TI 5962-9088108QPA

M68HC08
Microcontrollers
MC68HC908QY4/D
9/2002
WWW.MOTOROLA.COM/SEMICONDUCTORS
R E Q U I R E D
A G R E E M E N T
Data Sheet
N O N - D I S C L O S U R E
MC68HC908QY4
MC68HC908QT4
MC68HC908QY2
MC68HC908QT2
MC68HC908QY1
MC68HC908QT1
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
R E Q U I R E D
Data Sheet
To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://motorola.com/semiconductors
The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.
Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc.
DigitalDNA is a trademark of Motorola, Inc.
© Motorola, Inc., 2002
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
3
N O N - D I S C L O S U R E
A G R E E M E N T
MC68HC908QY4
MC68HC908QT4
MC68HC908QY2
MC68HC908QT2
MC68HC908QY1
MC68HC908QT1
Revision History
Date
Revision
Level
September,
2002
N/A
Description
Initial release
Page
Number(s)
N/A
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Revision History
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
4
MOTOROLA
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 25
Section 2. Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Section 3. Random-Access Memory (RAM) . . . . . . . . . . 43
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 45
Section 5. Configuration Register (CONFIG) . . . . . . . . . 55
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 59
Section 7. System Integration Module (SIM) . . . . . . . . . 75
R E Q U I R E D
List of Sections
A G R E E M E N T
Data Sheet — MC68HC908QY4
Section 9. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . . 113
Section 10. Timer Interface Module (TIM) . . . . . . . . . . . 129
Section 11. Analog-to-Digital Converter (ADC) . . . . . . 151
Section 12. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 161
Section 13. External Interrupt (IRQ) . . . . . . . . . . . . . . . 171
Section 14. Keyboard Interrupt Module (KBI). . . . . . . . 177
Section 15. Computer Operating Properly (COP) . . . . 189
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
List of Sections
5
N O N - D I S C L O S U R E
Section 8. Oscillator Module (OSC). . . . . . . . . . . . . . . . 101
List of Sections
R E Q U I R E D
Section 16. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 195
Section 17. Break Module (BREAK) . . . . . . . . . . . . . . . 201
Section 18. Electrical Specifications. . . . . . . . . . . . . . . 211
Section 19. Mechanical Specifications . . . . . . . . . . . . . 223
N O N - D I S C L O S U R E
A G R E E M E N T
Section 20. Ordering Information . . . . . . . . . . . . . . . . . 227
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
6
List of Sections
MOTOROLA
1.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
1.7
Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Section 2. Memory
2.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Section 3. Random-Access Memory (RAM)
3.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
7
R E Q U I R E D
Section 1. General Description
A G R E E M E N T
Table of Contents
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
Table of Contents
A G R E E M E N T
R E Q U I R E D
Section 4. FLASH Memory (FLASH)
4.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.10
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.11
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
N O N - D I S C L O S U R E
Section 5. Configuration Register (CONFIG)
5.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Section 6. Central Processor Unit (CPU)
6.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
8
Table of Contents
MOTOROLA
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Section 7. System Integration Module (SIM)
7.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3
RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79
7.4
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79
7.4.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
7.4.2
Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80
7.5
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81
7.5.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . . 83
7.5.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84
7.6
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85
7.6.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85
7.6.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85
7.7
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
7.7.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
9
A G R E E M E N T
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
N O N - D I S C L O S U R E
6.5
R E Q U I R E D
Table of Contents
Table of Contents
R E Q U I R E D
7.7.2
7.7.2.1
7.7.2.2
7.7.2.3
7.7.3
7.7.4
7.7.5
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93
7.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
7.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
A G R E E M E N T
7.9
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.9.1
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.9.2
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.9.3
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Section 8. Oscillator Module (OSC)
8.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
N O N - D I S C L O S U R E
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4.1
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4.1.1
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103
8.4.1.2
Internal to External Clock Switching. . . . . . . . . . . . . . . . 104
8.4.2
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.3
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.4
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.5
Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
8.5.1
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107
8.5.2
Crystal Amplifier Output Pin
(OSC2/PTA4/BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 108
8.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108
8.5.4
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108
8.5.5
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109
8.5.6
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
10
Table of Contents
MOTOROLA
8.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
8.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
8.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110
8.8
CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.9
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.9.1
Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.9.2
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112
Section 9. Monitor ROM (MON)
9.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4.1
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.4.2
VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.4.3
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.4
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.5
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
9.4.6
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
9.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
Section 10. Timer Interface Module (TIM)
10.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
11
A G R E E M E N T
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109
N O N - D I S C L O S U R E
8.5.7
8.5.8
R E Q U I R E D
Table of Contents
Table of Contents
A G R E E M E N T
R E Q U I R E D
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
10.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134
10.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135
10.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136
10.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137
10.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.7
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.9
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
N O N - D I S C L O S U R E
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141
10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144
10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145
10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148
Section 11. Analog-to-Digital Converter (ADC)
11.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
12
Table of Contents
MOTOROLA
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159
Section 12. Input/Output (I/O) Ports
12.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169
Section 13. External Interrupt (IRQ)
13.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.5
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
13.6
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175
13.7
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
13
A G R E E M E N T
11.7
N O N - D I S C L O S U R E
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
R E Q U I R E D
Table of Contents
Table of Contents
R E Q U I R E D
Section 14. Keyboard Interrupt Module (KBI)
14.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
A G R E E M E N T
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182
14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184
14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185
14.5
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.6
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.7
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187
Section 15. Computer Operating Properly (COP)
15.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
N O N - D I S C L O S U R E
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192
15.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
14
Table of Contents
MOTOROLA
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198
16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
16.6
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
Section 17. Break Module (BREAK)
17.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
17.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204
17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206
17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209
17.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
15
A G R E E M E N T
16.1
N O N - D I S C L O S U R E
Section 16. Low-Voltage Inhibit (LVI)
R E Q U I R E D
Table of Contents
Table of Contents
A G R E E M E N T
R E Q U I R E D
Section 18. Electrical Specifications
18.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
18.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212
18.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213
18.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
18.6
5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214
18.7
5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
18.8
5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216
18.9
3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
N O N - D I S C L O S U R E
Section 19. Mechanical Specifications
19.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
19.3
8-Pin Plastic Dual In-Line Package (Case #626) . . . . . . . . . . 224
19.4
8-Pin Small Outline Integrated Circuit Package
(Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
19.5
16-Pin Plastic Dual In-Line Package (Case #648D) . . . . . . . . 225
19.6
16-Pin Small Outline Integrated Circuit Package
(Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
19.7
16-Pin Thin Shrink Small Outline Package
(Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
16
Table of Contents
MOTOROLA
Section 20. Ordering Information
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
20.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
N O N - D I S C L O S U R E
A G R E E M E N T
20.1
R E Q U I R E D
Table of Contents
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Table of Contents
17
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Table of Contents
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
18
Table of Contents
MOTOROLA
Title
Page
1-1
1-2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
MCU Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2-1
2-2
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . . 36
4-1
4-2
4-3
4-4
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 47
FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . .52
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 53
FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . . 53
5-1
5-2
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 56
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 57
6-1
6-2
6-3
6-4
6-5
6-6
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . .63
7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9
SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
SIM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
List of Figures
19
R E Q U I R E D
Figure
A G R E E M E N T
List of Figures
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
List of Figures
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Figure
Title
Page
7-10
7-11
7-12
7-13
7-14
7-15
7-16
7-17
7-18
7-19
7-20
7-21
7-22
Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . . 89
Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . . 91
Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . . 91
Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . . 92
Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . . 94
Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . . 94
Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Stop Mode Recovery from Interrupt . . . . . . . . . . . . . . . . . . . . . 96
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . . 96
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . . 98
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8-1
8-2
8-3
8-4
XTAL Oscillator External Connections . . . . . . . . . . . . . . . . . .106
RC Oscillator External Connections . . . . . . . . . . . . . . . . . . . . 107
Oscillator Status Register (OSCSTAT). . . . . . . . . . . . . . . . . . 111
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . . . 112
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
Monitor Mode Circuit (External Clock, No High Voltage) . . . .116
Monitor Mode Circuit (Internal Clock, No High Voltage) . . . . .116
Monitor Mode Circuit (External Clock, with High Voltage) . . . 117
Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . .119
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 127
Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10-1
10-2
10-3
10-4
10-5
10-6
10-7
TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
TIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 132
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 136
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 141
TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 144
TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . .144
TIM Channel Status and Control Registers (TSC0:TSC1) . . . 145
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
20
List of Figures
MOTOROLA
Page
10-8
10-9
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 149
11-1
11-2
11-3
11-4
11-5
ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 152
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . .157
ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 159
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 164
Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Port A Input Pullup Enable Register (PTAPUE) . . . . . . . . . . . 166
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 168
Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Port B Input Pullup Enable Register (PTBPUE) . . . . . . . . . . . 169
13-1
13-2
13-3
IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 172
IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 173
IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . .176
14-1
14-2
14-3
14-4
14-5
KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 179
Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 183
Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 184
Auto Wake-up Interrupt Request Generation Logic . . . . . . . . 185
15-1
15-2
COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 192
16-1
16-2
LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 199
17-1
17-2
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 203
Break I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 203
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
List of Figures
21
A G R E E M E N T
Title
N O N - D I S C L O S U R E
Figure
R E Q U I R E D
List of Figures
List of Figures
Title
Page
17-3
17-4
17-5
17-6
17-7
17-8
Break Status and Control Register (BRKSCR). . . . . . . . . . . . 205
Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . .206
Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . .206
Break Auxiliary Register (BRKAR) . . . . . . . . . . . . . . . . . . . . . 207
Break Status Register (BSR) . . . . . . . . . . . . . . . . . . . . . . . . . 208
Break Flag Control Register (BFCR) . . . . . . . . . . . . . . . . . . . 209
18-1
18-2
18-3
18-4
RC versus Frequency (5 Volts @ 25°C) . . . . . . . . . . . . . . . . . 216
RC versus Frequency (3 Volts @ 25°C) . . . . . . . . . . . . . . . . . 219
Typical Operating IDD, with All Modules Turned On (25°C) . . 220
Typical Wait Mode IDD, with ADC Turned On (25°C) . . . . . . . 220
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Figure
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
22
List of Figures
MOTOROLA
Title
Page
1-1
1-2
1-3
Summary of Device Variations . . . . . . . . . . . . . . . . . . . . . . . . . 25
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Function Priority in Shared Pins . . . . . . . . . . . . . . . . . . . . . . . .32
2-1
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4-1
Examples of Protect Start Address. . . . . . . . . . . . . . . . . . . . . . 54
6-1
6-2
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7-1
7-2
7-3
7-4
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
8-1
8-2
OSC2 Pin Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
Oscillator Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
Monitor Mode Signal Requirements and Options . . . . . . . . . . 117
Mode Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 121
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 123
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 124
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 124
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 125
READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 126
RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . .126
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
List of Tables
23
R E Q U I R E D
Table
A G R E E M E N T
List of Tables
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
List of Tables
Title
Page
10-1
10-2
10-3
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 147
11-1
11-2
MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
12-1
12-2
12-3
Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
16-1
LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
20-1
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Table
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
24
List of Tables
MOTOROLA
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
1.7
Pin Function Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
1.2 Introduction
The MC68HC908QY4 is a member of the low-cost, high-performance
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08
Family is a Complex Instruction Set Computer (CISC) with a Von
Neumann architecture. All MCUs in the family use the enhanced
M68HC08 central processor unit (CPU08) and are available with a
variety of modules, memory sizes and types, and package types.
0.4
Table 1-1. Summary of Device Variations
Device
FLASH
Memory Size
Analog-to-Digital
Converter
Pin
Count
MC68HC908QT1
1536 bytes
—
8 pins
MC68HC908QT2
1536 bytes
4 ch, 8 bit
8 pins
MC68HC908QT4
4096 bytes
4 ch, 8 bit
8 pins
MC68HC908QY1
1536 bytes
—
16 pins
MC68HC908QY2
1536 bytes
4 ch, 8 bit
16 pins
MC68HC908QY4
4096 bytes
4 ch, 8 bit
16 pins
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
General Description
25
R E Q U I R E D
1.1 Contents
A G R E E M E N T
Section 1. General Description
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
R E Q U I R E D
General Description
1.3 Features
Features include:
•
High-performance M68HC08 CPU core
•
Fully upward-compatible object code with M68HC05 Family
•
5-V and 3-V operating voltages (VDD)
•
8-MHz internal bus operation at 5 V, 4-MHz at 3 V
•
Trimmable internal oscillator
A G R E E M E N T
– 3.2 MHz internal bus operation
– 8-bit trim capability
– ± 25% untrimmed
– ± 5% trimmed
•
Auto wake-up from STOP capability
•
Configuration (CONFIG) register for MCU configuration options,
including:
N O N - D I S C L O S U R E
– Low-voltage inhibit (LVI) trip point
•
In-system FLASH programming
•
FLASH security(1)
•
On-chip in-application programmable FLASH memory (with
internal program/erase voltage generation)
– MC68HC908QY4 and MC68HC908QT4 — 4096 bytes
– MC68HC908QY2, MC68HC908QY1, MC68HC908QT2, and
MC68HC908QT1 — 1536 bytes
•
128 bytes of on-chip random-access memory (RAM)
•
2-channel, 16-bit timer interface module (TIM)
•
4-channel, 8-bit analog-to-digital converter (ADC) on
MC68HC908QY2, MC68HC908QY4, MC68HC908QT2, and
MC68HC908QT4
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
26
General Description
MOTOROLA
•
5 or 13 bidirectional input/output (I/O) lines and one input only:
– Six shared with keyboard interrupt function and ADC
– Two shared with timer channels
– One shared with external interrupt (IRQ)
– Eight extra I/O lines on 16-pin package only
– High current sink/source capability on all port pins
– Selectable pullups on all ports, selectable on an individual bit
basis
R E Q U I R E D
General Description
Features
6-bit keyboard interrupt with wakeup feature (KBI)
•
Low-voltage inhibit (LVI) module features:
– Software selectable trip point in CONFIG register
•
System protection features:
– Computer operating properly (COP) watchdog
– Low-voltage detection with reset
– Illegal opcode detection with reset
– Illegal address detection with reset
•
External asynchronous interrupt pin with internal pullup (IRQ)
shared with general-purpose input pin
•
Master asynchronous reset pin (RST) shared with
general-purpose input/output (I/O) pin
•
Power-on reset
•
Internal pullups on IRQ and RST to reduce external components
•
Memory mapped I/O registers
•
Power saving stop and wait modes
•
MC68HC908QY4, MC68HC908QY2, and MC68HC908QY1 are
available in these packages:
– 16-pin plastic dual in-line package (PDIP)
– 16-pin small outline integrated circuit (SOIC) package
– 16-pin thin shrink small outline package (TSSOP)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
General Description
27
N O N - D I S C L O S U R E
•
A G R E E M E N T
– Three-state ability on all port pins
General Description
R E Q U I R E D
•
MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are
available in these packages:
– 8-pin PDIP
– 8-pin SOIC
A G R E E M E N T
Features of the CPU08 include the following:
•
Enhanced HC05 programming model
•
Extensive loop control functions
•
16 addressing modes (eight more than the HC05)
•
16-bit index register and stack pointer
•
Memory-to-memory data transfers
•
Fast 8 × 8 multiply instruction
•
Fast 16/8 divide instruction
•
Binary-coded decimal (BCD) instructions
•
Optimization for controller applications
•
Efficient C language support
N O N - D I S C L O S U R E
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908QY4.
1.5 Pin Assignments
The MC68HC908QT4, MC68HC908QT2, and MC68HC908QT1 are
available in 8-pin packages and the MC68HC908QY4,
MC68HC908QY2, and MC68HC908QY1 in 16-pin packages.
