software generated break interrupts • Computer operating properly (COP) disabling during break interrupts 19.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). These events can cause a break interrupt to occur: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Break (BRK) Module • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 19-1 shows the structure of the break module. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 270 Break (BRK) Module MOTOROLA BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15–IAB0 BREAK CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB7–IAB0 Figure 19-1. Break Module Block Diagram Addr. Register Name Bit 7 6 5 4 3 2 1 Bit 0 Read: SIM Break Status Register $FE00 (SBSR) Write: See page 275. Reset: 0 0 0 1 0 0 BW 0 R R R R R R NOTE R 0 0 0 1 0 0 0 0 BCFE R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R $FE03 $FE09 $FE0A Read: SIM Break Flag Control Register (SBFCR) Write: See page 276. Reset: Read: Break Address Register High (BRKH) Write: See page 274. Reset: Read: Break Address Register Low (BRKL) Write: See page 274. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 273. Reset: $FE02 Read: Break Auxiliary Register (BRKAR) Write: See page 277. Reset: Note: Writing a logic 0 clears BW. 0 BDCOP 0 = Reserved Figure 19-2. I/O Register Summary MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Break (BRK) Module Technical Data 271 N O N - D I S C L O S U R E IAB15–IAB8 A G R E E M E N T R E Q U I R E D Break (BRK) Module Functional Description A G R E E M E N T R E Q U I R E D Break (BRK) Module 19.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. 19.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 19.4.3 TIM1 and TIM2 During Break Interrupts A break interrupt stops the timer counters. N O N - D I S C L O S U R E 19.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when BDCOP bit is set in break auxiliary register (BRKAR). 19.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 19.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set. Clear the BW bit by writing logic 0 to it. Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 272 Break (BRK) Module MOTOROLA 19.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • SIM break status register (SBSR) • SIM break flag control register (SBFCR) 19.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: $FE0B Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 19-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Break (BRK) Module Technical Data 273 A G R E E M E N T A break interrupt causes exit from stop mode and sets the BW bit in the break status register. N O N - D I S C L O S U R E 19.5.2 Stop Mode R E Q U I R E D Break (BRK) Module Break Module Registers R E Q U I R E D Break (BRK) Module BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = When read, break address match 0 = When read, no break address match A G R E E M E N T 19.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE09 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: Reset: N O N - D I S C L O S U R E Figure 19-4. Break Address Register High (BRKH) Address: $FE0A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: Figure 19-5. Break Address Register Low (BRKL) Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 274 Break (BRK) Module MOTOROLA Address: $FE00 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 1 0 0 BW 0 Write: R R R R R R NOTE R Reset: 0 0 0 1 0 0 0 0 R = Reserved Note: Writing a logic 0 clears BW. Figure 19-6. SIM Break Status Register (SBSR) BW — Break Wait Bit This read/write bit is set when a break interrupt causes an exit from wait mode. Clear BW by writing a logic 0 to it. Reset clears BW. 1 = Break interrupt during wait mode 0 = No break interrupt during wait mode BW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting 1 from it. The following code is an example. This code works if the H register was stacked in the break interrupt routine. Execute this code at the end of the break interrupt routine. HIBYTE EQU 5 LOBYTE EQU 6 ; If not BW, do RTI BRCLR BW,BSR, RETURN ; See if wait mode or stop mode ; was exited by break. TST LOBYTE,SP ; If RETURNLO is not 0, BNE DOLO ; then just decrement low byte. DEC HIBYTE,SP ; Else deal with high byte also. DOLO DEC LOBYTE,SP ; Point to WAIT/STOP opcode. RETURN PULH RTI ; Restore H register. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Break (BRK) Module Technical Data 275 A G R E E M E N T The break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt. N O N - D I S C L O S U R E 19.6.3 Break Status Register R E Q U I R E D Break (BRK) Module Break Module Registers R E Q U I R E D Break (BRK) Module 19.6.4 Break Flag Control Register The break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: A G R E E M E N T Reset: 0 R = Reserved Figure 19-7. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit N O N - D I S C L O S U R E This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 276 Break (BRK) Module MOTOROLA The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the MCU is in a state of break interrupt with monitor mode. Address: Read: $FE02 Bit 7 6 5 4 3 2 1 0 0 0 0 0 0 0 Bit 0 BDCOP Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 19-8. Break Auxiliary Register (BRKAR) BDCOP — Break Disable COP Bit N O N - D I S C L O S U R E This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit. 1 = COP disabled during break interrupt 0 = COP enabled during break interrupt A G R E E M E N T 19.6.5 Break Auxiliary Register R E Q U I R E D Break (BRK) Module Break Module Registers MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Break (BRK) Module Technical Data 277 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Break (BRK) Module Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 278 Break (BRK) Module MOTOROLA 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279 20.