M68HC08 Microcontrollers MC68HC908QY4/D 9/2002 WWW.MOTOROLA.COM/SEMICONDUCTORS R E Q U I R E D A G R E E M E N T Data Sheet N O N - D I S C L O S U R E MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D R E Q U I R E D Data Sheet To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to: http://motorola.com/semiconductors The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. DigitalDNA is a trademark of Motorola, Inc. © Motorola, Inc., 2002 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA 3 N O N - D I S C L O S U R E A G R E E M E N T MC68HC908QY4 MC68HC908QT4 MC68HC908QY2 MC68HC908QT2 MC68HC908QY1 MC68HC908QT1 Revision History Date Revision Level September, 2002 N/A Description Initial release Page Number(s) N/A N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Revision History MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 4 MOTOROLA Section 1. General Description . . . . . . . . . . . . . . . . . . . . 25 Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 43 Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 45 Section 5. Configuration Register (CONFIG) . . . . . . . . . 55 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 59 Section 7. System Integration Module (SIM) . . . . . . . . . 75 R E Q U I R E D List of Sections A G R E E M E N T Data Sheet — MC68HC908QY4 Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 113 Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 129 Section 11. Analog-to-Digital Converter (ADC) . . . . . . 151 Section 12. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 161 Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . . 171 Section 14. Keyboard Interrupt Module (KBI). . . . . . . . 177 Section 15. Computer Operating Properly (COP) . . . . 189 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA List of Sections 5 N O N - D I S C L O S U R E Section 8. Oscillator Module (OSC). . . . . . . . . . . . . . . . 101 List of Sections R E Q U I R E D Section 16. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 195 Section 17. Break Module (BREAK) . . . . . . . . . . . . . . . 201 Section 18. Electrical Specifications. . . . . . . . . . . . . . . 211 Section 19. Mechanical Specifications . . . . . . . . . . . . . 223 N O N - D I S C L O S U R E A G R E E M E N T Section 20. Ordering Information . . . . . . . . . . . . . . . . . 227 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 6 List of Sections MOTOROLA 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.7 Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Section 2. Memory 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 7 R E Q U I R E D Section 1. General Description A G R E E M E N T Table of Contents N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 Table of Contents A G R E E M E N T R E Q U I R E D Section 4. FLASH Memory (FLASH) 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 N O N - D I S C L O S U R E Section 5. Configuration Register (CONFIG) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 6. Central Processor Unit (CPU) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 8 Table of Contents MOTOROLA 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Section 7. System Integration Module (SIM) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79 7.4 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79 7.4.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80 7.5 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81 7.5.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.5.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 83 7.5.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84 7.6 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85 7.6.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85 7.6.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85 7.7 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 9 A G R E E M E N T Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 N O N - D I S C L O S U R E 6.5 R E Q U I R E D Table of Contents Table of Contents R E Q U I R E D 7.7.2 7.7.2.1 7.7.2.2 7.7.2.3 7.7.3 7.7.4 7.7.5 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93 7.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 A G R E E M E N T 7.9 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.9.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Section 8. Oscillator Module (OSC) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 N O N - D I S C L O S U R E 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.4.1 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 Internal to External Clock Switching. . . . . . . . . . . . . . . . 104 8.4.2 External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107 8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 108 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 10 Table of Contents MOTOROLA 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 8.8 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.9 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.1 Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112 Section 9. Monitor ROM (MON) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4.1 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.2 VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.5 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Section 10. Timer Interface Module (TIM) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 11 A G R E E M E N T Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109 Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109 N O N - D I S C L O S U R E 8.5.7 8.5.8 R E Q U I R E D Table of Contents Table of Contents A G R E E M E N T R E Q U I R E D 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.9 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 N O N - D I S C L O S U R E 10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148 Section 11. Analog-to-Digital Converter (ADC) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 12 Table of Contents MOTOROLA Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159 Section 12. Input/Output (I/O) Ports 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166 12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169 Section 13. External Interrupt (IRQ) 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175 13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 13 A G R E E M E N T 11.7 N O N - D I S C L O S U R E 11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 R E Q U I R E D Table of Contents Table of Contents R E Q U I R E D Section 14. Keyboard Interrupt Module (KBI) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 A G R E E M E N T 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182 14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184 14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185 14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187 Section 15. Computer Operating Properly (COP) 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 N O N - D I S C L O S U R E 15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192 15.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 14 Table of Contents MOTOROLA Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198 16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 16.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 Section 17. Break Module (BREAK) 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205 17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206 17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 15 A G R E E M E N T 16.1 N O N - D I S C L O S U R E Section 16. Low-Voltage Inhibit (LVI) R E Q U I R E D Table of Contents Table of Contents A G R E E M E N T R E Q U I R E D Section 18. Electrical Specifications 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212 18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213 18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 18.6 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214 18.7 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 18.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 18.9 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217 18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221 18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 N O N - D I S C L O S U R E Section 19. Mechanical Specifications 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 19.3 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . 224 19.4 8-Pin Small Outline Integrated Circuit Package (Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 19.5 16-Pin Plastic Dual In-Line Package (Case #648D) . . . . . . . . 225 19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 19.7 16-Pin Thin Shrink Small Outline Package (Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 16 Table of Contents MOTOROLA Section 20. Ordering Information Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 N O N - D I S C L O S U R E A G R E E M E N T 20.1 R E Q U I R E D Table of Contents MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Table of Contents 17 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Table of Contents MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 18 Table of Contents MOTOROLA Title Page 1-1 1-2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 MCU Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 36 4-1 4-2 4-3 4-4 FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 47 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . .52 FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 53 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . . 53 5-1 5-2 Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 56 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 57 6-1 6-2 6-3 6-4 6-5 6-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .63 7-1 7-2 7-3 7-4 7-5 7-6 7-7 7-8 7-9 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA List of Figures 19 R E Q U I R E D Figure A G R E E M E N T List of Figures N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 List of Figures N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Figure Title Page 7-10 7-11 7-12 7-13 7-14 7-15 7-16 7-17 7-18 7-19 7-20 7-21 7-22 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 89 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 91 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 91 Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . . 92 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . . 94 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 94 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . 96 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 96 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . 98 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8-1 8-2 8-3 8-4 XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . .106 RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . 107 Oscillator Status Register (OSCSTAT). . . . . . . . . . . . . . . . . . 111 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . 112 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 Monitor Mode Circuit (External Clock, No High Voltage) . . . .116 Monitor Mode Circuit (Internal Clock, No High Voltage) . . . . .116 Monitor Mode Circuit (External Clock, with High Voltage) . . . 117 Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .119 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 127 Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 10-1 10-2 10-3 10-4 10-5 10-6 10-7 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 132 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 136 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 141 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 144 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .144 TIM Channel Status and Control Registers (TSC0:TSC1) . . . 145 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 20 List of Figures MOTOROLA Page 10-8 10-9 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 149 11-1 11-2 11-3 11-4 11-5 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 152 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . .157 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 159 12-1 12-2 12-3 12-4 12-5 12-6 12-7 12-8 12-9 I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 164 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 166 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 168 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Port B Input Pullup Enable Register (PTBPUE) . . . . . . . . . . . 169 13-1 13-2 13-3 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 172 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 173 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .176 14-1 14-2 14-3 14-4 14-5 KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 179 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 183 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 184 Auto Wake-up Interrupt Request Generation Logic . . . . . . . . 185 15-1 15-2 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 192 16-1 16-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 199 17-1 17-2 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 203 Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 203 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA List of Figures 21 A G R E E M E N T Title N O N - D I S C L O S U R E Figure R E Q U I R E D List of Figures List of Figures Title Page 17-3 17-4 17-5 17-6 17-7 17-8 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 205 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .206 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .206 Break Auxiliary Register (BRKAR) . . . . . . . . . . . . . . . . . . . . . 207 Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 208 Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . 209 18-1 18-2 18-3 18-4 RC versus Frequency (5 Volts @ 25°C) . . . . . . . . . . . . . . . . . 216 RC versus Frequency (3 Volts @ 25°C) . . . . . . . . . . . . . . . . . 219 Typical Operating IDD, with All Modules Turned On (25°C) . . 220 Typical Wait Mode IDD, with ADC Turned On (25°C) . . . . . . . 220 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Figure MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 22 List of Figures MOTOROLA Title Page 1-1 1-2 1-3 Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Function Priority in Shared Pins . . . . . . . . . . . . . . . . . . . . . . . .32 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4-1 Examples of Protect Start Address. . . . . . . . . . . . . . . . . . . . . . 54 6-1 6-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7-1 7-2 7-3 7-4 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 8-1 8-2 OSC2 Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108 Oscillator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 Monitor Mode Signal Requirements and Options . . . . . . . . . . 117 Mode Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 121 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 123 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 124 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 124 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 125 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 126 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .126 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA List of Tables 23 R E Q U I R E D Table A G R E E M E N T List of Tables N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 List of Tables Title Page 10-1 10-2 10-3 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 147 11-1 11-2 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 12-1 12-2 12-3 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 16-1 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 20-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Table MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 24 List of Tables MOTOROLA 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.7 Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 1.2 Introduction The MC68HC908QY4 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is a Complex Instruction Set Computer (CISC) with a Von Neumann architecture. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. 0.4 Table 1-1. Summary of Device Variations Device FLASH Memory Size Analog-to-Digital Converter Pin Count MC68HC908QT1 1536 bytes — 8 pins MC68HC908QT2 1536 bytes 4 ch, 8 bit 8 pins MC68HC908QT4 4096 bytes 4 ch, 8 bit 8 pins MC68HC908QY1 1536 bytes — 16 pins MC68HC908QY2 1536 bytes 4 ch, 8 bit 16 pins MC68HC908QY4 4096 bytes 4 ch, 8 bit 16 pins MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA General Description 25 R E Q U I R E D 1.1 Contents A G R E E M E N T Section 1. General Description N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 R E Q U I R E D General Description 1.3 Features Features include: • High-performance M68HC08 CPU core • Fully upward-compatible object code with M68HC05 Family • 5-V and 3-V operating voltages (VDD) • 8-MHz internal bus operation at 5 V, 4-MHz at 3 V • Trimmable internal oscillator A G R E E M E N T – 3.2 MHz internal bus operation – 8-bit trim capability – ± 25% untrimmed – ± 5% trimmed • Auto wake-up from STOP capability • Configuration (CONFIG) register for MCU configuration options, including: N O N - D I S C L O S U R E – Low-voltage inhibit (LVI) trip point • In-system FLASH programming • FLASH security(1) • On-chip in-application programmable FLASH memory (with internal program/erase voltage generation) – MC68HC908QY4 and MC68HC908QT4 — 4096 bytes – MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, and MC68HC908QT1 — 1536 bytes • 128 bytes of on-chip random-access memory (RAM) • 2-channel, 16-bit timer interface module (TIM) • 4-channel, 8-bit analog-to-digital converter (ADC) on MC68HC908QY2, MC68HC908QY4, MC68HC908QT2, and MC68HC908QT4 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 26 General Description MOTOROLA • 5 or 13 bidirectional input/output (I/O) lines and one input only: – Six shared with keyboard interrupt function and ADC – Two shared with timer channels – One shared with external interrupt (IRQ) – Eight extra I/O lines on 16-pin package only – High current sink/source capability on all port pins – Selectable pullups on all ports, selectable on an individual bit basis R E Q U I R E D General Description Features 6-bit keyboard interrupt with wakeup feature (KBI) • Low-voltage inhibit (LVI) module features: – Software selectable trip point in CONFIG register • System protection features: – Computer operating properly (COP) watchdog – Low-voltage detection with reset – Illegal opcode detection with reset – Illegal address detection with reset • External asynchronous interrupt pin with internal pullup (IRQ) shared with general-purpose input pin • Master asynchronous reset pin (RST) shared with general-purpose input/output (I/O) pin • Power-on reset • Internal pullups on IRQ and RST to reduce external components • Memory mapped I/O registers • Power saving stop and wait modes • MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 are available in these packages: – 16-pin plastic dual in-line package (PDIP) – 16-pin small outline integrated circuit (SOIC) package – 16-pin thin shrink small outline package (TSSOP) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA General Description 27 N O N - D I S C L O S U R E • A G R E E M E N T – Three-state ability on all port pins General Description R E Q U I R E D • MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are available in these packages: – 8-pin PDIP – 8-pin SOIC A G R E E M E N T Features of the CPU08 include the following: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Efficient C language support N O N - D I S C L O S U R E 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908QY4. 1.5 Pin Assignments The MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are available in 8-pin packages and the MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 in 16-pin packages. Figure 1-2 shows the pin assignment for these packages. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 28 General Description MOTOROLA N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D VDD PTB POWER SUPPLY VSS DDRB PTA0/AD0/TCH0/KBI0 PTA1/AD1/TCH1/KBI1 DDRA PTA3/RST/KBI3 CPU CONTROL PTA PTA2/IRQ/KBI2 ALU ACCUMULATOR PTA5/OSC1/AD3/KBI5 CLOCK GENERATOR 68HC08 CPU PTA4/OSC2/AD2/KBI4 CPU REGISTERS INDEX REGISTER SYSTEM INTEGRATION MODULE SINGLE INTERRUPT MODULE STACK POINTER 8-BIT ADC General Description PROGRAM COUNTER CONDITION CODE REGISTER V 1 1 H I N Z C BREAK MODULE POWER-ON RESET MODULE 16-BIT TIMER MODULE 128 BYTES RAM MC68HC908QY4 AND MC68HC908QT4: 4096 BYTES MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, AND MC68HC908QT1: 1536 BYTES USER FLASH COP MODULE MONITOR ROM RST, IRQ: Pins have internal (about 30K Ohms) pull up PTA[0:5]: High current sink and source capability PTA[0:5]: Pins have programmable keyboard interrupt and pull up PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 Figure 1-1. Block Diagram General Description Pin Assignments 29 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA PTB[0:7] R E Q U I R E D General Description VDD 1 8 VSS PTA0/TCH0/KBI0 PTA5/OSC1/AD3/KBI5 2 7 PTA0/AD0/TCH0/KBI0 6 PTA1/TCH1/KBI1 PTA4/OSC2/AD2/KBI4 3 6 PTA1/AD1/TCH1/KBI1 5 PTA2/IRQ/KBI2 PTA3/RST/KBI3 4 5 PTA2/IRQ/KBI2 VDD 1 8 VSS PTA5/OSC1/KBI5 2 7 PTA4/OSC2/KBI4 3 PTA3/RST/KBI3 4 8-PIN ASSIGNMENT MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC A G R E E M E N T 8-PIN ASSIGNMENT MC68HC908QT1 PDIP/SOIC VDD 1 16 VSS PTB0 PTB7 2 15 PTB0 14 PTB1 PTB6 3 14 PTB1 4 13 PTA0/TCH0/KBI0 PTA5/OSC1/AD3/KBI5 4 13 PTA0/AD0/TCH0/KBI0 PTA4/OSC2/KBI4 5 12 PTA1/TCH1/KBI1 PTA4/OSC2/AD2/KBI4 5 12 PTA1/AD1/TCH1/KBI1 PTB5 6 11 PTB2 PTB5 6 11 PTB2 PTB3 PTB4 7 10 PTA3/RST/KBI3 8 9 VDD 1 16 VSS PTB7 2 15 PTB6 3 PTA5/OSC1/KBI5 PTB4 PTA3/RST/KBI3 7 8 10 9 PTA2/IRQ/KBI2 N O N - D I S C L O S U R E 16-PIN ASSIGNMENT MC68HC908QY1 PDIP/SOIC PTB3 PTA2/IRQ/KBI2 16-PIN ASSIGNMENT MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC PTA0/AD0/TCH0/KBI0 1 16 PTA1/AD1/TCH1/KBI1 PTB2 PTB1 2 15 PTB2 14 PTB3 PTB0 3 14 PTB3 4 13 PTA2/IRQ/KBI2 VSS 4 13 PTA2/IRQ/KBI2 VDD 5 12 PTA3/RST/KBI3 VDD 5 12 PTA3/RST/KBI3 PTB7 6 11 PTB4 PTB7 6 11 PTB4 PTB6 7 10 PTB5 PTB6 7 10 PTB5 PTA5/OSC1/KBI5 8 9 PTA5/OSC1/AD3/KBI5 8 9 PTA0/TCH0/KBI0 1 16 PTA1/TCH1/KBI1 PTB1 2 15 PTB0 3 VSS PTA4/OSC2/KBI4 16-PIN ASSIGNMENT MC68HC908QY1 TSSOP PTA4/OSC2/AD2/KBI4 16-PIN ASSIGNMENT MC68HC908QY2 AND MC68HC908QY4 TSSOP Figure 1-2. MCU Pin Assignments MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 30 General Description MOTOROLA 1.6 Pin Functions Table 1-2 provides a description of the pin functions. Table 1-2. Pin Functions Input/Output VDD Power supply Power VSS Power supply ground Power PTA0 — General purpose I/O port PTA0 AD0 — A/D channel 0 input Input TCH0 — Timer Channel 0 I/O PTA1 Input/Output KBI0 — Keyboard interrupt input 0 Input PTA1 — General purpose I/O port Input/Output AD1 — A/D channel 1 input Input TCH1 — Timer Channel 1 I/O PTA2 PTA3 PTA4 PTA5 PTB[0:7](1) Input/Output Input/Output KBI1 — Keyboard interrupt input 1 Input PTA2 — General purpose input-only port Input IRQ — External interrupt with programmable pullup and Schmitt trigger input Input KBI2 — Keyboard interrupt input 2 Input PTA3 — General purpose I/O port Input/Output RST — Reset input, active low with internal pullup and Schmitt trigger Input KBI3 — Keyboard interrupt input 3 Input PTA4 — General purpose I/O port Input/Output OSC2 — XTAL oscillator output (XTAL option only) RC or internal oscillator output (OSC2EN = 1 in PTAPUE register) Output Output AD2 — A/D channel 2 input Input KBI4 — Keyboard interrupt input 4 Input PTA5 — General purpose I/O port Input/Output OSC1 — XTAL, RC, or external oscillator input Input AD3 — A/D channel 3 input Input KBI5 — Keyboard interrupt input 5 Input 8 general-purpose I/O ports. Input/Output 1. The PTB pins are not available on the 8-pin packages. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA General Description 31 A G R E E M E N T Description N O N - D I S C L O S U R E Pin Name R E Q U I R E D General Description Pin Functions 1.7 Pin Function Priority Table 1-3 is meant to resolve the priority if multiple functions are enabled on a single pin. NOTE: Upon reset all pins come up as input ports regardless of the priority table. Table 1-3. Function Priority in Shared Pins Pin Name Highest-to-Lowest Priority Sequence PTA[0] AD0 → TCH0 → KBI[0] → PTA[0] PTA[1] AD1 →TCH1 → KBI[1] → PTA[1] PTA[2] IRQ → KBI[2] → PTA[2] PTA[3] RST → KBI[3] → PTA[3] PTA[4] OSC2 → AD2 → KBI[4] → PTA[4] PTA[5] OSC1 → AD3 → KBI[5] → PTA[5] N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D General Description MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 32 General Description MOTOROLA 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 2.2 Introduction The central processor unit (CPU08) can address 64 Kbytes of memory space. The memory map, shown in Figure 2-1, includes: • 4096 bytes of user FLASH for MC68HC908QT4 and MC68HC908QY4 • 1536 bytes of user FLASH for MC68HC908QT2, MC68HC908QT1, MC68HC908QY2, and MC68HC908QY1 • 128 bytes of random access memory (RAM) • 48 bytes of user-defined vectors, located in FLASH • 416 bytes of monitor read-only memory (ROM) • 1536 bytes of FLASH program and erase routines, located in ROM 2.3 Unimplemented Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, unimplemented locations are shaded. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Memory 33 R E Q U I R E D 2.1 Contents A G R E E M E N T Section 2. Memory N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory $0000 ↓ $003F I/O REGISTERS 64 BYTES $0040 ↓ $007F RESERVED 64 BYTES $0080 ↓ $00FF RAM 128 BYTES $0100 ↓ $27FF UNIMPLEMENTED 9984 BYTES UNIMPLEMENTED 9984 BYTES $0100 ↓ $27FF $2800 ↓ $2DFF AUXILIARY ROM 1536 BYTES AUXILIARY ROM 1536 BYTES $2800 ↓ $2DFF $2E00 ↓ $EDFF UNIMPLEMENTED 49152 BYTES $2E00 UNIMPLEMENTED 51712 BYTES ↓ $F7FF $EE00 ↓ $FDFF FLASH MEMORY MC68HC908QT4 AND MC68HC908QY4 4096 BYTES $FE00 BREAK STATUS REGISTER (BSR) $FE01 RESET STATUS REGISTER (SRSR) $FE02 BREAK AUXILIARY REGISTER (BRKAR) $FE03 BREAK FLAG CONTROL REGISTER (BFCR) $FE04 INTERRUPT STATUS REGISTER 1 (INT1) $FE05 INTERRUPT STATUS REGISTER 2 (INT2) MC68HC908QT1, MC68HC908QT2, MC68HC908QY1, and MC68HC908QY2 Memory Map $FE06 INTERRUPT STATUS REGISTER 3 (INT3) $FE07 RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR) $FE08 FLASH CONTROL REGISTER (FLCR) $FE09 BREAK ADDRESS HIGH REGISTER (BRKH) $FE0A BREAK ADDRESS LOW REGISTER (BRKL) $FE0B BREAK STATUS AND CONTROL REGISTER (BRKSCR) $FE0C LVISR $FE0D ↓ $FE0F RESERVED FOR FLASH TEST 3 BYTES $FE10 ↓ $FFAF MONITOR ROM 416 BYTES $FFB0 ↓ $FFBD FLASH 14 BYTES $FFBE FLASH BLOCK PROTECT REGISTER (FLBPR) $FFBF RESERVED FLASH $FFC0 INTERNAL OSCILLATOR TRIM VALUE $FFC1 RESERVED FLASH $FFC2 ↓ $FFCF FLASH 14 BYTES $FFD0 ↓ $FFFF USER VECTORS 48 BYTES $F800 ↓ $FDFF FLASH MEMORY 1536 BYTES Figure 2-1. Memory Map MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 34 Memory MOTOROLA Accessing a reserved location can have unpredictable effects on MCU operation. In Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. 2.5 Input/Output (I/O) Section • $FE00 — Break status register, BSR • $FE01 — Reset status register, SRSR • $FE02 — Break auxiliary register, BRKAR • $FE03 — Break flag control register, BFCR • $FE04 — Interrupt status register 1, INT1 • $FE05 — Interrupt status register 2, INT2 • $FE06 — Interrupt status register 3, INT3 • $FE07 — Reserved • $FE08 — FLASH control register, FLCR • $FE09 — Break address register high, BRKH • $FE0A — Break address register low, BRKL • $FE0B — Break status and control register, BRKSCR • $FE0C — LVI status register, LVISR • $FE0D — Reserved • $FFBE — FLASH block protect register, FLBPR • $FFC0 — Internal OSC trim value — Optional • $FFFF — COP control register, COPCTL N O N - D I S C L O S U R E Addresses $0000–$003F, shown in Figure 2-2, contain most of the control, status, and data registers. Additional I/O registers have these addresses: MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Memory A G R E E M E N T 2.4 Reserved Memory Locations R E Q U I R E D Memory Reserved Memory Locations 35 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Addr. Register Name $0000 Read: Port A Data Register (PTA) Write: See page 163. Reset: $0001 Read: Port B Data Register (PTB) Write: See page 167. Reset: $0002 Unimplemented $0003 Unimplemented $0004 $0005 $0006 ↓ $000A Read: Data Direction Register A (DDRA) Write: See page 164. Reset: Bit 7 6 5 4 3 0 AWUL PTA5 PTA4 PTA3 U 0 U U U PTB7 PTB6 PTB5 PTB4 PTB3 2 1 Bit 0 PTA1 PTA0 U U U PTB2 PTB1 PTB0 DDRA1 DDRA0 PTA2 Unaffected by reset 0 0 0 Read: Data Direction Register B DDRB7 (DDRB) Write: See page 168. Reset: 0 0 DDRA5 DDRA4 DDRA3 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 Unimplemented Unimplemented Read: Port A Input Pullup Enable OSC2EN $000B Register (PTAPUE) Write: See page 166. Reset: 0 0 0 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 0 0 0 0 0 0 Read: Port B Input Pullup Enable PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0 $000C Register (PTBPUE) Write: See page 169. Reset: 0 0 0 0 0 0 0 0 $000D ↓ $0019 Unimplemented Unimplemented = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 36 Memory MOTOROLA Register Name Bit 7 6 5 4 3 2 Read: Keyboard Status and $001A Control Register (KBSCR) Write: See page 183. Reset: 0 0 0 0 KEYF 0 $001B Read: Keyboard Interrupt Enable Register (KBIER) Write: See page 184. Reset: $001C Unimplemented $001D Read: IRQ Status and Control Register (INTSCR) Write: See page 176. Reset: $001E 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 0 0 0 0 IRQF1 0 IMASK1 MODE1 0 0 0 R R RSTEN 0 0 0(2) SSREC STOP COPD 0 0 0 PS2 PS1 PS0 0 ACK1 0 Read: Configuration Register 2 IRQPUD (1) (CONFIG2) Write: See page 56. Reset: 0 0 0 IRQEN R 0 0 0 0 OSCOPT1 OSCOPT0 0 0 $001F Read: Configuration Register 1 COPRS (1) (CONFIG1) Write: See page 57. Reset: 0 LVISTOP LVIRSTD LVIPWRD LVI5OR3 0 0 0 0(2) N O N - D I S C L O S U R E 1. One-time writable register after each reset. 2. RSTEN reset to logic 0 by a power-on reset (POR) only. 1. One-time writable register after each reset. 2. LVI5OR3 reset to logic 0 by a power-on reset (POR) only. Read: TIM Status and Control Register (TSC) Write: See page 141. Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM Counter Register High $0021 (TCNTH) Write: See page 144. Reset: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 Read: TIM Counter Register Low (TCNTL) Write: See page 144. Reset: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved $0020 $0022 TOIE TSTOP 0 0 0 TRST U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Memory A G R E E M E N T Addr. R E Q U I R E D Memory Input/Output (I/O) Section 37 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Memory Addr. $0023 $0024 Register Name Read: TIM Counter Modulo Register High (TMODH) Write: See page 144. Reset: Read: TIM Counter Modulo Register Low (TMODL) Write: See page 144. Reset: Read: TIM Channel 0 Status and $0025 Control Register (TSC0) Write: See page 145. Reset: $0026 $0027 Read: TIM Channel 0 Register High (TCH0H) Write: See page 149. Reset: Read: TIM Channel 0 Register Low (TCH0L) Write: See page 149. Reset: Read: TIM Channel 1 Status and $0028 Control Register (TSC1) Write: See page 145. Reset: $0029 $002A $002B ↓ $0035 Read: TIM Channel 1 Register High (TCH1H) Write: See page 149. Reset: Read: TIM Channel 1 Register Low (TCH1L) Write: See page 149. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 CH0F 0 Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset CH1F CH1IE 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset Unimplemented Unimplemented = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 38 Memory MOTOROLA Read: Oscillator Status Register (OSCSTAT) Write: See page 111. Reset: $0037 Unimplemented Read: $0038 Oscillator Trim Register Read: (OSCTRIM) Write: See page 112. Reset: 5 4 3 2 1 Bit 0 R R R R R R ECGON 0 0 0 0 0 0 0 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 AIEN ADCO CH4 CH3 CH2 CH1 CH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 ECGST Unimplemented Read: ADC Status and Control Register (ADSCR) Write: See page 157. Reset: $003D COCO Unimplemented Read: ADC Data Register (ADR) Write: See page 159. Reset: $003E Read: ADC Input Clock Register $003F (ADICLK) Write: See page 159. Reset: $FE00 6 Unimplemented $0039 ↓ $003B $003C Bit 7 A G R E E M E N T $0036 Register Name Read: Break Status Register (BSR) Write: See page 208. Reset: N O N - D I S C L O S U R E Addr. Indeterminate after reset 0 0 0 0 0 0 0 0 0 0 0 R R R R ADIV2 ADIV1 ADIV0 0 0 R R SBSW R See note 1 0 1. Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 (SRSR) Write: See page 96. POR: POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Memory R E Q U I R E D Memory Input/Output (I/O) Section 39 A G R E E M E N T R E Q U I R E D Memory Addr. Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 BDCOP 0 0 0 0 0 0 0 0 BCFE R R R R R R R 0 IF5 IF4 IF3 0 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: See page 176. Reset: IF14 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 $FE06 (INT3) Write: See page 176. Reset: 0 0 0 0 0 0 0 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 $FE07 R R R R R R R R 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved $FE02 $FE03 Read: Break Auxiliary Register (BRKAR) Write: See page 207. Reset: Read: Break Flag Control Register (BFCR) Write: See page 209. Reset: Read: Interrupt Status Register 1 $FE04 (INT1) Write: See page 176. Reset: $FE08 N O N - D I S C L O S U R E Register Name $FE09 $FE0A Reserved Read: FLASH Control Register (FLCR) Write: See page 47. Reset: Read: Break Address High Register (BRKH) Write: See page 206. Reset: Read: Break Address low Register (BRKL) Write: See page 206. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 205. Reset: 0 U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 40 Memory MOTOROLA Register Name Read: LVIOUT LVI Status Register (LVISR) Write: See page 199. Reset: 0 $FE0C 4 3 2 1 Bit 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 R R R R R R R R Reserved for FLASH Test R R R R R R R R BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 0 0 0 0 0 0 0 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM1 TRIM0 1 0 0 0 0 0 0 0 R R R R R R R R Unimplemented Unimplemented Read: FLASH Block Protect Register (FLBPR) Write: See page 53. Reset: $FFBF Unimplemented $FFC0 Read: Internal Oscillator Trim Write: Value (Optional) Reset: $FFC1 Reserved 0 Unimplemented $FFC2 ↓ $FFCF $FFFF 5 Reserved for FLASH Test $FFB0 ↓ $FFBD $FFBE 6 Unimplemented Read: COP Control Register (COPCTL) Write: See page 192. Reset: LOW BYTE OF RESET VECTOR WRITING CLEARS COP COUNTER (ANY VALUE) Unaffected by reset = Unimplemented R = Reserved U = Unaffected Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Memory A G R E E M E N T $FE0D ↓ $FE0F Bit 7 N O N - D I S C L O S U R E Addr. R E Q U I R E D Memory Input/Output (I/O) Section 41 Memory . R E Q U I R E D Table 2-1. Vector Addresses Vector Priority Vector Lowest Address Vector $FFDE ADC conversion complete vector (high) $FFDF ADC conversion complete vector (low) $FFE0 Keyboard vector (high) $FFE1 Keyboard vector (low) IF15 IF14 A G R E E M E N T IF13 ↓ IF6 — Not used $FFF2 TIM overflow vector (high) $FFF3 TIM overflow vector (low) $FFF4 TIM Channel 1 vector (high) $FFF5 TIM Channel 1 vector (low) $FFF6 TIM Channel 0 vector (high) $FFF7 TIM Channel 0 vector (low) IF5 IF4 IF3 IF2 — Not used $FFFA IRQ vector (high) $FFFB IRQ vector (low) $FFFC SWI vector (high) $FFFD SWI vector (low) $FFFE Reset vector (high) $FFFF Reset vector (low) IF1 N O N - D I S C L O S U R E — — Highest MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 42 Memory MOTOROLA 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.2 Introduction This section describes the 128 bytes of random-access memory (RAM). 3.3 Functional Description Addresses $0080–$00FF are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Before processing an interrupt, the central processor unit (CPU) uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805, M146805, and M68HC05 compatibility, the H register is not stacked. During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Random-Access Memory (RAM) 43 R E Q U I R E D 3.1 Contents A G R E E M E N T Section 3. Random-Access Memory (RAM) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Random-Access Memory (RAM) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 44 Random-Access Memory (RAM) MOTOROLA 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4 FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.5 FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.9 FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.10 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.11 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Introduction This section describes the operation of the embedded FLASH memory. The FLASH memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. • MC68HC908QY4 and MC68HC908QT4: 4096 bytes user FLASH from $EE00–$FDFF • MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1: 1536 bytes user FLASH from $F800–$FDFF MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 45 R E Q U I R E D 4.1 Contents A G R E E M E N T Section 4. FLASH Memory (FLASH) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 4.3 Functional Description The FLASH memory consists of an array of 4096 or 1536 bytes with an additional 48 bytes for user vectors. The minimum size of FLASH memory that can be erased is 64 bytes; and the maximum size of FLASH memory that can be programmed in a program cycle is 32 bytes (a row). Program and erase operations are facilitated through control bits in the FLASH control register (FLCR). Details for these operations appear later in this section. The address ranges for the user memory and vectors are: A G R E E M E N T R E Q U I R E D FLASH Memory (FLASH) N O N - D I S C L O S U R E NOTE: • $EE00 – $FDFF; user memory, 4096 bytes: MC68HC908QY4 and MC68HC908QT4 • $F800 – $FDFF; user memory, 1536 bytes: MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1 • $FFD0 – $FFFF; user interrupt vectors, 48 bytes. An erased bit reads as logic 1 and a programmed bit reads as logic 0. A security feature prevents viewing of the FLASH contents.(1) 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 46 FLASH Memory (FLASH) MOTOROLA Address: Read: $FE08 Bit 7 6 5 4 0 0 0 0 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 Write: Reset: 0 0 0 0 Figure 4-1. FLASH Control Register (FLCR) HVEN — High Voltage Enable Bit This read/write bit enables high voltage from the charge pump to the memory for either program or erase operation. It can only be set if either PGM =1 or ERASE =1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit This read/write bit configures the memory for mass erase operation. 1 = Mass Erase operation selected 0 = Mass Erase operation unselected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation unselected PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation unselected MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 47 A G R E E M E N T The FLASH control register (FLCR) controls FLASH program and erase operations. N O N - D I S C L O S U R E 4.4 FLASH Control Register R E Q U I R E D FLASH Memory (FLASH) FLASH Control Register 4.5 FLASH Page Erase Operation Use the following procedure to erase a page of FLASH memory. A page consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone. 1. Set the ERASE bit and clear the MASS bit in the FLASH control register. 2. Read the FLASH block protect register. 3. Write any data to any FLASH location within the address range of the block to be erased. A G R E E M E N T R E Q U I R E D FLASH Memory (FLASH) 4. Wait for a time, tnvs (minimum 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum 1 ms or 4 ms). 7. Clear the ERASE bit. 8. Wait for a time, tnvh (minimum 5 µs). 9. Clear the HVEN bit. N O N - D I S C L O S U R E 10. After time, trcv (typical 1 µs), the memory can be accessed in read mode again. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. In applications that need up to 10,000 program/erase cycles, use the 4 ms page erase specification to get improved long-term reliability. Any application can use this 4 ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1 ms page erase specification to get a lower minimum erase time. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 48 FLASH Memory (FLASH) MOTOROLA NOTE: 1. Set both the ERASE bit and the MASS bit in the FLASH control register. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH address(1) within the FLASH memory address range. 4. Wait for a time, tnvs (minimum 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tErase (minimum 4 ms). 7. Clear the ERASE and MASS bits. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). 8. Wait for a time, tnvh1 (minimum 100 µs). 9. Clear the HVEN bit. 10. After time, trcv (typical 1 µs), the memory can be accessed in read mode again. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. 4.7 FLASH Program Operation Programming of the FLASH memory is done on a row basis. A row consists of 32 consecutive bytes starting from addresses $XX00, $XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the following step-by-step procedure to program a row of FLASH memory Figure 4-2 shows a flowchart of the programming algorithm. NOTE: Only bytes which are currently $FF may be programmed. 1. When in monitor mode, with security sequence failed (see 9.5 Security), write to the FLASH block protect register instead of any FLASH address. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 49 A G R E E M E N T Use the following procedure to erase the entire FLASH memory to read as logic 1: N O N - D I S C L O S U R E 4.6 FLASH Mass Erase Operation R E Q U I R E D FLASH Memory (FLASH) FLASH Mass Erase Operation FLASH Memory (FLASH) R E Q U I R E D 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Read from the FLASH block protect register. 3. Write any data to any FLASH location within the address range desired. 4. Wait for a time, tnvs (minimum 10 µs). 5. Set the HVEN bit. 6. Wait for a time, tpgs (minimum 5 µs). A G R E E M E N T 7. Write data to the FLASH address being programmed(1). 8. Wait for time, tPROG (minimum 30 µs). 9. Repeat step 7 and 8 until all desired bytes within the row are programmed. 10. Clear the PGM bit(1). 11. Wait for time, tnvh (minimum 5 µs). 12. Clear the HVEN bit. 13. After time, trcv (typical 1 µs), the memory can be accessed in read mode again. N O N - D I S C L O S U R E NOTE: The COP register at location $FFFF should not be written between steps 5-12, when the HVEN bit is set. Since this register is located at a valid FLASH address, unpredictable behavior may occur if this location is written while HVEN is set. This program sequence is repeated throughout the memory until all data is programmed. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum, see 18.14 Memory Characteristics. 1. The time between each FLASH address change, or the time between the last FLASH address programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG maximum. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 50 FLASH Memory (FLASH) MOTOROLA NOTE: In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit. When the FLBPR is programmed with all 0 s, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1’s), the entire memory is accessible for program and erase. When bits within the FLBPR are programmed, they lock a block of memory. The address ranges are shown in 4.9 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than $FF, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal $FF). The FLBPR itself can be erased or programmed only with an external voltage, VTST, present on the IRQ pin. This voltage also allows entry from reset into the monitor mode. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 51 A G R E E M E N T Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made to protect blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends to the bottom of the FLASH memory ($FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations. N O N - D I S C L O S U R E 4.8 FLASH Protection R E Q U I R E D FLASH Memory (FLASH) FLASH Protection FLASH Memory (FLASH) R E Q U I R E D Algorithm for Programming a Row (32 Bytes) of FLASH Memory 1 SET PGM BIT 2 READ THE FLASH BLOCK PROTECT REGISTER 3 WRITE ANY DATA TO ANY FLASH ADDRESS WITHIN THE ROW ADDRESS RANGE DESIRED 4 WAIT FOR A TIME, tnvs A G R E E M E N T 5 SET HVEN BIT 6 WAIT FOR A TIME, tpgs 7 WRITE DATA TO THE FLASH ADDRESS TO BE PROGRAMMED 8 WAIT FOR A TIME, tPROG N O N - D I S C L O S U R E 9 COMPLETED PROGRAMMING THIS ROW? Y N 10 11 12 NOTES: The time between each FLASH address change (step 6 to step 9), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tPROG max. 13 This row program algorithm assumes the row/s to be programmed are initially erased. CLEAR PGM BIT WAIT FOR A TIME, tnvh CLEAR HVEN BIT WAIT FOR A TIME, trcv END OF PROGRAMMING Figure 4-2. FLASH Programming Flowchart MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 52 FLASH Memory (FLASH) MOTOROLA 4.9 FLASH Block Protect Register The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting address of the protected range within the FLASH memory. $FFBE Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0 U U U U U U U U A G R E E M E N T Read: Write: Reset: U = Unaffected by reset. Initial value from factory is 1. Write to this register is by a programming sequence to the FLASH memory. Figure 4-3. FLASH Block Protect Register (FLBPR) BPR[7:0] — FLASH Protection Register Bits [7:0] These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are logic 1s and bits [5:0] are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH memory. See Figure 4-4 and Table 4-1. 16-BIT MEMORY ADDRESS START ADDRESS OF FLASH BLOCK PROTECT 1 1 FLBPR VALUE 0 0 0 0 0 0 Figure 4-4. FLASH Block Protect Start Address MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA FLASH Memory (FLASH) 53 N O N - D I S C L O S U R E Address: R E Q U I R E D FLASH Memory (FLASH) FLASH Block Protect Register FLASH Memory (FLASH) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Table 4-1. Examples of Protect Start Address BPR[7:0] Start of Address of Protect Range $00–$B8 The entire FLASH memory is protected. $B9 (1011 1001) $EE40 (1110 1110 0100 0000) $BA (1011 1010) $EE80 (1110 1110 1000 0000) $BB (1011 1011) $EEC0 (1110 1110 1100 0000) $BC (1011 1100) $EF00 (1110 1111 0000 0000) and so on... $DE (1101 1110) $F780 (1111 0111 1000 0000) $DF (1101 1111) $F7C0 (1111 0111 1100 0000) $FE (1111 1110) $FF80 (1111 1111 1000 0000) FLBPR, OSCTRIM, and vectors are protected $FF The entire FLASH memory is not protected. 4.10 Wait Mode Putting the MCU into wait mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The WAIT instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode. 4.11 Stop Mode Putting the MCU into stop mode while the FLASH is in read mode does not affect the operation of the FLASH memory directly, but there will not be any memory activity since the CPU is inactive. The STOP instruction should not be executed while performing a program or erase operation on the FLASH, or the operation will discontinue and the FLASH will be on standby mode NOTE: Standby mode is the power-saving mode of the FLASH module in which all internal control signals to the FLASH are inactive and the current consumption of the FLASH is at a minimum. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 54 FLASH Memory (FLASH) MOTOROLA 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Introduction This section describes the configuration registers (CONFIG1 and CONFIG2). The configuration registers enable or disable the following options: • Stop mode recovery time (32 × BUSCLKX4 cycles or 4096 × BUSCLKX4 cycles) • STOP instruction • Computer operating properly module (COP) • COP reset period (COPRS): (213 –24) × BUSCLKX4 or (218 –24) × BUSCLKX4 • Low-voltage inhibit (LVI) enable and trip voltage selection • OSC option selection • IRQ pin • RST pin • Auto wake-up timeout period 5.3 Functional Description The configuration registers are used in the initialization of various options. The configuration registers can be written once after each reset. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Configuration Register (CONFIG) 55 R E Q U I R E D 5.1 Contents A G R E E M E N T Section 5. Configuration Register (CONFIG) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 Configuration Register (CONFIG) R E Q U I R E D Most of the configuration register bits are cleared during reset. Since the various options affect the operation of the microcontroller unit (MCU) it is recommended that this register be written immediately after reset. The configuration register is located at $001E and $001F, and may be read at anytime. NOTE: The CONFIG registers are one-time writable by the user after each reset. Upon a reset, the CONFIG registers default to predetermined settings as shown in Figure 5-1 and Figure 5-2. A G R E E M E N T Address: $001E Bit 7 6 5 4 IRQPUD IRQEN R Reset: 0 0 0 0 POR: 0 0 0 0 3 2 1 Bit 0 R R RSTEN 0 0 0 U 0 0 0 0 Read: Write: R = Reserved OSCOPT1 OSCOPT0 U = Unaffected Figure 5-1 Configuration Register 2 (CONFIG2) N O N - D I S C L O S U R E IRQPUD — IRQ Pin Pullup Control Bit 1 = Internal pullup is disconnected 0 = Internal pullup is connected between IRQ pin and VDD IRQEN — IRQ Pin Function Selection Bit 1 = Interrupt request function active in pin 0 = Interrupt request function inactive in pin OSCOPT1 and OSCOPT0 — Selection Bits for Oscillator Option (0, 0) Internal oscillator (0, 1) External oscillator (1, 0) External RC oscillator (1, 1) External XTAL oscillator RSTEN — RST Pin Function Selection 1 = Reset function active in pin 0 = Reset function inactive in pin NOTE: The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 56 Configuration Register (CONFIG) MOTOROLA Address: $001F Bit 7 6 5 4 3 2 1 Bit 0 SSREC STOP COPD Read: COPRS LVISTOP LVIRSTD LVIPWRD LVI5OR3 Write: Reset: 0 0 0 0 U 0 0 0 POR: 0 0 0 0 0 0 0 0 R = Reserved U = Unaffected R E Q U I R E D Configuration Register (CONFIG) Functional Description 1 = COP reset short cycle = (213 – 24) × BUSCLKX4 0 = COP reset long cycle = (218 – 24) × BUSCLKX4 COPRS (In STOP Mode) — Auto Wake-up Period Selection Bit 1 = Auto wake-up short cycle = (29) × INTRCOSC 0 = Auto wake-up long cycle = (214) × INTRCOSC LVISTOP — LVI Enable in Stop Mode Bit When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP. 1 = LVI enabled during stop mode 0 = LVI disabled during stop mode LVIRSTD — LVI Reset Disable Bit LVIRSTD disables the reset signal from the LVI module. 