Figure 1-2 shows the pin assignment for these packages.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
28
General Description
MOTOROLA
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
VDD
PTB
POWER SUPPLY
VSS
DDRB
PTA0/AD0/TCH0/KBI0
PTA1/AD1/TCH1/KBI1
DDRA
PTA3/RST/KBI3
CPU CONTROL
PTA
PTA2/IRQ/KBI2
ALU
ACCUMULATOR
PTA5/OSC1/AD3/KBI5
CLOCK
GENERATOR
68HC08 CPU
PTA4/OSC2/AD2/KBI4
CPU REGISTERS
INDEX REGISTER
SYSTEM INTEGRATION
MODULE
SINGLE INTERRUPT
MODULE
STACK POINTER
8-BIT ADC
General Description
PROGRAM COUNTER
CONDITION CODE REGISTER
V 1 1 H I N Z C
BREAK
MODULE
POWER-ON RESET
MODULE
16-BIT
TIMER MODULE
128 BYTES RAM
MC68HC908QY4 AND MC68HC908QT4: 4096 BYTES
MC68HC908QY2, MC68HC908QY1, MC68HC908QT2,
AND MC68HC908QT1: 1536 BYTES
USER FLASH
COP
MODULE
MONITOR ROM
RST, IRQ: Pins have internal (about 30K Ohms) pull up
PTA[0:5]: High current sink and source capability
PTA[0:5]: Pins have programmable keyboard interrupt and pull up
PTB[0:7]: Not available on 8-pin devices – MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4
Figure 1-1. Block Diagram
General Description
Pin Assignments
29
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
PTB[0:7]
R E Q U I R E D
General Description
VDD
1
8
VSS
PTA0/TCH0/KBI0
PTA5/OSC1/AD3/KBI5
2
7
PTA0/AD0/TCH0/KBI0
6
PTA1/TCH1/KBI1
PTA4/OSC2/AD2/KBI4
3
6
PTA1/AD1/TCH1/KBI1
5
PTA2/IRQ/KBI2
PTA3/RST/KBI3
4
5
PTA2/IRQ/KBI2
VDD
1
8
VSS
PTA5/OSC1/KBI5
2
7
PTA4/OSC2/KBI4
3
PTA3/RST/KBI3
4
8-PIN ASSIGNMENT
MC68HC908QT2 AND MC68HC908QT4 PDIP/SOIC
A G R E E M E N T
8-PIN ASSIGNMENT
MC68HC908QT1 PDIP/SOIC
VDD
1
16
VSS
PTB0
PTB7
2
15
PTB0
14
PTB1
PTB6
3
14
PTB1
4
13
PTA0/TCH0/KBI0
PTA5/OSC1/AD3/KBI5
4
13
PTA0/AD0/TCH0/KBI0
PTA4/OSC2/KBI4
5
12
PTA1/TCH1/KBI1
PTA4/OSC2/AD2/KBI4
5
12
PTA1/AD1/TCH1/KBI1
PTB5
6
11
PTB2
PTB5
6
11
PTB2
PTB3
PTB4
7
10
PTA3/RST/KBI3
8
9
VDD
1
16
VSS
PTB7
2
15
PTB6
3
PTA5/OSC1/KBI5
PTB4
PTA3/RST/KBI3
7
8
10
9
PTA2/IRQ/KBI2
N O N - D I S C L O S U R E
16-PIN ASSIGNMENT
MC68HC908QY1 PDIP/SOIC
PTB3
PTA2/IRQ/KBI2
16-PIN ASSIGNMENT
MC68HC908QY2 AND MC68HC908QY4 PDIP/SOIC
PTA0/AD0/TCH0/KBI0
1
16
PTA1/AD1/TCH1/KBI1
PTB2
PTB1
2
15
PTB2
14
PTB3
PTB0
3
14
PTB3
4
13
PTA2/IRQ/KBI2
VSS
4
13
PTA2/IRQ/KBI2
VDD
5
12
PTA3/RST/KBI3
VDD
5
12
PTA3/RST/KBI3
PTB7
6
11
PTB4
PTB7
6
11
PTB4
PTB6
7
10
PTB5
PTB6
7
10
PTB5
PTA5/OSC1/KBI5
8
9
PTA5/OSC1/AD3/KBI5
8
9
PTA0/TCH0/KBI0
1
16
PTA1/TCH1/KBI1
PTB1
2
15
PTB0
3
VSS
PTA4/OSC2/KBI4
16-PIN ASSIGNMENT
MC68HC908QY1 TSSOP
PTA4/OSC2/AD2/KBI4
16-PIN ASSIGNMENT
MC68HC908QY2 AND MC68HC908QY4 TSSOP
Figure 1-2. MCU Pin Assignments
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
30
General Description
MOTOROLA
1.6 Pin Functions
Table 1-2 provides a description of the pin functions.
Table 1-2. Pin Functions
Input/Output
VDD
Power supply
Power
VSS
Power supply ground
Power
PTA0 — General purpose I/O port
PTA0
AD0 — A/D channel 0 input
Input
TCH0 — Timer Channel 0 I/O
PTA1
Input/Output
KBI0 — Keyboard interrupt input 0
Input
PTA1 — General purpose I/O port
Input/Output
AD1 — A/D channel 1 input
Input
TCH1 — Timer Channel 1 I/O
PTA2
PTA3
PTA4
PTA5
PTB[0:7](1)
Input/Output
Input/Output
KBI1 — Keyboard interrupt input 1
Input
PTA2 — General purpose input-only port
Input
IRQ — External interrupt with programmable pullup and Schmitt trigger input
Input
KBI2 — Keyboard interrupt input 2
Input
PTA3 — General purpose I/O port
Input/Output
RST — Reset input, active low with internal pullup and Schmitt trigger
Input
KBI3 — Keyboard interrupt input 3
Input
PTA4 — General purpose I/O port
Input/Output
OSC2 — XTAL oscillator output (XTAL option only)
RC or internal oscillator output (OSC2EN = 1 in PTAPUE register)
Output
Output
AD2 — A/D channel 2 input
Input
KBI4 — Keyboard interrupt input 4
Input
PTA5 — General purpose I/O port
Input/Output
OSC1 — XTAL, RC, or external oscillator input
Input
AD3 — A/D channel 3 input
Input
KBI5 — Keyboard interrupt input 5
Input
8 general-purpose I/O ports.
Input/Output
1. The PTB pins are not available on the 8-pin packages.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
General Description
31
A G R E E M E N T
Description
N O N - D I S C L O S U R E
Pin
Name
R E Q U I R E D
General Description
Pin Functions
1.7 Pin Function Priority
Table 1-3 is meant to resolve the priority if multiple functions are enabled
on a single pin.
NOTE:
Upon reset all pins come up as input ports regardless of the priority table.
Table 1-3. Function Priority in Shared Pins
Pin Name
Highest-to-Lowest Priority Sequence
PTA[0]
AD0 → TCH0 → KBI[0] → PTA[0]
PTA[1]
AD1 →TCH1 → KBI[1] → PTA[1]
PTA[2]
IRQ → KBI[2] → PTA[2]
PTA[3]
RST → KBI[3] → PTA[3]
PTA[4]
OSC2 → AD2 → KBI[4] → PTA[4]
PTA[5]
OSC1 → AD3 → KBI[5] → PTA[5]
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
General Description
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
32
General Description
MOTOROLA
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 33
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
2.2 Introduction
The central processor unit (CPU08) can address 64 Kbytes of memory
space. The memory map, shown in Figure 2-1, includes:
•
4096 bytes of user FLASH for MC68HC908QT4 and
MC68HC908QY4
•
1536 bytes of user FLASH for MC68HC908QT2,
MC68HC908QT1, MC68HC908QY2, and MC68HC908QY1
•
128 bytes of random access memory (RAM)
•
48 bytes of user-defined vectors, located in FLASH
•
416 bytes of monitor read-only memory (ROM)
•
1536 bytes of FLASH program and erase routines, located in
ROM
2.3 Unimplemented Memory Locations
Accessing a reserved location can have unpredictable effects on MCU
operation. In Figure 2-1 and in register figures in this document,
unimplemented locations are shaded.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Memory
33
R E Q U I R E D
2.1 Contents
A G R E E M E N T
Section 2. Memory
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Memory
$0000
↓
$003F
I/O REGISTERS
64 BYTES
$0040
↓
$007F
RESERVED
64 BYTES
$0080
↓
$00FF
RAM
128 BYTES
$0100
↓
$27FF
UNIMPLEMENTED
9984 BYTES
UNIMPLEMENTED
9984 BYTES
$0100
↓
$27FF
$2800
↓
$2DFF
AUXILIARY ROM
1536 BYTES
AUXILIARY ROM
1536 BYTES
$2800
↓
$2DFF
$2E00
↓
$EDFF
UNIMPLEMENTED
49152 BYTES
$2E00
UNIMPLEMENTED
51712 BYTES
↓
$F7FF
$EE00
↓
$FDFF
FLASH MEMORY
MC68HC908QT4 AND MC68HC908QY4
4096 BYTES
$FE00
BREAK STATUS REGISTER (BSR)
$FE01
RESET STATUS REGISTER (SRSR)
$FE02
BREAK AUXILIARY REGISTER (BRKAR)
$FE03
BREAK FLAG CONTROL REGISTER (BFCR)
$FE04
INTERRUPT STATUS REGISTER 1 (INT1)
$FE05
INTERRUPT STATUS REGISTER 2 (INT2)
MC68HC908QT1, MC68HC908QT2,
MC68HC908QY1, and MC68HC908QY2
Memory Map
$FE06
INTERRUPT STATUS REGISTER 3 (INT3)
$FE07
RESERVED FOR FLASH TEST CONTROL REGISTER (FLTCR)
$FE08
FLASH CONTROL REGISTER (FLCR)
$FE09
BREAK ADDRESS HIGH REGISTER (BRKH)
$FE0A
BREAK ADDRESS LOW REGISTER (BRKL)
$FE0B
BREAK STATUS AND CONTROL REGISTER (BRKSCR)
$FE0C
LVISR
$FE0D
↓
$FE0F
RESERVED FOR FLASH TEST
3 BYTES
$FE10
↓
$FFAF
MONITOR ROM 416 BYTES
$FFB0
↓
$FFBD
FLASH
14 BYTES
$FFBE
FLASH BLOCK PROTECT REGISTER (FLBPR)
$FFBF
RESERVED FLASH
$FFC0
INTERNAL OSCILLATOR TRIM VALUE
$FFC1
RESERVED FLASH
$FFC2
↓
$FFCF
FLASH
14 BYTES
$FFD0
↓
$FFFF
USER VECTORS
48 BYTES
$F800
↓
$FDFF
FLASH MEMORY
1536 BYTES
Figure 2-1. Memory Map
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
34
Memory
MOTOROLA
Accessing a reserved location can have unpredictable effects on MCU
operation. In Figure 2-1 and in register figures in this document,
reserved locations are marked with the word Reserved or with the
letter R.
2.5 Input/Output (I/O) Section
•
$FE00 — Break status register, BSR
•
$FE01 — Reset status register, SRSR
•
$FE02 — Break auxiliary register, BRKAR
•
$FE03 — Break flag control register, BFCR
•
$FE04 — Interrupt status register 1, INT1
•
$FE05 — Interrupt status register 2, INT2
•
$FE06 — Interrupt status register 3, INT3
•
$FE07 — Reserved
•
$FE08 — FLASH control register, FLCR
•
$FE09 — Break address register high, BRKH
•
$FE0A — Break address register low, BRKL
•
$FE0B — Break status and control register, BRKSCR
•
$FE0C — LVI status register, LVISR
•
$FE0D — Reserved
•
$FFBE — FLASH block protect register, FLBPR
•
$FFC0 — Internal OSC trim value — Optional
•
$FFFF — COP control register, COPCTL
N O N - D I S C L O S U R E
Addresses $0000–$003F, shown in Figure 2-2, contain most of the
control, status, and data registers. Additional I/O registers have these
addresses:
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Memory
A G R E E M E N T
2.4 Reserved Memory Locations
R E Q U I R E D
Memory
Reserved Memory Locations
35
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Memory
Addr.
Register Name
$0000
Read:
Port A Data Register
(PTA) Write:
See page 163.
Reset:
$0001
Read:
Port B Data Register
(PTB) Write:
See page 167.
Reset:
$0002
Unimplemented
$0003
Unimplemented
$0004
$0005
$0006
↓
$000A
Read:
Data Direction Register A
(DDRA) Write:
See page 164.
Reset:
Bit 7
6
5
4
3
0
AWUL
PTA5
PTA4
PTA3
U
0
U
U
U
PTB7
PTB6
PTB5
PTB4
PTB3
2
1
Bit 0
PTA1
PTA0
U
U
U
PTB2
PTB1
PTB0
DDRA1
DDRA0
PTA2
Unaffected by reset
0
0
0
Read:
Data Direction Register B
DDRB7
(DDRB) Write:
See page 168.
Reset:
0
0
DDRA5
DDRA4
DDRA3
0
0
0
0
0
0
0
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
Unimplemented
Unimplemented
Read:
Port A Input Pullup Enable
OSC2EN
$000B
Register (PTAPUE) Write:
See page 166.
Reset:
0
0
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0
0
0
0
0
0
0
Read:
Port B Input Pullup Enable
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0
$000C
Register (PTBPUE) Write:
See page 169.
Reset:
0
0
0
0
0
0
0
0
$000D
↓
$0019
Unimplemented
Unimplemented
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
36
Memory
MOTOROLA
Register Name
Bit 7
6
5
4
3
2
Read:
Keyboard Status and
$001A Control Register (KBSCR) Write:
See page 183.
Reset:
0
0
0
0
KEYF
0
$001B
Read:
Keyboard Interrupt
Enable Register (KBIER) Write:
See page 184.
Reset:
$001C
Unimplemented
$001D
Read:
IRQ Status and Control
Register (INTSCR) Write:
See page 176.
Reset:
$001E
1
Bit 0
IMASKK
MODEK
ACKK
0
0
0
0
0
0
0
0
AWUIE
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
0
0
0
0
IRQF1
0
IMASK1
MODE1
0
0
0
R
R
RSTEN
0
0
0(2)
SSREC
STOP
COPD
0
0
0
PS2
PS1
PS0
0
ACK1
0
Read:
Configuration Register 2
IRQPUD
(1)
(CONFIG2) Write:
See page 56.
Reset:
0
0
0
IRQEN
R
0
0
0
0
OSCOPT1 OSCOPT0
0
0
$001F
Read:
Configuration Register 1
COPRS
(1)
(CONFIG1) Write:
See page 57.
Reset:
0
LVISTOP LVIRSTD LVIPWRD LVI5OR3
0
0
0
0(2)
N O N - D I S C L O S U R E
1. One-time writable register after each reset.
2. RSTEN reset to logic 0 by a power-on reset (POR) only.
1. One-time writable register after each reset.
2. LVI5OR3 reset to logic 0 by a power-on reset (POR) only.
Read:
TIM Status and Control
Register (TSC) Write:
See page 141.
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
TIM Counter Register High
$0021
(TCNTH) Write:
See page 144.
Reset:
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Read:
TIM Counter Register
Low (TCNTL) Write:
See page 144.
Reset:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
$0020
$0022
TOIE
TSTOP
0
0
0
TRST
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Memory
A G R E E M E N T
Addr.
R E Q U I R E D
Memory
Input/Output (I/O) Section
37
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Memory
Addr.
$0023
$0024
Register Name
Read:
TIM Counter Modulo
Register High (TMODH) Write:
See page 144.
Reset:
Read:
TIM Counter Modulo
Register Low (TMODL) Write:
See page 144.
Reset:
Read:
TIM Channel 0 Status and
$0025 Control Register (TSC0) Write:
See page 145.
Reset:
$0026
$0027
Read:
TIM Channel 0
Register High (TCH0H) Write:
See page 149.
Reset:
Read:
TIM Channel 0
Register Low (TCH0L) Write:
See page 149.
Reset:
Read:
TIM Channel 1 Status and
$0028 Control Register (TSC1) Write:
See page 145.
Reset:
$0029
$002A
$002B
↓
$0035
Read:
TIM Channel 1
Register High (TCH1H) Write:
See page 149.
Reset:
Read:
TIM Channel 1
Register Low (TCH1L) Write:
See page 149.
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 2
Bit 1
Bit 0
CH0F
0
Indeterminate after reset
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Indeterminate after reset
CH1F
CH1IE
0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 2
Bit 1
Bit 0
Indeterminate after reset
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Indeterminate after reset
Unimplemented
Unimplemented
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
38
Memory
MOTOROLA
Read:
Oscillator Status Register
(OSCSTAT) Write:
See page 111.
Reset:
$0037
Unimplemented Read:
$0038
Oscillator Trim Register Read:
(OSCTRIM)
Write:
See page 112.
Reset:
5
4
3
2
1
Bit 0
R
R
R
R
R
R
ECGON
0
0
0
0
0
0
0
0
TRIM7
TRIM6
TRIM5
TRIM4
TRIM3
TRIM2
TRIM1
TRIM0
1
0
0
0
0
0
0
0
AIEN
ADCO
CH4
CH3
CH2
CH1
CH0
0
0
0
1
1
1
1
1
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
ECGST
Unimplemented
Read:
ADC Status and Control
Register (ADSCR) Write:
See page 157.
Reset:
$003D
COCO
Unimplemented
Read:
ADC Data Register
(ADR) Write:
See page 159.
Reset:
$003E
Read:
ADC Input Clock Register
$003F
(ADICLK) Write:
See page 159.
Reset:
$FE00
6
Unimplemented
$0039
↓
$003B
$003C
Bit 7
A G R E E M E N T
$0036
Register Name
Read:
Break Status Register
(BSR) Write:
See page 208.
Reset:
N O N - D I S C L O S U R E
Addr.
Indeterminate after reset
0
0
0
0
0
0
0
0
0
0
0
R
R
R
R
ADIV2
ADIV1
ADIV0
0
0
R
R
SBSW
R
See note 1
0
1. Writing a logic 0 clears SBSW.
Read:
SIM Reset Status Register
$FE01
(SRSR) Write:
See page 96.
POR:
POR
PIN
COP
ILOP
ILAD
MODRST
LVI
0
1
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Memory
R E Q U I R E D
Memory
Input/Output (I/O) Section
39
A G R E E M E N T
R E Q U I R E D
Memory
Addr.
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
BDCOP
0
0
0
0
0
0
0
0
BCFE
R
R
R
R
R
R
R
0
IF5
IF4
IF3
0
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 2
$FE05
(INT2) Write:
See page 176.
Reset:
IF14
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 3
$FE06
(INT3) Write:
See page 176.
Reset:
0
0
0
0
0
0
0
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
$FE07
R
R
R
R
R
R
R
R
0
0
0
0
HVEN
MASS
ERASE
PGM
0
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
$FE02
$FE03
Read:
Break Auxiliary
Register (BRKAR) Write:
See page 207.
Reset:
Read:
Break Flag Control
Register (BFCR) Write:
See page 209.
Reset:
Read:
Interrupt Status Register 1
$FE04
(INT1) Write:
See page 176.
Reset:
$FE08
N O N - D I S C L O S U R E
Register Name
$FE09
$FE0A
Reserved
Read:
FLASH Control Register
(FLCR) Write:
See page 47.
Reset:
Read:
Break Address High
Register (BRKH) Write:
See page 206.
Reset:
Read:
Break Address low
Register (BRKL) Write:
See page 206.