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 280 20.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 281 20.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 20.6 5.0-Vdc DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .282 20.7 3.0-Vdc DC Electrical Characteristics. . . . . . . . . . . . . . . . . . .283 20.8 Internal Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . 284 20.9 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . 284 20.10 Trimmed Accuracy of the Internal Clock Generator . . . . . . . . 285 20.10.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . . . . . .285 20.10.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . . . . . . . .285 20.11 Analog-to-Digital Converter (ADC) Characteristics. . . . . . . . .288 20.12 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 20.2 Introduction This section contains electrical and timing specifications. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 279 R E Q U I R E D 20.1 Contents A G R E E M E N T Section 20. Electrical Specifications N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 20.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 20.6 5.0-Vdc DC Electrical Characteristics, and 20.7 3.0-Vdc DC Electrical Characteristics for guaranteed operating conditions. Characteristic(1) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications Symbol Value Unit Supply voltage VDD –0.3 to +6.0 V Input voltage VIn VSS –0.3 to VDD +0.3 V Maximum current per pin excluding VDD, VSS, and PTA0–PTA4 I ±15 mA Maximum current for pins PTA0–PTA4 IPTA0–IPTA4 ±25 mA Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Storage temperature TSTG –55 to +150 °C 1. Voltages referenced to VSS NOTE: Technical Data 280 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIn and VOut be constrained to the range VSS ≤ (VIn or VOut) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA 20.4 Functional Operating Range Characteristic Operating temperature range Operating voltage range Symbol Value Unit TA –40 to 125 °C VDD 3.0 ± 10% 5.0 ± 10% V R E Q U I R E D Electrical Specifications Functional Operating Range Symbol Value Unit Thermal resistance PDIP (16 pins) SOIC (16 pins) θJA 66 95 °C/W I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273°C) W Constant(2) K Average junction temperature Maximum junction temperature PD x (TA + 273°C) + PD2 x θJA W/°C TJ TA + (PD x θJA) °C TJM 135 °C 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, P D and TJ can be determined for any value of TA. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 281 N O N - D I S C L O S U R E Characteristic A G R E E M E N T 20.5 Thermal Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 20.6 5.0-Vdc DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max VDD –0.4 VDD –1.5 VDD –0.8 — — — — — — — — — — — — 0.4 1.5 0.8 Unit Output high voltage ILoad = –2.0 mA, all I/O pins ILoad = –10.0 mA, all I/O pins ILoad = –15.0 mA, PTA0–PTA4 only VOH Output low voltage ILoad = 1.6 mA, all I/O pins ILoad = 10.0 mA, all I/O pins ILoad = 15.0 mA, PTA0–PTA4 only VOL Input high voltage — all ports, IRQ1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage — all ports, IRQ1 VIL VSS — 0.3 x VDD V — — — 15 2.2 0.8 25 5 1.75 mA mA µA V V VDD supply current Run(3), (4) Wait(4), (5) Stop, 25°C(6) IDD I/O ports Hi-Z leakage current(7) IIL –10 — +10 µA Input current IIn –10 — +10 µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPOR 0 700 800 mV POR rise time ramp rate RPOR 0.035 — — V/ms Monitor mode entry voltage VTST VDD+ 2.5 VDD+ 4.0 V Low-voltage inhibit reset, trip falling voltage VTRIPF 3.90 4.25 4.50 V Low-voltage inhibit reset, trip rising voltage VTRIPR 4.20 4.35 4.60 V Low-voltage inhibit reset/recover hysteresis VHYS — 100 — mV Pullup resistor — PTA0–PTA4, IRQ1 RPU 24 — 48 kΩ 1. V DD = 5.5 Vdc to 4.5 Vdc, VSS = 0 Vdc, TA = –40°C to +125°C, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal oscillator at its 32-MHz rate. VDD = 5.5 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. All measurements taken with LVI enabled. 5. Wait IDD measured using internal oscillator at its 1-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. All ports configured as inputs. 6. Stop IDD is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. Technical Data 282 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA Symbol Min Typ(2) Max VDD –0.3 VDD –1.0 VDD –0.6 — — — — — — — — — — — — 0.3 1.0 0.6 V V V Unit Output high voltage ILoad = –0.6 mA, all I/O pins ILoad = –4.0 mA, all I/O pins ILoad = –10 mA, PTA0–PTA4 only VOH Output low voltage ILoad = 0.5 mA, all I/O pins ILoad = 6.0 mA, all I/O pins ILoad = 10 mA, PTA0–PTA4 only VOL Input high voltage — all ports, IRQ1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage — all ports, IRQ1 VIL VSS — 0.3 x VDD V — — — 5 1 0.65 10 2.5 1.25 mA mA µA V VDD supply current Run(3), (4) Wait(4), (5) Stop, 25°C(6) IDD I/O ports Hi-Z leakage current(7) IIL –10 — +10 µA Input current IIn –10 — +10 µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPOR 0 700 800 mV POR rise time ramp rate RPOR 0.02 — — V/ms Monitor mode entry voltage VTST VDD+ 2.5 — VDD+ 4.0 V Low-voltage inhibit reset, trip falling voltage VTRIPF 2.45 2.60 2.70 V Low-voltage inhibit reset, trip rising voltage VTRIPR 2.55 2.66 2.80 V Low-voltage inhibit reset/recover hysteresis VHYS — 60 — mV Pullup resistor — PTA0–PTA4, IRQ1 RPU 24 — 48 kΩ 1. V DD = 3.3 to 2.7 Vdc, VSS = 0 Vdc, T A = –40°C to +125°C, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal oscillator at its 16-MHz rate. VDD = 3.3 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. All measurements taken with LVI enabled. 