1 = LVI module resets disabled 0 = LVI module resets enabled LVIPWRD — LVI Power Disable Bit LVIPWRD disables the LVI module. 1 = LVI module power disabled 0 = LVI module power enabled MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Configuration Register (CONFIG) 57 N O N - D I S C L O S U R E COPRS (Out of STOP Mode) — COP Reset Period Selection Bit A G R E E M E N T Figure 5-2 Configuration Register 1 (CONFIG1) Configuration Register (CONFIG) R E Q U I R E D LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit LVI5OR3 selects the voltage operating mode of the LVI module. The voltage mode selected for the LVI should match the operating VDD for the LVI’s voltage trip points for each of the modes. 1 = LVI operates in 5-V mode 0 = LVI operates in 3-V mode NOTE: The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected. SSREC — Short Stop Recovery Bit A G R E E M E N T SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay. 1 = Stop mode recovery after 32 BUSCLKX4 cycles 0 = Stop mode recovery after 4096 BUSCLKX4 cycles NOTE: Exiting stop mode by an LVI reset will result in the long stop recovery. When using the LVI during normal operation but disabling during stop mode, the LVI will have an enable time of tEN. The system N O N - D I S C L O S U R E stabilization time for power-on reset and long stop recovery (both 4096 BUSCLKX4 cycles) gives a delay longer than the LVI enable time for these startup scenarios. There is no period where the MCU is not protected from a low-power condition. However, when using the short stop recovery configuration option, the 32 BUSCLKX4 delay must be greater than the LVI’s turn on time to avoid a period in startup where the LVI is not protecting the MCU. STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 58 Configuration Register (CONFIG) MOTOROLA 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Motorola document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 59 R E Q U I R E D 6.1 Contents A G R E E M E N T Section 6. Central Processor Unit (CPU) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 6.3 Features Features of the CPU include: • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 8-MHz CPU internal bus frequency • 64-Kbyte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64 Kbytes • Low-power stop and wait modes 6.4 CPU Registers Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 60 Central Processor Unit (CPU) MOTOROLA 0 ACCUMULATOR (A) 0 15 H X INDEX REGISTER (H:X) 0 15 STACK POINTER (SP) 0 15 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 6-1. CPU Registers 6.4.1 Accumulator Bit 7 6 5 4 3 2 1 N O N - D I S C L O S U R E The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 0 Read: Write: Reset: Unaffected by reset Figure 6-2. Accumulator (A) 6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) A G R E E M E N T 7 R E Q U I R E D Central Processor Unit (CPU) CPU Registers 61 Central Processor Unit (CPU) Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 6-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 62 Central Processor Unit (CPU) MOTOROLA Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Bit 0 1 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF Figure 6-5. Program Counter (PC) 6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X Read: Write: Reset: X = Indeterminate Figure 6-6. Condition Code Register (CCR) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 63 A G R E E M E N T The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. N O N - D I S C L O S U R E 6.4.4 Program Counter R E Q U I R E D Central Processor Unit (CPU) CPU Registers Central Processor Unit (CPU) R E Q U I R E D V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag A G R E E M E N T The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 I — Interrupt Mask N O N - D I S C L O S U R E When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 64 Central Processor Unit (CPU) MOTOROLA The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 A G R E E M E N T N — Negative flag R E Q U I R E D Central Processor Unit (CPU) Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Motorola document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 65 N O N - D I S C L O S U R E 6.5 Arithmetic/Logic Unit (ALU) 6.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock 6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 6.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 66 Central Processor Unit (CPU) MOTOROLA V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry IMM DIR EXT – IX2 IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT – IX2 IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) A ← (A) & (M) AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) C b7 ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP Arithmetic Shift Right BCC rel Branch if Carry Bit Clear ff ee ff ff ee ff A7 ii 2 – – – – – – IMM AF ii 2 IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 0 DIR INH – – INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 C DIR INH – – INH IX1 IX SP1 37 dd 47 57 67 ff 77 9E67 ff 4 1 1 4 3 5 b0 b7 2 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 A ← (A) + (M) Logical AND Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Sheet 1 of 7) b0 PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL Mn ← 0 DIR DIR DIR DIR – – – – – – DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) ff ee ff 24 rr 3 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 BCLR n, opr Clear Bit n in M BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 67 A G R E E M E N T Table 6-1 provides a summary of the M68HC08 instruction set. N O N - D I S C L O S U R E 6.8 Instruction Set Summary R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description Effect on CCR V H I N Z C BGE opr Branch if Greater Than or Equal To (Signed Operands) BGT opr Branch if Greater Than (Signed Operands) BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 BHCS rel Branch if Half Carry Bit Set BHI rel Branch if Higher BHS rel PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 Cycles Operation Opcode Source Form Operand Table 6-1. Instruction Set Summary (Sheet 2 of 7) Address Mode R E Q U I R E D Central Processor Unit (CPU) – – – – – – REL 90 rr 3 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL 92 rr 3 – – – – – – REL 28 rr 3 PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 (A) & (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A5 B5 C5 D5 E5 F5 9EE5 9ED5 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 0 DIR DIR DIR DIR – – – – – DIR DIR DIR DIR 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 PC ← (PC) + 2 – – – – – – REL 21 rr 3 BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 68 Central Processor Unit (CPU) MOTOROLA dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 BRSET n,opr,rel Branch if Bit n in M Set Mn ← 1 DIR DIR DIR – – – – – – DIR DIR DIR DIR DIR (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 BSET n,opr Set Bit n in M BSR rel Branch to Subroutine PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel – – – – – – REL AD rr 4 DIR IMM IMM – – – – – – IX1+ IX+ SP1 31 41 51 61 71 9E61 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) PC ← (PC) CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel CBEQ opr,X+,rel Compare and Branch if Equal CBEQ X+,rel CBEQ opr,SP,rel + 3 + rel ? (A) + 3 + rel ? (A) + 3 + rel ? (X) + 3 + rel ? (A) + 2 + rel ? (A) + 4 + rel ? (A) – (M) – (M) – (M) – (M) – (M) – (M) = $00 = $00 = $00 = $00 = $00 = $00 CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F dd 4F 5F 8C 6F ff 7F 9E6F ff (A) – (M) IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A1 B1 C1 D1 E1 F1 9EE1 9ED1 DIR INH INH 0 – – 1 IX1 IX SP1 33 dd 43 53 63 ff 73 9E63 ff CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Clear Compare A with M COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M M← A← X← M← M← M← (M) = $FF – (M) (A) = $FF – (M) (X) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (M) = $FF – (M) (H:X) – (M:M + 1) – – IMM DIR 65 75 3 1 1 1 3 2 4 2 3 4 4 3 2 4 5 ii dd hh ll ee ff ff ff ee ff 4 1 1 4 3 5 ii ii+1 dd 3 4 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 69 A G R E E M E N T 00 02 04 06 08 0A 0C 0E V H I N Z C N O N - D I S C L O S U R E (b0) (b1) (b2) (b3) (b4) (b5) (b6) (b7) Effect on CCR Description Cycles Operand PC ← (PC) + 3 + rel ? (Mn) = 1 DIR DIR DIR – – – – – DIR DIR DIR DIR DIR Operation Address Mode Source Form Opcode Table 6-1. Instruction Set Summary (Sheet 3 of 7) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T Description V H I N Z C CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A (X) – (M) (A) 10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP JMP JMP JMP JMP opr opr opr,X opr,X ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X LDA LDA LDA LDA LDA LDA LDA LDA #opr opr opr opr,X opr,X ,X opr,SP opr,SP Effect on CCR Exclusive OR M with A Increment Jump Jump to Subroutine Load A from M IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A3 B3 C3 D3 E3 F3 9EE3 9ED3 U – – INH 72 A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 3B 4B 5B 6B 7B 9E6B ii dd hh ll ee ff ff ff ee ff Cycles Operation Operand Source Form Opcode Table 6-1. Instruction Set Summary (Sheet 4 of 7) Address Mode R E Q U I R E D Central Processor Unit (CPU) 2 3 4 4 3 2 4 5 2 dd rr rr rr ff rr rr ff rr 5 3 3 5 4 6 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 DIR INH – – – INH IX1 IX SP1 A ← (H:A)/(X) H ← Remainder – – – – INH 52 A ← (A ⊕ M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A8 B8 C8 D8 E8 F8 9EE8 9ED8 M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 DIR INH – – – INH IX1 IX SP1 3C dd 4C 5C 6C ff 7C 9E6C ff PC ← Jump Address DIR EXT – – – – – – IX2 IX1 IX BC CC DC EC FC dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A ← (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 3A dd 4A 5A 6A ff 7A 9E6A ff 4 1 1 4 3 5 7 ii dd hh ll ee ff ff ff ee ff ff ee ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 70 Central Processor Unit (CPU) MOTOROLA #opr opr opr opr,X opr,X ,X opr,SP opr,SP LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP Load H:X from M LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right MOV MOV MOV MOV Move opr,opr opr,X+ #opr,opr X+,opr MUL 0 – – – IMM DIR 45 55 X ← (M) IMM DIR EXT 0 – – – IX2 IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE 0 DIR INH – – INH IX1 IX SP1 38 dd 48 58 68 ff 78 9E68 ff 4 1 1 4 3 5 C DIR INH – – 0 INH IX1 IX SP1 34 dd 44 54 64 ff 74 9E64 ff 4 1 1 4 3 5 C b7 b0 0 b7 Unsigned multiply NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation NSA Nibble Swap A Cycles H:X ← (M:M + 1) Load X from M Logical Shift Left (Same as ASL) Operand V H I N Z C b0 ii jj dd 3 4 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ff ee ff 5 4 4 4 dd dd dd ii dd dd H:X ← (H:X) + 1 (IX+D, DIX+) DD 0 – – – DIX+ IMD IX+D 4E 5E 6E 7E X:A ← (X) × (A) – 0 – – – 0 INH 42 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) DIR INH – – INH IX1 IX SP1 None – – – – – – INH 9D 1 A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 A ← (A) | (M) IMM DIR EXT IX2 0 – – – IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA (M)Destination ← (M)Source 5 30 dd 40 50 60 ff 70 9E60 ff 4 1 1 4 3 5 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ii dd hh ll ee ff ff ff ee ff MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) 71 A G R E E M E N T LDX LDX LDX LDX LDX LDX LDX LDX Effect on CCR Description N O N - D I S C L O S U R E LDHX #opr LDHX opr Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Sheet 5 of 7) R E Q U I R E D Central Processor Unit (CPU) Instruction Set Summary N O N - D I S C L O S U R E A G R E E M E N T ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Effect on CCR Description V H I N Z C Rotate Left through Carry C b7 b0 Cycles Operation Operand Source Form Opcode Table 6-1. Instruction Set Summary (Sheet 6 of 7) Address Mode R E Q U I R E D Central Processor Unit (CPU) DIR INH – – INH IX1 IX SP1 39 dd 49 59 69 ff 79 9E69 ff 4 1 1 4 3 5 DIR INH – – INH IX1 IX SP1 36 dd 46 56 66 ff 76 9E66 ff 4 1 1 4 3 5 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 A ← (A) – (M) – (C) IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 SBC SBC SBC SBC SBC SBC SBC SBC #opr opr opr opr,X opr,X ,X opr,SP opr,SP C b7 Subtract with Carry b0 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 M ← (A) DIR EXT IX2 0 – – – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 (M:M + 1) ← (H:X) 0 – – – DIR 35 I ← 0; Stop Oscillator – – 0 – – – INH 8E M ← (X) DIR EXT IX2 0 – – – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF dd hh ll ee ff ff IMM DIR EXT – – IX2 IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX STX STX STX STX STX STX opr opr opr,X opr,X ,X opr,SP opr,SP SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Store X in M Subtract A ← (A) – (M) ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 ff ee ff ff ee ff 3 4 4 3 2 4 5 2 3 4 4 3 2 4 5 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 72 Central Processor Unit (CPU) MOTOROLA SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 (A) – $00 or (X) – $00 or (M) – $00 DIR INH INH 0 – – – IX1 IX SP1 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : — 83 9 3D dd 4D 5D 6D ff 7D 9E6D ff 3 1 1 3 2 4 Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected N O N - D I S C L O S U R E TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP – – 1 – – – INH 6.9 Opcode Map The opcode map is provided in Table 6-2. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Central Processor Unit (CPU) A G R E E M E N T V H I N Z C Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Sheet 7 of 7) R E Q U I R E D Central Processor Unit (CPU) Opcode Map 73 MSB Branch REL DIR INH 3 4 0 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL Read-Modify-Write INH IX1 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 IMM DIR EXT A B C Register/Memory IX2 SP2 IX1 SP1 IX D 9ED E 9EE F 4 SUB IX2 4 CMP IX2 4 SBC IX2 4 CPX IX2 4 AND IX2 4 BIT IX2 4 LDA IX2 4 STA IX2 4 EOR IX2 4 ADC IX2 4 ORA IX2 4 ADD IX2 4 JMP IX2 6 JSR IX2 4 LDX IX2 4 STX IX2 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 3 SUB IX1 3 CMP IX1 3 SBC IX1 3 CPX IX1 3 AND IX1 3 BIT IX1 3 LDA IX1 3 STA IX1 3 EOR IX1 3 ADC IX1 3 ORA IX1 3 ADD IX1 3 JMP IX1 5 JSR IX1 3 LDX IX1 3 STX IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB IX 2 CMP IX 2 SBC IX 2 CPX IX 2 AND IX 2 BIT IX 2 LDA IX 2 STA IX 2 EOR IX 2 ADC IX 2 ORA IX 2 ADD IX 2 JMP IX 4 JSR IX 2 LDX IX 2 STX IX LSB 0 1 2 3 4 5 6 7 8 9 A B C D E F 1 4 NEGA NEG 2 DIR 1 INH 4 5 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 1 4 COMA COM 2 DIR 1 INH 1 4 LSRA LSR 2 DIR 1 INH 3 4 LDHX STHX 2 DIR 3 IMM 1 4 RORA ROR 2 DIR 1 INH 1 4 ASRA ASR 2 DIR 1 INH 1 4 LSLA LSL 2 DIR 1 INH 1 4 ROLA ROL 2 DIR 1 INH 1 4 DECA DEC 2 DIR 1 INH 3 5 DBNZ DBNZA 3 DIR 2 INH 1 4 INCA INC 2 DIR 1 INH 1 3 TSTA TST 2 DIR 1 INH 5 MOV 3 DD 1 3 CLRA CLR 2 DIR 1 INH MOTOROLA INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 3 5 NEG NEG 3 SP1 1 IX 4 6 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 3 5 COM COM 3 SP1 1 IX 3 5 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 3 5 ROR ROR 3 SP1 1 IX 3 5 ASR ASR 3 SP1 1 IX 3 5 LSL LSL 3 SP1 1 IX 3 5 ROL ROL 3 SP1 1 IX 3 5 DEC DEC 3 SP1 1 IX 4 6 DBNZ DBNZ 4 SP1 2 IX 3 5 INC INC 3 SP1 1 IX 2 4 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 2 4 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment N O N - D I S C L O S U R E 3 7 BGE RTI 1 INH 2 REL 3 4 BLT RTS 1 INH 2 REL 3 BGT 2 REL 3 9 BLE SWI 1 INH 2 REL 2 2 TXS TAP 1 INH 1 INH 2 1 TSX TPA 1 INH 1 INH 2 PULA 1 INH 1 2 TAX PSHA 1 INH 1 INH 1 2 CLC PULX 1 INH 1 INH 1 2 SEC PSHX 1 INH 1 INH 2 2 CLI PULH 1 INH 1 INH 2 2 SEI PSHH 1 INH 1 INH 1 1 RSP CLRH 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 TXA WAIT 1 INH 1 INH 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 JSR BSR REL 2 DIR 3 2 LDX LDX IMM 2 DIR 3 2 STX AIX IMM 2 DIR 2 SUB IMM 2 CMP IMM 2 SBC IMM 2 CPX IMM 2 AND IMM 2 BIT IMM 2 LDA IMM 2 AIS IMM 2 EOR IMM 2 ADC IMM 2 ORA IMM 2 ADD IMM MSB 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 SUB EXT 4 CMP EXT 4 SBC EXT 4 CPX EXT 4 AND EXT 4 BIT EXT 4 LDA EXT 4 STA EXT 4 EOR EXT 4 ADC EXT 4 ORA EXT 4 ADD EXT 3 JMP EXT 5 JSR EXT 4 LDX EXT 4 STX EXT 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 LDX 4 SP2 2 5 STX 4 SP2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 LDX 3 SP1 1 4 STX 3 SP1 1 High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 Cycles 5 BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode A G R E E M E N T R E Q U I R E D Central Processor Unit (CPU) Central Processor Unit (CPU) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 74 Table 6-2. Opcode Map Bit Manipulation DIR DIR 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.3 RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79 7.4 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79 7.4.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79 7.4.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.4.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80 7.5 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.5.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81 7.5.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 7.5.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . . 83 7.5.2.3 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.4 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.5.2.5 Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84 7.6 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85 7.6.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85 7.6.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85 7.7 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.7.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 7.7.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.7.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7.7.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91 7.7.2.3 Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92 7.7.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.7.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 75 R E Q U I R E D 7.1 Contents A G R E E M E N T Section 7. System Integration Module (SIM) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 System Integration Module (SIM) A G R E E M E N T R E Q U I R E D 7.7.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93 7.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 7.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 7.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 7.9 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 7.9.1 SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.9.2 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98 7.9.3 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.2 Introduction This section describes the system integration module (SIM), which supports up to 24 external and/or internal interrupts. Together with the central processor unit (CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in Figure 7-1. Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals N O N - D I S C L O S U R E – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and computer operating properly (COP) timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 76 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Introduction MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK BUSCLKX4 (FROM OSCILLATOR) BUSCLKX2 (FROM OSCILLATOR) ÷2 VDD RESET PIN LOGIC INTERNAL CLOCKS CLOCK GENERATORS POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP TIMEOUT (FROM COP MODULE) LVI RESET (FROM LVI MODULE) FORCED MON MODE ENTRY (FROM MENRST MODULE) RESET INTERRUPT CONTROL AND PRIORITY DECODE INTERRUPT SOURCES CPU INTERFACE Figure 7-1. SIM Block Diagram Table 7-1. Signal Name Conventions Signal Name Description BUSCLKX4 Buffered clock from the internal, RC or XTAL oscillator circuit. BUSCLKX2 The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks (bus clock = BUSCLKX4 ÷ 4). Address bus Internal address bus Data bus Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 77 N O N - D I S C L O S U R E INTERNAL PULL-UP CLOCK CONTROL A G R E E M E N T R E Q U I R E D MODULE STOP N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) Addr. $FE00 Register Name Read: Break Status Register (BSR) Write: See page 99. Reset: Bit 7 6 5 4 3 2 R R R R R R 1 Bit 0 SBSW R Note 1 0 0 0 0 0 0 0 0 1. Writing a logic 0 clears SBSW. Read: SIM Reset Status Register (SRSR) Write: See page 96. POR: POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 $FE02 Reserved R R R R R R R R BCFE R R R R R R R $FE03 Read: Break Flag Control Register (BFCR) Write: See page 98. Reset: 0 IF5 IF4 IF3 0 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 (INT2) Write: See page 91. Reset: IF14 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 3 (INT3) Write: See page 92. Reset: 0 0 0 0 0 0 0 IF15 R R R R R R R R 0 0 0 0 0 0 0 0 $FE01 $FE04 $FE05 $FE06 Read: Interrupt Status Register 1 (INT1) Write: See page 91. Reset: 0 = Unimplemented R = Reserved Figure 7-2. SIM I/O Register Summary MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 78 System Integration Module (SIM) MOTOROLA 7.4 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 7-3. FROM OSCILLATOR BUSCLKX4 FROM OSCILLATOR BUSCLKX2 SIM COUNTER ÷2 BUS CLOCK GENERATORS SIM Figure 7-3. SIM Clock Signals 7.4.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency (BUSCLKX4) divided by four. 7.4.2 Clock Start-Up from POR When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 BUSCLKX4 cycle POR time out has completed. The RST pin is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the time out. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 79 A G R E E M E N T RST and IRQ pins come out of reset as PTA3 and PTA2 respectively. RST and IRQ functions can be activated by programing CONFIG2 accordingly. Refer to Section 5. Configuration Register (CONFIG). N O N - D I S C L O S U R E 7.3 RST and IRQ Pins Initialization R E Q U I R E D System Integration Module (SIM) RST and IRQ Pins Initialization N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) 7.4.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode by an interrupt, break, or reset, the SIM allows BUSCLKX4 to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay time out. This time out is selectable as 4096 or 32 BUSCLKX4 cycles. See 7.8.2 Stop Mode. In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 7.5 Reset and System Initialization The MCU has these reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit module (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 7.6 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See 7.9 SIM Registers. 7.5.1 External Pin Reset The RST pin circuits include an internal pullup device. Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 80 System Integration Module (SIM) MOTOROLA Reset Type Number of Cycles Required to Set PIN POR 4163 (4096 + 64 + 3) All others 67 (64 + 3) BUSCLKX2 RST ADDRESS BUS VECT H VECT L PC Figure 7-4. External Reset Timing 7.5.2 Active Resets from Internal Sources All internal reset sources actively pull the RST pin low for 32 BUSCLKX4 cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 7-5). An internal reset can be caused by an illegal address, illegal opcode, COP time out, LVI, or POR (see Figure 7-6). IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES BUSCLKX4 ADDRESS BUS VECTOR HIGH Figure 7-5. Internal Reset Timing MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 81 A G R E E M E N T Table 7-2. PIN Bit Set Timing N O N - D I S C L O S U R E minimum of 67 BUSCLKX4 cycles, assuming that the POR was not the source of the reset. See Table 7-2 for details. Figure 7-4 shows the relative timing. R E Q U I R E D System Integration Module (SIM) Reset and System Initialization System Integration Module (SIM) ILLEGAL OPCODE RST COPRST POR LVI INTERNAL RESET Figure 7-6. Sources of Internal Reset NOTE: For POR resets, the SIM cycles through 4096 BUSCLKX4 cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 7-5. The COP reset is asynchronous to the bus clock. The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. 7.5.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D ILLEGAL ADDRESS RST At power on, the following events occur: • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables the oscillator to drive BUSCLKX4. • Internal clocks to the CPU and modules are held inactive for 4096 BUSCLKX4 cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. See Figure 7-7. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 82 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) Reset and System Initialization OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES BUSCLKX4 BUSCLKX2 $FFFE $FFFF Figure 7-7. POR Recovery 7.5.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module time out, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and stages 12–5 of the SIM counter. The SIM counter output, which occurs at least every (212 – 24) BUSCLKX4 cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first time out. The COP module is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 83 N O N - D I S C L O S U R E ADDRESS BUS A G R E E M E N T RST 7.5.2.3 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the mask option register is logic 0, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.5.2.4 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 7.5.2.5 Low-Voltage Inhibit (LVI) Reset The LVI asserts its output to the SIM when the VDD voltage falls to the LVI trip voltage VTrip. The LVI bit in the SIM reset status register (SRSR) is set, and the external reset pin (RST) is held low while the SIM counter counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. The SIM actively pulls down the (RST) pin for all internal reset sources. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 84 System Integration Module (SIM) MOTOROLA 7.6.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine. 7.6.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then the stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32 BUSCLKX4 cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared in the configuration register 1 (CONFIG1). 7.6.3 SIM Counter and Reset States External reset has no effect on the SIM counter (see 7.8.2 Stop Mode for details.) The SIM counter is free-running after all reset states. See 7.5.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 85 A G R E E M E N T The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter uses 12 stages for counting, followed by a 13th stage that triggers a reset of SIM counters and supplies the clock for the COP module. The SIM counter is clocked by the falling edge of BUSCLKX4. N O N - D I S C L O S U R E 7.6 SIM Counter R E Q U I R E D System Integration Module (SIM) SIM Counter R E Q U I R E D System Integration Module (SIM) 7.7 Exception Control Normal sequential program execution can be changed in three different ways: 1. Interrupts a. Maskable hardware CPU interrupts b. Non-maskable software interrupt instruction (SWI) 2. Reset 7.7.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 7-8 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). N O N - D I S C L O S U R E A G R E E M E N T 3. Break interrupts At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 7-9 shows interrupt entry timing. Figure 7-10 shows interrupt recovery timing. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 86 System Integration Module (SIM) MOTOROLA R E Q U I R E D System Integration Module (SIM) Exception Control FROM RESET BREAK INTERRUPT? I BIT SET? YES NO YES I BIT SET? IRQ INTERRUPT? A G R E E M E N T NO YES NO TIMER INTERRUPT? YES NO STACK CPU REGISTERS SET I BIT LOAD PC WITH INTERRUPT VECTOR N O N - D I S C L O S U R E (AS MANY INTERRUPTS AS EXIST ON CHIP) FETCH NEXT INSTRUCTION SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS NO EXECUTE INSTRUCTION Figure 7-8. Interrupt Processing MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 87 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) MODULE INTERRUPT I BIT ADDRESS BUS DATA BUS DUMMY SP DUMMY SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 7-9. Interrupt Entry MODULE INTERRUPT I BIT ADDRESS BUS SP – 4 DATA BUS SP – 3 CCR SP – 2 A SP – 1 X SP PC PC + 1 PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND R/W Figure 7-10. Interrupt Recovery 7.7.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 7-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 88 System Integration Module (SIM) MOTOROLA INT1 BACKGROUND ROUTINE PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 7-11. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. 7.7.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 89 A G R E E M E N T LDA #$FF N O N - D I S C L O S U R E CLI R E Q U I R E D System Integration Module (SIM) Exception Control 7.7.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 7-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. Table 7-3. Interrupt Sources Flag Mask(1) INT Register Flag Vector Address — — — $FFFE–$FFFF — — — $FFFC–$FFFD IRQ pin IRQF1 IMASK1 IF1 $FFFA–$FFFB Timer channel 0 interrupt CH0F CH0IE IF3 $FFF6–$FFF7 Timer channel 1 interrupt CH1F CH1IE IF4 $FFF4–$FFF5 TOF TOIE IF5 $FFF2–$FFF3 Keyboard interrupt KEYF IMASKK IF14 $FFDE–$FFDF ADC conversion complete interrupt COCO AIEN IF15 $FFE0–$FFE1 Priority Source Highest Reset A G R E E M E N T R E Q U I R E D System Integration Module (SIM) SWI instruction Timer overflow interrupt Lowest N O N - D I S C L O S U R E 1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 90 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) Exception Control R E Q U I R E D 7.7.2.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 IF5 IF4 IF3 0 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved A G R E E M E N T Figure 7-12. Interrupt Status Register 1 (INT1) IF1 and IF3–IF5 — Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0, 1, 3, and 7 — Always read 0 7.7.2.2 Interrupt Status Register 2 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 0 0 0 0 0 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-13. Interrupt Status Register 2 (INT2) IF14 — Interrupt Flags This flag indicates the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 0–6 — Always read 0 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 91 N O N - D I S C L O S U R E Address: $FE05 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) 7.7.2.3 Interrupt Status Register 3 Address: $FE06 Bit 7 6 5 4 3 2 1 Bit 0 Read: 0 0 0 0 0 0 0 IF15 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 7-14. Interrupt Status Register 3 (INT3) IF15 — Interrupt Flags These flags indicate the presence of interrupt requests from the sources shown in Table 7-3. 1 = Interrupt request present 0 = No interrupt request present Bit 1–7 — Always read 0 7.7.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 7.7.4 Break Interrupts The break module can stop normal program flow at a software programmable break point by asserting its break interrupt output. (See Section 17. Break Module (BREAK).) The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 92 System Integration Module (SIM) MOTOROLA Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. 7.8 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low power-consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 7.8.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 7-15 shows the timing for wait mode entry. ADDRESS BUS DATA BUS WAIT ADDR WAIT ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 7-15. Wait Mode Entry Timing MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 93 A G R E E M E N T The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the break flag control register (BFCR). N O N - D I S C L O S U R E 7.7.5 Status Flag Protection in Break Mode R E Q U I R E D System Integration Module (SIM) Low-Power Modes System Integration Module (SIM) R E Q U I R E D A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. A G R E E M E N T Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the configuration register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. Figure 7-16 and Figure 7-17 show the timing for wait recovery. ADDRESS BUS $6E0B DATA BUS $A6 $A6 $6E0C $A6 $01 $00FF $0B $00FE $00FD $00FC $6E EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt N O N - D I S C L O S U R E Figure 7-16. Wait Recovery from Interrupt or Break 32 CYCLES ADDRESS BUS $6E0B DATA BUS $A6 $A6 32 CYCLES RST VCT H RST VCTL $A6 RST BUSCLKX4 Figure 7-17. Wait Recovery from Internal Reset MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 94 System Integration Module (SIM) MOTOROLA The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do not require long start-up times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 7-18 shows stop mode entry timing and Figure 7-19 shows the stop mode recovery time from interrupt or break NOTE: To minimize stop current, all pins configured as inputs should be driven to a logic 1 or logic 0. CPUSTOP ADDRESS BUS DATA BUS STOP ADDR STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 7-18. Stop Mode Entry Timing MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 95 A G R E E M E N T In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. N O N - D I S C L O S U R E 7.8.2 Stop Mode R E Q U I R E D System Integration Module (SIM) Low-Power Modes System Integration Module (SIM) R E Q U I R E D STOP RECOVERY PERIOD BUSCLKX4 INTERRUPT ADDRESS BUS STOP + 2 STOP +1 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 7-19. Stop Mode Recovery from Interrupt N O N - D I S C L O S U R E A G R E E M E N T 7.9 SIM Registers The SIM has three memory mapped registers. Table 7-4 shows the mapping of these registers. Table 7-4. SIM Registers Address Register Access Mode $FE00 BSR User $FE01 SRSR User $FE03 BFCR User 7.9.1 SIM Reset Status Register This register contains seven flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: $FE01 Read: Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD MODRST LVI 0 1 0 0 0 0 0 0 0 Write: POR: = Unimplemented Figure 7-20. SIM Reset Status Register (SRSR) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 96 System Integration Module (SIM) MOTOROLA System Integration Module (SIM) SIM Registers PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR MODRST — Monitor Mode Entry Module Reset bit 1 = Last reset caused by monitor mode entry when vector locations $FFFE and $FFFF are $FF after POR while IRQB = VDD A G R E E M E N T R E Q U I R E D POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR N O N - D I S C L O S U R E 0 = POR or read of SRSR LVI — Low Voltage Inhibit Reset bit 1 = Last reset caused by LVI circuit 0 = POR or read of SRSR MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) 97 R E Q U I R E D System Integration Module (SIM) 7.9.2 Break Flag Control Register The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: A G R E E M E N T Reset: 0 R = Reserved Figure 7-21. Break Flag Control Register (BFCR) BCFE — Break Clear Flag Enable Bit N O N - D I S C L O S U R E This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 98 System Integration Module (SIM) MOTOROLA The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode. This register is only used in emulation mode. Address: $FE00 Read: Bit 7 6 5 4 3 2 R R R R R R 1 SBSW Write: Note 1 Reset: 0 R = Reserved Bit 0 R 1. Writing a logic 0 clears SBSW. Figure 7-22. Break Status Register (BSR) SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Wait mode was exited by break interrupt 0 = Wait mode was not exited by break interrupt N O N - D I S C L O S U R E SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA System Integration Module (SIM) A G R E E M E N T 7.9.3 Break Status Register R E Q U I R E D System Integration Module (SIM) SIM Registers 99 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D System Integration Module (SIM) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 100 System Integration Module (SIM) MOTOROLA 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8.4.1 Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.1 Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103 8.4.1.2 Internal to External Clock Switching. . . . . . . . . . . . . . . . 104 8.4.2 External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.3 XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.4.4 RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 8.5 Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 8.5.1 Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107 8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . 108 8.5.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108 8.5.4 XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108 8.5.5 RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109 8.5.6 Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109 8.5.7 Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109 8.5.8 Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 8.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110 8.7 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110 8.8 CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 8.9 Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.1 Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111 8.9.2 Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 101 R E Q U I R E D 8.1 Contents A G R E E M E N T Section 8. Oscillator Module (OSC) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Oscillator Module (OSC) 8.2 Introduction The oscillator module is used to provide a stable clock source for the microcontroller system and bus. The oscillator module generates two output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is used by the system integration module (SIM) and the computer operating properly module (COP). The BUSCLKX2 clock is divided by two in the SIM to be used as the bus clock for the microcontroller. Therefore the bus frequency will be one forth of the BUSCLKX4 frequency. 8.3 Features The oscillator has these four clock source options available: 1. Internal oscillator: An internally generated, fixed frequency clock, trimmable to ± 5%. This is the default option out of reset. 2. External oscillator: An external clock that can be driven directly into OSC1. 3. External RC: A built-in oscillator module (RC oscillator) that requires an external R connection only. The capacitor is internal to the chip. 4. External crystal: A built-in oscillator module (XTAL oscillator) that requires an external crystal or ceramic-resonator. 8.4 Functional Description The oscillator contains these major subsystems: • Internal oscillator circuit • Internal or external clock switch control • External clock circuit • External crystal circuit • External RC clock circuit MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 102 Oscillator Module (OSC) MOTOROLA The internal oscillator will generate a clock of 12.8 MHz typical (INTCLK) resulting in a bus speed (internal clock ÷ 4) of 3.2 MHz. 3.2 MHz came from the maximum bus speed guaranteed at 3 V which is 4 MHz. Since the internal oscillator will have a ±25% tolerance (pre-trim), then the +25% case should not allow a frequency higher than 4 MHz: 3.2 MHz + 25% = 4 MHz Figure 8-2 shows how BUSCLKX4 is derived from INTCLK and, like the RC oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in PTAPUE register. See Section 12. Input/Output (I/O) Ports. 8.4.1.1 Internal Oscillator Trimming The 8-bit trimming register, OSCTRIM, allows a clock period adjust of +127 and –128 steps. Increasing OSCTRIM value increases the clock period. Trimming will allow the internal clock frequency value fit in a ±5% range around12.8 MHz. There’s an option to order a trimmed version of MC68HC908QY4. The trimming value will be provided in a known FLASH location, $FFC0. So that the user would be able to copy this byte from the FLASH to the OSCTRIM register right at the beginning of assembly code. Reset loads OSCTRIM with a default value of $80. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 103 A G R E E M E N T The internal oscillator circuit is designed for use with no external components to provide a clock source with tolerance less than ±25% untrimmed. An 8-bit trimming register allows the adjust to a tolerance of less than ±5%. N O N - D I S C L O S U R E 8.4.1 Internal Oscillator R E Q U I R E D Oscillator Module (OSC) Functional Description 8.4.1.2 Internal to External Clock Switching When external clock source (external OSC, RC, or XTAL) is desired, the user must perform the following steps: 1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help precharge an external crystal oscillator, set PTA4 (OSC2) as an output and drive high for several cycles. This may help the crystal circuit start more robustly. 2. Set CONFIG2 bits OSCOPT[1:0] according to Table 8-2. The oscillator module control logic will then set OSC1 as an external clock input and, if the external crystal option is selected, OSC2 will also be set as the clock output. A G R E E M E N T R E Q U I R E D Oscillator Module (OSC) 3. Create a software delay to wait the stabilization time needed for the selected clock source (crystal, resonator, RC) as recommended by the component manufacturer. A good rule of thumb for crystal oscillators is to wait 4096 cycles of the crystal frequency, i.e., for a 4-MHz crystal, wait approximately 1 msec. 4. After the manufacturer’s recommended delay has elapsed, the ECGON bit in the OSC status register (OSCSTAT) needs to be set by the user software. N O N - D I S C L O S U R E 5. After ECGON set is detected, the OSC module checks for oscillator activity by waiting two external clock rising edges. 6. The OSC module then switches to the external clock. Logic provides a glitch free transition. 7. The OSC module first sets the ECGST bit in the OSCSTAT register and then stops the internal oscillator. NOTE: Once transition to the external clock is done, the internal oscillator will only be reactivated with reset. No post-switch clock monitor feature is implemented (clock does not switch back to internal if external clock dies). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 104 Oscillator Module (OSC) MOTOROLA In this configuration, the OSC2 pin cannot output BUSCLKX4. So the OSC2EN bit in the port A pullup enable register will be clear to enable PTA4 I/O functions on the pin. 8.4.3 XTAL Oscillator The XTAL oscillator circuit is designed for use with an external crystal or ceramic resonator to provide an accurate clock source. In this configuration, the OSC2 pin is dedicated to the external crystal circuit. The OSC2EN bit in the port A pullup enable register has no effect when this clock mode is selected. In its typical configuration, the XTAL oscillator is connected in a Pierce oscillator configuration, as shown in Figure 8-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: NOTE: • Crystal, X1 • Fixed capacitor, C1 • Tuning capacitor, C2 (can also be a fixed capacitor) • Feedback resistor, RB • Series resistor, RS (optional) The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 105 A G R E E M E N T The external clock option is designed for use when a clock signal is available in the application to provide a clock source to the microcontroller. The OSC1 pin is enabled as an input by the oscillator module. The clock signal is used directly to create BUSCLKX4 and also divided by two to create BUSCLKX2. N O N - D I S C L O S U R E 8.4.2 External Oscillator R E Q U I R E D Oscillator Module (OSC) Functional Description Oscillator Module (OSC) R E Q U I R E D FROM SIM TO SIM BUSCLKX4 XTALCLK TO SIM BUSCLKX2 ÷2 SIMOSCEN MCU OSC1 OSC2 RS(1) N O N - D I S C L O S U R E A G R E E M E N T RB X1 C1 C2 Note 1. RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. See Section 18. Electrical Specifications for component value requirements. Figure 8-1. XTAL Oscillator External Connections 8.4.4 RC Oscillator The RC oscillator circuit is designed for use with external R to provide a clock source with tolerance less than 25%. In its typical configuration, the RC oscillator requires two external components, one R and one C. In the MC68HC908QY4, the capacitor is internal to the chip. The R value should have a tolerance of 1% or less, to obtain a clock source with less than 25% tolerance. The oscillator configuration uses one component, REXT. In this configuration, the OSC2 pin can be left in the reset state as PTA4. Or, the OSC2EN bit in the port A pullup enable register can be set to enable the OSC2 function on the pin without affecting the clocks. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 106 Oscillator Module (OSC) MOTOROLA R E Q U I R E D Oscillator Module (OSC) Oscillator Module Signals OSCRCOPT TO SIM 0 BUSCLKX4 BUSCLKX2 1 SIMOSCEN EXTERNAL RC EN OSCILLATOR RCCLK ÷2 1 0 PTA4 I/O PTA4 OSC2EN MCU OSC1 VDD REXT PTA4/BUSCLKX4 (OSC2) See Section 18. Electrical Specifications for component value requirements. Figure 8-2. RC Oscillator External Connections 8.5 Oscillator Module Signals The following paragraphs describe the signals that are inputs to and outputs from the oscillator module. 8.5.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is either an input to the crystal oscillator amplifier, an input to the RC oscillator circuit, or an external clock source. For the internal oscillator configuration, the OSC1 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 107 A G R E E M E N T INTCLK N O N - D I S C L O S U R E TO SIM FROM SIM N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Oscillator Module (OSC) 8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) For the XTAL oscillator device, the OSC2 pin is the crystal oscillator inverting amplifier output. For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O function. The OSC2EN bit has no effect. For the internal oscillator or RC oscillator options, the OSC2 pin can assume other functions according to Table 1-3. Function Priority in Shared Pins, or the output of the oscillator clock (BUSCLKX4). Table 8-1. OSC2 Pin Function Option OSC2 Pin Function XTAL oscillator Inverting OSC1 External clock PTA4 I/O Internal oscillator or RC oscillator Controlled by OSC2EN bit in PTAPUE register OSC2EN = 0: PTA4 I/O OSC2EN = 1: BUSCLKX4 output 8.5.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables/disables either the XTAL oscillator circuit, the RC oscillator, or the internal oscillator. 8.5.4 XTAL Oscillator Clock (XTALCLK) XTALCLK is the XTAL oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of XTALCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of XTALCLK can be unstable at start up. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 108 Oscillator Module (OSC) MOTOROLA 8.5.6 Internal Oscillator Clock (INTCLK) INTCLK is the internal oscillator output signal. Its nominal frequency is fixed to 12.8 MHz, but it can be also trimmed using the oscillator trimming feature of the OSCTRIM register (see 8.4.1.1 Internal Oscillator Trimming). 8.5.7 Oscillator Out 2 (BUSCLKX4) BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or INTCLK). This signal is driven to the SIM module and is used to determine the COP cycles. 8.5.8 Oscillator Out (BUSCLKX2) The frequency of this signal is equal to half of the BUSCLKX4, this signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. BUSCLKX2 will be divided again in the SIM and results in the internal bus frequency being one fourth of either the XTALCLK, RCCLK, or INTCLK frequency. 8.6 Low Power Modes The WAIT and STOP instructions put the MCU in low-power consumption standby modes. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 109 A G R E E M E N T RCCLK is the RC oscillator output signal. Its frequency is directly proportional to the time constant of external R and internal C. Figure 8-2 shows only the logical relation of RCCLK to OSC1 and may not represent the actual circuitry. N O N - D I S C L O S U R E 8.5.5 RC Oscillator Clock (RCCLK) R E Q U I R E D Oscillator Module (OSC) Low Power Modes 8.6.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module. 8.6.2 Stop Mode The STOP instruction disables either the XTALCLK, the RCCLK, or INTCLK output, hence BUSCLKX2 and BUSCLKX4. 8.7 Oscillator During Break Mode The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the device enters the break state. 8.8 CONFIG2 Options Two CONFIG2 register options affect the operation of the oscillator module: OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have a default configuration. Refer to Section 5. Configuration Register (CONFIG) for more information on how the CONFIG2 register is used. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Oscillator Module (OSC) Table 8-2 shows how the OSCOPT bits are used to select the oscillator clock source. Table 8-2. Oscillator Modes OSCOPT1 OSCOPT0 Oscillator Modes 0 0 Internal Oscillator 0 1 External Oscillator 1 0 External RC 1 1 External Crystal MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 110 Oscillator Module (OSC) MOTOROLA 1. Oscillator status register (OSCSTAT) 2. Oscillator trim register (OSCTRIM) 8.9.1 Oscillator Status Register The oscillator status register (OSCSTAT) contains the bits for switching from internal to external clock sources Address: $0036 Bit 7 6 5 4 3 2 1 R R R R R R ECGON 0 0 0 0 0 0 0 Read: Bit 0 ECGST Write: Reset: R 0 = Reserved Figure 8-3. Oscillator Status Register (OSCSTAT) ECGON — External Clock Generator On Bit This read/write bit enables external clock generator, so that the switching process can be initiated. This bit is forced low during reset. This bit is ignored in monitor mode with the internal oscillator bypassed, PTM or CTM mode. 1 = External clock generator enabled 0 = External clock generator disabled ECGST — External Clock Status Bit This read-only bit indicates whether or not an external clock source is engaged to drive the system clock. 1 = An external clock source engaged 0 = An external clock source disengaged MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Oscillator Module (OSC) 111 A G R E E M E N T The oscillator module contains these two registers: N O N - D I S C L O S U R E 8.9 Input/Output (I/O) Registers R E Q U I R E D Oscillator Module (OSC) Input/Output (I/O) Registers 8.9.2 Oscillator Trim Register (OSCTRIM) Address: $0038 Bit 7 6 5 4 3 2 1 Bit 0 TRIM7 TRIM6 TRIM5 TRIM4 TRIM3 TRIM2 TRIM71 TRIM0 1 0 0 0 0 0 0 0 Read: Write: Reset: Figure 8-4. Oscillator Trim Register (OSCTRIM) TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits A G R E E M E N T R E Q U I R E D Oscillator Module (OSC) N O N - D I S C L O S U R E These read/write bits change the size of the internal capacitor used by the internal oscillator. By measuring the period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by appoximately 0.2% of the untrimmed period (the period for TRIM = $80). The trimmed frequency is guaranteed not to vary by more than ±5% over the full specified range of temperature and voltage. The reset value is $80, which sets the frequency to 12.8 MHz (3.2 MHz bus speed) ±25%. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 112 Oscillator Module (OSC) MOTOROLA 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 9.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 9.4.1 Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 9.4.2 VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.4.3 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.4.5 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121 9.4.6 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 9.5 Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 R E Q U I R E D Section 9. Monitor ROM (MON) A G R E E M E N T Data Sheet — MC68HC908QY4 This section describes the monitor read-only memory (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 113 N O N - D I S C L O S U R E 9.2 Introduction 9.3 Features Features of the monitor ROM include: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Monitor ROM (MON) • Normal user-mode pin functionality on most pins • One pin dedicated to serial communication between monitor read-only memory (ROM) and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in random-access memory (RAM) or FLASH • FLASH memory security feature(1) • FLASH memory programming interface • Use of external 9.83 MHz crystal or clock to generate internal frequency of 2.4576 MHz • Simple internal oscillator mode of operation (no external clock or high voltage) • 574 bytes monitor ROM code size • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage is applied to IRQ 9.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 9-1, Figure 9-2, and Figure 9-3 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through 1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or copying the FLASH difficult for unauthorized users. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 114 Monitor ROM (MON) MOTOROLA Table 9-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one of the following sets of conditions is met: • If $FFFE and $FFFF does not contain $FF (programmed state): – The external clock is 9.8304 MHz – IRQ = VTST • If $FFFE and $FFFF contain $FF (erased state): – The external clock is 9.8304 MHz – IRQ = VDD (this can be implemented through the internal IRQ pullup) • If $FFFE and $FFFF contain $FF (erased state): – IRQ = VSS (internal oscillator is selected, no external clock required) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 115 A G R E E M E N T The monitor code has been updated from previous versions of the monitor code to allow enabling the internal oscillator to generate the internal clock. This addition, which is enabled when IRQ is held low out of reset, is intended to support serial communication/programming at 9600 baud in monitor mode by using the internal oscillator, and the internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if programmed) to generate the desired internal frequency (3.2 MHz). Since this feature is enabled only when IRQ is held low out of reset, it cannot be used when the reset vector is programmed (i.e., the value is not $FFFF) because entry into monitor mode in this case requires VTST on IRQ. The IRQ pin must remain low during this monitor session in order to maintain communication. N O N - D I S C L O S U R E the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor. R E Q U I R E D Monitor ROM (MON) Functional Description R E Q U I R E D Monitor ROM (MON) VDD N.C. VDD 0.1 µF MAX232 1 + 1 µF 16 9.8304 MHz CLOCK + 3 4 C2+ 1 µF 15 C1– + 1 µF VDD C1+ 5 C2– A G R E E M E N T RST (PTA3) + V+ 1 µF 10 kΩ* 3 PTA1 N.C. PTA4 N.C. 2 VDD IRQ (PTA2) V– 6 1 µF 10 kΩ 74HC125 5 6 + DB9 2 OSC1 (PTA5) 7 10 8 9 74HC125 3 2 PTA0 4 VSS 1 5 * Value not critical Figure 9-1. Monitor Mode Circuit (External Clock, No High Voltage) VDD N.C. RST (PTA3) VDD N O N - D I S C L O S U R E 0.1 µF MAX232 1 1 µF + C1+ 4 C2+ + 5 C2– N.C. 1 µF 15 + 3 5 IRQ (PTA2) 1 µF 7 10 8 9 N.C. PTA4 N.C. VDD V– 6 1 µF PTA1 10 kΩ* V+ 2 10 kΩ 74HC125 5 6 + DB9 2 OSC1 (PTA5) 16 + 3 C1– 1 µF VDD 74HC125 3 2 PTA0 VSS 4 1 * Value not critical Figure 9-2. Monitor Mode Circuit (Internal Clock, No High Voltage) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 116 Monitor ROM (MON) MOTOROLA VDD VDD 10 kΩ* RST (PTA3) VDD 0.1 µF 0.1 µF 9.8304 MHz CLOCK 1 µF + 3 VTST 1 µF C2+ V+ + 3 1 kΩ 2 IRQ (PTA2) VDD 1 µF 7 10 8 9 10 kΩ* PTA4 9.1 V 10 kΩ + VSS 74HC125 5 6 DB9 2 1 µF V– 6 5 C2– PTA1 1 µF 15 C1– + 4 10 kΩ* 16 C1+ 74HC125 3 2 PTA0 4 1 5 * Value not critical Figure 9-3. Monitor Mode Circuit (External Clock, with High Voltage) Table 9-1. Monitor Mode Signal Requirements and Options Mode VTST monitor mode IRQ RST VTST VDD Forced monitor mode VDD Forced monitor mode User mode $FFFE/ $FFFF X PTA1 PTA4 1 0 External Bus Clock Frequency (MHz) (MHz) 9.8304 COP Comment 2.4576 PTA1 and PTA4 voltages are required. RST and Disabled OSC1 functions are active OSC1 function is active. RST and IRQ only Disabled available if later configured. X $FF (blank) X X 9.8304 2.4576 VSS X $FF (blank) X X X 3.2 RST, IRQ, and OSC1 Disabled only available if later configured. VDD or VSS X Not $FF (programmed) X X X — Enters user mode Enabled RST pin only available if later configured MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 117 A G R E E M E N T 1 + VDD OSC1 (PTA5) VDD N O N - D I S C L O S U R E MAX232 R E Q U I R E D Monitor ROM (MON) Functional Description Monitor ROM (MON) R E Q U I R E D If entering monitor mode without high voltage on IRQ (above condition set 2 or 3, where applied voltage is VDD or VSS), then startup port pin requirements and conditions, (PTA1/PTA4) are not in effect. This is to reduce circuit requirements when performing in-circuit programming. NOTE: If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial power-on reset (POR). Once the part has been programmed, the traditional method of applying a voltage, VTST, to IRQ must be used to enter monitor mode. A G R E E M E N T The computer operating properly (COP) module is disabled in monitor mode based on these conditions: NOTE: • If monitor mode was entered as a result of the reset vector being blank (above condition set 2 or 3), the COP is always disabled regardless of the state of IRQ. • If monitor mode was entered with VTST on IRQ (condition set 1), then the COP is disabled as long as VTST is applied to IRQ. The PTA0 pin must be at logic 1 (pullup) during chip power up to enter monitor mode properly. N O N - D I S C L O S U R E Figure 9-4 shows a simplified diagram of the monitor mode entry when the reset vector is blank and just 1 x VDD voltage is applied to the IRQ pin. An external oscillator of 9.8304 MHz is required for a baud rate of 9600, as the internal bus frequency is automatically set to the external frequency divided by four. No external clock is required if IRQ = 0 since chip clock will be drive by internal clock generator. Enter monitor mode with pin configuration shown in Figure 9-1 by pulling RST low and then high. The rising edge of RST latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU waits for the host to send eight security bytes (see 9.5 Security). After the security bytes, the MCU sends a break signal (10 consecutive logic 0s) to the host, indicating that it is ready to receive a command. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 118 Monitor ROM (MON) MOTOROLA IS VECTOR BLANK? NO NORMAL USER MODE YES MONITOR MODE EXECUTE MONITOR CODE POR TRIGGERED? NO YES Figure 9-4. Low-Voltage Monitor Mode Entry Flowchart 9.4.1 Forced Monitor Mode If the voltage applied to the IRQ is less than VTST, the MCU will come out of reset in user mode. The MENRST module monitors the reset vector fetches and will assert an internal reset if it detects that the reset vectors are erased ($FF). When the MCU comes out of reset, it is forced into monitor mode without requiring high voltage on the IRQ pin. Once out of reset, the monitor code is initially executing off the internal clock at its default frequency. If IRQ is tied high, all pins will default to regular input port functions except for PTA0 and PTA5 which will operate as a serial communication port and OSC1 input respectively (refer to Figure 9-1). That will allow the clock to be driven from an external source through OSC1 pin. If IRQ is tied low, all pins will default to regular input port function except for PTA0 which will operate as serial communication port. Refer to Figure 9-2. Regardless of the state of the IRQ pin, it will not function as a port input pin in monitor mode. Bit 2 of the Port A data register will always read 0. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 119 N O N - D I S C L O S U R E POR RESET A G R E E M E N T R E Q U I R E D Monitor ROM (MON) Functional Description Monitor ROM (MON) R E Q U I R E D The BIH and BIL instructions will behave as if the IRQ pin is enabled, regardless of the settings in the configuration register. See Section 5. Configuration Register (CONFIG). The COP module is disabled in forced monitor mode. Any reset other than a power-on reset (POR) will automatically force the MCU to come back to the forced monitor mode. N O N - D I S C L O S U R E A G R E E M E N T In monitor mode, the MCU uses different vectors for reset, SWI (software interrupt), and break interrupt than those for user mode. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. NOTE: Exiting monitor mode after it has been initiated by having a blank reset vector requires a power-on reset (POR). Pulling RST (when RST pin available) low will not exit monitor mode in this situation. Table 9-2 summarizes the differences between user mode and monitor mode regarding vectors. Table 9-2. Mode Difference Functions Reset Vector High Reset Vector Low Break Vector High Break Vector Low SWI Vector High SWI Vector Low User $FFFE $FFFF $FFFC $FFFD $FFFC $FFFD Monitor $FEFE $FEFF $FEFC $FEFD $FEFC $FEFD Modes 9.4.2 VTST Monitor Mode RST and OSC1 functions will be active on the PTA3 and PTA5 pins respectively as long as VTST is applied to IRQ pin. If the IRQ pin is lowered (no longer VTST) then the chip will still be operating in monitor mode, but the pin functions will be determined by the settings in the configuration registers (see Section 5. Configuration Register (CONFIG)) when VTST was lowered, except for the IRQ pin. IRQ will not function as a port input pin in monitor mode. Bit 2 of the Port A data register will always read 0. The BIH and BIL instructions will behave as if the IRQ pin is enabled, regardless of the settings in the configuration registers. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 120 Monitor ROM (MON) MOTOROLA START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 STOP BIT NEXT START BIT Figure 9-5. Monitor Data Format 9.4.4 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. MISSING STOP BIT 2-STOP BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 Figure 9-6. Break Transaction 9.4.5 Baud Rate The communication baud rate is controlled by the external frequency and the divide ratio is 1024. Table 9-3 has the external frequency required to achieve a standard baud rate of 9600 bps. Other standard baud rates can be accomplished using proportionally higher or lower frequency generators. If a crystal is used as the source, be aware of the upper frequency limit that the MCU can operate. Table 9-3. Monitor Baud Rate Selection External Frequency IRQ Internal Frequency Baud Rate (bps) 9.8304 MHz VTST or VDD 2.4576 MHz 9600 — VSS 3.2 MHz (Trimmed) 9600 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 121 A G R E E M E N T Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. N O N - D I S C L O S U R E 9.4.3 Data Format R E Q U I R E D Monitor ROM (MON) Functional Description 9.4.6 Commands The monitor ROM firmware uses these commands: A G R E E M E N T R E Q U I R E D Monitor ROM (MON) • READ (read memory) • WRITE (write memory) • IREAD (indexed read) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) The monitor ROM firmware echoes each received byte back to the PTA0 pin for error checking. An 11-bit delay at the end of each command allows the host to send a break character to cancel the command. A delay of two bit times occurs before each echo and before READ, IREAD, or READSP data is returned. The data returned by a read command appears after the echo of the last byte of the command. NOTE: Wait one bit time after each echo before sending the next byte. FROM HOST N O N - D I S C L O S U R E READ 4 ADDRESS HIGH READ 4 1 ADDRESS HIGH ADDRESS LOW 1 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times ADDRESS LOW DATA 1 4 3, 2 4 RETURN 3 = Cancel command delay, 11 bit times 4 = Wait 1 bit time before sending next byte. Figure 9-7. Read Transaction FROM HOST WRITE 3 ADDRESS HIGH WRITE 1 3 ADDRESS HIGH 1 ADDRESS LOW 3 ADDRESS LOW 1 DATA 3 DATA 1 2, 3 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Cancel command delay, 11 bit times 3 = Wait 1 bit time before sending next byte. Figure 9-8. Write Transaction MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 122 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description R E Q U I R E D A brief description of each monitor mode command is given in Table 9-4 through Table 9-9. Table 9-4. READ (Read Memory) Command Description Read byte from memory Operand 2-byte address in high-byte:low-byte order Data Returned Returns contents of specified address Opcode $4A SENT TO MONITOR READ READ ADDRESS ADDRESS ADDRESS HIGH HIGH LOW ECHO ADDRESS LOW DATA N O N - D I S C L O S U R E RETURN A G R E E M E N T Command Sequence MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 123 Monitor ROM (MON) R E Q U I R E D Table 9-5. WRITE (Write Memory) Command Description Write byte to memory Operand 2-byte address in high-byte:low-byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence A G R E E M E N T FROM HOST WRITE WRITE ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA DATA ECHO Table 9-6. IREAD (Indexed Read) Command N O N - D I S C L O S U R E Description Read next 2 bytes in memory from last address accessed Operand 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence FROM HOST IREAD IREAD ECHO DATA DATA RETURN MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 124 Monitor ROM (MON) MOTOROLA Monitor ROM (MON) Functional Description Description Write to last address accessed + 1 Operand Single data byte Data Returned None Opcode R E Q U I R E D Table 9-7. IWRITE (Indexed Write) Command $19 Command Sequence IWRITE IWRITE DATA A G R E E M E N T FROM HOST DATA ECHO N O N - D I S C L O S U R E A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 125 Monitor ROM (MON) R E Q U I R E D Table 9-8. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns incremented stack pointer value (SP + 1) in high-byte:low-byte order Opcode $0C Command Sequence A G R E E M E N T FROM HOST READSP SP HIGH READSP ECHO SP LOW RETURN Table 9-9. RUN (Run User Program) Command N O N - D I S C L O S U R E Description Executes PULH and RTI instructions Operand None Data Returned None Opcode $28 Command Sequence FROM HOST RUN RUN ECHO MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 126 Monitor ROM (MON) MOTOROLA The MCU executes the SWI and PSHH instructions when it enters monitor mode. The RUN command tells the MCU to execute the PULH and RTI instructions. Before sending the RUN command, the host can modify the stacked CPU registers to prepare to run the host program. The READSP command returns the incremented stack pointer value, SP + 1. The high and low bytes of the program counter are at addresses SP + 5 and SP + 6. SP + 1 CONDITION CODE REGISTER SP + 2 ACCUMULATOR SP + 3 LOW BYTE OF INDEX REGISTER SP + 4 HIGH BYTE OF PROGRAM COUNTER SP + 5 LOW BYTE OF PROGRAM COUNTER SP + 6 SP + 7 Figure 9-9. Stack Pointer at Monitor Mode Entry 9.5 Security A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain user-defined data. NOTE: Do not leave locations $FFF6–$FFFD blank. For security reasons, program locations $FFF6–$FFFD even if they are not used for vectors. During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations $FFF6–$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. See Figure 9-10. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Monitor ROM (MON) 127 N O N - D I S C L O S U R E HIGH BYTE OF INDEX REGISTER A G R E E M E N T SP R E Q U I R E D Monitor ROM (MON) Security R E Q U I R E D Monitor ROM (MON) VDD 4096 + 32 CGMXCLK CYCLES COMMAND BYTE 8 BYTE 2 BYTE 1 RST FROM HOST PA0 4 BREAK 2 1 COMMAND ECHO 1 BYTE 8 ECHO Notes: 1 = Echo delay, 2 bit times 2 = Data return delay, 2 bit times 4 = Wait 1 bit time before sending next byte. 1 BYTE 2 ECHO A G R E E M E N T FROM MCU 4 1 BYTE 1 ECHO 256 BUS CYCLES (MINIMUM) Figure 9-10. Monitor Mode Entry Timing N O N - D I S C L O S U R E Upon power-on reset, if the received bytes of the security code do not match the data at locations $FFF6–$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command. NOTE: The MCU does not transmit a break character until after the host sends the eight security bytes. To determine whether the security code entered is correct, check to see if bit 6 of RAM address $80 is set. If it is, then the correct security code has been entered and FLASH can be accessed. If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become $FF (blank). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 128 Monitor ROM (MON) MOTOROLA 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 10.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134 10.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135 10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135 10.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136 10.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137 10.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.7 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.9 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141 10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144 10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145 10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 129 R E Q U I R E D 10.1 Contents A G R E E M E N T Section 10. Timer Interface Module (TIM) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 10.2 Introduction This section describes the timer interface module (TIM). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 10-1 is a block diagram of the TIM. 10.3 Features Features of the TIM include the following: • N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Two input capture/output compare channels – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action • Buffered and unbuffered pulse width modulation (PWM) signal generation • Programmable TIM clock input with 7-frequency internal bus clock prescaler selection • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits 10.4 Pin Name Conventions The TIM shares two input/output (I/O) pins with two port A I/O pins. The full names of the TIM I/O pins are listed in Table 10-1. The generic pin name appear in the text that follows. Table 10-1. Pin Name Conventions TIM Generic Pin Names: Full TIM Pin Names: TCH0 TCH1 PTA0/TCH0 PTA1/TCH1 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 130 Timer Interface Module (TIM) MOTOROLA 10.5 Functional Description Figure 10-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. A G R E E M E N T The two TIM channels are programmable independently as input capture or output compare channels. PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE R E Q U I R E D Timer Interface Module (TIM) Functional Description INTERRUPT LOGIC 16-BIT COMPARATOR N O N - D I S C L O S U R E TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX 16-BIT COMPARATOR TCH0H:TCH0L PORT LOGIC TCH0 CH0F 16-BIT LATCH CH0IE MS0A INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 CHANNEL 1 ELS1B ELS1A CH1MAX PORT LOGIC TCH1 16-BIT COMPARATOR TCH1H:TCH1L CH1F 16-BIT LATCH MS1A CH1IE INTERRUPT LOGIC Figure 10-1. TIM Block Diagram MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 131 A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) Addr. $0020 $0021 $0022 $0023 $0024 N O N - D I S C L O S U R E $0025 $0026 $0027 $0028 Register Name Bit 7 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 TIM Status and Control Read: Register Write: (TSC) See page 141. Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM Counter Register High (TCNTH) Write: See page 144. Reset: Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 Read: TIM Counter Register Low (TCNTL) Write: See page 144. Reset: Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 1 1 1 1 1 1 1 1 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 TIM Counter Modulo Read: Register High Write: (TMODH) See page 144. Reset: TIM Counter Modulo Read: Register Low Write: (TMODL) See page 144. Reset: TIM Channel 0 Status and Read: Control Register Write: (TSC0) See page 145. Reset: TIM Channel 0 Read: Register High Write: (TCH0H) See page 149. Reset: TIM Channel 0 Read: Register Low Write: (TCH0L) See page 149. Reset: TIM Channel 1 Status and Read: Control Register Write: (TSC1) See page 145. Reset: 0 TRST CH0F 0 Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset CH1F 0 CH1IE MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 10-2. TIM I/O Register Summary MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 132 Timer Interface Module (TIM) MOTOROLA $002A TIM Channel 1 Read: Register High Write: (TCH1H) See page 149. Reset: TIM Channel 1 Read: Register Low Write: (TCH1L) See page 149. Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 2 Bit 1 Bit 0 Indeterminate after reset Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Indeterminate after reset = Unimplemented Figure 10-2. TIM I/O Register Summary (Continued) 10.5.1 TIM Counter Prescaler The TIM clock source is one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source. 10.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM central processor unit (CPU) interrupt requests. 10.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 133 A G R E E M E N T $0029 Register Name N O N - D I S C L O S U R E Addr. R E Q U I R E D Timer Interface Module (TIM) Functional Description 10.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 10.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) N O N - D I S C L O S U R E Use the following methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 134 Timer Interface Module (TIM) MOTOROLA Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. 10.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 10-3 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 135 A G R E E M E N T Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. N O N - D I S C L O S U R E 10.5.3.2 Buffered Output Compare R E Q U I R E D Timer Interface Module (TIM) Functional Description Timer Interface Module (TIM) R E Q U I R E D OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE N O N - D I S C L O S U R E A G R E E M E N T Figure 10-3. PWM Period and Pulse Width The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000. See 10.10.1 TIM Status and Control Register. The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 10.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 10.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 136 Timer Interface Module (TIM) MOTOROLA NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. A G R E E M E N T Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: R E Q U I R E D Timer Interface Module (TIM) Functional Description Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 137 N O N - D I S C L O S U R E 10.5.4.2 Buffered PWM Signal Generation R E Q U I R E D Timer Interface Module (TIM) NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered PWM signals. 10.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: A G R E E M E N T 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter and prescaler by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): N O N - D I S C L O S U R E a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. See Table 10-3. b. Write 1 to the toggle-on-overflow bit, TOVx. c. Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. See Table 10-3. NOTE: In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to self-correct in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 138 Timer Interface Module (TIM) MOTOROLA Setting the channel x maximum duty cycle bit (CHxMAX) and setting the TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM Channel Status and Control Registers. 10.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE =1. CHxF and CHxIE are in the TIM channel x status and control register. 10.7 Wait Mode The WAIT instruction puts the MCU in low power-consumption standby mode. The TIM remains active after the execution of a WAIT instruction. In wait mode the TIM registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 139 A G R E E M E N T Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. N O N - D I S C L O S U R E Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A. R E Q U I R E D Timer Interface Module (TIM) Interrupts If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 10.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See 7.9.2 Break Flag Control Register. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. 