Reset:
Read:
Break Status and Control
$FE0B
Register (BRKSCR) Write:
See page 205.
Reset:
0
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
40
Memory
MOTOROLA
Register Name
Read: LVIOUT
LVI Status Register
(LVISR) Write:
See page 199.
Reset:
0
$FE0C
4
3
2
1
Bit 0
0
0
0
0
0
0
R
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Reserved for FLASH Test
R
R
R
R
R
R
R
R
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
0
0
0
0
0
0
0
0
TRIM7
TRIM6
TRIM5
TRIM4
TRIM3
TRIM2
TRIM1
TRIM0
1
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
Unimplemented
Unimplemented
Read:
FLASH Block Protect
Register (FLBPR) Write:
See page 53.
Reset:
$FFBF
Unimplemented
$FFC0
Read:
Internal Oscillator Trim
Write:
Value (Optional)
Reset:
$FFC1
Reserved
0
Unimplemented
$FFC2
↓
$FFCF
$FFFF
5
Reserved for FLASH Test
$FFB0
↓
$FFBD
$FFBE
6
Unimplemented
Read:
COP Control Register
(COPCTL) Write:
See page 192.
Reset:
LOW BYTE OF RESET VECTOR
WRITING CLEARS COP COUNTER (ANY VALUE)
Unaffected by reset
= Unimplemented
R
= Reserved
U = Unaffected
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 6)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Memory
A G R E E M E N T
$FE0D
↓
$FE0F
Bit 7
N O N - D I S C L O S U R E
Addr.
R E Q U I R E D
Memory
Input/Output (I/O) Section
41
Memory
.
R E Q U I R E D
Table 2-1. Vector Addresses
Vector Priority
Vector
Lowest
Address
Vector
$FFDE
ADC conversion complete vector (high)
$FFDF
ADC conversion complete vector (low)
$FFE0
Keyboard vector (high)
$FFE1
Keyboard vector (low)
IF15
IF14
A G R E E M E N T
IF13
↓
IF6
—
Not used
$FFF2
TIM overflow vector (high)
$FFF3
TIM overflow vector (low)
$FFF4
TIM Channel 1 vector (high)
$FFF5
TIM Channel 1 vector (low)
$FFF6
TIM Channel 0 vector (high)
$FFF7
TIM Channel 0 vector (low)
IF5
IF4
IF3
IF2
—
Not used
$FFFA
IRQ vector (high)
$FFFB
IRQ vector (low)
$FFFC
SWI vector (high)
$FFFD
SWI vector (low)
$FFFE
Reset vector (high)
$FFFF
Reset vector (low)
IF1
N O N - D I S C L O S U R E
—
—
Highest
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
42
Memory
MOTOROLA
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Introduction
This section describes the 128 bytes of random-access memory (RAM).
3.3 Functional Description
Addresses $0080–$00FF are RAM locations. The location of the stack
RAM is programmable. The 16-bit stack pointer allows the stack to be
anywhere in the 64-Kbyte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM
locations.
Before processing an interrupt, the central processor unit (CPU) uses
five bytes of the stack to save the contents of the CPU registers.
NOTE:
For M6805, M146805, and M68HC05 compatibility, the H register is not
stacked.
During a subroutine call, the CPU uses two bytes of the stack to store
the return address. The stack pointer decrements during pushes and
increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data
in the RAM during a subroutine or during the interrupt stacking
operation.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Random-Access Memory (RAM)
43
R E Q U I R E D
3.1 Contents
A G R E E M E N T
Section 3. Random-Access Memory (RAM)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Random-Access Memory (RAM)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
44
Random-Access Memory (RAM)
MOTOROLA
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.9
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.10
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.11
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Introduction
This section describes the operation of the embedded FLASH memory.
The FLASH memory can be read, programmed, and erased from a
single external supply. The program and erase operations are enabled
through the use of an internal charge pump.
•
MC68HC908QY4 and MC68HC908QT4: 4096 bytes user FLASH
from $EE00–$FDFF
•
MC68HC908QY2, MC68HC908QT2, MC68HC908QY1 and
MC68HC908QT1: 1536 bytes user FLASH from $F800–$FDFF
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
FLASH Memory (FLASH)
45
R E Q U I R E D
4.1 Contents
A G R E E M E N T
Section 4. FLASH Memory (FLASH)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
4.3 Functional Description
The FLASH memory consists of an array of 4096 or 1536 bytes with an
additional 48 bytes for user vectors. The minimum size of FLASH
memory that can be erased is 64 bytes; and the maximum size of FLASH
memory that can be programmed in a program cycle is 32 bytes (a row).
Program and erase operations are facilitated through control bits in the
FLASH control register (FLCR). Details for these operations appear later
in this section. The address ranges for the user memory and vectors are:
A G R E E M E N T
R E Q U I R E D
FLASH Memory (FLASH)
N O N - D I S C L O S U R E
NOTE:
•
$EE00 – $FDFF; user memory, 4096 bytes: MC68HC908QY4 and
MC68HC908QT4
•
$F800 – $FDFF; user memory, 1536 bytes: MC68HC908QY2,
MC68HC908QT2, MC68HC908QY1 and MC68HC908QT1
•
$FFD0 – $FFFF; user interrupt vectors, 48 bytes.
An erased bit reads as logic 1 and a programmed bit reads as logic 0.
A security feature prevents viewing of the FLASH contents.(1)
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
46
FLASH Memory (FLASH)
MOTOROLA
Address:
Read:
$FE08
Bit 7
6
5
4
0
0
0
0
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
Write:
Reset:
0
0
0
0
Figure 4-1. FLASH Control Register (FLCR)
HVEN — High Voltage Enable Bit
This read/write bit enables high voltage from the charge pump to the
memory for either program or erase operation. It can only be set if
either PGM =1 or ERASE =1 and the proper sequence for program
or erase is followed.
1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
This read/write bit configures the memory for mass erase operation.
1 = Mass Erase operation selected
0 = Mass Erase operation unselected
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Erase operation selected
0 = Erase operation unselected
PGM — Program Control Bit
This read/write bit configures the memory for program operation.
PGM is interlocked with the ERASE bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Program operation selected
0 = Program operation unselected
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
FLASH Memory (FLASH)
47
A G R E E M E N T
The FLASH control register (FLCR) controls FLASH program and erase
operations.
N O N - D I S C L O S U R E
4.4 FLASH Control Register
R E Q U I R E D
FLASH Memory (FLASH)
FLASH Control Register
4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page
consists of 64 consecutive bytes starting from addresses $XX00,
$XX40, $XX80, or $XXC0. The 48-byte user interrupt vectors area also
forms a page. Any FLASH memory page can be erased alone.
1. Set the ERASE bit and clear the MASS bit in the FLASH control
register.
2. Read the FLASH block protect register.
3. Write any data to any FLASH location within the address range of
the block to be erased.
A G R E E M E N T
R E Q U I R E D
FLASH Memory (FLASH)
4. Wait for a time, tnvs (minimum 10 µs).
5. Set the HVEN bit.
6. Wait for a time, tErase (minimum 1 ms or 4 ms).
7. Clear the ERASE bit.
8. Wait for a time, tnvh (minimum 5 µs).
9. Clear the HVEN bit.
N O N - D I S C L O S U R E
10. After time, trcv (typical 1 µs), the memory can be accessed in read
mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory. While these operations
must be performed in the order as shown, but other unrelated operations
may occur between the steps.
In applications that need up to 10,000 program/erase cycles, use the
4 ms page erase specification to get improved long-term reliability. Any
application can use this 4 ms page erase specification. However, in
applications where a FLASH location will be erased and reprogrammed
less than 1000 times, and speed is important, use the 1 ms page erase
specification to get a lower minimum erase time.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
48
FLASH Memory (FLASH)
MOTOROLA
NOTE:
1. Set both the ERASE bit and the MASS bit in the FLASH control
register.
2. Read from the FLASH block protect register.
3. Write any data to any FLASH address(1) within the FLASH
memory address range.
4. Wait for a time, tnvs (minimum 10 µs).
5. Set the HVEN bit.
6. Wait for a time, tErase (minimum 4 ms).
7. Clear the ERASE and MASS bits.
Mass erase is disabled whenever any block is protected (FLBPR does
not equal $FF).
8. Wait for a time, tnvh1 (minimum 100 µs).
9. Clear the HVEN bit.
10. After time, trcv (typical 1 µs), the memory can be accessed in read
mode again.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory. While these operations
must be performed in the order as shown, but other unrelated operations
may occur between the steps.
4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row
consists of 32 consecutive bytes starting from addresses $XX00,
$XX20, $XX40, $XX60, $XX80, $XXA0, $XXC0, or $XXE0. Use the
following step-by-step procedure to program a row of FLASH memory
Figure 4-2 shows a flowchart of the programming algorithm.
NOTE:
Only bytes which are currently $FF may be programmed.
1. When in monitor mode, with security sequence failed (see 9.5 Security), write to the FLASH
block protect register instead of any FLASH address.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
FLASH Memory (FLASH)
49
A G R E E M E N T
Use the following procedure to erase the entire FLASH memory to read
as logic 1:
N O N - D I S C L O S U R E
4.6 FLASH Mass Erase Operation
R E Q U I R E D
FLASH Memory (FLASH)
FLASH Mass Erase Operation
FLASH Memory (FLASH)
R E Q U I R E D
1. Set the PGM bit. This configures the memory for program
operation and enables the latching of address and data for
programming.
2. Read from the FLASH block protect register.
3. Write any data to any FLASH location within the address range
desired.
4. Wait for a time, tnvs (minimum 10 µs).
5. Set the HVEN bit.
6. Wait for a time, tpgs (minimum 5 µs).
A G R E E M E N T
7. Write data to the FLASH address being programmed(1).
8. Wait for time, tPROG (minimum 30 µs).
9. Repeat step 7 and 8 until all desired bytes within the row are
programmed.
10. Clear the PGM bit(1).
11. Wait for time, tnvh (minimum 5 µs).
12. Clear the HVEN bit.
13. After time, trcv (typical 1 µs), the memory can be accessed in read
mode again.
N O N - D I S C L O S U R E
NOTE:
The COP register at location $FFFF should not be written between steps
5-12, when the HVEN bit is set. Since this register is located at a valid
FLASH address, unpredictable behavior may occur if this location is
written while HVEN is set.
This program sequence is repeated throughout the memory until all data
is programmed.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
code being executed from the FLASH memory. While these operations
must be performed in the order shown, other unrelated operations may
occur between the steps. Do not exceed tPROG maximum, see 18.14
Memory Characteristics.
1. The time between each FLASH address change, or the time between the last FLASH address
programmed to clearing PGM bit, must not exceed the maximum programming time, tPROG
maximum.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
50
FLASH Memory (FLASH)
MOTOROLA
NOTE:
In performing a program or erase operation, the FLASH block protect
register must be read after setting the PGM or ERASE bit and before
asserting the HVEN bit.
When the FLBPR is programmed with all 0 s, the entire memory is
protected from being programmed and erased. When all the bits are
erased (all 1’s), the entire memory is accessible for program and erase.
When bits within the FLBPR are programmed, they lock a block of
memory. The address ranges are shown in 4.9 FLASH Block Protect
Register. Once the FLBPR is programmed with a value other than $FF,
any erase or program of the FLBPR or the protected block of FLASH
memory is prohibited. Mass erase is disabled whenever any block is
protected (FLBPR does not equal $FF). The FLBPR itself can be erased
or programmed only with an external voltage, VTST, present on the IRQ
pin. This voltage also allows entry from reset into the monitor mode.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
FLASH Memory (FLASH)
51
A G R E E M E N T
Due to the ability of the on-board charge pump to erase and program the
FLASH memory in the target application, provision is made to protect
blocks of memory from unintentional erase or program operations due to
system malfunction. This protection is done by use of a FLASH block
protect register (FLBPR). The FLBPR determines the range of the
FLASH memory which is to be protected. The range of the protected
area starts from a location defined by FLBPR and ends to the bottom of
the FLASH memory ($FFFF). When the memory is protected, the HVEN
bit cannot be set in either ERASE or PROGRAM operations.
N O N - D I S C L O S U R E
4.8 FLASH Protection
R E Q U I R E D
FLASH Memory (FLASH)
FLASH Protection
FLASH Memory (FLASH)
R E Q U I R E D
Algorithm for Programming
a Row (32 Bytes) of FLASH Memory
1
SET PGM BIT
2 READ THE FLASH BLOCK PROTECT REGISTER
3
WRITE ANY DATA TO ANY FLASH ADDRESS
WITHIN THE ROW ADDRESS RANGE DESIRED
4
WAIT FOR A TIME, tnvs
A G R E E M E N T
5
SET HVEN BIT
6
WAIT FOR A TIME, tpgs
7
WRITE DATA TO THE FLASH ADDRESS
TO BE PROGRAMMED
8
WAIT FOR A TIME, tPROG
N O N - D I S C L O S U R E
9
COMPLETED
PROGRAMMING
THIS ROW?
Y
N
10
11
12
NOTES:
The time between each FLASH address change (step 6 to step 9),
or the time between the last FLASH address programmed
to clearing PGM bit (step 6 to step 9)
must not exceed the maximum programming
time, tPROG max.
13
This row program algorithm assumes the row/s
to be programmed are initially erased.
CLEAR PGM BIT
WAIT FOR A TIME, tnvh
CLEAR HVEN BIT
WAIT FOR A TIME, trcv
END OF PROGRAMMING
Figure 4-2. FLASH Programming Flowchart
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
52
FLASH Memory (FLASH)
MOTOROLA
4.9 FLASH Block Protect Register
The FLASH block protect register is implemented as a byte within the
FLASH memory, and therefore can only be written during a
programming sequence of the FLASH memory. The value in this register
determines the starting address of the protected range within the FLASH
memory.
$FFBE
Bit 7
6
5
4
3
2
1
Bit 0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
U
U
U
U
U
U
U
U
A G R E E M E N T
Read:
Write:
Reset:
U = Unaffected by reset. Initial value from factory is 1.
Write to this register is by a programming sequence to the FLASH memory.
Figure 4-3. FLASH Block Protect Register (FLBPR)
BPR[7:0] — FLASH Protection Register Bits [7:0]
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory
address. Bits [15:14] are logic 1s and bits [5:0] are logic 0s.
The resultant 16-bit address is used for specifying the start address
of the FLASH memory for block protection. The FLASH is protected
from this start address to the end of FLASH memory, at $FFFF. With
this mechanism, the protect start address can be XX00, XX40, XX80,
or XXC0 within the FLASH memory. See Figure 4-4 and Table 4-1.
16-BIT MEMORY ADDRESS
START ADDRESS OF
FLASH BLOCK PROTECT
1
1
FLBPR VALUE
0
0
0
0
0
0
Figure 4-4. FLASH Block Protect Start Address
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
FLASH Memory (FLASH)
53
N O N - D I S C L O S U R E
Address:
R E Q U I R E D
FLASH Memory (FLASH)
FLASH Block Protect Register
FLASH Memory (FLASH)
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Table 4-1. Examples of Protect Start Address
BPR[7:0]
Start of Address of Protect Range
$00–$B8
The entire FLASH memory is protected.
$B9 (1011 1001)
$EE40 (1110 1110 0100 0000)
$BA (1011 1010)
$EE80 (1110 1110 1000 0000)
$BB (1011 1011)
$EEC0 (1110 1110 1100 0000)
$BC (1011 1100)
$EF00 (1110 1111 0000 0000)
and so on...
$DE (1101 1110)
$F780 (1111 0111 1000 0000)
$DF (1101 1111)
$F7C0 (1111 0111 1100 0000)
$FE (1111 1110)
$FF80 (1111 1111 1000 0000)
FLBPR, OSCTRIM, and vectors are protected
$FF
The entire FLASH memory is not protected.
4.10 Wait Mode
Putting the MCU into wait mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly, but there will not
be any memory activity since the CPU is inactive.
The WAIT instruction should not be executed while performing a
program or erase operation on the FLASH, or the operation will
discontinue and the FLASH will be on standby mode.
4.11 Stop Mode
Putting the MCU into stop mode while the FLASH is in read mode does
not affect the operation of the FLASH memory directly, but there will not
be any memory activity since the CPU is inactive.
The STOP instruction should not be executed while performing a
program or erase operation on the FLASH, or the operation will
discontinue and the FLASH will be on standby mode
NOTE:
Standby mode is the power-saving mode of the FLASH module in which
all internal control signals to the FLASH are inactive and the current
consumption of the FLASH is at a minimum.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
54
FLASH Memory (FLASH)
MOTOROLA
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Introduction
This section describes the configuration registers (CONFIG1 and
CONFIG2). The configuration registers enable or disable the following
options:
•
Stop mode recovery time (32 × BUSCLKX4 cycles or
4096 × BUSCLKX4 cycles)
•
STOP instruction
•
Computer operating properly module (COP)
•
COP reset period (COPRS): (213 –24) × BUSCLKX4 or
(218 –24) × BUSCLKX4
•
Low-voltage inhibit (LVI) enable and trip voltage selection
•
OSC option selection
•
IRQ pin
•
RST pin
•
Auto wake-up timeout period
5.3 Functional Description
The configuration registers are used in the initialization of various
options. The configuration registers can be written once after each reset.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Configuration Register (CONFIG)
55
R E Q U I R E D
5.1 Contents
A G R E E M E N T
Section 5. Configuration Register (CONFIG)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
Configuration Register (CONFIG)
R E Q U I R E D
Most of the configuration register bits are cleared during reset. Since the
various options affect the operation of the microcontroller unit (MCU) it
is recommended that this register be written immediately after reset. The
configuration register is located at $001E and $001F, and may be read
at anytime.