5. Wait IDD measured using internal oscillator at its 1 MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. All ports configured as inputs. 6. Stop IDD is measured with no port pins sourcing current; all modules are disabled. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 283 A G R E E M E N T Characteristic(1) N O N - D I S C L O S U R E 20.7 3.0-Vdc DC Electrical Characteristics R E Q U I R E D Electrical Specifications 3.0-Vdc DC Electrical Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 20.8 Internal Oscillator Characteristics Characteristic(1) Internal oscillator base frequency(2), (3) Internal oscillator tolerance Symbol Min Typ Max Unit fINTOSC 230.4 307.2 384 kHz fOSC_TOL –25 — +25 % N 1 — 127 — Internal oscillator multiplier(4) 1. V DD = 5.5 Vdc to 2.7 Vdc, VSS = 0 Vdc, TA = –40°C to +125°C, unless otherwise noted 2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be multiplier (N) x base frequency. 3. fBus = (fINTOSC / 4) x N when internal clock source selected 4. Multiplier must be chosen to limit the maximum bus frequency of 4 MHz for 2.7-V operation and 8 MHz for 4.5-V operation. 20.9 External Oscillator Characteristics Characteristic(1) Symbol Min Typ Max dc(5) — 32 M(6) 60 307.2 k — — 307.2 k 32 M(6) Unit External clock option(2)(3) With ICG clock disabled With ICG clock enabled EXTSLOW = 1(4) EXTSLOW = 0(4) fEXTOSC External crystal options(7)(8) EXTSLOW = 1(4) EXTSLOW = 0(4) fEXTOSC 30 k 1M — — 100 k 8M Hz Crystal load capacitance(9) CL — — — pF Crystal fixed capacitance(9) C1 — 2 x CL — pF Crystal tuning capacitance(9) C2 — 2 x CL — pF Feedback bias resistor(9) RB — 10 — MΩ Series resistor (9)(10) RS — — — MΩ Hz 1. 2. 3. 4. VDD = 5.5 to 2.7 Vdc, VSS = 0 Vdc, TA = –40°C to +125°C, unless otherwise noted Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input. No more than 10% duty cycle deviation from 50% EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor circuits of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base frequency, fINTOSC. 5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. 6. MCU speed derates from 32 MHz at VDD = 4.5 Vdc to 16 MHz at VDD = 2.7 Vdc. 7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal option. 8. fBus = (fEXTOSC / 4) when external clock source is selected. 9. Consult crystal vendor data sheet, see Figure 7-3 . External Clock Generator Block Diagram. 10. Not required for high-frequency crystals Technical Data 284 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA 20.10.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Unit Absolute trimmed internal oscillator tolerance(2), (3) –40°C to 85°C –40°C to 125°C Fabs_tol — — 2.5 4.0 5.0 5.7 % Variation over temperature(3), (4) Var_temp — 0.03 0.05 %/C — — — 0.5 0.7 0.7 2.0 2.0 2.0 Variation over voltage 25°C –40°C to 85°C –40°C to 125°C (3), (5) Var_volt %/V 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N 20.10.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Unit Absolute trimmed internal oscillator tolerance(2), (3) –40°C to 85°C –40°C to 125°C Fabs_tol — — 4.0 5.0 7.0 10.0 % Variation over temperature(3), (4) Var_temp — 0.05 0.08 %/C Variation over voltage (3), (5) 25°C –40°C to 85°C –40°C to 125°C Var_volt — — — 1.0 1.0 1.0 2.0 2.0 2.0 %/V 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 285 A G R E E M E N T The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, can vary as much as ±25% due to process, temperature, and voltage. The trimming capability exists to compensate for process affects. The remaining variation in frequency is due to temperature, voltage, and change in target frequency (multiply register setting). These affects are designed to be minimal, however variation does occur. Better performance is seen at 3 V and lower settings of N. N O N - D I S C L O S U R E 20.10 Trimmed Accuracy of the Internal Clock Generator R E Q U I R E D Electrical Specifications Trimmed Accuracy of the Internal Clock Generator R E Q U I R E D Electrical Specifications Figure 20-1 through Figure 20-4 illustrate typical performance. The formula for this variation of frequency is (measured-nominal)/nominal. Figure 20-1 shows the variation in ICG frequency for a part trimmed at nominal voltage and temperature across VDD and temperature for a 3-V application with multiply register (N) set to 1. Figure 20-2 shows 5 V. A G R E E M E N T N O N - D I S C L O S U R E Figure 20-1. Example of Frequency Variation Across Temperature, Trimmed at Nominal 3 Volts, 25°C, and N = 1 Figure 20-2. Example of Frequency Variation Across Temperature, Trimmed at Nominal 3 Volts, 25°C, and N = 104 Technical Data 286 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA Figure 20-3. Example of Frequency Variation