10.9 Input/Output Signals Port A shares two of its pins with the TIM. The two TIM channel I/O pins are PTA0/TCH0 and PTA1/TCH1. Each channel I/O pin is programmable independently as an input capture pin or an output compare pin. PTA0/TCH0 can be configured as a buffered output compare or buffered PWM pin. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 140 Timer Interface Module (TIM) MOTOROLA Timer Interface Module (TIM) Input/Output Registers R E Q U I R E D 10.10 Input/Output Registers TIM status and control register (TSC) • TIM control registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0 and TSC1) • TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L) 10.10.1 TIM Status and Control Register The TIM status and control register (TSC) does the following: • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: $0020 Bit 7 Read: 6 5 TOIE TSTOP TOF Write: 0 Reset: 0 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 TRST 0 1 0 0 = Unimplemented Figure 10-4. TIM Status and Control Register (TSC) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 141 N O N - D I S C L O S U R E • A G R E E M E N T The following I/O registers control and monitor operation of the TIM: Timer Interface Module (TIM) R E Q U I R E D TOF — TIM Overflow Flag Bit A G R E E M E N T This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP — TIM Stop Bit N O N - D I S C L O S U R E This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 142 Timer Interface Module (TIM) MOTOROLA Table 10-2. Prescaler Selection PS2 PS1 PS0 TIM Clock Source 0 0 0 Internal bus clock ÷ 1 0 0 1 Internal bus clock ÷ 2 0 1 0 Internal bus clock ÷ 4 0 1 1 Internal bus clock ÷ 8 1 0 0 Internal bus clock ÷ 16 1 0 1 Internal bus clock ÷ 32 1 1 0 Internal bus clock ÷ 64 1 1 1 Not available 10.10.2 TIM Counter Registers The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 143 A G R E E M E N T These read/write bits select one of the seven prescaler outputs as the input to the TIM counter as Table 10-2 shows. Reset clears the PS[2:0] bits. N O N - D I S C L O S U R E PS[2:0] — Prescaler Select Bits R E Q U I R E D Timer Interface Module (TIM) Input/Output Registers Timer Interface Module (TIM) Read: $0021 TCNTH Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 Write: Reset: Address: $0022 Read: TCNTL Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 10-5. TIM Counter Registers (TCNTH:TCNTL) 10.10.3 TIM Counter Modulo Registers The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Address: Address: $0023 Read: TMODH Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Write: Reset: Address: $0024 Read: TMODL Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 Write: Reset: Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 144 Timer Interface Module (TIM) MOTOROLA • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 0% and 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Address: $0025 TSC0 Bit 7 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 5 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Read: CH0F Write: 0 Reset: 0 0 Address: $0028 TSC1 Bit 7 Read: CH1F Write: 0 Reset: 0 6 CH1IE 0 0 0 = Unimplemented Figure 10-7. TIM Channel Status and Control Registers (TSC0:TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 145 A G R E E M E N T Each of the TIM channel status and control registers does the following: N O N - D I S C L O S U R E 10.10.4 TIM Channel Status and Control Registers R E Q U I R E D Timer Interface Module (TIM) Input/Output Registers Timer Interface Module (TIM) R E Q U I R E D Clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit A G R E E M E N T This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. N O N - D I S C L O S U R E Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 10-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin (see Table 10-3). Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 146 Timer Interface Module (TIM) MOTOROLA When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to an I/O port, and pin TCHx is available as a general-purpose I/O pin. Table 10-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 10-3. Mode, Edge, and Level Selection MSxB MSxA ELSxB ELSxA X 0 0 0 Mode Configuration Pin under port control; initial output level high Output preset NOTE: X 1 0 0 Pin under port control; initial output level low 0 0 0 1 Capture on rising edge only 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 X 0 1 1 X 1 0 1 X 1 1 Input capture Capture on falling edge only Capture on rising or falling edge Output compare or PWM Buffered output compare or buffered PWM Toggle output on compare Clear output on compare Set output on compare Toggle output on compare Clear output on compare Set output on compare After initially enabling a TIM channel register for input capture operation and selecting the edge sensitivity, clear CHxF to ignore any erroneous edge detection flags. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 147 A G R E E M E N T When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. N O N - D I S C L O S U R E ELSxB and ELSxA — Edge/Level Select Bits R E Q U I R E D Timer Interface Module (TIM) Input/Output Registers Timer Interface Module (TIM) R E Q U I R E D TOVx — Toggle-On-Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. A G R E E M E N T CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD N O N - D I S C L O S U R E TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 10-8. CHxMAX Latency 10.10.5 TIM Channel Registers These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 148 Timer Interface Module (TIM) MOTOROLA In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: $0026 TCH0H Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Write: Reset: Indeterminate after reset Address: $0027 TCH0L Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset TCH1H Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Read: Write: Reset: Indeterminate after reset Address: $02A TCH1L Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Read: Write: Reset: Indeterminate after reset Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Timer Interface Module (TIM) 149 N O N - D I S C L O S U R E Address: $0029 A G R E E M E N T In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. R E Q U I R E D Timer Interface Module (TIM) Input/Output Registers N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Timer Interface Module (TIM) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 150 Timer Interface Module (TIM) MOTOROLA 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155 11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156 11.7 Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157 11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159 11.2 Introduction This section describes the analog-to-digital converter (ADC). The ADC is an 8-bit, 4-channel analog-to-digital converter. The ADC module is only available on the MC68HC908QY2, MC68HC908QT2, MC68HC908QY4, and MC68HC908QT4. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 151 R E Q U I R E D 11.1 Contents A G R E E M E N T Section 11. Analog-to-Digital Converter (ADC) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) 11.3 Features Features of the ADC module include: • 4 channels with multiplexed input • Linear successive approximation with monotonicity • 8-bit resolution • Single or continuous conversion • Conversion complete flag or conversion complete interrupt • Selectable ADC clock Figure 11-1 provides a summary of the input/output (I/O) registers. Addr. $003C Register Name Bit 7 ADC Status and Control Read: Register Write: (ADSCR) See page 157. Reset: $003D Unimplemented $003E ADC Data Register (ADR) See page 159. ADC Input Clock Register $003F (ADICLK) See page 159. Read: 6 5 4 3 2 1 Bit 0 AIEN ADCO CH4 CH3 CH2 CH1 CH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 COCO Write: Reset: Indeterminate after reset Read: ADIV2 ADIV1 ADIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 11-1. ADC I/O Register Summary 11.4 Functional Description Four ADC channels are available for sampling external sources at pins PTA0, PTA1, PTA4, and PTA5. An analog multiplexer allows the single ADC converter to select one of the four ADC channels as an ADC MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 152 Analog-to-Digital Converter (ADC) MOTOROLA voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is eight bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 11-2 shows a block diagram of the ADC. INTERNAL DATA BUS A G R E E M E N T READ DDRA DISABLE WRITE DDRA DDRAx RESET WRITE PTA ADCx PTAx R E Q U I R E D Analog-to-Digital Converter (ADC) Functional Description READ PTA DISABLE ADC CHANNEL x INTERRUPT LOGIC AIEN CONVERSION COMPLETE COCO BUS CLOCK ADC VOLTAGE IN ADCVIN ADC CHANNEL SELECT (1 OF 4 CHANNELS) CH[4:0] ADC CLOCK CLOCK GENERATOR ADIV[2:0] Figure 11-2. ADC Block Diagram MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 153 N O N - D I S C L O S U R E ADC DATA REGISTER A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) 11.4.1 ADC Port I/O Pins PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits (ADC status and control register (ADSCR), $003C), define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. 11.4.2 Voltage Conversion When the input voltage to the ADC equals VDD, the ADC converts the signal to $FF (full scale). If the input voltage equals VSS, the ADC converts it to $00. Input voltages between VDD and VSS are a straight-line linear conversion. All other input voltages will result in $FF if greater than VDD and $00 if less than VSS. N O N - D I S C L O S U R E NOTE: Input voltage should not exceed the analog supply voltages. 11.4.3 Conversion Time Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1 MHz, then one conversion will take 16 µs to complete. With a 1-MHz ADC internal clock the maximum sample rate is 62.5 kHz. Conversion Time = 16 ADC Clock Cycles ADC Clock Frequency Number of Bus Cycles = Conversion Time × Bus Frequency MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 154 Analog-to-Digital Converter (ADC) MOTOROLA 11.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 11.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating a central processor unit (CPU) interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. 11.6 Low-Power Modes The following subsections describe the ADC in low-power modes. 11.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the microcontroller unit (MCU) out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR to logic 1’s before executing the WAIT instruction. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 155 A G R E E M E N T In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register (ADR) with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after each conversion and can be cleared by writing the ADC status and control register or reading of the ADC data register. N O N - D I S C L O S U R E 11.4.4 Continuous Conversion R E Q U I R E D Analog-to-Digital Converter (ADC) Interrupts 11.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. 11.7 Input/Output Signals The ADC module has four channels that are shared with I/O port A. ADC voltage in (ADCVIN) is the input voltage signal from one of the four ADC channels to the ADC module. 11.8 Input/Output Registers These I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR) • ADC data register (ADR) • ADC clock register (ADICLK) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Analog-to-Digital Converter (ADC) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 156 Analog-to-Digital Converter (ADC) MOTOROLA Address: $003C Bit 7 Read: 6 5 4 3 2 1 Bit 0 AIEN ADCO CH4 CH3 CH2 CH1 CH0 0 0 1 1 1 1 1 COCO Write: Reset: 0 = Unimplemented Figure 11-3. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever ADSCR is written or whenever the ADR is read. Reset clears this bit. 1 = Conversion completed (AIEN = 0) 0 = Conversion not completed (AIEN = 0) When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read. AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when ADR is read or ADSCR is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update ADR at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 157 A G R E E M E N T The following paragraphs describe the function of the ADC status and control register (ADSCR). N O N - D I S C L O S U R E 11.8.1 ADC Status and Control Register R E Q U I R E D Analog-to-Digital Converter (ADC) Input/Output Registers Analog-to-Digital Converter (ADC) R E Q U I R E D CH[4:0] — ADC Channel Select Bits CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to select one of the four ADC channels. The five select bits are detailed in Table 11-1. Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. A G R E E M E N T The ADC subsystem is turned off when the channel select bits are all set to 1. This feature allows for reduced power consumption for the MCU when the ADC is not used. Reset sets all of these bits to a logic 1. NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. N O N - D I S C L O S U R E Table 11-1. MUX Channel Select CH4 CH3 CH2 CH1 CH0 ADC Channel Input Select 0 0 0 0 0 ADC0 PTA0 0 0 0 0 1 ADC1 PTA1 0 0 0 1 0 ADC2 PTA4 0 0 0 1 1 ADC3 PTA5 0 0 1 0 0 — ↓ ↓ ↓ ↓ ↓ — 1 1 0 1 0 — 1 1 0 1 1 — Reserved 1 1 1 0 0 — Unused 1 1 1 0 1 — VDDA(2) 1 1 1 1 0 — VSSA(2) 1 1 1 1 1 — ADC power off Unused (1) 1. If any unused channels are selected, the resulting ADC conversion will be unknown. 2. The voltage levels supplied from internal reference nodes, as specified in the table, are used to verify the operation of the ADC converter both in production test and for user applications. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 158 Analog-to-Digital Converter (ADC) MOTOROLA 11.8.2 ADC Data Register One 8-bit result register is provided. This register is updated each time an ADC conversion completes. Address: $003E 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: Indeterminate after reset = Unimplemented Figure 11-4. ADC Data Register (ADR) 11.8.3 ADC Input Clock Register This register selects the clock frequency for the ADC. Address: $003F Bit 7 6 5 ADIV2 ADIV1 ADIV0 0 0 0 Read: 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 11-5. ADC Input Clock Register (ADICLK) ADIV2–ADIV0 — ADC Clock Prescaler Bits ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 11-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Analog-to-Digital Converter (ADC) 159 A G R E E M E N T Reset: N O N - D I S C L O S U R E Read: Bit 7 R E Q U I R E D Analog-to-Digital Converter (ADC) Input/Output Registers Analog-to-Digital Converter (ADC) R E Q U I R E D Table 11-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 Bus clock ÷ 1 0 0 1 Bus clock ÷ 2 0 1 0 Bus clock ÷ 4 0 1 1 Bus clock ÷ 8 1 X X Bus clock ÷ 16 N O N - D I S C L O S U R E A G R E E M E N T X = don’t care MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 160 Analog-to-Digital Converter (ADC) MOTOROLA 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164 12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166 12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168 12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169 12.2 Introduction The MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 have five bidirectional input-output (I/O) pins and one input only pin. The MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4 have thirteen bidirectional pins and one input only pin. All I/O pins are programmable as inputs or outputs. NOTE: Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Figure 12-1 provides a summary of the I/O registers. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 161 R E Q U I R E D 12.1 Contents A G R E E M E N T Section 12. Input/Output (I/O) Ports N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Addr. Register Name $0000 Port A Data Register (PTA) See page 163. $0001 Port B Data Register (PTB) See page 167. Data Direction Register A $0004 (DDRA) See page 164. Data Direction Register B $0005 (DDRB) See page 168. $000B $000C Read: Bit 7 6 0 AWUL 5 4 3 PTA5 PTA4 PTA3 2 PTA2 1 Bit 0 PTA1 PTA0 PTB1 PTB0 DDRA1 DDRA0 Write: Reset: Read: Unaffected by reset PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 Write: Reset: Read: Unaffected by reset 0 0 0 0 DDRA5 DDRA4 DDRA3 0 0 0 0 0 0 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Write: Reset: Read: Write: Reset: Port A Input Pullup Read: OSC2EN Enable Register Write: (PTAPUE) See page 166. Reset: 0 PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0 0 0 0 0 0 0 0 Port B Input Pullup Read: PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0 Enable Register Write: (PTBPUE) See page 169. Reset: 0 0 0 0 0 0 0 0 N O N - D I S C L O S U R E = Unimplemented Figure 12-1. I/O Port Register Summary 12.3 Port A Port A is an 6-bit special function port that shares all six of its pins with the keyboard interrupt (KBI) module (see Section 14. Keyboard Interrupt Module (KBI)). Each port A pin also has a software configurable pullup device if the corresponding port pin is configured as an input port. NOTE: PTA2 is input only. When the IRQ function is enabled in the configuration register 2 (CONFIG2), bit 2 of the port A data register (PTA) will always read a logic 0. In this case, the BIH and BIL instructions can be used to read the MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 162 Input/Output (I/O) Ports MOTOROLA logic level on the PTA2 pin. When the IRQ function is disabled, these instructions will behave as if the PTA2 pin is a logic 1. However, reading bit 2 of PTA will read the actual logic level on the pin. 12.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the six port A pins. R E Q U I R E D Input/Output (I/O) Ports Port A 6 0 AWUL 5 4 3 PTA5 PTA4 PTA3 2 PTA2 1 Bit 0 PTA1 PTA0 KBI1 KBI0 Write: Reset: Additional Functions: Unaffected by reset KBI5 KBI4 KBI3 KBI2 = Unimplemented Figure 12-2. Port A Data Register (PTA) PTA[5:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. AWUL — Auto Wake-up Latch Data Bit This is a read-only bit which has the value of the auto wake-up interrupt request latch. The wake-up request signal is generated internally (see 14.4.4 Auto Wake-up Interrupt Request). There is no PTA6 port nor any of the associated bits such as PTA6 data register, pullup enable or direction. KBI[5:0] — Port A Keyboard Interrupts The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard interrupt control enable register (KBIER) enable the port A pins as external interrupt pins (see Section 14. Keyboard Interrupt Module (KBI)). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 163 N O N - D I S C L O S U R E Read: Bit 7 A G R E E M E N T Address: $0000 12.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: $0004 Read: Bit 7 6 0 0 5 4 3 DDRA5 DDRA4 DDRA3 0 0 0 2 1 Bit 0 DDRA1 DDRA0 0 0 0 Write: A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Reset: 0 0 0 = Unimplemented Figure 12-3. Data Direction Register A (DDRA) DDRA[5:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input N O N - D I S C L O S U R E NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 164 Input/Output (I/O) Ports MOTOROLA Figure 12-4 shows the port A I/O logic. READ DDRA ($0004) PTAPUEx INTERNAL DATA BUS WRITE DDRA ($0004) RESET DDRAx 30 k WRITE PTA ($0000) PTAx PTAx R E Q U I R E D Input/Output (I/O) Ports Port A TO KEYBOARD INTERRUPT CIRCUIT Figure 12-4. Port A I/O Circuit NOTE: Figure 12-4 does not apply to PTA2 N O N - D I S C L O S U R E When DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. A G R E E M E N T READ PTA ($0000) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 165 R E Q U I R E D Input/Output (I/O) Ports 12.3.3 Port A Input Pullup Enable Register The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each if the six port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output. Address: $000B A G R E E M E N T Bit 7 6 5 4 3 2 1 Bit 0 Read: PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0 OSC2EN Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 12-5. Port A Input Pullup Enable Register (PTAPUE) OSC2EN — Enable PTA4 on OSC2 Pin N O N - D I S C L O S U R E This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is selected. This bit has no effect for the XTAL or external oscillator options. 1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4) 0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions PTAPUE[5:0] — Port A Input Pullup Enable Bits These read/write bits are software programmable to enable pullup devices on port A pins. 1 = Corresponding port A pin configured to have internal pull if its DDRA bit is set to 0 0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit Table 12-1 summarizes the operation of the port A pins. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 166 Input/Output (I/O) Ports MOTOROLA DDRA Bit PTA Bit I/O Pin Mode Accesses to DDRA Accesses to PTA Read/Write Read Write 1 0 X(1) Input, VDD(2) DDRA5–DDRA0 Pin PTA5–PTA0(3) 0 0 X Input, Hi-Z(4) DDRA5–DDRA0 Pin PTA5–PTA0(3) X 1 X Output DDRA5–DDRA0 PTA5–PTA0 PTA5–PTA0(5) 1. X = don’t care 2. I/O pin pulled to VDD by internal pullup. 3. Writing affects data register, but does not affect input. 4. Hi-Z = high impedance 5. Output does not apply to PTA2 12.4 Port B Port B is an 8-bit general purpose I/O port. Port B is only available on the MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4. 12.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port B pins. Address: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 Read: Write: Reset: Unaffected by reset Figure 12-6. Port B Data Register (PTB) PTB[7:0] — Port B Data Bits These read/write bits are software programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 167 A G R E E M E N T PTAPUE Bit N O N - D I S C L O S U R E Table 12-1. Port A Pin Functions R E Q U I R E D Input/Output (I/O) Ports Port B 12.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Read: Write: A G R E E M E N T R E Q U I R E D Input/Output (I/O) Ports Reset: Figure 12-7. Data Direction Register B (DDRB) DDRB[7:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input N O N - D I S C L O S U R E NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 12-8 shows the port B I/O logic. READ DDRB ($0005) PTBPUEx INTERNAL DATA BUS WRITE DDRB ($0005) RESET DDRBx 30 k WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 12-8. Port B I/O Circuit MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 168 Input/Output (I/O) Ports MOTOROLA DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Accesses to PTB Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRB7–DDRB0 Pin PTB7–PTB0(3) 1 X Output DDRB7–DDRB0 Pin PTB7–PTB0 1. X = don’t care 2. Hi-Z = high impedance 3. Writing affects data register, but does not affect the input. 12.4.3 Port B Input Pullup Enable Register The port B input pullup enable register (PTBPUE) contains a software configurable pullup device for each of the eight port B pins. Each bit is individually configurable and requires the corresponding data direction register, DDRBx, be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRBx bit is configured as output. Address: $000C Bit 7 6 5 4 3 2 1 Bit 0 Read: PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0 Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 12-9. Port B Input Pullup Enable Register (PTBPUE) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Input/Output (I/O) Ports 169 A G R E E M E N T Table 12-2. Port B Pin Functions N O N - D I S C L O S U R E When DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 12-2 summarizes the operation of the port B pins. R E Q U I R E D Input/Output (I/O) Ports Port B Input/Output (I/O) Ports These read/write bits are software programmable to enable pullup devices on port B pins 1 = Corresponding port B pin configured to have internal pull if its DDRB bit is set to 0 0 = Pullup device is disconnected on the corresponding port B pin regardless of the state of its DDRB bit. Table 12-3 summarizes the operation of the port B pins. Table 12-3. Port B Pin Functions PTBPUE Bit DDRB Bit PTB Bit I/O Pin Mode Accesses to DDRB Read/Write Read Write 1 0 X(1) Input, VDD(2) DDRB7–DDRB0 Pin PTB7–PTB0(3) 0 0 X Input, Hi-Z(4) DDRB7–DDRB0 Pin PTB7–PTB0(3) X 1 X Output DDRB7–DDRB0 PTB7–PTB0 PTB7–PTB0 1. 2. 3. 4. Accesses to PTB X = don’t care I/O pin pulled to VDD by internal pullup. Writing affects data register, but does not affect input. Hi-Z = high impedance N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D PTBPUE[7:0] — Port B Input Pullup Enable Bits MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 170 Input/Output (I/O) Ports MOTOROLA 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.5 IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175 13.7 IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175 13.2 Introduction The IRQ pin (external interrupt), shared with PTA2 (general purpose input) and keyboard interrupt (KBI), provides a maskable interrupt input. 