NOTE:
The CONFIG registers are one-time writable by the user after each
reset. Upon a reset, the CONFIG registers default to predetermined
settings as shown in Figure 5-1 and Figure 5-2.
A G R E E M E N T
Address: $001E
Bit 7
6
5
4
IRQPUD
IRQEN
R
Reset:
0
0
0
0
POR:
0
0
0
0
3
2
1
Bit 0
R
R
RSTEN
0
0
0
U
0
0
0
0
Read:
Write:
R
= Reserved
OSCOPT1 OSCOPT0
U = Unaffected
Figure 5-1 Configuration Register 2 (CONFIG2)
N O N - D I S C L O S U R E
IRQPUD — IRQ Pin Pullup Control Bit
1 = Internal pullup is disconnected
0 = Internal pullup is connected between IRQ pin and VDD
IRQEN — IRQ Pin Function Selection Bit
1 = Interrupt request function active in pin
0 = Interrupt request function inactive in pin
OSCOPT1 and OSCOPT0 — Selection Bits for Oscillator Option
(0, 0) Internal oscillator
(0, 1) External oscillator
(1, 0) External RC oscillator
(1, 1) External XTAL oscillator
RSTEN — RST Pin Function Selection
1 = Reset function active in pin
0 = Reset function inactive in pin
NOTE:
The RSTEN bit is cleared by a power-on reset (POR) only. Other resets
will leave this bit unaffected.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
56
Configuration Register (CONFIG)
MOTOROLA
Address: $001F
Bit 7
6
5
4
3
2
1
Bit 0
SSREC
STOP
COPD
Read:
COPRS
LVISTOP LVIRSTD LVIPWRD LVI5OR3
Write:
Reset:
0
0
0
0
U
0
0
0
POR:
0
0
0
0
0
0
0
0
R
= Reserved
U = Unaffected
R E Q U I R E D
Configuration Register (CONFIG)
Functional Description
1 = COP reset short cycle = (213 – 24) × BUSCLKX4
0 = COP reset long cycle = (218 – 24) × BUSCLKX4
COPRS (In STOP Mode) — Auto Wake-up Period Selection Bit
1 = Auto wake-up short cycle = (29) × INTRCOSC
0 = Auto wake-up long cycle = (214) × INTRCOSC
LVISTOP — LVI Enable in Stop Mode Bit
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the
LVI to operate during stop mode. Reset clears LVISTOP.
1 = LVI enabled during stop mode
0 = LVI disabled during stop mode
LVIRSTD — LVI Reset Disable Bit
LVIRSTD disables the reset signal from the LVI module.
1 = LVI module resets disabled
0 = LVI module resets enabled
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module.
1 = LVI module power disabled
0 = LVI module power enabled
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Configuration Register (CONFIG)
57
N O N - D I S C L O S U R E
COPRS (Out of STOP Mode) — COP Reset Period Selection Bit
A G R E E M E N T
Figure 5-2 Configuration Register 1 (CONFIG1)
Configuration Register (CONFIG)
R E Q U I R E D
LVI5OR3 — LVI 5-V or 3-V Operating Mode Bit
LVI5OR3 selects the voltage operating mode of the LVI module. The
voltage mode selected for the LVI should match the operating VDD for
the LVI’s voltage trip points for each of the modes.
1 = LVI operates in 5-V mode
0 = LVI operates in 3-V mode
NOTE:
The LVI5OR3 bit is cleared by a power-on reset (POR) only. Other
resets will leave this bit unaffected.
SSREC — Short Stop Recovery Bit
A G R E E M E N T
SSREC enables the CPU to exit stop mode with a delay of
32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay.
1 = Stop mode recovery after 32 BUSCLKX4 cycles
0 = Stop mode recovery after 4096 BUSCLKX4 cycles
NOTE:
Exiting stop mode by an LVI reset will result in the long stop recovery.
When using the LVI during normal operation but disabling during stop
mode, the LVI will have an enable time of tEN. The system
N O N - D I S C L O S U R E
stabilization time for power-on reset and long stop recovery (both
4096 BUSCLKX4 cycles) gives a delay longer than the LVI enable
time for these startup scenarios. There is no period where the MCU is
not protected from a low-power condition. However, when using the
short stop recovery configuration option, the 32 BUSCLKX4 delay
must be greater than the LVI’s turn on time to avoid a period in startup
where the LVI is not protecting the MCU.
STOP — STOP Instruction Enable Bit
STOP enables the STOP instruction.
1 = STOP instruction enabled
0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module.
1 = COP module disabled
0 = COP module enabled
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
58
Configuration Register (CONFIG)
MOTOROLA
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully
object-code-compatible version of the M68HC05 CPU. The CPU08
Reference Manual (Motorola document order number CPU08RM/AD)
contains a description of the CPU instruction set, addressing modes,
and architecture.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
59
R E Q U I R E D
6.1 Contents
A G R E E M E N T
Section 6. Central Processor Unit (CPU)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
6.3 Features
Features of the CPU include:
•
Object code fully upward-compatible with M68HC05 Family
•
16-bit stack pointer with stack manipulation instructions
•
16-bit index register with x-register manipulation instructions
•
8-MHz CPU internal bus frequency
•
64-Kbyte program/data memory space
•
16 addressing modes
•
Memory-to-memory data moves without using accumulator
•
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
•
Enhanced binary-coded decimal (BCD) data handling
•
Modular architecture with expandable internal bus definition for
extension of addressing range beyond 64 Kbytes
•
Low-power stop and wait modes
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of
the memory map.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Central Processor Unit (CPU)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
60
Central Processor Unit (CPU)
MOTOROLA
0
ACCUMULATOR (A)
0
15
H
X
INDEX REGISTER (H:X)
0
15
STACK POINTER (SP)
0
15
PROGRAM COUNTER (PC)
7
0
V 1 1 H I N Z C
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator
Bit 7
6
5
4
3
2
1
N O N - D I S C L O S U R E
The accumulator is a general-purpose 8-bit register. The CPU uses the
accumulator to hold operands and the results of arithmetic/logic
operations.
Bit 0
Read:
Write:
Reset:
Unaffected by reset
Figure 6-2. Accumulator (A)
6.4.2 Index Register
The 16-bit index register allows indexed addressing of a 64-Kbyte
memory space. H is the upper byte of the index register, and X is the
lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the
index register to determine the conditional address of the operand.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
A G R E E M E N T
7
R E Q U I R E D
Central Processor Unit (CPU)
CPU Registers
61
Central Processor Unit (CPU)
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
Read:
Write:
Reset:
X = Indeterminate
Figure 6-3. Index Register (H:X)
6.4.3 Stack Pointer
The stack pointer is a 16-bit register that contains the address of the next
location on the stack. During a reset, the stack pointer is preset to
$00FF. The reset stack pointer (RSP) instruction sets the least
significant byte to $FF and does not affect the most significant byte. The
stack pointer decrements as data is pushed onto the stack and
increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the
stack pointer can function as an index register to access data on the
stack. The CPU uses the contents of the stack pointer to determine the
conditional address of the operand.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
The index register can serve also as a temporary data storage location.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 6-4. Stack Pointer (SP)
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct
address (page 0) space. For correct operation, the stack pointer must
point only to RAM locations.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
62
Central Processor Unit (CPU)
MOTOROLA
Normally, the program counter automatically increments to the next
sequential memory location every time an instruction or operand is
fetched. Jump, branch, and interrupt operations load the program
counter with an address other than that of the next sequential location.
During reset, the program counter is loaded with the reset vector
address located at $FFFE and $FFFF. The vector address is the
address of the first instruction to be executed after exiting the reset state.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
Bit
0
1
Read:
Write:
Reset:
Loaded with Vector from $FFFE and $FFFF
Figure 6-5. Program Counter (PC)
6.4.5 Condition Code Register
The 8-bit condition code register contains the interrupt mask and five
flags that indicate the results of the instruction just executed. Bits 6 and 5
are set permanently to logic 1. The following paragraphs describe the
functions of the condition code register.
Bit 7
6
5
4
3
2
1
Bit 0
V
1
1
H
I
N
Z
C
X
1
1
X
1
X
X
X
Read:
Write:
Reset:
X = Indeterminate
Figure 6-6. Condition Code Register (CCR)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
63
A G R E E M E N T
The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.
N O N - D I S C L O S U R E
6.4.4 Program Counter
R E Q U I R E D
Central Processor Unit (CPU)
CPU Registers
Central Processor Unit (CPU)
R E Q U I R E D
V — Overflow Flag
The CPU sets the overflow flag when a two's complement overflow
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use
the overflow flag.
1 = Overflow
0 = No overflow
H — Half-Carry Flag
A G R E E M E N T
The CPU sets the half-carry flag when a carry occurs between
accumulator bits 3 and 4 during an add-without-carry (ADD) or
add-with-carry (ADC) operation. The half-carry flag is required for
binary-coded decimal (BCD) arithmetic operations. The DAA
instruction uses the states of the H and C flags to determine the
appropriate correction factor.
1 = Carry between bits 3 and 4
0 = No carry between bits 3 and 4
I — Interrupt Mask
N O N - D I S C L O S U R E
When the interrupt mask is set, all maskable CPU interrupts are
disabled. CPU interrupts are enabled when the interrupt mask is
cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but
before the interrupt vector is fetched.
1 = Interrupts disabled
0 = Interrupts enabled
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index
register (H) is not stacked automatically. If the interrupt service routine
modifies H, then the user must stack and unstack H using the PSHH and
PULH instructions.
After the I bit is cleared, the highest-priority interrupt request is
serviced first.
A return-from-interrupt (RTI) instruction pulls the CPU registers from
the stack and restores the interrupt mask from the stack. After any
reset, the interrupt mask is set and can be cleared only by the clear
interrupt mask software instruction (CLI).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
64
Central Processor Unit (CPU)
MOTOROLA
The CPU sets the negative flag when an arithmetic operation, logic
operation, or data manipulation produces a negative result, setting
bit 7 of the result.
1 = Negative result
0 = Non-negative result
Z — Zero flag
The CPU sets the zero flag when an arithmetic operation, logic
operation, or data manipulation produces a result of $00.
1 = Zero result
0 = Non-zero result
C — Carry/Borrow Flag
The CPU sets the carry/borrow flag when an addition operation
produces a carry out of bit 7 of the accumulator or when a subtraction
operation requires a borrow. Some instructions — such as bit test and
branch, shift, and rotate — also clear or set the carry/borrow flag.
1 = Carry out of bit 7
0 = No carry out of bit 7
A G R E E M E N T
N — Negative flag
R E Q U I R E D
Central Processor Unit (CPU)
Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the
instruction set.
Refer to the CPU08 Reference Manual (Motorola document order
number CPU08RM/AD) for a description of the instructions and
addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption
standby modes.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
65
N O N - D I S C L O S U R E
6.5 Arithmetic/Logic Unit (ALU)
6.6.1 Wait Mode
The WAIT instruction:
•
Clears the interrupt mask (I bit) in the condition code register,
enabling interrupts. After exit from wait mode by interrupt, the I bit
remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock
6.6.2 Stop Mode
The STOP instruction:
•
Clears the interrupt mask (I bit) in the condition code register,
enabling external interrupts. After exit from stop mode by external
interrupt, the I bit remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock
After exiting stop mode, the CPU clock begins running after the oscillator
stabilization delay.
6.7 CPU During Break Interrupts
If a break module is present on the MCU, the CPU starts a break
interrupt by:
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Central Processor Unit (CPU)
•
Loading the instruction register with the SWI instruction
•
Loading the program counter with $FFFC:$FFFD or with
$FEFC:$FEFD in monitor mode
The break interrupt begins after completion of the CPU instruction in
progress. If the break address register match occurs on the last cycle of
a CPU instruction, the break interrupt begins immediately.
A return-from-interrupt instruction (RTI) in the break routine ends the
break interrupt and returns the MCU to normal operation if the break
interrupt has been deasserted.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
66
Central Processor Unit (CPU)
MOTOROLA
V H I N Z C
ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP
A ← (A) + (M) + (C)
Add with Carry
IMM
DIR
EXT
– IX2
IX1
IX
SP1
SP2
A9
B9
C9
D9
E9
F9
9EE9
9ED9
ii
dd
hh ll
ee ff
ff
IMM
DIR
EXT
– IX2
IX1
IX
SP1
SP2
AB
BB
CB
DB
EB
FB
9EEB
9EDB
ii
dd
hh ll
ee ff
ff
ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP
Add without Carry
AIS #opr
Add Immediate Value (Signed) to SP
SP ← (SP) + (16 « M)
– – – – – – IMM
AIX #opr
Add Immediate Value (Signed) to H:X
H:X ← (H:X) + (16 « M)
A ← (A) & (M)
AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X
AND opr,SP
AND opr,SP
ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP
Arithmetic Shift Left
(Same as LSL)
C
b7
ASR opr
ASRA
ASRX
ASR opr,X
ASR opr,X
ASR opr,SP
Arithmetic Shift Right
BCC rel
Branch if Carry Bit Clear
ff
ee ff
ff
ee ff
A7
ii
2
– – – – – – IMM
AF
ii
2
IMM
DIR
EXT
IX2
0 – – – IX1
IX
SP1
SP2
A4
B4
C4
D4
E4
F4
9EE4
9ED4
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
0
DIR
INH
– – INH
IX1
IX
SP1
38 dd
48
58
68 ff
78
9E68 ff
4
1
1
4
3
5
C
DIR
INH
– – INH
IX1
IX
SP1
37 dd
47
57
67 ff
77
9E67 ff
4
1
1
4
3
5
b0
b7
2
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
A ← (A) + (M)
Logical AND
Cycles
Effect
on CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 1 of 7)
b0
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
Mn ← 0
DIR
DIR
DIR
DIR
– – – – – –
DIR
DIR
DIR
DIR
(b0)
(b1)
(b2)
(b3)
(b4)
(b5)
(b6)
(b7)
ff
ee ff
24
rr
3
11
13
15
17
19
1B
1D
1F
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
BCLR n, opr
Clear Bit n in M
BCS rel
Branch if Carry Bit Set (Same as BLO)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BEQ rel
Branch if Equal
PC ← (PC) + 2 + rel ? (Z) = 1
– – – – – – REL
27
rr
3
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
67
A G R E E M E N T
Table 6-1 provides a summary of the M68HC08 instruction set.