Across Temperature, Trimmed at Nominal 5 Volts, 25°C, and N = 1 Figure 20-4. Example of Frequency Variation Across Temperature, Trimmed at Nominal 5 Volts, 25°C, and N = 104 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 287 N O N - D I S C L O S U R E Figure 20-3 and Figure 20-4 shows N set to 104, hex 68, which corresponds to an ICG frequency of 31.9 MHz or 7.9 MHz bus. A G R E E M E N T R E Q U I R E D Electrical Specifications Trimmed Accuracy of the Internal Clock Generator 20.11 Analog-to-Digital Converter (ADC) Characteristics Characteristic Symbol Min Max Unit Notes Supply voltage VDD 2.7 5.5 V Input voltages VADIN 0 VDD V Resolution BAD 8 8 Bits Absolute accuracy(1), (2) AAD –2.5 +2.5 Counts 8 bits = 256 counts ADC clock rate fADIC 500 k 1.048 M Hz tAIC = 1/fADIC, Tested only at 1 MHz Conversion range RAD VSS VDD V Power-up time tADPU 16 — tAIC cycles Conversion time tADC 16 17 tAIC cycles Sample time tADS 5 — tAIC cycles Monotocity MAD Zero input reading ZADI 00 — Hex VIn = VSS Full-scale reading FADI — FF Hex VIn = VDD Input capacitance CADI — 20 pF Not tested Guaranteed 1. One count is 1/256 of VDD. 2. V REFH is shared with VDD. VREFL is shared with VSS. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications Technical Data 288 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA Min Max Units VRDR 1.3 — V — 1 — MHz FLASH read bus clock frequency fRead(2) 32 k 8.4 M Hz FLASH page erase time tErase(3) 1 — ms FLASH mass erase time tMErase(4) 4 — ms FLASH PGM/ERASE to HVEN setup time tNVS 10 — µs FLASH high-voltage hold time tNVH 5 — µs FLASH high-voltage hold time (mass erase) tNVHL 100 — µs FLASH program hold time tPGS 5 — µs FLASH program time tPROG 30 40 µs FLASH return to read time tRCV(5) 1 — µs FLASH cumulative program HV period tHV(6) — 4 ms FLASH row erase endurance(7) — 10 K — Cycles FLASH row program endurance(6) — 10 K — Cycles FLASH data retention time(8) — 10 — Years RAM data retention voltage(1) FLASH program bus clock frequency 1. Specification is characterized but not tested. 2. fRead is defined as the frequency range for which the FLASH memory can be read. 3. If the page erase time is longer than tErase (min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. If the mass erase time is longer than tMErase (min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 5. tRCV is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 6. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tNVS + tNVH + tPGS + (tPROG × 64) ≤ tHV max. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Electrical Specifications Technical Data 289 A G R E E M E N T Symbol/ Description Characteristic N O N - D I S C L O S U R E 20.12 Memory Characteristics R E Q U I R E D Electrical Specifications Memory Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications Technical Data 290 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Electrical Specifications MOTOROLA 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291 21.3 16-Pin Plastic Dual In-Line Package (PDIP). . . . . . . . . . . . . .292 21.4 16-Pin Small Outline Package (SOIC) . . . . . . . . . . . . . . . . . .292 21.2 Introduction This section gives the dimensions for: • 16-pin plastic dual in-line package (case number 648D) • 16-pin small outline package (case number 751G) The following figures show the latest package drawings at the time of this publication. To make sure that you have the latest package specifications, contact one of the following: • Local Motorola Sales Office • Worldwide Web (wwweb) at http://www.motorola.com/semiconductors/ Follow Worldwide Web on-line instructions to retrieve the current mechanical specifications. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Mechanical Specifications Technical Data 291 R E Q U I R E D 21.1 Contents A G R E E M E N T Section 21. Mechanical Specifications N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D Mechanical Specifications 21.3 16-Pin Plastic Dual In-Line Package (PDIP) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 5. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 (0.010). 6. ROUNDED CORNERS OPTIONAL. -A16 9 -B1 8 F L C SEATING PLANE -TK H G M J D 16 PL 0.25 (0.010) M T B S A S INCHES MILLIMETERS MIN MAX MIN MAX 0.740 0.760 18.80 19.30 0.245 0.260 6.23 6.60 0.145 0.175 3.69 4.44 0.015 0.021 0.39 0.53 0.050 0.070 1.27 1.77 0.100 BSC 2.54 BSC 0.050 BSC 1.27 BSC 0.008 0.015 0.21 0.38 0.120 0.140 3.05 3.55 0.295 0.305 7.50 7.74 0° 10 ° 0° 10 ° 0.015 0.035 0.39 0.88 21.4 16-Pin Small Outline Package (SOIC) A D 16 9 1 8 θ NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN h X 45 ° H E 0.25 8X M B M N O N - D I S C L O S U R E 16X M 14X e T A S B S Technical Data 292 L A 0.25 B B SEATING PLANE A1 A G R E E M E N T S DIM A B C D F G H J K L M S T C MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.50 0.90 θ 0° 7° MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 Mechanical Specifications MOTOROLA 22.1 Contents 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 22.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .293 22.2 Introduction This section contains ordering numbers for the MC68HC908KX8 and the MC68HC908KX2. 