13.3 Features Features of the IRQ module include the following: • External interrupt pin, IRQ • IRQ interrupt control bits • Hysteresis buffer • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Selectable internal pullup resistor MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 171 R E Q U I R E D 13.1 Contents A G R E E M E N T Section 13. External Interrupt (IRQ) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 13.4 Functional Description IRQ pin functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A 0 disables the IRQ function and IRQ will assume the other shared functionalities. A1 enables the IRQ function. A logic 0 applied to the external interrupt pin can latch a central processur unit (CPU) interrupt request. Figure 13-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: A G R E E M E N T R E Q U I R E D External Interrupt (IRQ) • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. • Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. ACK1 INTERNAL ADDRESS BUS N O N - D I S C L O S U R E RESET TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD IRQPUD INTERNAL PULLUP DEVICE VDD IRQF1 D CLR Q CK IRQ SYNCHRONIZER IRQ INTERRUPT REQUEST HIGH VOLTAGE DETECT TO MODE SELECT LOGIC IRQ FF IMASK1 MODE1 Figure 13-1. IRQ Module Block Diagram MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 172 External Interrupt (IRQ) MOTOROLA When the interrupt pin is both falling-edge and low-level triggered, the CPU interrupt request remains set until both of the following occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK1 bit in the ISCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK1 bit is clear. NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. See 7.7 Exception Control. Figure 13-2 provides a summary of the IRQ I/O register. Addr. $001D Register Name IRQ Status and Control Read: Register Write: (INTSCR) See page 176. Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF1 0 1 Bit 0 IMASK1 MODE1 0 0 ACK1 0 0 0 0 0 0 = Unimplemented Figure 13-2. IRQ I/O Register Summary MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 173 A G R E E M E N T When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. N O N - D I S C L O S U R E The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-level triggered. The MODE1 bit in the ISCR controls the triggering sensitivity of the IRQ pin. R E Q U I R E D External Interrupt (IRQ) Functional Description 13.5 IRQ Pin A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE1 bit is set, the IRQ pin is both falling-edge sensitive and low-level sensitive. With MODE1 set, both of the following actions must occur to clear IRQ: A G R E E M E N T R E Q U I R E D External Interrupt (IRQ) • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK1 bit in the interrupt status and control register (ISCR). The ACK1 bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK1 bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK1 does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK1 bit latches another interrupt request. If the IRQ mask bit, IMASK1, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ remains active. N O N - D I S C L O S U R E The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE1 control bit, thereby clearing the interrupt even if the pin stays low. If the MODE1 bit is clear, the IRQ pin is falling-edge sensitive only. With MODE1 clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF1 bit in the ISCR register can be used to check for pending interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes it useful in applications where polling is preferred. NOTE: When the IRQ function is enabled in the CONFIG2 register, the BIH and BIL instructions can be used to read the logic level on the IRQ pin. If the IRQ function is disabled, these instructions will behave as if the IRQ pin MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 174 External Interrupt (IRQ) MOTOROLA When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. An internal pullup resistor to VDD is connected to the IRQ pin; this can be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E). 13.6 IRQ Module During Break Interrupts The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. See Section 7. System Integration Module (SIM). To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the IRQ status and control register during the break state has no effect on the IRQ latch. 13.7 IRQ Status and Control Register The IRQ status and control register (ISCR) controls and monitors operation of the IRQ module, see Section 5. Configuration Register (CONFIG). The ISCR has the following functions: • Shows the state of the IRQ flag • Clears the IRQ latch • Masks IRQ and interrupt request • Controls triggering sensitivity of the IRQ interrupt pin MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA External Interrupt (IRQ) 175 A G R E E M E N T NOTE: N O N - D I S C L O S U R E is a logic 1, regardless of the actual level on the pin. Conversely, when the IRQ function is enabled, bit 2 of the port A data register will always read a logic 0. R E Q U I R E D External Interrupt (IRQ) IRQ Module During Break Interrupts External Interrupt (IRQ) R E Q U I R E D Address: $001D Read: Bit 7 6 5 4 3 0 0 0 0 IRQF1 1 Bit 0 IMASK1 MODE1 0 0 ACK1 Write: Reset: 2 0 0 0 0 0 0 = Unimplemented Figure 13-3. IRQ Status and Control Register (INTSCR) A G R E E M E N T IRQF1 — IRQ Flag This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK1 — IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1 always reads as logic 0. Reset clears ACK1. IMASK1 — IRQ Interrupt Mask Bit N O N - D I S C L O S U R E Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK1. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE1 — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE1. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 176 External Interrupt (IRQ) MOTOROLA 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182 14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184 14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185 14.5 Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.6 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 14.7 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187 14.2 Introduction The keyboard interrupt module (KBI) provides six independently maskable external interrupts, which are accessible via the PTA0–PTA5 pins, plus one internal maskable interrupt controlled by the auto wake-up logic. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 177 R E Q U I R E D 14.1 Contents A G R E E M E N T Section 14. Keyboard Interrupt Module (KBI) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Keyboard Interrupt Module (KBI) 14.3 Features Features of the keyboard interrupt module include: • Six keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask • One internal interrupt controlled by the auto wake-up logic, with separate interrupt enable bit, sharing the same keyboard interrupt mask • Software configurable pullup device if input pin is configured as input port bit • Programmable edge-only or edge and level interrupt sensitivity • Exit from low-power modes Figure 14-1 provides a summary of the input/output (I/O) registers Addr. Register Name Bit 7 6 5 4 3 2 Keyboard Status Read: and Control Register Write: (KBSCR) See page 183. Reset: 0 0 0 0 KEYF 0 $001A Read: Keyboard Interrupt Enable $001B Register (KBIER) Write: See page 184. Reset: 0 1 Bit 0 IMASKK MODEK ACKK 0 0 0 0 0 0 0 0 0 AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 = Unimplemented Figure 14-1. KBI I/O Register Summary MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 178 Keyboard Interrupt Module (KBI) MOTOROLA Keyboard Interrupt Module (KBI) Functional Description R E Q U I R E D 14.4 Functional Description INTERNAL BUS VECTOR FETCH DECODER ACKK KBI0 VDD D KEYF Q SYNCHRONIZER CK KEYBOARD INTERRUPT REQUEST A G R E E M E N T TO PULLUP ENABLE . . . CLR Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register (KBIER) independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also enables its internal pullup device irrespective of PTAPUEx bits in the port A input pullup enable register (see 12.3.3 Port A Input Pullup Enable Register). A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. N O N - D I S C L O S U R E KBIE0 RESET KBI5 KEYBOARD INTERRUPT FF IMASKK MODEK KBIE5 TO PULLUP ENABLE AWUIREQ(1) 1. For AWUGEN logic refer to Figure 14-5. Figure 14-2. Keyboard Interrupt Block Diagram Writing the AWUIE bit in the keyboard interrupt enable register enables or disables the auto wake-up interrupt input (see Figure 14-5). A logic 1 applied to the AWUIREQ input with auto wake-up interrupt request enabled, latches a keyboard interrupt request. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 179 Keyboard Interrupt Module (KBI) A G R E E M E N T R E Q U I R E D A keyboard interrupt is latched when one or more keyboard interrupt inputs goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard interrupt input does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one input because another input is still low, software can disable the latter input while it is low. • If the keyboard interrupt is falling edge and low-level sensitive, an interrupt request is present as long as any keyboard interrupt input is low. N O N - D I S C L O S U R E If the MODEK bit is set, the keyboard interrupt inputs are both falling edge and low-level sensitive, and both of the following actions must occur to clear a keyboard interrupt request: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt inputs. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the central processor unit (CPU) loads the program counter with the vector address at locations $FFE0 and $FFE1. • Return of all enabled keyboard interrupt inputs to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The auto wake-up interrupt input, AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR or reset. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 180 Keyboard Interrupt Module (KBI) MOTOROLA Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt input stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and then read the data register. NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. Auto wake-up latch, AWUL, can be read directly from the bit 6 position of port A data register (PTA). This is a read-only bit which is occupying and empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit. 14.4.1 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the internal pullup to reach a logic 1. Therefore a false interrupt can occur as soon as the pin is enabled. This does not apply to an auto wake-up interrupt, which is internally generated without pullup. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 181 A G R E E M E N T If the MODEK bit is clear, the keyboard interrupt pin is falling-edge sensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. N O N - D I S C L O S U R E The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. R E Q U I R E D Keyboard Interrupt Module (KBI) Functional Description Keyboard Interrupt Module (KBI) R E Q U I R E D To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. N O N - D I S C L O S U R E A G R E E M E N T An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in the data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 14.4.2 Keyboard Status and Control Register The keyboard status and control register (KBSCR): • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 182 Keyboard Interrupt Module (KBI) MOTOROLA 6 5 4 3 2 0 0 0 0 KEYF 0 Bit 0 IMASKK MODEK 0 0 ACKK Write: Reset: 1 0 0 0 0 0 0 = Unimplemented Figure 14-3. Keyboard Status and Control Register (KBSCR) Bits 7–4 — Not used These read-only bits always read as logic 0s. KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending on port A or auto wake-up. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request on port A and auto wake-up logic. ACKK always reads as logic 0. Reset clears ACKK. IMASKK— Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests on port A or auto wake-up. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins on port A and auto wake-up. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 183 A G R E E M E N T Read: Bit 7 N O N - D I S C L O S U R E Address: $001A R E Q U I R E D Keyboard Interrupt Module (KBI) Functional Description R E Q U I R E D Keyboard Interrupt Module (KBI) 14.4.3 Keyboard Interrupt Enable Register The port A keyboard interrupt enable register (KBIER) enables or disables each port A pin or auto wake-up to operate as a keyboard interrupt input. Address: $001B Bit 7 Read: 6 5 4 3 2 1 Bit 0 AWUIE KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Write: A G R E E M E N T Reset: 0 Figure 14-4. Keyboard Interrupt Enable Register (KBIER) KBIE5–KBIE0 — Port A Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin on port A to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = KBIx pin enabled as keyboard interrupt pin 0 = KBIx pin not enabled as keyboard interrupt pin AWUIE — Auto Wake-up Interrupt Enable Bit N O N - D I S C L O S U R E This read/write bit enables the auto wake-up interrupt input to latch interrupt requests. Reset clears AWUIE. 1 = Auto wake-up enabled as interrupt input 0 = Auto wake-up not enabled as interrupt input MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 184 Keyboard Interrupt Module (KBI) MOTOROLA 14.4.4 Auto Wake-up Interrupt Request COPRS (FROM CONFIG1) VDD TO PTA READ, BIT 6 1 = DIV 29 SHORT 0 = DIV 214 OVERFLOW 32KHz EN CLK E RST AWUL Q AWUIREQ R TO KBI INTERRUPT LOGIC (SEE Figure 14-2) A G R E E M E N T INT RC OSC D CLRLOGIC RESET CLEAR ACKK (CGMXCLK) BUSCLKX4 CLK RST RESET ISTOP RESET AWUIE Figure 14-5. Auto Wake-up Interrupt Request Generation Logic The function of the auto wake-up logic is to generate periodic wake-up requests to bring the microcontroller unit (MCU) out of stop mode. The wake-up requests are treated as regular keyboard interrupt requests, with the difference that instead of a pin, the interrupt signal is generated by an internal logic. Entering stop mode will enable the auto wake-up generation logic. An internal RC oscillator (exclusive for the auto wake-up feature) drives the wake-up request generator. Once the overflow count is reached in the generator counter, a wake-up request, AWUIREQ, is latched and sent to the KBI logic (see Figure 14-2). Wake-up interrupt requests will only be serviced if the associated interrupt enable bit, AWUIE, in KBIER is set. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 185 N O N - D I S C L O S U R E AUTOWUGEN R E Q U I R E D Keyboard Interrupt Module (KBI) Functional Description Keyboard Interrupt Module (KBI) N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D The overflow count can be selected from two options defined by the COPRS bit in CONFIG1. This bit was “borrowed” from the computer operating properly (COP) using the fact that the COP feature is idle (no MCU clock available) in stop mode. The typical values of the periodic wake-up request (5 V, room temperature) are: • COPRS = 0: 512 ms • COPRS = 1: 16 ms The auto wake-up RC oscillator is highly dependent on operating voltage and temperature. The wake-up request is latched to allow the interrupt source identification. The latched value, AWUL, can be read directly from the bit 6 position of PTA data register. This is a read-only bit which is occupying an empty bit position on PTA. No PTA associated registers, such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit. The latch can be cleared by writing to the ACKK bit in the KBSCR register. Reset also clears the latch. AWUIE bit in KBI interrupt enable register (see Figure 14-2) has no effect on AWUL reading. 14.5 Wait Mode The keyboard module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 14.6 Stop Mode The keyboard module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 186 Keyboard Interrupt Module (KBI) MOTOROLA The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. N O N - D I S C L O S U R E To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. A G R E E M E N T 14.7 Keyboard Module During Break Interrupts R E Q U I R E D Keyboard Interrupt Module (KBI) Keyboard Module During Break Interrupts MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Keyboard Interrupt Module (KBI) 187 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Keyboard Interrupt Module (KBI) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 188 Keyboard Interrupt Module (KBI) MOTOROLA 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 15.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192 15.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 15.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193 15.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193 15.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the configuration 1 (CONFIG1) register. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 189 R E Q U I R E D 15.1 Contents A G R E E M E N T Section 15. Computer Operating Properly (COP) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 15.3 Functional Description SIM MODULE RESET VECTOR FETCH RESET STATUS REGISTER COP TIMEOUT CLEAR STAGES 5–12 CLEAR ALL STAGES INTERNAL RESET SOURCES(1) SIM RESET CIRCUIT 12-BIT SIM COUNTER BUSCLKX4 A G R E E M E N T R E Q U I R E D Computer Operating Properly (COP) COPCTL WRITE COP CLOCK COP MODULE 6-BIT COP COUNTER COPEN (FROM SIM) COPD (FROM CONFIG1) RESET COPCTL WRITE CLEAR COP COUNTER N O N - D I S C L O S U R E COP RATE SELECT (COPRS FROM CONFIG1) 1. See Section 7. System Integration Module (SIM) for more details. Figure 15-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by the 12-bit system integration module (SIM) counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 BUSCLKX4 cycles; depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 218 – 24 BUSCLKX4 cycle overflow option, a 8-MHz crystal gives a COP timeout period of 32.766 ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12–5 of the SIM counter. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 190 Computer Operating Properly (COP) MOTOROLA A COP reset pulls the RST pin low for 32 × BUSCLKX4 cycles and sets the COP bit in the reset status register (RSR). See 7.9.1 SIM Reset Status Register. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 15.4 I/O Signals The following paragraphs describe the signals shown in Figure 15-1. 15.4.1 BUSCLKX4 BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is equal to the crystal frequency or the RC-oscillator frequency. 15.4.2 COPCTL Write Writing any value to the COP control register (COPCTL) (see 15.5 COP Control Register) clears the COP counter and clears bits 12–5 of the SIM counter. Reading the COP control register returns the low byte of the reset vector. 15.4.3 Power-On Reset The power-on reset (POR) circuit in the SIM clears the SIM counter 4096 × BUSCLKX4 cycles after power up. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 191 A G R E E M E N T Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. N O N - D I S C L O S U R E NOTE: R E Q U I R E D Computer Operating Properly (COP) I/O Signals R E Q U I R E D Computer Operating Properly (COP) 15.4.4 Internal Reset An internal reset clears the SIM counter and the COP counter. 15.4.5 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the SIM counter. N O N - D I S C L O S U R E A G R E E M E N T 15.4.6 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the configuration register (CONFIG). See Section 5. Configuration Register (CONFIG). 15.4.7 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the configuration register 1 (CONFIG1). See Section 5. Configuration Register (CONFIG). 15.5 COP Control Register The COP control register (COPCTL) is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: LOW BYTE OF RESET VECTOR Write: CLEAR COP COUNTER Reset: Unaffected by reset 2 1 Bit 0 Figure 15-2. COP Control Register (COPCTL) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 192 Computer Operating Properly (COP) MOTOROLA 15.6 Interrupts The COP does not generate CPU interrupt requests. 15.7 Monitor Mode The COP is disabled in monitor mode when VTST is present on the IRQ pin. The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 15.8.1 Wait Mode The COP continues to operate during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter. 15.8.2 Stop Mode Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM counter. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. 15.9 COP Module During Break Mode The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Computer Operating Properly (COP) 193 N O N - D I S C L O S U R E A G R E E M E N T 15.8 Low-Power Modes R E Q U I R E D Computer Operating Properly (COP) Interrupts N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Computer Operating Properly (COP) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 194 Computer Operating Properly (COP) MOTOROLA 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198 16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 16.5 LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199 16.6 LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200 16.2 Introduction This section describes the low-voltage inhibit (LVI) module, which monitors the voltage on the VDD pin and can force a reset when the VDD voltage falls below the LVI trip falling voltage, VTRIPF. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) 195 R E Q U I R E D 16.1 Contents A G R E E M E N T Section 16. Low-Voltage Inhibit (LVI) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 A G R E E M E N T R E Q U I R E D Low-Voltage Inhibit (LVI) 16.3 Features Features of the LVI module include: • Programmable LVI reset • Programmable power consumption • Selectable LVI trip voltage • Programmable stop mode operation 16.4 Functional Description Figure 16-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVI5OR3, and LVIRSTD are user selectable options found in the configuration register (CONFIG1). See Section 5. Configuration Register (CONFIG). VDD STOP INSTRUCTION LVISTOP FROM CONFIG FROM CONFIG N O N - D I S C L O S U R E LVIRSTD LVIPWRD FROM CONFIG VDD > LVITRIP = 0 LOW VDD DETECTOR LVI RESET VDD ≤ LVITRIP = 1 LVIOUT LVI5OR3 FROM CONFIG Figure 16-1. LVI Module Block Diagram The LVI is enabled out of reset. The LVI module contains a bandgap reference circuit and comparator. Clearing the LVI power disable bit, LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI reset disable bit, LVIRSTD, enables the LVI module to generate a reset when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 196 Low-Voltage Inhibit (LVI) MOTOROLA After a power-on reset, the LVI’s default mode of operation is 3 volts. If a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip point to 5-V operation. If the user requires 5-V mode and sets the LVI5OR3 bit after power-on reset while the VDD supply is not above the VTRIPR for 5-V mode, the microcontroller unit (MCU) will immediately go into reset. The next time the LVI releases the reset, the supply will be above the VTRIPR for 5-V mode. Once an LVI reset occurs, the MCU remains in reset until VDD rises above a voltage, VTRIPR, which causes the MCU to exit reset. See Section 7. System Integration Module (SIM) for the reset recovery sequence. The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and can be used for polling LVI operation when the LVI reset is disabled. 16.4.1 Polled LVI Operation In applications that can operate at VDD levels below the VTRIPF level, software can monitor VDD by polling the LVIOUT bit. In the configuration register, the LVIPWRD bit must be at logic 0 to enable the LVI module, and the LVIRSTD bit must be at logic 1 to disable LVI resets. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) 197 A G R E E M E N T NOTE: N O N - D I S C L O S U R E mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage, VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit enables the trip point voltage, VTRIPF, to be configured for 3-V operation. The actual trip thresholds are specified in 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics. R E Q U I R E D Low-Voltage Inhibit (LVI) Functional Description 16.4.2 Forced Reset Operation In applications that require VDD to remain above the VTRIPF level, enabling LVI resets allows the LVI module to reset the MCU when VDD falls below the VTRIPF level. In the configuration register, the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI module and to enable LVI resets. 16.4.3 Voltage Hysteresis Protection Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI will maintain a reset condition until VDD rises above the rising trip point voltage, VTRIPR. This prevents a condition in which the MCU is continually entering and exiting reset if VDD is approximately equal to VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS. 16.4.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection. NOTE: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Low-Voltage Inhibit (LVI) The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than this. See 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics for the actual trip point voltages. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 198 Low-Voltage Inhibit (LVI) MOTOROLA The LVI status register (LVISR) indicates if the VDD voltage was detected below the VTRIPF level while LVI resets have been disabled. Address: $FE0C Bit 7 Read: LVIOUT 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 R 0 0 0 0 0 0 0 Write: Reset: 0 = Unimplemented R = Reserved Figure 16-2. LVI Status Register (LVISR) LVIOUT — LVI Output Bit This read-only flag becomes set when the VDD voltage falls below the VTRIPF trip voltage and is cleared when VDD voltage rises above N O N - D I S C L O S U R E VTRIPR. The difference in these threshold levels results in a hysteresis that prevents oscillation into and out of reset (see Table 16-1). Reset clears the LVIOUT bit. Table 16-1. LVIOUT Bit Indication VDD LVIOUT VDD > VTRIPR 0 VDD < VTRIPF 1 VTRIPF < VDD < VTRIPR Previous value MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Low-Voltage Inhibit (LVI) A G R E E M E N T 16.5 LVI Status Register R E Q U I R E D Low-Voltage Inhibit (LVI) LVI Status Register 199 R E Q U I R E D Low-Voltage Inhibit (LVI) 16.6 LVI Interrupts The LVI module does not generate interrupt requests. 