N O N - D I S C L O S U R E
6.8 Instruction Set Summary
R E Q U I R E D
Central Processor Unit (CPU)
Instruction Set Summary
N O N - D I S C L O S U R E
A G R E E M E N T
Description
Effect
on CCR
V H I N Z C
BGE opr
Branch if Greater Than or Equal To
(Signed Operands)
BGT opr
Branch if Greater Than (Signed
Operands)
BHCC rel
Branch if Half Carry Bit Clear
PC ← (PC) + 2 + rel ? (H) = 0
BHCS rel
Branch if Half Carry Bit Set
BHI rel
Branch if Higher
BHS rel
PC ← (PC) + 2 + rel ? (N ⊕ V) = 0
Cycles
Operation
Opcode
Source
Form
Operand
Table 6-1. Instruction Set Summary (Sheet 2 of 7)
Address
Mode
R E Q U I R E D
Central Processor Unit (CPU)
– – – – – – REL
90
rr
3
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL
92
rr
3
– – – – – – REL
28
rr
3
PC ← (PC) + 2 + rel ? (H) = 1
– – – – – – REL
29
rr
PC ← (PC) + 2 + rel ? (C) | (Z) = 0
– – – – – – REL
22
rr
3
Branch if Higher or Same
(Same as BCC)
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
24
rr
3
BIH rel
Branch if IRQ Pin High
PC ← (PC) + 2 + rel ? IRQ = 1
– – – – – – REL
2F
rr
3
BIL rel
Branch if IRQ Pin Low
PC ← (PC) + 2 + rel ? IRQ = 0
– – – – – – REL
2E
rr
3
(A) & (M)
IMM
DIR
EXT
IX2
0 – – – IX1
IX
SP1
SP2
A5
B5
C5
D5
E5
F5
9EE5
9ED5
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
93
rr
3
BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP
Bit Test
BLE opr
Branch if Less Than or Equal To
(Signed Operands)
BLO rel
Branch if Lower (Same as BCS)
BLS rel
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1 – – – – – – REL
3
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
Branch if Lower or Same
PC ← (PC) + 2 + rel ? (C) | (Z) = 1
– – – – – – REL
23
rr
3
BLT opr
Branch if Less Than (Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) =1
– – – – – – REL
91
rr
3
BMC rel
Branch if Interrupt Mask Clear
PC ← (PC) + 2 + rel ? (I) = 0
– – – – – – REL
2C
rr
3
BMI rel
Branch if Minus
PC ← (PC) + 2 + rel ? (N) = 1
– – – – – – REL
2B
rr
3
BMS rel
Branch if Interrupt Mask Set
PC ← (PC) + 2 + rel ? (I) = 1
– – – – – – REL
2D
rr
3
BNE rel
Branch if Not Equal
PC ← (PC) + 2 + rel ? (Z) = 0
– – – – – – REL
26
rr
3
BPL rel
Branch if Plus
PC ← (PC) + 2 + rel ? (N) = 0
– – – – – – REL
2A
rr
3
BRA rel
Branch Always
PC ← (PC) + 2 + rel
– – – – – – REL
20
rr
3
PC ← (PC) + 3 + rel ? (Mn) = 0
DIR
DIR
DIR
DIR
– – – – – DIR
DIR
DIR
DIR
01
03
05
07
09
0B
0D
0F
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
PC ← (PC) + 2
– – – – – – REL
21
rr
3
BRCLR n,opr,rel Branch if Bit n in M Clear
BRN rel
Branch Never
(b0)
(b1)
(b2)
(b3)
(b4)
(b5)
(b6)
(b7)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
68
Central Processor Unit (CPU)
MOTOROLA
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
BRSET n,opr,rel Branch if Bit n in M Set
Mn ← 1
DIR
DIR
DIR
– – – – – – DIR
DIR
DIR
DIR
DIR
(b0)
(b1)
(b2)
(b3)
(b4)
(b5)
(b6)
(b7)
10
12
14
16
18
1A
1C
1E
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
BSET n,opr
Set Bit n in M
BSR rel
Branch to Subroutine
PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)
SP ← (SP) – 1
PC ← (PC) + rel
– – – – – – REL
AD
rr
4
DIR
IMM
IMM
– – – – – – IX1+
IX+
SP1
31
41
51
61
71
9E61
dd rr
ii rr
ii rr
ff rr
rr
ff rr
5
4
4
5
4
6
PC ← (PC)
PC ← (PC)
PC ← (PC)
PC ← (PC)
PC ← (PC)
PC ← (PC)
CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
CBEQ opr,X+,rel Compare and Branch if Equal
CBEQ X+,rel
CBEQ opr,SP,rel
+ 3 + rel ? (A)
+ 3 + rel ? (A)
+ 3 + rel ? (X)
+ 3 + rel ? (A)
+ 2 + rel ? (A)
+ 4 + rel ? (A)
– (M)
– (M)
– (M)
– (M)
– (M)
– (M)
= $00
= $00
= $00
= $00
= $00
= $00
CLC
Clear Carry Bit
C←0
– – – – – 0 INH
98
1
CLI
Clear Interrupt Mask
I←0
– – 0 – – – INH
9A
2
M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00
DIR
INH
INH
0 – – 0 1 – INH
IX1
IX
SP1
3F dd
4F
5F
8C
6F ff
7F
9E6F ff
(A) – (M)
IMM
DIR
EXT
– – IX2
IX1
IX
SP1
SP2
A1
B1
C1
D1
E1
F1
9EE1
9ED1
DIR
INH
INH
0 – – 1
IX1
IX
SP1
33 dd
43
53
63 ff
73
9E63 ff
CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP
CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X
CMP opr,SP
CMP opr,SP
Clear
Compare A with M
COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP
Complement (One’s Complement)
CPHX #opr
CPHX opr
Compare H:X with M
M←
A←
X←
M←
M←
M←
(M) = $FF – (M)
(A) = $FF – (M)
(X) = $FF – (M)
(M) = $FF – (M)
(M) = $FF – (M)
(M) = $FF – (M)
(H:X) – (M:M + 1)
– – IMM
DIR
65
75
3
1
1
1
3
2
4
2
3
4
4
3
2
4
5
ii
dd
hh ll
ee ff
ff
ff
ee ff
4
1
1
4
3
5
ii ii+1
dd
3
4
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
69
A G R E E M E N T
00
02
04
06
08
0A
0C
0E
V H I N Z C
N O N - D I S C L O S U R E
(b0)
(b1)
(b2)
(b3)
(b4)
(b5)
(b6)
(b7)
Effect
on CCR
Description
Cycles
Operand
PC ← (PC) + 3 + rel ? (Mn) = 1
DIR
DIR
DIR
– – – – – DIR
DIR
DIR
DIR
DIR
Operation
Address
Mode
Source
Form
Opcode
Table 6-1. Instruction Set Summary (Sheet 3 of 7)
R E Q U I R E D
Central Processor Unit (CPU)
Instruction Set Summary
N O N - D I S C L O S U R E
A G R E E M E N T
Description
V H I N Z C
CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP
Compare X with M
DAA
Decimal Adjust A
(X) – (M)
(A) 10
DBNZ opr,rel
DBNZA rel
Decrement and Branch if Not Zero
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel
DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP
Decrement
DIV
Divide
EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X
EOR opr,SP
EOR opr,SP
INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP
JMP
JMP
JMP
JMP
JMP
opr
opr
opr,X
opr,X
,X
JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X
LDA
LDA
LDA
LDA
LDA
LDA
LDA
LDA
#opr
opr
opr
opr,X
opr,X
,X
opr,SP
opr,SP
Effect
on CCR
Exclusive OR M with A
Increment
Jump
Jump to Subroutine
Load A from M
IMM
DIR
EXT
– – IX2
IX1
IX
SP1
SP2
A3
B3
C3
D3
E3
F3
9EE3
9ED3
U – – INH
72
A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1
DIR
PC ← (PC) + 3 + rel ? (result) ≠ 0
INH
PC ← (PC) + 2 + rel ? (result) ≠ 0
– – – – – – INH
PC ← (PC) + 2 + rel ? (result) ≠ 0
IX1
PC ← (PC) + 3 + rel ? (result) ≠ 0
IX
PC ← (PC) + 2 + rel ? (result) ≠ 0
SP1
PC ← (PC) + 4 + rel ? (result) ≠ 0
3B
4B
5B
6B
7B
9E6B
ii
dd
hh ll
ee ff
ff
ff
ee ff
Cycles
Operation
Operand
Source
Form
Opcode
Table 6-1. Instruction Set Summary (Sheet 4 of 7)
Address
Mode
R E Q U I R E D
Central Processor Unit (CPU)
2
3
4
4
3
2
4
5
2
dd rr
rr
rr
ff rr
rr
ff rr
5
3
3
5
4
6
M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1
M ← (M) – 1
DIR
INH
– – – INH
IX1
IX
SP1
A ← (H:A)/(X)
H ← Remainder
– – – – INH
52
A ← (A ⊕ M)
IMM
DIR
EXT
IX2
0 – – –
IX1
IX
SP1
SP2
A8
B8
C8
D8
E8
F8
9EE8
9ED8
M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1
M ← (M) + 1
DIR
INH
– – – INH
IX1
IX
SP1
3C dd
4C
5C
6C ff
7C
9E6C ff
PC ← Jump Address
DIR
EXT
– – – – – – IX2
IX1
IX
BC
CC
DC
EC
FC
dd
hh ll
ee ff
ff
2
3
4
3
2
PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1
PC ← Unconditional Address
DIR
EXT
– – – – – – IX2
IX1
IX
BD
CD
DD
ED
FD
dd
hh ll
ee ff
ff
4
5
6
5
4
A ← (M)
IMM
DIR
EXT
IX2
0 – – – IX1
IX
SP1
SP2
A6
B6
C6
D6
E6
F6
9EE6
9ED6
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
3A dd
4A
5A
6A ff
7A
9E6A ff
4
1
1
4
3
5
7
ii
dd
hh ll
ee ff
ff
ff
ee ff
ff
ee ff
2
3
4
4
3
2
4
5
4
1
1
4
3
5
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
70
Central Processor Unit (CPU)
MOTOROLA
#opr
opr
opr
opr,X
opr,X
,X
opr,SP
opr,SP
LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP
Load H:X from M
LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X
LSR opr,SP
Logical Shift Right
MOV
MOV
MOV
MOV
Move
opr,opr
opr,X+
#opr,opr
X+,opr
MUL
0 – – – IMM
DIR
45
55
X ← (M)
IMM
DIR
EXT
0 – – – IX2
IX1
IX
SP1
SP2
AE
BE
CE
DE
EE
FE
9EEE
9EDE
0
DIR
INH
– – INH
IX1
IX
SP1
38 dd
48
58
68 ff
78
9E68 ff
4
1
1
4
3
5
C
DIR
INH
– – 0 INH
IX1
IX
SP1
34 dd
44
54
64 ff
74
9E64 ff
4
1
1
4
3
5
C
b7
b0
0
b7
Unsigned multiply
NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X
NEG opr,SP
Negate (Two’s Complement)
NOP
No Operation
NSA
Nibble Swap A
Cycles
H:X ← (M:M + 1)
Load X from M
Logical Shift Left
(Same as ASL)
Operand
V H I N Z C
b0
ii jj
dd
3
4
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
ff
ee ff
5
4
4
4
dd dd
dd
ii dd
dd
H:X ← (H:X) + 1 (IX+D, DIX+)
DD
0 – – – DIX+
IMD
IX+D
4E
5E
6E
7E
X:A ← (X) × (A)
– 0 – – – 0 INH
42
M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)
DIR
INH
– – INH
IX1
IX
SP1
None
– – – – – – INH
9D
1
A ← (A[3:0]:A[7:4])
– – – – – – INH
62
3
A ← (A) | (M)
IMM
DIR
EXT
IX2
0 – – –
IX1
IX
SP1
SP2
AA
BA
CA
DA
EA
FA
9EEA
9EDA
(M)Destination ← (M)Source
5
30 dd
40
50
60 ff
70
9E60 ff
4
1
1
4
3
5
2
3
4
4
3
2
4
5
ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP
Inclusive OR A and M
PSHA
Push A onto Stack
Push (A); SP ← (SP) – 1
– – – – – – INH
87
2
PSHH
Push H onto Stack
Push (H); SP ← (SP) – 1
– – – – – – INH
8B
2
PSHX
Push X onto Stack
Push (X); SP ← (SP) – 1
– – – – – – INH
89
2
PULA
Pull A from Stack
SP ← (SP + 1); Pull (A)
– – – – – – INH
86
2
PULH
Pull H from Stack
SP ← (SP + 1); Pull (H)
– – – – – – INH
8A
2
PULX
Pull X from Stack
SP ← (SP + 1); Pull (X)
– – – – – – INH
88
2
ii
dd
hh ll
ee ff
ff
ff
ee ff
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
71
A G R E E M E N T
LDX
LDX
LDX
LDX
LDX
LDX
LDX
LDX
Effect
on CCR
Description
N O N - D I S C L O S U R E
LDHX #opr
LDHX opr
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 5 of 7)
R E Q U I R E D
Central Processor Unit (CPU)
Instruction Set Summary
N O N - D I S C L O S U R E
A G R E E M E N T
ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP
Effect
on CCR
Description
V H I N Z C
Rotate Left through Carry
C
b7
b0
Cycles
Operation
Operand
Source
Form
Opcode
Table 6-1. Instruction Set Summary (Sheet 6 of 7)
Address
Mode
R E Q U I R E D
Central Processor Unit (CPU)
DIR
INH
– – INH
IX1
IX
SP1
39 dd
49
59
69 ff
79
9E69 ff
4
1
1
4
3
5
DIR
INH
– – INH
IX1
IX
SP1
36 dd
46
56
66 ff
76
9E66 ff
4
1
1
4
3
5
ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP
Rotate Right through Carry
RSP
Reset Stack Pointer
SP ← $FF
– – – – – – INH
9C
1
RTI
Return from Interrupt
SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)
INH
80
7
RTS
Return from Subroutine
SP ← SP + 1; Pull (PCH)
SP ← SP + 1; Pull (PCL)
– – – – – – INH
81
4
A ← (A) – (M) – (C)
IMM
DIR
EXT
– – IX2
IX1
IX
SP1
SP2
A2
B2
C2
D2
E2
F2
9EE2
9ED2
SBC
SBC
SBC
SBC
SBC
SBC
SBC
SBC
#opr
opr
opr
opr,X
opr,X
,X
opr,SP
opr,SP
C
b7
Subtract with Carry
b0
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
SEC
Set Carry Bit
C←1
– – – – – 1 INH
99
1
SEI
Set Interrupt Mask
I←1
– – 1 – – – INH
9B
2
M ← (A)
DIR
EXT
IX2
0 – – – IX1
IX
SP1
SP2
B7
C7
D7
E7
F7
9EE7
9ED7
(M:M + 1) ← (H:X)
0 – – – DIR
35
I ← 0; Stop Oscillator
– – 0 – – – INH
8E
M ← (X)
DIR
EXT
IX2
0 – – – IX1
IX
SP1
SP2
BF
CF
DF
EF
FF
9EEF
9EDF
dd
hh ll
ee ff
ff
IMM
DIR
EXT
– – IX2
IX1
IX
SP1
SP2
A0
B0
C0
D0
E0
F0
9EE0
9ED0
ii
dd
hh ll
ee ff
ff
STA opr
STA opr
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP
Store A in M
STHX opr
Store H:X in M
STOP
Enable IRQ Pin; Stop Oscillator
STX
STX
STX
STX
STX
STX
STX
opr
opr
opr,X
opr,X
,X
opr,SP
opr,SP
SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP
Store X in M
Subtract
A ← (A) – (M)
ff
ee ff
3
4
4
3
2
4
5
dd
4
dd
hh ll
ee ff
ff
1
ff
ee ff
ff
ee ff
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
72
Central Processor Unit (CPU)
MOTOROLA
SWI
Software Interrupt
PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)
SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)
SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1
PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte
TAP
Transfer A to CCR
CCR ← (A)
INH
84
2
TAX
Transfer A to X
X ← (A)
– – – – – – INH
97
1
TPA
Transfer CCR to A
A ← (CCR)
– – – – – – INH
85
1
(A) – $00 or (X) – $00 or (M) – $00
DIR
INH
INH
0 – – –
IX1
IX
SP1
H:X ← (SP) + 1
– – – – – – INH
95
2
A ← (X)
– – – – – – INH
9F
1
(SP) ← (H:X) – 1
– – – – – – INH
94
2
Test for Negative or Zero
TSX
Transfer SP to H:X
TXA
Transfer X to A
TXS
Transfer H:X to SP
A
C
CCR
dd
dd rr
DD
DIR
DIX+
ee ff
EXT
ff
H
H
hh ll
I
ii
IMD
IMM
INH
IX
IX+
IX+D
IX1
IX1+
IX2
M
N
Accumulator
Carry/borrow bit
Condition code register
Direct address of operand
Direct address of operand and relative offset of branch instruction
Direct to direct addressing mode
Direct addressing mode
Direct to indexed with post increment addressing mode
High and low bytes of offset in indexed, 16-bit offset addressing
Extended addressing mode
Offset byte in indexed, 8-bit offset addressing
Half-carry bit
Index register high byte
High and low bytes of operand address in extended addressing
Interrupt mask
Immediate operand byte
Immediate source to direct destination addressing mode
Immediate addressing mode
Inherent addressing mode
Indexed, no offset addressing mode
Indexed, no offset, post increment addressing mode
Indexed with post increment to direct addressing mode
Indexed, 8-bit offset addressing mode
Indexed, 8-bit offset, post increment addressing mode
Indexed, 16-bit offset addressing mode
Memory location
Negative bit
n
opr
PC
PCH
PCL
REL
rel
rr
SP1
SP2
SP
U
V
X
Z
&
|
⊕
()
–( )
#
«
←
?