22.3 MC Order Numbers R E Q U I R E D Section 22. Ordering Information A G R E E M E N T Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 MC Order Number(1) N O N - D I S C L O S U R E Table 22-1. MC Order Numbers Operating Temperature Range MC68HC908KX8CP MC68HC908KX8CDW –40°C to +85°C MC68HC908KX8VP MC68HC908KX8VDW –40°C to +105°C MC68HC908KX8MP MC68HC908KX8MDW –40°C to +125°C MC68HC908KX2CP MC68HC908KX2CDW –40°C to +85°C MC68HC908KX2VP MC68HC908KX2VDW –40°C to +105°C MC68HC908KX2MP MC68HC908KX2MDW –40°C to +125°C 1. P = Plastic dual in-line package DW = Small outline package MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA Ordering Information Technical Data 293 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Ordering Information Technical Data MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 294 Ordering Information MOTOROLA A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295 A.2 Introduction This appendix describes the differences between the MC68HC908KX8 and the MC68HC908KX2. A.3 Functional Description The MC68HC908KX2 FLASH memory is an array of 2,048 bytes with an additional 36 bytes of user vectors and one byte used for block protection. See Figure A-1. NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0. The program and erase operations are facilitated through control bits in the FLASH control register (FLCR). See 4.4 FLASH Control Register. The FLASH is organized internally as an 8-word by 8-bit complementary metal-oxide semiconductor (CMOS) page erase, byte (8-bit) program embedded FLASH memory. Each page consists of 64 bytes. The page erase operation erases all words within a page. A page is composed of two adjacent rows. A security feature prevents viewing of the FLASH contents.(1) See 4.4 FLASH Control Register for a complete description of FLASH operation. 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC908KX2 Overview Technical Data 295 R E Q U I R E D A.1 Contents A G R E E M E N T Appendix A. MC68HC908KX2 Overview N O N - D I S C L O S U R E Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 R E Q U I R E D MC68HC908KX2 Overview $0000 ↓ $003F $0040 ↓ $00FF A G R E E M E N T $0100 ↓ $0FFF $1000 ↓ $13FF I/O REGISTERS (64 BYTES) RAM (192 BYTES) UNIMPLEMENTED (3840 BYTES) FLASH BURN-IN ROM (1024 BYTES) UNIMPLEMENTED (57,856 BYTES) $F600 ↓ $FDFF USER FLASH MEMORY (2048 BYTES) N O N - D I S C L O S U R E $1400 ↓ $F5FF $FE00 RESERVED $FE01 SIM RESET STATUS REGISTER (SRSR) $FE02 RESERVED $FE03 RESERVED $FE04 RESERVED $FE05 RESERVED $FE06 RESERVED $FE07 RESERVED $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 BREAK ADDRESS REGISTER HIGH (BRKH) $FE0A BREAK ADDRESS REGISTER LOW (BRKL) $FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR) $FE0C LVI STATUS REGISTER (LVISR) $FE0D ↓ $FE1F UNIMPLEMENTED (19 BYTES) $FE20 ↓ $FF46 MONITOR ROM (295 BYTES) $FF47 ↓ $FF7D UNIMPLEMENTED (55 BYTES) $FF7E FLASH BLOCK PROTECT REGISTER (FLBPR) $FF7F ↓ $FFDB UNIMPLEMENTED (93 BYTES) $FFDC ↓ $FFFF FLASH VECTORS (36 BYTES) Figure A-1. MC68HC908KX2 Memory Map Technical Data 296 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC908KX2 Overview MOTOROLA Appendix B. MC68HC08KX8 Overview B.1 Contents B.3 FLASH x ROM Module Changes . . . . . . . . . . . . . . . . . . . . . . 298 B.3.1 FLASH for ROM Substitution . . . . . . . . . . . . . . . . . . . . . . .298 B.3.2 Partial Use of FLASH-Related Module. . . . . . . . . . . . . . . . 300 B.4 Configuration Register Programming . . . . . . . . . . . . . . . . . . .300 B.5 Electrical Specifiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302 B.5.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . 302 B.5.2 Functional Operating Range . . . . . . . . . . . . . . . . . . . . . . .303 B.5.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 B.5.4 5.0-Vdc DC Electrical Characteristics . . . . . . . . . . . . . . . . 304 B.5.5 3.0-Vdc DC Electrical Characteristics . . . . . . . . . . . . . . . . 305 B.5.6 Internal Oscillator Characteristics. . . . . . . . . . . . . . . . . . . . 306 B.5.7 External Oscillator Characteristics . . . . . . . . . . . . . . . . . . .306 B.5.8 Trimmed Accuracy of the Internal Clock Generator . . . . . . 307 B.5.8.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . 307 B.5.8.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics . . . . . . . . . . . . . . . . 307 B.5.9 Analog-to-Digital Converter (ADC) Characteristics . . . . . . 308 B.5.10 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 308 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC08KX8 Overview Technical Data 297 A G R E E M E N T Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298 N O N - D I S C L O S U R E B.2 R E Q U I R E D Technical Data — MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 B.2 Introduction This appendix describes the differences between the read-only memory (ROM) version (MC68HC08KX8) and the FLASH version (MC68HC908KX8) of the microcontroller. Basically, the differences are: • FLASH x ROM module changes – FLASH for ROM substitution – Partial use of FLASH-related module • Configuration register programming • Wider range of operating voltage B.3 FLASH x ROM Module Changes This section describes changes between the FLASH and ROM modules. %)/$6+IRU5206XEVWLWXWLRQ FLASH memory and FLASH supporting modules are replaced by ROM memory, see Figure B-1. In Figure B-1, the user FLASH and user FLASH vector space are respectively substituted by user ROM and user ROM vector space. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview Additionally, these modules and registers have been eliminated in the ROM version: Technical Data 298 • FLASH burn-in ROM module — Auxiliary FLASH routine codes • FLASH charge pump module — High-voltage for FLASH programming • MENRST module — Helps erased FLASH parts programming, see 6.4.1.5 Forced Monitor Mode Entry Reset (MENRST) • SIM reset status register, bit 2 — Refers to MENRST. See 6.8.1 SIM Reset Status Register. MENRST has no function in the ROM version and reading this bit will return 0. • FLASH test control register, FLTCR • FLASH control register, FLCR • FLASH block protect register, FLBPR MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA M68HC08 CPU POWER-ON RESET MODULE CONTROL AND STATUS REGISTERS — 78 BYTES SECURITY MODULE USER ROM — 7680 BYTES COMPUTER OPERATING PROPERLY MODULE USER RAM — 192 BYTES PTB ARITHMETIC/LOGIC UNIT DDRB CPU REGISTERS PTB0/AD0 PTB1/AD1 PTB2/AD2 2-CHANNEL TIMER INTERFACE MODULE USER ROM VECTOR SPACE — 36 BYTES KEYBOARD INTERRUPT MODULE INTERNAL CLOCK GENERATOR MODULE SOFTWARE SELECTABLE SYSTEM INTEGRATION MODULE VSS 299 Technical Data Notes: 1. 2. 3. 4. ANALOG-TO-DIGITAL CONVERTER MODULE SERIAL COMMUNICATION INTERFACE MODULE SINGLE BRKPT BREAK MODULE POWER MC68HC08KX8 Overview FLASH x ROM Module Changes VDD PTA0/KBD0(2), (3) PTA1/KBD1(2), (3) PTA2/KBD2/TCH0(2), (3) PTA3/KBD3/TCH1(2), (3) PTA4/KBD4 (2), (3) PROGRAMMABLE TIMEBASE MODULE IRQ MODULE (1) PTA MONITOR ROM — 296 BYTES IRQ1 PTB3/AD3 PTB4/RxD PTB5/TxD PTB6/(OSC1)(4) PTB7/(OSC2)(4) LOW-VOLTAGE INHIBIT MODULE DDRA MC68HC08KX8 Overview MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA INTERNAL BUS Pin contains integrated pullup resistor. High-current source/sink pin Pin contains software selectable pullup resistor if general function I/O pin is configured as input. Pins are used for external clock source or crystal/ceramic resonator option. Figure B-1. M68HC08KX8 MCU Block Diagram N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D B.3.2 Partial Use of FLASH-Related Module Section 18. Monitor ROM (MON) was written having FLASH as user memory and user vector space. MON functions are maintained for the ROM version. MON will allow execution of code in random-access memory (RAM) or ROM and provide ROM memory security(1). The memory programming interface, though, will have no effect in ROM version. An assumption that must be made for the ROM version is that the reset vector will always have a value different from $0000, corresponding to the user code start address. For this reason, force entry into monitor mode, described in 18.5 Monitor Mode Entry and in 18.5.2 Forced Monitor Mode, is not applicable to the ROM version. The MENRST module has been eliminated from the ROM version. The security function described in 18.11 Security also applies to the user ROM memory for the ROM version. B.4 Configuration Register Programming Functionally, the terms MOR (mask option register) and CONFIG (configuration register) can be used interchangeably. MOR and CONFIG are equivalent since both define the same module functionality options through the registers bits. As a naming convention, though, configuration registers are named MOR for a ROM version and CONFIG for a FLASH version. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview Some modules affected by the configuration register bits make reference to default values of these bits and have recommendation notes on programming them. 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the ROM difficult for unauthorized users. Technical Data 300 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA FLASH — Section 4. FLASH Memory • ICG — 7.7 CONFIG or MOR Options • LVI — 8.4 Functional Description • PORT — 10.4.1 Port B Data Register • COP — 11.5.7 COPD (COP Disable) and 11.5.8 COPRS (COP Rate Select) • CONFIG — 9.3 Functional Description The user must keep in mind that these notes are not entirely applicable to the MOR found in the ROM version. The MOR bits can neither assume the described CONFIG default values after reset nor can they be modified later under user code control. While the MOR is mask defined, and consequently unwritable, CONFIG can be written once after each reset. Address: $001E Bit 7 6 5 4 3 2 1 Bit 0 R LVI2 EXTXTALEN EXTSLOW EXTCLKEN 0 OSCEINSTOP SCIBDSRC Read: Write: Reset: Unaffected by reset R = Reserved Figure B-2. Mask Option Register 2 (MOR2) Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 SSREC STOP COPD Read: Write: Reset: Unaffected by reset Figure B-3. Mask Option Register 1 (MOR1) NOTE: With the FLASH charge pump eliminated, MOR2 bit 2 (originally PMPREGD in CONFIG) has no effect. Reading this bit will return 0. For a complete description of other configuration bits, refer to 9.3 Functional Description. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC08KX8 Overview Technical Data 301 A G R E E M E N T NOTE: • N O N - D I S C L O S U R E For specific information see: R E Q U I R E D MC68HC08KX8 Overview Configuration Register Programming B.5 Electrical Specifiations This section contains electrical and timing specifications for the MC68HC08KX8. B.5.1 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it. NOTE: A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview This device is not guaranteed to operate properly at the maximum ratings. Refer to B.5.4 5.0-Vdc DC Electrical Characteristics, and B.5.5 3.0-Vdc DC Electrical Characteristics for guaranteed operating conditions. N O N - D I S C L O S U R E Characteristic(1) Symbol Value Unit Supply voltage VDD –0.3 to +6.0 V Input voltage VIn VSS –0.3 to VDD +0.3 V Maximum current per pin excluding VDD, VSS, and PTA0–PTA4 I ±15 mA Maximum current for pins PTA0–PTA4 IPTA0–IPTA4 ±25 mA Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Storage temperature TSTG –55 to +150 °C 1. Voltages referenced to VSS NOTE: Technical Data 302 This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIn and VOut be constrained to the range VSS ≤ (VIn or VOut) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD). MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA Operating temperature range Operating voltage range Symbol Value Unit TA –40 to 105 °C VDD 3.0 ± 10% 5.0 ± 10% V B.5.3 Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance PDIP (16 pins) SOIC (16 pins) θJA 66 95 °C/W I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273°C) W Constant(2) K Average junction temperature Maximum junction temperature PD x (TA + 273°C) + PD2 x θJA W/°C TJ TA + (PD x θJA) °C TJM 125 °C 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, P D and TJ can be determined for any value of TA. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC08KX8 Overview Technical Data 303 A G R E E M E N T Characteristic N O N - D I S C L O S U R E B.5.2 Functional Operating Range R E Q U I R E D MC68HC08KX8 Overview Electrical Specifiations N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview B.5.4 5.0-Vdc DC Electrical Characteristics Characteristic(1) Min Typ(2) Max VDD –0.4 VDD –1.5 VDD –0.8 — — — — — — — — — — — — 0.4 1.5 0.8 Symbol Unit Output high voltage ILoad = –2.0 mA, all I/O pins ILoad = –10.0 mA, all I/O pins ILoad = –15.0 mA, PTA0–PTA4 only VOH Output low voltage ILoad = 1.6 mA, all I/O pins ILoad = 10.0 mA, all I/O pins ILoad = 15.0 mA, PTA0–PTA4 only VOL Input high voltage — all ports, IRQ1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage — all ports, IRQ1 VIL VSS — 0.3 x VDD V — — — 16.6 1.9 0.8 20 5 1.75 mA mA µA V V VDD supply current Run(3), (4) Wait(4), (5) Stop, 25°C(4), (6) IDD I/O ports Hi-Z leakage current(7) IIL –10 — µA Input leakage current IIn –1.0 — µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPOR 0 700 800 mV POR rise time ramp rate RPOR 0.035 — — V/ms Monitor mode entry voltage VTST VDD+ 2.5 VDD + 4.0 V Low-voltage inhibit reset, trip falling voltage VTRIPF 3.90 4.3 4.50 V Low-voltage inhibit reset, trip rising voltage VTRIPR 4.00 4.4 4.60 V Low-voltage inhibit reset/recover hysteresis VHYS — 100 — mV Pullup resistor — PTA0–PTA4, IRQ1 RPU 24 — 48 kΩ 1. V DD = 5.5 Vdc to 4.5 Vdc, VSS = 0 Vdc, TA = –40°C to +85°C, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal oscillator at its 32-MHz rate. VDD = 5.5 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. All measurements taken with LVI enabled. 5. Wait IDD measured using internal oscillator at its 1-MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. All ports configured as inputs. 6. Stop IDD is measured with no port pin sourcing current; all modules are disabled. OSCSTOPEN option is not selected. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. Technical Data 304 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA Min Typ(2) Max VDD –0.3 VDD –1.0 VDD –0.6 — — — — — — — — — — — — 0.3 1.0 0.6 V V V Symbol Unit Output high voltage ILoad = –0.6 mA, all I/O pins ILoad = –4.0 mA, all I/O pins ILoad = –10 mA, PTA0–PTA4 only VOH Output low voltage ILoad = 0.5 mA, all I/O pins ILoad = 6.0 mA, all I/O pins ILoad = 10 mA, PTA0–PTA4 only VOL Input high voltage — all ports, IRQ1 VIH 0.7 x VDD — VDD + 0.3 V Input low voltage — all ports, IRQ1 VIL VSS — 0.3 x VDD V — — — 4.4 1 0.65 10 2.5 1.25 mA mA µA V VDD supply current Run(3), (4) Wait(4), (5) Stop, 25°C(4), (6) IDD I/O ports Hi-Z leakage current(7) IIL –10 — µA Input leakage current IIn –1.0 — µA Capacitance Ports (as input or output) COut CIn — — — — 12 8 pF POR rearm voltage(8) VPOR 0 — 100 mV POR reset voltage(9) VPOR 0 700 800 mV POR rise time ramp rate RPOR 0.02 — — V/ms Monitor mode entry voltage VTST VDD+ 2.5 — VDD + 4.0 V Low-voltage inhibit reset, trip falling voltage VTRIPF 2.4 2.60 2.70 V Low-voltage inhibit reset, trip rising voltage VTRIPR 2.5 2.68 2.80 V Low-voltage inhibit reset/recover hysteresis VHYS — 80 — mV Pullup resistor — PTA0–PTA4, IRQ1 RPU 24 — 48 kΩ 1. V DD = 3.3 to 2.7 Vdc, VSS = 0 Vdc, T A = –40°C to +85°C, unless otherwise noted 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using internal oscillator at its 16-MHz rate. VDD = 3.3 Vdc. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. All measurements taken with LVI enabled. 5. Wait IDD measured using internal oscillator at its 1 MHz rate. All inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. All ports configured as inputs. 6. Stop IDD is measured with no port pins sourcing current; all modules are disabled. 7. Pullups and pulldowns are disabled. 8. Maximum is highest voltage that POR is guaranteed. 9. Maximum is highest voltage that POR is possible. MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC08KX8 Overview Technical Data 305 A G R E E M E N T Characteristic(1) N O N - D I S C L O S U R E B.5.5 3.0-Vdc DC Electrical Characteristics R E Q U I R E D MC68HC08KX8 Overview Electrical Specifiations N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview B.5.6 Internal Oscillator Characteristics Characteristic(1) Internal oscillator base frequency(2), (3) Internal oscillator tolerance Internal oscillator multiplier(4) Symbol Min Typ Max Unit fINTOSC 320 384 kHz fOSC_TOL –25 — 25 % N 1 — 127 — 1. V DD = 5.5 Vdc to 2.7 Vdc, VSS = 0 Vdc, TA = –40°C to +85°C, unless otherwise noted 2. Internal oscillator is selectable through software for a maximum frequency. Actual frequency will be multiplier (N) x base frequency. 