16.7 Low-Power Modes The STOP and WAIT instructions put the MCU in low powerconsumption standby modes. If enabled, the LVI module remains active in wait mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of wait mode. 16.7.2 Stop Mode When the LVIPWRD bit in the configuration register is cleared and the LVISTOP bit in the configuration register is set, the LVI module remains active in stop mode. If enabled to generate resets, the LVI module can generate a reset and bring the MCU out of stop mode. N O N - D I S C L O S U R E A G R E E M E N T 16.7.1 Wait Mode MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 200 Low-Voltage Inhibit (LVI) MOTOROLA 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 17.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204 17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204 17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204 17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205 17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206 17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209 17.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 17.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Break Module (BREAK) 201 R E Q U I R E D 17.1 Contents A G R E E M E N T Section 17. Break Module (BREAK) N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 17.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break Interrupt • Central processor unit (CPU) generated break interrupts • Software-generated break interrupts • Computer operating properly (COP) disabling during break interrupts 17.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Break Module (BREAK) • A CPU generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation. Figure 17-1 shows the structure of the break module. Figure 17-2 provides a summary of the I/O registers. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 202 Break Module (BREAK) MOTOROLA Break Module (BREAK) Functional Description R E Q U I R E D ADDRESS BUS[15:8] BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR ADDRESS BUS[15:0] CONTROL BKPT (TO SIM) 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW Addr. Register Name $FE00 Read: Break Status Register (BSR) Write: See page 208. Reset: $FE02 Read: Break Auxiliary Register (BRKAR) Write: See page 207. Reset: Read: Break Flag Control Register (BFCR) Write: See page 209. Reset: $FE03 $FE09 Read: Break Address High Register (BRKH) Write: See page 206. Reset: $FE0A Read: Break Address Low Register (BRKL) Write: See page 206. Reset: Read: Break Status and Control $FE0B Register (BRKSCR) Write: See page 205. Reset: 1. Writing a logic 0 clears SBSW. Bit 7 6 5 4 3 2 R R R R R R 1 Bit 0 SBSW Note(1) R 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 BCFE R R R R R R R Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 = Unimplemented R 0 = Reserved Figure 17-2. Break I/O Register Summary MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Break Module (BREAK) 203 N O N - D I S C L O S U R E Figure 17-1. Break Module Block Diagram A G R E E M E N T ADDRESS BUS[7:0] R E Q U I R E D Break Module (BREAK) 17.4.1 Flag Protection During Break Interrupts The system integration module (SIM) controls whether or not module status bits can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. See 7.9.2 Break Flag Control Register and the Break Interrupts subsection for each module. 17.4.2 CPU During Break Interrupts A G R E E M E N T The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 17.4.3 TIM During Break Interrupts N O N - D I S C L O S U R E A break interrupt stops the timer counter. 17.4.4 COP During Break Interrupts The COP is disabled during a break interrupt with monitor mode when BDCOP bit is set in break auxiliary register (BRKAR). MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 204 Break Module (BREAK) MOTOROLA Break Module (BREAK) Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • Break status register (BSR) • Break flag control register (BFCR) 17.5.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: $FE0B Bit 7 6 BRKE BRKA 0 0 Read: 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 Write: Reset: A G R E E M E N T R E Q U I R E D 17.5 Break Module Registers Figure 17-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = Break address match 0 = No break address match MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Break Module (BREAK) 205 N O N - D I S C L O S U R E = Unimplemented R E Q U I R E D Break Module (BREAK) 17.5.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: $FE09 Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0 0 0 0 0 0 0 0 Read: Write: A G R E E M E N T Reset: Figure 17-4. Break Address Register High (BRKH) Address: $FE0A Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0 0 0 0 0 0 0 0 Read: Write: Reset: N O N - D I S C L O S U R E Figure 17-5. Break Address Register Low (BRKL) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 206 Break Module (BREAK) MOTOROLA 17.5.3 Break Auxiliary Register The break auxiliary register (BRKAR) contains a bit that enables software to disable the COP while the MCU is in a state of break interrupt with monitor mode. Address: $FE02 Read: Bit 7 6 5 4 3 2 1 0 0 0 0 0 0 0 Bit 0 BDCOP R E Q U I R E D Break Module (BREAK) Break Module Registers Reset: 0 0 0 0 0 0 0 0 = Unimplemented Figure 17-6. Break Auxiliary Register (BRKAR) BDCOP — Break Disable COP Bit N O N - D I S C L O S U R E This read/write bit disables the COP during a break interrupt. Reset clears the BDCOP bit. 1 = COP disabled during break interrupt 0 = COP enabled during break interrupt. A G R E E M E N T Write: MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Break Module (BREAK) 207 17.5.4 Break Status Register The break status register (BSR) contains a flag to indicate that a break caused an exit from wait mode. This register is only used in emulation mode. Address: $FE00 Bit 7 6 5 4 3 2 R R R R R R Read: A G R E E M E N T R E Q U I R E D Break Module (BREAK) 1 Bit 0 SBSW Write: Note(1) Reset: 0 R = Reserved R 1. Writing a logic 0 clears SBSW. Figure 17-7. Break Status Register (BSR) SBSW — SIM Break Stop/Wait This status bit is useful in applications requiring a return to wait mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Wait mode was exited by break interrupt 0 = Wait mode was not exited by break interrupt N O N - D I S C L O S U R E SBSW can be read within the break state SWI routine. The user can modify the return address on the stack by subtracting one from it. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 208 Break Module (BREAK) MOTOROLA Address: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R Read: Write: Reset: 0 R = Reserved Figure 17-8. Break Flag Control Register (BFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break 17.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. If enabled, the break module will remain enabled in wait and stop modes. However, since the internal address bus does not increment in these modes, a break interrupt will never be triggered. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Break Module (BREAK) 209 A G R E E M E N T The break control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. N O N - D I S C L O S U R E 17.5.5 Break Flag Control Register R E Q U I R E D Break Module (BREAK) Low-Power Modes N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Break Module (BREAK) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 210 Break Module (BREAK) MOTOROLA 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 18.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212 18.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213 18.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 18.6 5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214 18.7 5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 18.8 5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216 18.9 3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217 18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219 18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221 18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 18.2 Introduction This section contains electrical and timing specifications. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications 211 R E Q U I R E D 18.1 Contents A G R E E M E N T Section 18. Electrical Specifications N O N - D I S C L O S U R E Data Sheet — MC68HC908QY4 18.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the microcontroller unit (MCU) can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 18.6 5-V DC Electrical Characteristics and 18.9 3-V DC Electrical Characteristics for guaranteed operating conditions. Characteristic(1) A G R E E M E N T R E Q U I R E D Electrical Specifications Symbol Value Unit Supply voltage VDD –0.3 to +6.0 V Input voltage VIN VSS –0.3 to VDD +0.3 V VTST VSS – 0.3 to +9.1 V I ±15 mA IPTA0—IPTA5 ±25 mA Storage temperature TSTG –55 to +150 °C Maximum current out of VSS IMVSS 100 mA Maximum current into VDD IMVDD 100 mA Mode entry voltage, IRQ pin Maximum current per pin excluding PTA0–PTA5, VDD, and VSS N O N - D I S C L O S U R E Maximum current for pins PTA0–PTA5 1. Voltages references to VSS. NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 212 Electrical Specifications MOTOROLA Operating temperature range Operating voltage range Symbol Value Unit TA – 40 to +125 – 40 to +85 – 40 to +125 – 40 to +85 °C VDD 5 V ± 10% 3 V ± 10% V 18.5 Thermal Characteristics Characteristic Symbol Value Unit Thermal resistance 8-pin PDIP 8-pin SOIC 16-pin PDIP 16-pin SOIC 16-pin TSSOP θJA I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273°C) W Constant(2) K Average junction temperature Maximum junction temperature 95 70 66 70 70 PD x (TA + 273°C) °C/W + PD2 x θJA W/°C TJ TA + (PD x θJA) °C TJM 100 °C 1. Power dissipation is a function of temperature. 2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications 213 A G R E E M E N T Characteristic N O N - D I S C L O S U R E 18.4 Functional Operating Range R E Q U I R E D Electrical Specifications Functional Operating Range N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 18.6 5-V DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max VDD –0.4 VDD –1.5 VDD –0.8 — — — — — — — — — — — — 0.4 1.5 0.8 Unit Output high voltage ILoad = –2.0 mA, all I/O pins ILoad = –10.0 mA, all I/O pins ILoad = –15.0 mA, PTA0–PTA5 only VOH Output low voltage ILoad = 1.6 mA, all I/O pins ILoad = 10.0 mA, all I/O pins ILoad = 15.0 mA, PTA0–PTA5 only VOL Input high voltage PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1 VIH 0.7 x VDD — VDD V Input low voltage PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1 VIL VSS — 0.3 x VDD V DC injection current, all ports IINJ –2 — +2 mA IINJTOT –25 — +25 mA — 7 10 mA — 5 5.5 mA — 0.1 5 µA Total dc current injection (sum of all I/O) V V VDD supply current Run, fOP = 4 MHz(3) (4) Wait Stop(5), – 40°C to 85°C IDD Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR rearm voltage(6) VPOR 0 — 100 mV POR rise time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST VDD + 2.5 — 9.1 V Pullup resistors(8) RST, IRQ, PTA0–PTA5, PTB0–PTB7 RPU 16 26 36 kΩ VTRIPF 3.90 4.20 4.50 V Low-voltage inhibit reset, trip falling voltage Continued on next page MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 214 Electrical Specifications MOTOROLA Min Typ(2) Max Unit Low-voltage inhibit reset, trip rising voltage VTRIPR 4.00 4.30 4.60 V Low-voltage inhibit reset/recover hysteresis VHYS — 100 — mV 1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. 5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as inputs with pullups enabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. R PU1 and RPU2 are measured at VDD = 5.0 V. 18.7 5-V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 8 MHz RST input pulse width low(3) tIRL 750 — ns 1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications 215 A G R E E M E N T Symbol N O N - D I S C L O S U R E Characteristic(1) R E Q U I R E D Electrical Specifications 5-V Control Timing 18.8 5-V Oscillator Characteristics Characteristic Symbol Min Typ Max Unit Internal oscillator frequency fINTCLK — 12.8 — MHz Crystal frequency, XTALCLK fOSCXCLK 1 — 32 MHz fRCCLK 2 — 12 MHz fOSCXCLK dc — 32 MHz Crystal load capacitance (2) CL — — — — Crystal fixed capacitance(2) C1 — 2 x CL — — Crystal tuning capacitance(2) C2 — 2 x CL — — Feedback bias resistor RB — 10 — MΩ Series resistor(2), (3) RS — — — — RC oscillator frequency, RCCLK External clock reference frequency(1) REXT RC oscillator external resistor See Figure 18-1 — 1. No more than 10% duty cycle deviation from 50%. 2. Consult crystal vendor data sheet. 3. Not required for high frequency crystals 14 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 5 V @ 25°C RC FREQUENCY, fRCCLK (MHz) 12 MCU 10 OSC1 8 6 VDD 4 REXT 2 0 0 10 20 30 40 50 Resistor, REXT (kΩ) Figure 18-1. RC versus Frequency (5 Volts @ 25°C) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 216 Electrical Specifications MOTOROLA 18.9 3-V DC Electrical Characteristics Typ(2) Max VDD –0.3 VDD – 1.0 VDD – 0.6 — — — — — — Unit Output high voltage ILoad = –0.6 mA, all I/O pins ILoad = –4.0 mA, all I/O pins ILoad = –10.0 mA, PTA0–PTA4 only VOH Output low voltage ILoad = 0.5 mA, all I/O pins ILoad = 6.0 mA, all I/O pins ILoad = 10.0 mA, PTA0-PTA5 only VOL — — — — — — 0.3 1.0 0.6 V Input high voltage PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1 VIH 0.7 x VDD — VDD V Input low voltage PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1 VIL VSS — 0.3 x VDD V DC injection current, all ports IINJ –2 — +2 mA IINJTOT –25 — +25 mA — 5 8 mA — 1 2.5 mA — 0.1 5 µA Total dc current injection (sum of all I/O) V A G R E E M E N T Min Symbol VDD supply current Run, fOP = 2 MHz(3) Wait, fOP = 2 MHz Stop (4) IDD (5) ,– 40°C to 85°C Digital I/O ports Hi-Z leakage current IIL — — ± 10 µA Input leakage current IIN — — ±1 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR rearm voltage(6) VPOR 0 — 100 mV POR rise time ramp rate(7) RPOR 0.035 — — V/ms Monitor mode entry voltage VTST VDD + 2.5 — VDD + 4.0 V Pullup resistors(8) RST, IRQ, PTA0–PTA5, PTB0–PTB7 RPU 16 26 36 kΩ VTRIPF 2.40 2.55 2.70 V Low-voltage inhibit reset, trip falling voltage Continued on next page MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications 217 N O N - D I S C L O S U R E Characteristic(1) R E Q U I R E D Electrical Specifications 3-V DC Electrical Characteristics N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications Characteristic(1) Symbol Min Typ(2) Max Unit Low-voltage inhibit reset, trip rising voltage VTRIPR 2.50 2.65 2.80 V Low-voltage inhibit reset/recover hysteresis VHYS — 60 — mV 1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25°C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOP = 4 MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. 5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured as inputs with pullups enabled. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum V DD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. 8. RPU1 and RPU2 are measured at VDD = 5.0 V 18.10 3-V Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 4 MHz RST input pulse width low(3) tIRL 1.5 — µs 1. V DD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 218 Electrical Specifications MOTOROLA Electrical Specifications 3-V Oscillator Characteristics Symbol Min Typ Max Unit Internal oscillator frequency fINTCLK — 12.8 — MHz Crystal frequency, XTALCLK fOSCXCLK 1 — 16 MHz fRCCLK 2 — 12 MHz fOSCXCLK dc — 16 MHz Crystal load capacitance (2) CL — — — — Crystal fixed capacitance(2) C1 — 2 x CL — — Crystal tuning capacitance(2) C2 — 2 x CL — — Feedback bias resistor RB — 10 — MΩ Series resistor(2), (3) RS — — — — RC oscillator frequency, RCCLK External clock reference frequency(1) REXT RC oscillator external resistor See Figure 18-2 A G R E E M E N T Characteristic R E Q U I R E D 18.11 3-V Oscillator Characteristics — 1. No more than 10% duty cycle deviation from 50% 2. Consult crystal vendor data sheet 3. Not required for high frequency crystals 14 N O N - D I S C L O S U R E 3 V @ 25°C 12 RC FREQUENCY, fRCCLK (MHz) MCU 10 OSC1 8 6 VDD REXT 4 2 0 0 10 20 30 RESISTOR, REXT (KΩ) 40 50 Figure 18-2. RC versus Frequency (3 Volts @ 25°C) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications 219 R E Q U I R E D Electrical Specifications 18.12 Typical Supply Currents 14 12 10 8 IDD (mA) 6 4 5.5 V 3.3 V 2 0 A G R E E M E N T 0 1 2 3 4 5 fOP OR fBUS (MHz) 6 7 8 9 Figure 18-3. Typical Operating IDD, with All Modules Turned On (25°C) 2 1.75 1.50 1.25 IDD (mA) 1 0.75 0.5 5.5 V 3.3 V N O N - D I S C L O S U R E 0.25 0 0 1 2 3 4 fOP OR fBUS (MHz) 5 6 7 8 Figure 18-4. Typical Wait Mode IDD, with ADC Turned On (25°C) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 220 Electrical Specifications MOTOROLA Symbol Min Max Unit Comments Supply voltage VDDAD 2.7 (VDD min) 5.5 (VDD max) V — Input voltages VADIN VSS VDD V — Resolution BAD 8 8 Bits — Absolute accuracy AAD ± 0.5 ± 1.5 LSB Includes quantization ADC internal clock fADIC 0.5 1.048 MHz tADIC = 1/fADIC, tested only at 1 MHz Conversion range RAD VSS VDD V — Power-up time tADPU 16 tADIC cycles tADIC = 1/fADIC Conversion time tADC 16 17 tADIC cycles tADIC = 1/fADIC Sample time(1) tADS 5 — tADIC cycles tADIC = 1/fADIC Zero input reading(2) ZADI 00 01 Hex VIN = VSS Full-scale reading(3) FADI FE FF Hex VIN = VDD Input capacitance CADI — 8 pF Not tested — — ±1 µA — Input leakage(3) N O N - D I S C L O S U R E Characteristic 1. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling. 2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 3. The external system error caused by input leakage current is approximately equal to the product of R source and input current. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Electrical Specifications A G R E E M E N T 18.13 Analog-to-Digital Converter Characteristics R E Q U I R E D Electrical Specifications Analog-to-Digital Converter Characteristics 221 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Electrical Specifications 18.14 Memory Characteristics Characteristic Symbol Min Max Unit VRDR 1.3 — V — 1 — MHz FLASH read bus clock frequency fRead(1) 32 k 8M Hz FLASH page erase time <1 K cycles <10 K cycles tErase(2) 1 4 — — ms FLASH mass erase time tMErase(3) 4 — ms FLASH PGM/ERASE to HVEN set up time tnvs 10 — us FLASH high-voltage hold time tnvh 5 — us FLASH high-voltage hold time (mass erase) tnvhl 100 — us FLASH program hold time tpgs 5 — us FLASH program time tPROG 30 40 us FLASH return to read time trcv(4) 1 — us FLASH cumulative program hv period tHV(5) — 4 ms FLASH row erase endurance(6) — 10 k — Cycles FLASH row program endurance(7) — 10 k — Cycles FLASH data retention time(8) — 10 — Years RAM data retention voltage FLASH program bus clock frequency 1. fRead is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG x 32) ≤ tHV max. 6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase/program cycles. 8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 222 Electrical Specifications MOTOROLA 19.1 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 19.3 8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 19.4 8-Pin Small Outline Integrated Circuit Package (Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 19.5 16-Pin Plastic Dual In-Line Package (Case #648D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 19.7 16-Pin Thin Shrink Small Outline Package (Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 N O N - D I S C L O S U R E 19.2 19.2 Introduction This section gives the dimensions for: • 8-pin plastic dual in-line package (PDIP) • 8-pin small outline integrated circuit (SOIC) package • 16-pin PDIP • 16-pin SOIC • 16-pin thin shrink small outline package (TSSOP) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Mechanical Specifications R E Q U I R E D Section 19. Mechanical Specifications A G R E E M E N T Data Sheet — MC68HC908QY4 223 A G R E E M E N T R E Q U I R E D Mechanical Specifications 19.3 8-Pin Plastic Dual In-Line Package (Case #626) 8 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5 -B1 4 DIM A B C D F G H J K L M N F -A- NOTE 2 L C J -TN SEATING PLANE D STYLE 1: 1. AC IN 2. DC + IN 3. DC - IN 4. AC IN 5. GROUND 6. OUTPUT 7. AUXILIARY 8. VCC M K G H 0.13 (0.005) M T A M B MILLIMETERS INCHES MIN MAX MIN MAX 9.40 10.16 0.370 0.400 6.10 6.60 0.240 0.260 3.94 4.45 0.155 0.175 0.38 0.51 0.015 0.020 1.02 1.78 0.040 0.070 2.54 BSC 0.100 BSC 0.76 1.27 0.030 0.050 0.20 0.30 0.008 0.012 2.92 3.43 0.115 0.135 7.62 BSC 0.300 BSC --10 ° --10 ° 0.76 1.01 0.030 0.040 M 19.4 8-Pin Small Outline Integrated Circuit Package (Case #968) 8 LE 5 N O N - D I S C L O S U R E Q1 E HE M× 1 4 L Z DETAIL P D e NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSION D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 (0.018). A1 A P b 0.13 (0.005) c M 0.10 (0.004) DIM A A1 b c D E e HE L LE M Q1 Z MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.18 0.27 5.10 5.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 0° 10° 0.70 0.90 --0.94 INCHES MIN MAX --- 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.201 0.217 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 0° 10° 0.028 0.035 --- 0.037 MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 224 Mechanical Specifications MOTOROLA Mechanical Specifications 16-Pin Plastic Dual In-Line Package (Case #648D) NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 5. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.25 (0.010). 6. ROUNDED CORNERS OPTIONAL. 9 -B1 8 F L C S -T- SEATING PLANE K H G M J D 16 PL 0.25 (0.010) M T B S A S DIM A B C D F G H J K L M S INCHES MILLIMETERS MIN MAX MIN MAX 0.740 0.760 18.80 19.30 0.245 0.260 6.23 6.60 0.145 0.175 3.69 4.44 0.015 0.021 0.39 0.53 0.050 0.070 1.27 1.77 0.100 BSC 2.54 BSC 0.050 BSC 1.27 BSC 0.008 0.015 0.21 0.38 0.120 0.140 3.05 3.55 0.295 0.305 7.50 7.74 0° 10 ° 0° 10 ° 0.015 0.035 0.39 0.88 A G R E E M E N T -A16 R E Q U I R E D 19.5 16-Pin Plastic Dual In-Line Package (Case #648D) 19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G) q 9 1 8 h X 45 ° H E 0.25 8X M B M 16 16X M 14X e T A S B S L A 0.25 B B A1 SEATING PLANE T C NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. N O N - D I S C L O S U R E A D MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.40 1.00 q 0° 7° MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Mechanical Specifications 225 R E Q U I R E D Mechanical Specifications 19.7 16-Pin Thin Shrink Small Outline Package (Case #948F) 16X K REF 0.10 (0.004) M T U 0.15 (0.006) T U V S S S K K1 2X L/2 16 9 J1 B -U- L SECTION N-N J PIN 1 IDENT. 8 1 N A G R E E M E N T 0.25 (0.010) 0.15 (0.006) T U S A -V- M NOTES: 4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 5. CONTROLLING DIMENSION: MILLIMETER. 6. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 7. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 8. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 9. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 10. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. N F DETAIL E -W- C 0.10 (0.004) -T- SEATING H D DETAIL E G MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.18 0.28 0.007 0.011 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0° 8° 0° 8° N O N - D I S C L O S U R E PLANE DIM A B C D F G H J J1 K K1 L M MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 226 Mechanical Specifications MOTOROLA Section 20. Ordering Information 20.1 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 20.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 A G R E E M E N T 20.2 R E Q U I R E D Data Sheet — MC68HC908QY4 20.2 Introduction This section contains ordering numbers for MC68HC908QY1, MC68HC908QY2, MC68HC908QY4, MC68HC908QT1, MC68HC908QT2, and MC69HC908QT4. 20.3 MC Order Numbers MC Order Number ADC FLASH Memory MC68HC908QY1 — 1536 bytes MC68HC908QY2 Yes 1536 bytes MC68HC908QY4 Yes 4096 bytes MC68HC908QT1 — 1536 bytes MC68HC908QT2 Yes 1536 bytes MC68HC908QT4 Yes 4096 bytes N O N - D I S C L O S U R E Table 20-1. MC Order Numbers Package 16-pins PDIP, SOIC, and TSSOP 8-pins PDIP or SOIC Temperature and package designators: C = –40°C to +85°C V = –40°C to +105°C (available for VDD = 5 V only) M = –40°C to +125°C (available for VDD = 5 V only) P = Plastic dual in-line package (PDIP) DW = Small outline integrated circuit package (SOIC) DT = Thin shrink small outline package (TSSOP) MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 MOTOROLA Ordering Information 227 N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D Ordering Information MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1 228 Ordering Information MOTOROLA N O N - D I S C L O S U R E A G R E E M E N T R E Q U I R E D R E Q U I R E D A G R E E M E N T HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: http://www.motorola.com/semiconductors liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or N O N - D I S C L O S U R E death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2002 MC68HC908QY4/D