:
—
83
9
3D dd
4D
5D
6D ff
7D
9E6D ff
3
1
1
3
2
4
Any bit
Operand (one or two bytes)
Program counter
Program counter high byte
Program counter low byte
Relative addressing mode
Relative program counter offset byte
Relative program counter offset byte
Stack pointer, 8-bit offset addressing mode
Stack pointer 16-bit offset addressing mode
Stack pointer
Undefined
Overflow bit
Index register low byte
Zero bit
Logical AND
Logical OR
Logical EXCLUSIVE OR
Contents of
Negation (two’s complement)
Immediate value
Sign extend
Loaded with
If
Concatenated with
Set or cleared
Not affected
N O N - D I S C L O S U R E
TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP
– – 1 – – – INH
6.9 Opcode Map
The opcode map is provided in Table 6-2.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Central Processor Unit (CPU)
A G R E E M E N T
V H I N Z C
Cycles
Effect
on CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 7 of 7)
R E Q U I R E D
Central Processor Unit (CPU)
Opcode Map
73
MSB
Branch
REL
DIR
INH
3
4
0
1
2
5
BRSET0
3 DIR
5
BRCLR0
3 DIR
5
BRSET1
3 DIR
5
BRCLR1
3 DIR
5
BRSET2
3 DIR
5
BRCLR2
3 DIR
5
BRSET3
3 DIR
5
BRCLR3
3 DIR
5
BRSET4
3 DIR
5
BRCLR4
3 DIR
5
BRSET5
3 DIR
5
BRCLR5
3 DIR
5
BRSET6
3 DIR
5
BRCLR6
3 DIR
5
BRSET7
3 DIR
5
BRCLR7
3 DIR
4
BSET0
2 DIR
4
BCLR0
2 DIR
4
BSET1
2 DIR
4
BCLR1
2 DIR
4
BSET2
2 DIR
4
BCLR2
2 DIR
4
BSET3
2 DIR
4
BCLR3
2 DIR
4
BSET4
2 DIR
4
BCLR4
2 DIR
4
BSET5
2 DIR
4
BCLR5
2 DIR
4
BSET6
2 DIR
4
BCLR6
2 DIR
4
BSET7
2 DIR
4
BCLR7
2 DIR
3
BRA
2 REL
3
BRN
2 REL
3
BHI
2 REL
3
BLS
2 REL
3
BCC
2 REL
3
BCS
2 REL
3
BNE
2 REL
3
BEQ
2 REL
3
BHCC
2 REL
3
BHCS
2 REL
3
BPL
2 REL
3
BMI
2 REL
3
BMC
2 REL
3
BMS
2 REL
3
BIL
2 REL
3
BIH
2 REL
Read-Modify-Write
INH
IX1
5
6
1
NEGX
1 INH
4
CBEQX
3 IMM
7
DIV
1 INH
1
COMX
1 INH
1
LSRX
1 INH
4
LDHX
2 DIR
1
RORX
1 INH
1
ASRX
1 INH
1
LSLX
1 INH
1
ROLX
1 INH
1
DECX
1 INH
3
DBNZX
2 INH
1
INCX
1 INH
1
TSTX
1 INH
4
MOV
2 DIX+
1
CLRX
1 INH
4
NEG
2
IX1
5
CBEQ
3 IX1+
3
NSA
1 INH
4
COM
2 IX1
4
LSR
2 IX1
3
CPHX
3 IMM
4
ROR
2 IX1
4
ASR
2 IX1
4
LSL
2 IX1
4
ROL
2 IX1
4
DEC
2 IX1
5
DBNZ
3 IX1
4
INC
2 IX1
3
TST
2 IX1
4
MOV
3 IMD
3
CLR
2 IX1
SP1
IX
9E6
7
Control
INH
INH
8
9
IMM
DIR
EXT
A
B
C
Register/Memory
IX2
SP2
IX1
SP1
IX
D
9ED
E
9EE
F
4
SUB
IX2
4
CMP
IX2
4
SBC
IX2
4
CPX
IX2
4
AND
IX2
4
BIT
IX2
4
LDA
IX2
4
STA
IX2
4
EOR
IX2
4
ADC
IX2
4
ORA
IX2
4
ADD
IX2
4
JMP
IX2
6
JSR
IX2
4
LDX
IX2
4
STX
IX2
5
SUB
4 SP2
5
CMP
4 SP2
5
SBC
4 SP2
5
CPX
4 SP2
5
AND
4 SP2
5
BIT
4 SP2
5
LDA
4 SP2
5
STA
4 SP2
5
EOR
4 SP2
5
ADC
4 SP2
5
ORA
4 SP2
5
ADD
4 SP2
3
SUB
IX1
3
CMP
IX1
3
SBC
IX1
3
CPX
IX1
3
AND
IX1
3
BIT
IX1
3
LDA
IX1
3
STA
IX1
3
EOR
IX1
3
ADC
IX1
3
ORA
IX1
3
ADD
IX1
3
JMP
IX1
5
JSR
IX1
3
LDX
IX1
3
STX
IX1
4
SUB
3 SP1
4
CMP
3 SP1
4
SBC
3 SP1
4
CPX
3 SP1
4
AND
3 SP1
4
BIT
3 SP1
4
LDA
3 SP1
4
STA
3 SP1
4
EOR
3 SP1
4
ADC
3 SP1
4
ORA
3 SP1
4
ADD
3 SP1
2
SUB
IX
2
CMP
IX
2
SBC
IX
2
CPX
IX
2
AND
IX
2
BIT
IX
2
LDA
IX
2
STA
IX
2
EOR
IX
2
ADC
IX
2
ORA
IX
2
ADD
IX
2
JMP
IX
4
JSR
IX
2
LDX
IX
2
STX
IX
LSB
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
1
4
NEGA
NEG
2 DIR 1 INH
4
5
CBEQ CBEQA
3 DIR 3 IMM
5
MUL
1 INH
1
4
COMA
COM
2 DIR 1 INH
1
4
LSRA
LSR
2 DIR 1 INH
3
4
LDHX
STHX
2 DIR 3 IMM
1
4
RORA
ROR
2 DIR 1 INH
1
4
ASRA
ASR
2 DIR 1 INH
1
4
LSLA
LSL
2 DIR 1 INH
1
4
ROLA
ROL
2 DIR 1 INH
1
4
DECA
DEC
2 DIR 1 INH
3
5
DBNZ DBNZA
3 DIR 2 INH
1
4
INCA
INC
2 DIR 1 INH
1
3
TSTA
TST
2 DIR 1 INH
5
MOV
3 DD
1
3
CLRA
CLR
2 DIR 1 INH
MOTOROLA
INH Inherent
REL Relative
IMM Immediate
IX
Indexed, No Offset
DIR Direct
IX1 Indexed, 8-Bit Offset
EXT Extended
IX2 Indexed, 16-Bit Offset
DD Direct-Direct
IMD Immediate-Direct
IX+D Indexed-Direct DIX+ Direct-Indexed
*Pre-byte for stack pointer indexed instructions
3
5
NEG
NEG
3 SP1 1 IX
4
6
CBEQ
CBEQ
4 SP1 2 IX+
2
DAA
1 INH
3
5
COM
COM
3 SP1 1 IX
3
5
LSR
LSR
3 SP1 1 IX
4
CPHX
2 DIR
3
5
ROR
ROR
3 SP1 1 IX
3
5
ASR
ASR
3 SP1 1 IX
3
5
LSL
LSL
3 SP1 1 IX
3
5
ROL
ROL
3 SP1 1 IX
3
5
DEC
DEC
3 SP1 1 IX
4
6
DBNZ
DBNZ
4 SP1 2 IX
3
5
INC
INC
3 SP1 1 IX
2
4
TST
TST
3 SP1 1 IX
4
MOV
2 IX+D
2
4
CLR
CLR
3 SP1 1 IX
SP1 Stack Pointer, 8-Bit Offset
SP2 Stack Pointer, 16-Bit Offset
IX+ Indexed, No Offset with
Post Increment
IX1+ Indexed, 1-Byte Offset with
Post Increment
N O N - D I S C L O S U R E
3
7
BGE
RTI
1 INH 2 REL
3
4
BLT
RTS
1 INH 2 REL
3
BGT
2 REL
3
9
BLE
SWI
1 INH 2 REL
2
2
TXS
TAP
1 INH 1 INH
2
1
TSX
TPA
1 INH 1 INH
2
PULA
1 INH
1
2
TAX
PSHA
1 INH 1 INH
1
2
CLC
PULX
1 INH 1 INH
1
2
SEC
PSHX
1 INH 1 INH
2
2
CLI
PULH
1 INH 1 INH
2
2
SEI
PSHH
1 INH 1 INH
1
1
RSP
CLRH
1 INH 1 INH
1
NOP
1 INH
1
STOP
*
1 INH
1
1
TXA
WAIT
1 INH 1 INH
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
SUB
2 DIR
3
CMP
2 DIR
3
SBC
2 DIR
3
CPX
2 DIR
3
AND
2 DIR
3
BIT
2 DIR
3
LDA
2 DIR
3
STA
2 DIR
3
EOR
2 DIR
3
ADC
2 DIR
3
ORA
2 DIR
3
ADD
2 DIR
2
JMP
2 DIR
4
4
JSR
BSR
REL 2 DIR
3
2
LDX
LDX
IMM 2 DIR
3
2
STX
AIX
IMM 2 DIR
2
SUB
IMM
2
CMP
IMM
2
SBC
IMM
2
CPX
IMM
2
AND
IMM
2
BIT
IMM
2
LDA
IMM
2
AIS
IMM
2
EOR
IMM
2
ADC
IMM
2
ORA
IMM
2
ADD
IMM
MSB
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
SUB
EXT
4
CMP
EXT
4
SBC
EXT
4
CPX
EXT
4
AND
EXT
4
BIT
EXT
4
LDA
EXT
4
STA
EXT
4
EOR
EXT
4
ADC
EXT
4
ORA
EXT
4
ADD
EXT
3
JMP
EXT
5
JSR
EXT
4
LDX
EXT
4
STX
EXT
0
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5
LDX
4 SP2 2
5
STX
4 SP2 2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
LDX
3 SP1 1
4
STX
3 SP1 1
High Byte of Opcode in Hexadecimal
LSB
Low Byte of Opcode in Hexadecimal
0
Cycles
5
BRSET0 Opcode Mnemonic
3 DIR Number of Bytes / Addressing Mode
A G R E E M E N T
R E Q U I R E D
Central Processor Unit (CPU)
Central Processor Unit (CPU)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
74
Table 6-2. Opcode Map
Bit Manipulation
DIR
DIR
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.3
RST and IRQ Pins Initialization . . . . . . . . . . . . . . . . . . . . . . . .79
7.4
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . . 79
7.4.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
7.4.2
Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . . 80
7.5
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.5.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . . 81
7.5.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.5.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . . 83
7.5.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.5.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . .84
7.6
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.6.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . . 85
7.6.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . . 85
7.6.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . . 85
7.7
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.7.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
7.7.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.7.2
Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.7.2.1
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . .91
7.7.2.2
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . .91
7.7.2.3
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . .92
7.7.3
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.7.4
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
75
R E Q U I R E D
7.1 Contents
A G R E E M E N T
Section 7. System Integration Module (SIM)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
System Integration Module (SIM)
A G R E E M E N T
R E Q U I R E D
7.7.5
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . . 93
7.8
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
7.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
7.9
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
7.9.1
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.9.2
Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.9.3
Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Introduction
This section describes the system integration module (SIM), which
supports up to 24 external and/or internal interrupts. Together with the
central processor unit (CPU), the SIM controls all microcontroller unit
(MCU) activities. A block diagram of the SIM is shown in Figure 7-1.
Figure 7-2 is a summary of the SIM I/O registers. The SIM is a system
state controller that coordinates CPU and exception timing.
The SIM is responsible for:
•
Bus clock generation and control for CPU and peripherals
N O N - D I S C L O S U R E
– Stop/wait/reset/break entry and recovery
– Internal clock control
•
Master reset control, including power-on reset (POR) and
computer operating properly (COP) timeout
•
Interrupt control:
– Acknowledge timing
– Arbitration control timing
– Vector address generation
•
CPU enable/disable timing
•
Modular architecture expandable to 128 interrupt sources
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
76
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Introduction
MODULE WAIT
CPU STOP (FROM CPU)
CPU WAIT (FROM CPU)
STOP/WAIT
CONTROL
SIMOSCEN (TO OSCILLATOR)
SIM
COUNTER
COP CLOCK
BUSCLKX4 (FROM OSCILLATOR)
BUSCLKX2 (FROM OSCILLATOR)
÷2
VDD
RESET
PIN LOGIC
INTERNAL CLOCKS
CLOCK GENERATORS
POR CONTROL
MASTER
RESET
CONTROL
RESET PIN CONTROL
SIM RESET STATUS REGISTER
ILLEGAL OPCODE (FROM CPU)
ILLEGAL ADDRESS (FROM ADDRESS
MAP DECODERS)
COP TIMEOUT (FROM COP MODULE)
LVI RESET (FROM LVI MODULE)
FORCED MON MODE ENTRY (FROM MENRST MODULE)
RESET
INTERRUPT CONTROL
AND PRIORITY DECODE
INTERRUPT SOURCES
CPU INTERFACE
Figure 7-1. SIM Block Diagram
Table 7-1. Signal Name Conventions
Signal Name
Description
BUSCLKX4
Buffered clock from the internal, RC or XTAL oscillator circuit.
BUSCLKX2
The BUSCLKX4 frequency divided by two. This signal is again divided by two in the SIM
to generate the internal bus clocks (bus clock = BUSCLKX4 ÷ 4).
Address bus
Internal address bus
Data bus
Internal data bus
PORRST
Signal from the power-on reset module to the SIM
IRST
Internal reset signal
R/W
Read/write signal
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
77
N O N - D I S C L O S U R E
INTERNAL
PULL-UP
CLOCK
CONTROL
A G R E E M E N T
R E Q U I R E D
MODULE STOP
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
Addr.
$FE00
Register Name
Read:
Break Status Register
(BSR) Write:
See page 99.
Reset:
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
Bit 0
SBSW
R
Note 1
0
0
0
0
0
0
0
0
1. Writing a logic 0 clears SBSW.
Read:
SIM Reset Status
Register (SRSR) Write:
See page 96.
POR:
POR
PIN
COP
ILOP
ILAD
MODRST
LVI
0
1
0
0
0
0
0
0
0
$FE02
Reserved
R
R
R
R
R
R
R
R
BCFE
R
R
R
R
R
R
R
$FE03
Read:
Break Flag Control
Register (BFCR) Write:
See page 98.
Reset:
0
IF5
IF4
IF3
0
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status
Register 2 (INT2) Write:
See page 91.
Reset:
IF14
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status
Register 3 (INT3) Write:
See page 92.
Reset:
0
0
0
0
0
0
0
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
$FE01
$FE04
$FE05
$FE06
Read:
Interrupt Status
Register 1 (INT1) Write:
See page 91.
Reset:
0
= Unimplemented
R
= Reserved
Figure 7-2. SIM I/O Register Summary
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
78
System Integration Module (SIM)
MOTOROLA
7.4 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and
peripherals on the MCU. The system clocks are generated from an
incoming clock, BUSCLKX2, as shown in Figure 7-3.
FROM
OSCILLATOR
BUSCLKX4
FROM
OSCILLATOR
BUSCLKX2
SIM COUNTER
÷2
BUS CLOCK
GENERATORS
SIM
Figure 7-3. SIM Clock Signals
7.4.1 Bus Timing
In user mode, the internal bus frequency is the oscillator frequency
(BUSCLKX4) divided by four.
7.4.2 Clock Start-Up from POR
When the power-on reset module generates a reset, the clocks to the
CPU and peripherals are inactive and held in an inactive phase until after
the 4096 BUSCLKX4 cycle POR time out has completed. The RST pin
is driven low by the SIM during this entire period. The IBUS clocks start
upon completion of the time out.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
79
A G R E E M E N T
RST and IRQ pins come out of reset as PTA3 and PTA2 respectively.
RST and IRQ functions can be activated by programing CONFIG2
accordingly. Refer to Section 5. Configuration Register (CONFIG).
N O N - D I S C L O S U R E
7.3 RST and IRQ Pins Initialization
R E Q U I R E D
System Integration Module (SIM)
RST and IRQ Pins Initialization
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
7.4.3 Clocks in Stop Mode and Wait Mode
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows
BUSCLKX4 to clock the SIM counter. The CPU and peripheral clocks do
not become active until after the stop delay time out. This time out is
selectable as 4096 or 32 BUSCLKX4 cycles. See 7.8.2 Stop Mode.
In wait mode, the CPU clocks are inactive. The SIM also produces two
sets of clocks for other modules. Refer to the wait mode subsection of
each module to see if the module is active or inactive in wait mode.
Some modules can be programmed to be active in wait mode.
7.5 Reset and System Initialization
The MCU has these reset sources:
•
Power-on reset module (POR)
•
External reset pin (RST)
•
Computer operating properly module (COP)
•
Low-voltage inhibit module (LVI)
•
Illegal opcode
•
Illegal address
All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in
monitor mode) and assert the internal reset signal (IRST). IRST causes
all registers to be returned to their default values and all modules to be
returned to their reset states.
An internal reset clears the SIM counter (see 7.6 SIM Counter), but an
external reset does not. Each of the resets sets a corresponding bit in
the SIM reset status register (SRSR). See 7.9 SIM Registers.
7.5.1 External Pin Reset
The RST pin circuits include an internal pullup device. Pulling the
asynchronous RST pin low halts all processing. The PIN bit of the SIM
reset status register (SRSR) is set as long as RST is held low for a
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
80
System Integration Module (SIM)
MOTOROLA
Reset Type
Number of Cycles Required to Set PIN
POR
4163 (4096 + 64 + 3)
All others
67 (64 + 3)
BUSCLKX2
RST
ADDRESS BUS
VECT H VECT L
PC
Figure 7-4. External Reset Timing
7.5.2 Active Resets from Internal Sources
All internal reset sources actively pull the RST pin low for 32 BUSCLKX4
cycles to allow resetting of external peripherals. The internal reset signal
IRST continues to be asserted for an additional 32 cycles (see
Figure 7-5). An internal reset can be caused by an illegal address, illegal
opcode, COP time out, LVI, or POR (see Figure 7-6).
IRST
RST
RST PULLED LOW BY MCU
32 CYCLES
32 CYCLES
BUSCLKX4
ADDRESS
BUS
VECTOR HIGH
Figure 7-5. Internal Reset Timing
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
81
A G R E E M E N T
Table 7-2. PIN Bit Set Timing
N O N - D I S C L O S U R E
minimum of 67 BUSCLKX4 cycles, assuming that the POR was not the
source of the reset. See Table 7-2 for details. Figure 7-4 shows the
relative timing.
R E Q U I R E D
System Integration Module (SIM)
Reset and System Initialization
System Integration Module (SIM)
ILLEGAL OPCODE RST
COPRST
POR
LVI
INTERNAL RESET
Figure 7-6. Sources of Internal Reset
NOTE:
For POR resets, the SIM cycles through 4096 BUSCLKX4 cycles during
which the SIM forces the RST pin low. The internal reset signal then
follows the sequence from the falling edge of RST shown in Figure 7-5.
The COP reset is asynchronous to the bus clock.
The active reset feature allows the part to issue a reset to peripherals
and other chips within a system built around the MCU.
7.5.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module
(POR) generates a pulse to indicate that power on has occurred. The
external reset pin (RST) is held low while the SIM counter counts out
4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later, the CPU
and memories are released from reset to allow the reset vector
sequence to occur.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
ILLEGAL ADDRESS RST
At power on, the following events occur:
•
A POR pulse is generated.
•
The internal reset signal is asserted.
•
The SIM enables the oscillator to drive BUSCLKX4.
•
Internal clocks to the CPU and modules are held inactive for 4096
BUSCLKX4 cycles to allow stabilization of the oscillator.
•
The RST pin is driven low during the oscillator stabilization time.
•
The POR bit of the SIM reset status register (SRSR) is set and all
other bits in the register are cleared.