3. fBus = (fINTOSC / 4) x N when internal clock source selected 4. Multiplier must be chosen to limit the maximum bus frequency of 4 MHz for 2.7-V operation and 8 MHz for 4.5-V operation. B.5.7 External Oscillator Characteristics Characteristic(1) External clock option(2)(3) With ICG clock disabled With ICG clock enabled EXTSLOW = 1(4) Symbol Min Typ Max dc(5) — 32 M(6) 60 307.2 k — — 307.2 k 32 M(6) fEXTOSC EXTSLOW = 0(4) Unit Hz External crystal options(7)(8) EXTSLOW = 1(4) EXTSLOW = 0(4) fEXTOSC 30 k 1M — — 100 k 8M Hz Crystal load capacitance(9) CL — — — pF Crystal fixed capacitance(9) C1 — 2 x CL — pF Crystal tuning capacitance(9) C2 — 2 x CL — pF Feedback bias resistor(9) RB — 10 — MΩ Series resistor (9)(10) RS — — — MΩ 1. 2. 3. 4. VDD = 5.5 to 2.7 Vdc, VSS = 0 Vdc, TA = –40°C to +85°C, unless otherwise noted Setting EXTCLKEN configuration option enables OSC1 pin for external clock square-wave input. No more than 10% duty cycle deviation from 50% EXTSLOW configuration option configures external oscillator for a slow speed crystal and sets the clock monitor circuits of the ICG module to expect an external clock frequency that is higher/lower than the internal oscillator base frequency, fINTOSC. 5. Some modules may require a minimum frequency greater than dc for proper operation. See appropriate table for this information. 6. MCU speed derates from 32 MHz at VDD = 4.5 Vdc to 16 MHz at VDD = 2.7 Vdc. 7. Setting EXTCLKEN and EXTXTALEN configuration options enables OSC1 and OSC2 pins for external crystal option. 8. fBus = (fEXTOSC / 4) when external clock source is selected. 9. Consult crystal vendor data sheet, see Figure 7-3. External Clock Generator Block Diagram. 10. Not required for high-frequency crystals Technical Data 306 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA B.5.8.1 2.7-Volt to 3.3-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Fabs_tol — 1.5 5.0 Variation over temperature(3), (4) Var_temp — 0.03 0.05 %/C Variation over voltage (3), (5) 25°C –40°C to 85°C Var_volt — — 0.5 0.7 2.0 2.0 %/V Absolute trimmed internal oscillator tolerance –40°C to 85°C (2), (3) Unit % 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N B.5.8.2 4.5-Volt to 5.5-Volt Trimmed Internal Clock Generator Characteristics Characteristic(1) Symbol Min Typ Max Fabs_tol — 4.0 7.0 Variation over temperature(3), (4) Var_temp — 0.05 0.08 %/C Variation over voltage (3), (5) 25°C –40°C to 85°C Var_volt — — 1.0 1.0 2.0 2.0 %/V Absolute trimmed internal oscillator tolerance –40°C to 85°C (2), (3) Unit % 1. These specifications concern long-term frequency variation. Each measurement is taken over a 1-ms period. 2. Absolute value of variation in ICG output frequency, trimmed at nominal VDD and temperature, as temperature and VDD are allowed to vary for a single given setting of N. 3. Specification is characterized but not tested. 4. Variation in ICG output frequency for a fixed N and voltage 5. Variation in ICG output frequency for a fixed N MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MOTOROLA MC68HC08KX8 Overview Technical Data 307 A G R E E M E N T The unadjusted frequency of the low-frequency base clock (IBASE), when the comparators in the frequency comparator indicate zero error, can vary as much as ±25% due to process, temperature, and voltage. The trimming capability exists to compensate for process affects. The remaining variation in frequency is due to temperature, voltage, and change in target frequency (multiply register setting). These affects are designed to be minimal, however variation does occur. Better performance is seen at 3 V and lower settings of N. N O N - D I S C L O S U R E B.5.8 Trimmed Accuracy of the Internal Clock Generator R E Q U I R E D MC68HC08KX8 Overview Electrical Specifiations N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D MC68HC08KX8 Overview B.5.9 Analog-to-Digital Converter (ADC) Characteristics Characteristic Symbol Min Max Unit Notes Supply voltage VDD 2.7 5.5 V Input voltages VADIN 0 VDD V Resolution BAD 8 8 Bits Absolute accuracy(1), (2) AAD –2.5 +2.5 Counts 8 bits = 256 counts ADC clock rate fADIC 500 k 1.048 M Hz tAIC = 1/fADIC, Tested only at 1 MHz Conversion range RAD VSS VDD V Power-up time tADPU 16 — tAIC cycles Conversion time tADC 16 17 tAIC cycles Sample time tADS 5 — tAIC cycles Monotocity MAD Zero input reading ZADI 00 — Hex VIn = VSS Full-scale reading FADI — FF Hex VIn = VDD Input capacitance CADI — 20 pF Not tested Guaranteed 1. One count is 1/256 of VDD. 2. V REFH is shared with VDD. VREFL is shared with VSS. B.5.10 Memory Characteristics Characteristic Symbol/ Description Min Max Units VRDR 1.3 — V RAM data retention voltage(1) 1. Specification is characterized but not tested. Technical Data 308 MC68HC908KX8 • MC68HC908KX2 • MC68HC08KX8 — Rev. 1.0 MC68HC08KX8 Overview MOTOROLA HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: http://www.motorola.com/semiconductors liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002 MC68HC908KX8/D This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.