See Figure 7-7.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
82
System Integration Module (SIM)
MOTOROLA
R E Q U I R E D
System Integration Module (SIM)
Reset and System Initialization
OSC1
PORRST
4096
CYCLES
32
CYCLES
32
CYCLES
BUSCLKX4
BUSCLKX2
$FFFE
$FFFF
Figure 7-7. POR Recovery
7.5.2.2 Computer Operating Properly (COP) Reset
An input to the SIM is reserved for the COP reset signal. The overflow of
the COP counter causes an internal reset and sets the COP bit in the
SIM reset status register (SRSR). The SIM actively pulls down the RST
pin for all internal reset sources.
To prevent a COP module time out, write any value to location $FFFF.
Writing to location $FFFF clears the COP counter and stages 12–5 of the
SIM counter. The SIM counter output, which occurs at least every
(212 – 24) BUSCLKX4 cycles, drives the COP counter. The COP should
be serviced as soon as possible out of reset to guarantee the maximum
amount of time before the first time out.
The COP module is disabled during a break interrupt with monitor mode
when BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
83
N O N - D I S C L O S U R E
ADDRESS BUS
A G R E E M E N T
RST
7.5.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An
illegal instruction sets the ILOP bit in the SIM reset status register
(SRSR) and causes a reset.
If the stop enable bit, STOP, in the mask option register is logic 0, the
SIM treats the STOP instruction as an illegal opcode and causes an
illegal opcode reset. The SIM actively pulls down the RST pin for all
internal reset sources.
7.5.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal
address reset. The SIM verifies that the CPU is fetching an opcode prior
to asserting the ILAD bit in the SIM reset status register (SRSR) and
resetting the MCU. A data fetch from an unmapped address does not
generate a reset. The SIM actively pulls down the RST pin for all internal
reset sources.
7.5.2.5 Low-Voltage Inhibit (LVI) Reset
The LVI asserts its output to the SIM when the VDD voltage falls to the
LVI trip voltage VTrip. The LVI bit in the SIM reset status register (SRSR)
is set, and the external reset pin (RST) is held low while the SIM counter
counts out 4096 BUSCLKX4 cycles. Sixty-four BUSCLKX4 cycles later,
the CPU and memories are released from reset to allow the reset vector
sequence to occur. The SIM actively pulls down the (RST) pin for all
internal reset sources.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
84
System Integration Module (SIM)
MOTOROLA
7.6.1 SIM Counter During Power-On Reset
The power-on reset module (POR) detects power applied to the MCU.
At power-on, the POR circuit asserts the signal PORRST. Once the SIM
is initialized, it enables the oscillator to drive the bus clock state machine.
7.6.2 SIM Counter During Stop Mode Recovery
The SIM counter also is used for stop mode recovery. The STOP
instruction clears the SIM counter. After an interrupt, break, or reset, the
SIM senses the state of the short stop recovery bit, SSREC, in the
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then
the stop recovery is reduced from the normal delay of 4096 BUSCLKX4
cycles down to 32 BUSCLKX4 cycles. This is ideal for applications using
canned oscillators that do not require long start-up times from stop
mode. External crystal applications should use the full stop recovery
time, that is, with SSREC cleared in the configuration register 1
(CONFIG1).
7.6.3 SIM Counter and Reset States
External reset has no effect on the SIM counter (see 7.8.2 Stop Mode
for details.) The SIM counter is free-running after all reset states. See
7.5.2 Active Resets from Internal Sources for counter control and
internal reset recovery sequences.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
85
A G R E E M E N T
The SIM counter is used by the power-on reset module (POR) and in
stop mode recovery to allow the oscillator time to stabilize before
enabling the internal bus (IBUS) clocks. The SIM counter also serves as
a prescaler for the computer operating properly module (COP). The SIM
counter uses 12 stages for counting, followed by a 13th stage that
triggers a reset of SIM counters and supplies the clock for the COP
module. The SIM counter is clocked by the falling edge of BUSCLKX4.
N O N - D I S C L O S U R E
7.6 SIM Counter
R E Q U I R E D
System Integration Module (SIM)
SIM Counter
R E Q U I R E D
System Integration Module (SIM)
7.7 Exception Control
Normal sequential program execution can be changed in three different
ways:
1. Interrupts
a. Maskable hardware CPU interrupts
b. Non-maskable software interrupt instruction (SWI)
2. Reset
7.7.1 Interrupts
An interrupt temporarily changes the sequence of program execution to
respond to a particular event. Figure 7-8 flow charts the handling of
system interrupts.
Interrupts are latched, and arbitration is performed in the SIM at the start
of interrupt processing. The arbitration result is a constant that the CPU
uses to determine which vector to fetch. Once an interrupt is latched by
the SIM, no other interrupt can take precedence, regardless of priority,
until the latched interrupt is serviced (or the I bit is cleared).
N O N - D I S C L O S U R E
A G R E E M E N T
3. Break interrupts
At the beginning of an interrupt, the CPU saves the CPU register
contents on the stack and sets the interrupt mask (I bit) to prevent
additional interrupts. At the end of an interrupt, the RTI instruction
recovers the CPU register contents from the stack so that normal
processing can resume. Figure 7-9 shows interrupt entry timing.
Figure 7-10 shows interrupt recovery timing.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
86
System Integration Module (SIM)
MOTOROLA
R E Q U I R E D
System Integration Module (SIM)
Exception Control
FROM RESET
BREAK
INTERRUPT?
I BIT
SET?
YES
NO
YES
I BIT SET?
IRQ
INTERRUPT?
A G R E E M E N T
NO
YES
NO
TIMER
INTERRUPT?
YES
NO
STACK CPU REGISTERS
SET I BIT
LOAD PC WITH INTERRUPT VECTOR
N O N - D I S C L O S U R E
(AS MANY INTERRUPTS AS EXIST ON CHIP)
FETCH NEXT
INSTRUCTION
SWI
INSTRUCTION?
YES
NO
RTI
INSTRUCTION?
YES
UNSTACK CPU REGISTERS
NO
EXECUTE INSTRUCTION
Figure 7-8. Interrupt Processing
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
87
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
MODULE
INTERRUPT
I BIT
ADDRESS BUS
DATA BUS
DUMMY
SP
DUMMY
SP – 1
SP – 2
PC – 1[7:0] PC – 1[15:8]
SP – 3
X
SP – 4
A
VECT H
CCR
VECT L
V DATA H
START ADDR
V DATA L
OPCODE
R/W
Figure 7-9. Interrupt Entry
MODULE
INTERRUPT
I BIT
ADDRESS BUS
SP – 4
DATA BUS
SP – 3
CCR
SP – 2
A
SP – 1
X
SP
PC
PC + 1
PC – 1[7:0] PC – 1[15:8] OPCODE
OPERAND
R/W
Figure 7-10. Interrupt Recovery
7.7.1.1 Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing of
a hardware interrupt begins after completion of the current instruction.
When the current instruction is complete, the SIM checks all pending
hardware interrupts. If interrupts are not masked (I bit clear in the
condition code register), and if the corresponding interrupt enable bit is
set, the SIM proceeds with interrupt processing; otherwise, the next
instruction is fetched and executed.
If more than one interrupt is pending at the end of an instruction
execution, the highest priority interrupt is serviced first. Figure 7-11
demonstrates what happens when two interrupts are pending. If an
interrupt is pending upon exit from the original interrupt service routine,
the pending interrupt is serviced before the LDA instruction is executed.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
88
System Integration Module (SIM)
MOTOROLA
INT1
BACKGROUND ROUTINE
PSHH
INT1 INTERRUPT SERVICE ROUTINE
PULH
RTI
INT2
PSHH
INT2 INTERRUPT SERVICE ROUTINE
PULH
RTI
Figure 7-11. Interrupt Recognition Example
The LDA opcode is prefetched by both the INT1 and INT2
return-from-interrupt (RTI) instructions. However, in the case of the INT1
RTI prefetch, this is a redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not
pushed on the stack during interrupt entry. If the interrupt service routine
modifies the H register or uses the indexed addressing mode, software
should save the H register and then restore it prior to exiting the routine.
7.7.1.2 SWI Instruction
The SWI instruction is a non-maskable instruction that causes an
interrupt regardless of the state of the interrupt mask (I bit) in the
condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does
not push PC – 1, as a hardware interrupt does.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
89
A G R E E M E N T
LDA #$FF
N O N - D I S C L O S U R E
CLI
R E Q U I R E D
System Integration Module (SIM)
Exception Control
7.7.2 Interrupt Status Registers
The flags in the interrupt status registers identify maskable interrupt
sources. Table 7-3 summarizes the interrupt sources and the interrupt
status register flags that they set. The interrupt status registers can be
useful for debugging.
Table 7-3. Interrupt Sources
Flag
Mask(1)
INT
Register
Flag
Vector
Address
—
—
—
$FFFE–$FFFF
—
—
—
$FFFC–$FFFD
IRQ pin
IRQF1
IMASK1
IF1
$FFFA–$FFFB
Timer channel 0 interrupt
CH0F
CH0IE
IF3
$FFF6–$FFF7
Timer channel 1 interrupt
CH1F
CH1IE
IF4
$FFF4–$FFF5
TOF
TOIE
IF5
$FFF2–$FFF3
Keyboard interrupt
KEYF
IMASKK
IF14
$FFDE–$FFDF
ADC conversion
complete interrupt
COCO
AIEN
IF15
$FFE0–$FFE1
Priority
Source
Highest Reset
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
SWI instruction
Timer overflow interrupt
Lowest
N O N - D I S C L O S U R E
1. The I bit in the condition code register is a global mask for all interrupt sources except the
SWI instruction.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
90
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
Exception Control
R E Q U I R E D
7.7.2.1 Interrupt Status Register 1
Address: $FE04
Bit 7
6
5
4
3
2
1
Bit 0
Read:
0
IF5
IF4
IF3
0
IF1
0
0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
A G R E E M E N T
Figure 7-12. Interrupt Status Register 1 (INT1)
IF1 and IF3–IF5 — Interrupt Flags
These flags indicate the presence of interrupt requests from the
sources shown in Table 7-3.
1 = Interrupt request present
0 = No interrupt request present
Bit 0, 1, 3, and 7 — Always read 0
7.7.2.2 Interrupt Status Register 2
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF14
0
0
0
0
0
0
0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 7-13. Interrupt Status Register 2 (INT2)
IF14 — Interrupt Flags
This flag indicates the presence of interrupt requests from the sources
shown in Table 7-3.
1 = Interrupt request present
0 = No interrupt request present
Bit 0–6 — Always read 0
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
91
N O N - D I S C L O S U R E
Address: $FE05
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
7.7.2.3 Interrupt Status Register 3
Address: $FE06
Bit 7
6
5
4
3
2
1
Bit 0
Read:
0
0
0
0
0
0
0
IF15
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 7-14. Interrupt Status Register 3 (INT3)
IF15 — Interrupt Flags
These flags indicate the presence of interrupt requests from the
sources shown in Table 7-3.
1 = Interrupt request present
0 = No interrupt request present
Bit 1–7 — Always read 0
7.7.3 Reset
All reset sources always have equal and highest priority and cannot be
arbitrated.
7.7.4 Break Interrupts
The break module can stop normal program flow at a software
programmable break point by asserting its break interrupt output. (See
Section 17. Break Module (BREAK).) The SIM puts the CPU into the
break state by forcing it to the SWI vector location. Refer to the break
interrupt subsection of each module to see how each module is affected
by the break state.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
92
System Integration Module (SIM)
MOTOROLA
Protecting flags in break mode ensures that set flags will not be cleared
while in break mode. This protection allows registers to be freely read
and written during break mode without losing status flag information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in
break mode, a flag remains cleared even when break mode is exited.
Status flags with a two-step clearing mechanism — for example, a read
of one register followed by the read or write of another — are protected,
even when the first step is accomplished prior to entering break mode.
Upon leaving break mode, execution of the second step will clear the flag
as normal.
7.8 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low
power-consumption mode for standby situations. The SIM holds the
CPU in a non-clocked state. The operation of each of these modes is
described below. Both STOP and WAIT clear the interrupt mask (I) in the
condition code register, allowing interrupts to occur.
7.8.1 Wait Mode
In wait mode, the CPU clocks are inactive while the peripheral clocks
continue to run. Figure 7-15 shows the timing for wait mode entry.
ADDRESS BUS
DATA BUS
WAIT ADDR
WAIT ADDR + 1
PREVIOUS DATA
NEXT OPCODE
SAME
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the
last instruction.
Figure 7-15. Wait Mode Entry Timing
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
93
A G R E E M E N T
The SIM controls whether status flags contained in other modules can
be cleared during break mode. The user can select whether flags are
protected from being cleared by properly initializing the break clear flag
enable bit (BCFE) in the break flag control register (BFCR).
N O N - D I S C L O S U R E
7.7.5 Status Flag Protection in Break Mode
R E Q U I R E D
System Integration Module (SIM)
Low-Power Modes
System Integration Module (SIM)
R E Q U I R E D
A module that is active during wait mode can wake up the CPU with an
interrupt if the interrupt is enabled. Stacking for the interrupt begins one
cycle after the WAIT instruction during which the interrupt occurred. In
wait mode, the CPU clocks are inactive. Refer to the wait mode
subsection of each module to see if the module is active or inactive in
wait mode. Some modules can be programmed to be active in wait
mode.
A G R E E M E N T
Wait mode can also be exited by a reset or break. A break interrupt
during wait mode sets the SIM break stop/wait bit, SBSW, in the break
status register (BSR). If the COP disable bit, COPD, in the configuration
register is logic 0, then the computer operating properly module (COP)
is enabled and remains active in wait mode.
Figure 7-16 and Figure 7-17 show the timing for wait recovery.
ADDRESS BUS
$6E0B
DATA BUS
$A6
$A6
$6E0C
$A6
$01
$00FF
$0B
$00FE
$00FD
$00FC
$6E
EXITSTOPWAIT
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
N O N - D I S C L O S U R E
Figure 7-16. Wait Recovery from Interrupt or Break
32
CYCLES
ADDRESS BUS
$6E0B
DATA BUS
$A6
$A6
32
CYCLES
RST VCT H
RST VCTL
$A6
RST
BUSCLKX4
Figure 7-17. Wait Recovery from Internal Reset
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
94
System Integration Module (SIM)
MOTOROLA
The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in
stop mode, stopping the CPU and peripherals. Stop recovery time is
selectable using the SSREC bit in the configuration register 1
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal
delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal
oscillator, RC oscillator, and external oscillator options which do not
require long start-up times from stop mode.
NOTE:
External crystal applications should use the full stop recovery time by
clearing the SSREC bit.
The SIM counter is held in reset from the execution of the STOP
instruction until the beginning of stop recovery. It is then used to time
the recovery period. Figure 7-18 shows stop mode entry timing and
Figure 7-19 shows the stop mode recovery time from interrupt or break
NOTE:
To minimize stop current, all pins configured as inputs should be driven
to a logic 1 or logic 0.
CPUSTOP
ADDRESS BUS
DATA BUS
STOP ADDR
STOP ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last
instruction.
Figure 7-18. Stop Mode Entry Timing
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
95
A G R E E M E N T
In stop mode, the SIM counter is reset and the system clocks are
disabled. An interrupt request from a module can cause an exit from stop
mode. Stacking for interrupts begins after the selected stop recovery
time has elapsed. Reset or break also causes an exit from stop mode.
N O N - D I S C L O S U R E
7.8.2 Stop Mode
R E Q U I R E D
System Integration Module (SIM)
Low-Power Modes
System Integration Module (SIM)
R E Q U I R E D
STOP RECOVERY PERIOD
BUSCLKX4
INTERRUPT
ADDRESS BUS
STOP + 2
STOP +1
STOP + 2
SP
SP – 1
SP – 2
SP – 3
Figure 7-19. Stop Mode Recovery from Interrupt
N O N - D I S C L O S U R E
A G R E E M E N T
7.9 SIM Registers
The SIM has three memory mapped registers. Table 7-4 shows the
mapping of these registers.
Table 7-4. SIM Registers
Address
Register
Access Mode
$FE00
BSR
User
$FE01
SRSR
User
$FE03
BFCR
User
7.9.1 SIM Reset Status Register
This register contains seven flags that show the source of the last reset.
Clear the SIM reset status register by reading it. A power-on reset sets
the POR bit and clears all other bits in the register.
Address: $FE01
Read:
Bit 7
6
5
4
3
2
1
Bit 0
POR
PIN
COP
ILOP
ILAD
MODRST
LVI
0
1
0
0
0
0
0
0
0
Write:
POR:
= Unimplemented
Figure 7-20. SIM Reset Status Register (SRSR)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
96
System Integration Module (SIM)
MOTOROLA
System Integration Module (SIM)
SIM Registers
PIN — External Reset Bit
1 = Last reset caused by external reset pin (RST)
0 = POR or read of SRSR
COP — Computer Operating Properly Reset Bit
1 = Last reset caused by COP counter
0 = POR or read of SRSR
ILOP — Illegal Opcode Reset Bit
1 = Last reset caused by an illegal opcode
0 = POR or read of SRSR
ILAD — Illegal Address Reset Bit (opcode fetches only)
1 = Last reset caused by an opcode fetch from an illegal address
0 = POR or read of SRSR
MODRST — Monitor Mode Entry Module Reset bit
1 = Last reset caused by monitor mode entry when vector locations
$FFFE and $FFFF are $FF after POR while IRQB = VDD
A G R E E M E N T
R E Q U I R E D
POR — Power-On Reset Bit
1 = Last reset caused by POR circuit
0 = Read of SRSR
N O N - D I S C L O S U R E
0 = POR or read of SRSR
LVI — Low Voltage Inhibit Reset bit
1 = Last reset caused by LVI circuit
0 = POR or read of SRSR
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
97
R E Q U I R E D
System Integration Module (SIM)
7.9.2 Break Flag Control Register
The break control register (BFCR) contains a bit that enables software
to clear status bits while the MCU is in a break state.
Address: $FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
Read:
Write:
A G R E E M E N T
Reset:
0
R
= Reserved
Figure 7-21. Break Flag Control Register (BFCR)
BCFE — Break Clear Flag Enable Bit
N O N - D I S C L O S U R E
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
98
System Integration Module (SIM)
MOTOROLA
The break status register (BSR) contains a flag to indicate that a break
caused an exit from wait mode. This register is only used in emulation
mode.
Address: $FE00
Read:
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
SBSW
Write:
Note 1
Reset:
0
R
= Reserved
Bit 0
R
1. Writing a logic 0 clears SBSW.
Figure 7-22. Break Status Register (BSR)
SBSW — SIM Break Stop/Wait
This status bit is useful in applications requiring a return to wait mode
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to
it. Reset clears SBSW.
1 = Wait mode was exited by break interrupt
0 = Wait mode was not exited by break interrupt
N O N - D I S C L O S U R E
SBSW can be read within the break state SWI routine. The user can
modify the return address on the stack by subtracting one from it.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
System Integration Module (SIM)
A G R E E M E N T
7.9.3 Break Status Register
R E Q U I R E D
System Integration Module (SIM)
SIM Registers
99
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
System Integration Module (SIM)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
100
System Integration Module (SIM)
MOTOROLA
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.4.1
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4.1.1
Internal Oscillator Trimming . . . . . . . . . . . . . . . . . . . . . . 103
8.4.1.2
Internal to External Clock Switching. . . . . . . . . . . . . . . . 104
8.4.2
External Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.3
XTAL Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.4.4
RC Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.5
Oscillator Module Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
8.5.1
Crystal Amplifier Input Pin (OSC1) . . . . . . . . . . . . . . . . . . .107
8.5.2
Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4) . . 108
8.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . 108
8.5.4
XTAL Oscillator Clock (XTALCLK) . . . . . . . . . . . . . . . . . . .108
8.5.5
RC Oscillator Clock (RCCLK). . . . . . . . . . . . . . . . . . . . . . .109
8.5.6
Internal Oscillator Clock (INTCLK) . . . . . . . . . . . . . . . . . . .109
8.5.7
Oscillator Out 2 (BUSCLKX4) . . . . . . . . . . . . . . . . . . . . . . 109
8.5.8
Oscillator Out (BUSCLKX2) . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
8.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .110
8.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . 110
8.8
CONFIG2 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.9
Input/Output (I/O) Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.9.1
Oscillator Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . 111
8.9.2
Oscillator Trim Register (OSCTRIM) . . . . . . . . . . . . . . . . . 112
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
101
R E Q U I R E D
8.1 Contents
A G R E E M E N T
Section 8. Oscillator Module (OSC)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Oscillator Module (OSC)
8.2 Introduction
The oscillator module is used to provide a stable clock source for the
microcontroller system and bus. The oscillator module generates two
output clocks, BUSCLKX2 and BUSCLKX4. The BUSCLKX4 clock is
used by the system integration module (SIM) and the computer
operating properly module (COP). The BUSCLKX2 clock is divided by
two in the SIM to be used as the bus clock for the microcontroller.
Therefore the bus frequency will be one forth of the BUSCLKX4
frequency.
8.3 Features
The oscillator has these four clock source options available:
1. Internal oscillator: An internally generated, fixed frequency clock,
trimmable to ± 5%. This is the default option out of reset.
2. External oscillator: An external clock that can be driven directly
into OSC1.
3. External RC: A built-in oscillator module (RC oscillator) that
requires an external R connection only. The capacitor is internal to
the chip.
4. External crystal: A built-in oscillator module (XTAL oscillator) that
requires an external crystal or ceramic-resonator.
8.4 Functional Description
The oscillator contains these major subsystems:
•
Internal oscillator circuit
•
Internal or external clock switch control
•
External clock circuit
•
External crystal circuit
•
External RC clock circuit
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
102
Oscillator Module (OSC)
MOTOROLA
The internal oscillator will generate a clock of 12.8 MHz typical (INTCLK)
resulting in a bus speed (internal clock ÷ 4) of 3.2 MHz. 3.2 MHz came
from the maximum bus speed guaranteed at 3 V which is 4 MHz. Since
the internal oscillator will have a ±25% tolerance (pre-trim), then the
+25% case should not allow a frequency higher than 4 MHz:
3.2 MHz + 25% = 4 MHz
Figure 8-2 shows how BUSCLKX4 is derived from INTCLK and, like the
RC oscillator, OSC2 can output BUSCLKX4 by setting OSC2EN in
PTAPUE register. See Section 12. Input/Output (I/O) Ports.
8.4.1.1 Internal Oscillator Trimming
The 8-bit trimming register, OSCTRIM, allows a clock period adjust of
+127 and –128 steps. Increasing OSCTRIM value increases the clock
period. Trimming will allow the internal clock frequency value fit in a ±5%
range around12.8 MHz.
There’s an option to order a trimmed version of MC68HC908QY4. The
trimming value will be provided in a known FLASH location, $FFC0. So
that the user would be able to copy this byte from the FLASH to the
OSCTRIM register right at the beginning of assembly code.
Reset loads OSCTRIM with a default value of $80.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
103
A G R E E M E N T
The internal oscillator circuit is designed for use with no external
components to provide a clock source with tolerance less than ±25%
untrimmed. An 8-bit trimming register allows the adjust to a tolerance of
less than ±5%.
N O N - D I S C L O S U R E
8.4.1 Internal Oscillator
R E Q U I R E D
Oscillator Module (OSC)
Functional Description
8.4.1.2 Internal to External Clock Switching
When external clock source (external OSC, RC, or XTAL) is desired, the
user must perform the following steps:
1. For external crystal circuits only, OSCOPT[1:0] = 1:1: To help
precharge an external crystal oscillator, set PTA4 (OSC2) as an
output and drive high for several cycles. This may help the crystal
circuit start more robustly.
2. Set CONFIG2 bits OSCOPT[1:0] according to Table 8-2. The
oscillator module control logic will then set OSC1 as an external
clock input and, if the external crystal option is selected, OSC2 will
also be set as the clock output.
A G R E E M E N T
R E Q U I R E D
Oscillator Module (OSC)
3. Create a software delay to wait the stabilization time needed for
the selected clock source (crystal, resonator, RC) as
recommended by the component manufacturer. A good rule of
thumb for crystal oscillators is to wait 4096 cycles of the crystal
frequency, i.e., for a 4-MHz crystal, wait approximately 1 msec.
4. After the manufacturer’s recommended delay has elapsed, the
ECGON bit in the OSC status register (OSCSTAT) needs to be set
by the user software.
N O N - D I S C L O S U R E
5. After ECGON set is detected, the OSC module checks for
oscillator activity by waiting two external clock rising edges.
6. The OSC module then switches to the external clock. Logic
provides a glitch free transition.
7. The OSC module first sets the ECGST bit in the OSCSTAT
register and then stops the internal oscillator.
NOTE:
Once transition to the external clock is done, the internal oscillator will
only be reactivated with reset. No post-switch clock monitor feature is
implemented (clock does not switch back to internal if external clock
dies).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
104
Oscillator Module (OSC)
MOTOROLA
In this configuration, the OSC2 pin cannot output BUSCLKX4. So the
OSC2EN bit in the port A pullup enable register will be clear to enable
PTA4 I/O functions on the pin.
8.4.3 XTAL Oscillator
The XTAL oscillator circuit is designed for use with an external crystal or
ceramic resonator to provide an accurate clock source. In this
configuration, the OSC2 pin is dedicated to the external crystal circuit.
The OSC2EN bit in the port A pullup enable register has no effect when
this clock mode is selected.
In its typical configuration, the XTAL oscillator is connected in a Pierce
oscillator configuration, as shown in Figure 8-1. This figure shows only
the logical representation of the internal components and may not
represent actual circuitry. The oscillator configuration uses five
components:
NOTE:
•
Crystal, X1
•
Fixed capacitor, C1
•
Tuning capacitor, C2 (can also be a fixed capacitor)
•
Feedback resistor, RB
•
Series resistor, RS (optional)
The series resistor (RS) is included in the diagram to follow strict Pierce
oscillator guidelines and may not be required for all ranges of operation,
especially with high frequency crystals. Refer to the crystal
manufacturer’s data for more information.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
105
A G R E E M E N T
The external clock option is designed for use when a clock signal is
available in the application to provide a clock source to the
microcontroller. The OSC1 pin is enabled as an input by the oscillator
module. The clock signal is used directly to create BUSCLKX4 and also
divided by two to create BUSCLKX2.
N O N - D I S C L O S U R E
8.4.2 External Oscillator
R E Q U I R E D
Oscillator Module (OSC)
Functional Description
Oscillator Module (OSC)
R E Q U I R E D
FROM SIM
TO SIM
BUSCLKX4
XTALCLK
TO SIM
BUSCLKX2
÷2
SIMOSCEN
MCU
OSC1
OSC2
RS(1)
N O N - D I S C L O S U R E
A G R E E M E N T
RB
X1
C1
C2
Note 1.
RS can be zero (shorted) when used with higher-frequency crystals. Refer to
manufacturer’s data. See Section 18. Electrical Specifications for component
value requirements.
Figure 8-1. XTAL Oscillator External Connections
8.4.4 RC Oscillator
The RC oscillator circuit is designed for use with external R to provide a
clock source with tolerance less than 25%.
In its typical configuration, the RC oscillator requires two external
components, one R and one C. In the MC68HC908QY4, the capacitor is
internal to the chip. The R value should have a tolerance of 1% or less,
to obtain a clock source with less than 25% tolerance. The oscillator
configuration uses one component, REXT.
In this configuration, the OSC2 pin can be left in the reset state as PTA4.
Or, the OSC2EN bit in the port A pullup enable register can be set to
enable the OSC2 function on the pin without affecting the clocks.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
106
Oscillator Module (OSC)
MOTOROLA
R E Q U I R E D
Oscillator Module (OSC)
Oscillator Module Signals
OSCRCOPT
TO SIM
0
BUSCLKX4
BUSCLKX2
1
SIMOSCEN
EXTERNAL RC
EN
OSCILLATOR
RCCLK
÷2
1
0
PTA4
I/O
PTA4
OSC2EN
MCU
OSC1
VDD
REXT
PTA4/BUSCLKX4 (OSC2)
See Section 18. Electrical Specifications
for component value requirements.
Figure 8-2. RC Oscillator External Connections
8.5 Oscillator Module Signals
The following paragraphs describe the signals that are inputs to and
outputs from the oscillator module.
8.5.1 Crystal Amplifier Input Pin (OSC1)
The OSC1 pin is either an input to the crystal oscillator amplifier, an input
to the RC oscillator circuit, or an external clock source.
For the internal oscillator configuration, the OSC1 pin can assume other
functions according to Table 1-3. Function Priority in Shared Pins.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
107
A G R E E M E N T
INTCLK
N O N - D I S C L O S U R E
TO SIM
FROM SIM
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Oscillator Module (OSC)
8.5.2 Crystal Amplifier Output Pin (OSC2/PTA4/BUSCLKX4)
For the XTAL oscillator device, the OSC2 pin is the crystal oscillator
inverting amplifier output.
For the external clock option, the OSC2 pin is dedicated to the PTA4 I/O
function. The OSC2EN bit has no effect.
For the internal oscillator or RC oscillator options, the OSC2 pin can
assume other functions according to Table 1-3. Function Priority in
Shared Pins, or the output of the oscillator clock (BUSCLKX4).
Table 8-1. OSC2 Pin Function
Option
OSC2 Pin Function
XTAL oscillator
Inverting OSC1
External clock
PTA4 I/O
Internal oscillator
or
RC oscillator
Controlled by OSC2EN bit in PTAPUE register
OSC2EN = 0: PTA4 I/O
OSC2EN = 1: BUSCLKX4 output
8.5.3 Oscillator Enable Signal (SIMOSCEN)
The SIMOSCEN signal comes from the system integration module (SIM)
and enables/disables either the XTAL oscillator circuit, the RC oscillator,
or the internal oscillator.
8.5.4 XTAL Oscillator Clock (XTALCLK)
XTALCLK is the XTAL oscillator output signal. It runs at the full speed of
the crystal (fXCLK) and comes directly from the crystal oscillator circuit.
Figure 8-1 shows only the logical relation of XTALCLK to OSC1 and
OSC2 and may not represent the actual circuitry. The duty cycle of
XTALCLK is unknown and may depend on the crystal and other external
factors. Also, the frequency and amplitude of XTALCLK can be unstable
at start up.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
108
Oscillator Module (OSC)
MOTOROLA
8.5.6 Internal Oscillator Clock (INTCLK)
INTCLK is the internal oscillator output signal. Its nominal frequency is
fixed to 12.8 MHz, but it can be also trimmed using the oscillator
trimming feature of the OSCTRIM register (see 8.4.1.1 Internal
Oscillator Trimming).
8.5.7 Oscillator Out 2 (BUSCLKX4)
BUSCLKX4 is the same as the input clock (XTALCLK, RCCLK, or
INTCLK). This signal is driven to the SIM module and is used to
determine the COP cycles.
8.5.8 Oscillator Out (BUSCLKX2)
The frequency of this signal is equal to half of the BUSCLKX4, this signal
is driven to the SIM for generation of the bus clocks used by the CPU
and other modules on the MCU. BUSCLKX2 will be divided again in the
SIM and results in the internal bus frequency being one fourth of either
the XTALCLK, RCCLK, or INTCLK frequency.
8.6 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power
consumption standby modes.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
109
A G R E E M E N T
RCCLK is the RC oscillator output signal. Its frequency is directly
proportional to the time constant of external R and internal C. Figure 8-2
shows only the logical relation of RCCLK to OSC1 and may not
represent the actual circuitry.
N O N - D I S C L O S U R E
8.5.5 RC Oscillator Clock (RCCLK)
R E Q U I R E D
Oscillator Module (OSC)
Low Power Modes
8.6.1 Wait Mode
The WAIT instruction has no effect on the oscillator logic. BUSCLKX2
and BUSCLKX4 continue to drive to the SIM module.
8.6.2 Stop Mode
The STOP instruction disables either the XTALCLK, the RCCLK, or
INTCLK output, hence BUSCLKX2 and BUSCLKX4.
8.7 Oscillator During Break Mode
The oscillator continues to drive BUSCLKX2 and BUSCLKX4 when the
device enters the break state.
8.8 CONFIG2 Options
Two CONFIG2 register options affect the operation of the oscillator
module: OSCOPT1 and OSCOPT0. All CONFIG2 register bits will have
a default configuration. Refer to Section 5. Configuration Register
(CONFIG) for more information on how the CONFIG2 register is used.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Oscillator Module (OSC)
Table 8-2 shows how the OSCOPT bits are used to select the oscillator
clock source.
Table 8-2. Oscillator Modes
OSCOPT1
OSCOPT0
Oscillator Modes
0
0
Internal Oscillator
0
1
External Oscillator
1
0
External RC
1
1
External Crystal
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
110
Oscillator Module (OSC)
MOTOROLA
1. Oscillator status register (OSCSTAT)
2. Oscillator trim register (OSCTRIM)
8.9.1 Oscillator Status Register
The oscillator status register (OSCSTAT) contains the bits for switching
from internal to external clock sources
Address:
$0036
Bit 7
6
5
4
3
2
1
R
R
R
R
R
R
ECGON
0
0
0
0
0
0
0
Read:
Bit 0
ECGST
Write:
Reset:
R
0
= Reserved
Figure 8-3. Oscillator Status Register (OSCSTAT)
ECGON — External Clock Generator On Bit
This read/write bit enables external clock generator, so that the
switching process can be initiated. This bit is forced low during reset.
This bit is ignored in monitor mode with the internal oscillator
bypassed, PTM or CTM mode.
1 = External clock generator enabled
0 = External clock generator disabled
ECGST — External Clock Status Bit
This read-only bit indicates whether or not an external clock source is
engaged to drive the system clock.
1 = An external clock source engaged
0 = An external clock source disengaged
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Oscillator Module (OSC)
111
A G R E E M E N T
The oscillator module contains these two registers:
N O N - D I S C L O S U R E
8.9 Input/Output (I/O) Registers
R E Q U I R E D
Oscillator Module (OSC)
Input/Output (I/O) Registers
8.9.2 Oscillator Trim Register (OSCTRIM)
Address: $0038
Bit 7
6
5
4
3
2
1
Bit 0
TRIM7
TRIM6
TRIM5
TRIM4
TRIM3
TRIM2
TRIM71
TRIM0
1
0
0
0
0
0
0
0
Read:
Write:
Reset:
Figure 8-4. Oscillator Trim Register (OSCTRIM)
TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits
A G R E E M E N T
R E Q U I R E D
Oscillator Module (OSC)
N O N - D I S C L O S U R E
These read/write bits change the size of the internal capacitor used
by the internal oscillator. By measuring the period of the internal clock
and adjusting this factor accordingly, the frequency of the internal
clock can be fine tuned. Increasing (decreasing) this factor by one
increases (decreases) the period by appoximately 0.2% of the
untrimmed period (the period for TRIM = $80). The trimmed frequency
is guaranteed not to vary by more than ±5% over the full specified
range of temperature and voltage. The reset value is $80, which sets
the frequency to 12.8 MHz (3.2 MHz bus speed) ±25%.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
112
Oscillator Module (OSC)
MOTOROLA
9.1 Contents
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
9.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
9.4.1
Forced Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.4.2
VTST Monitor Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.4.3
Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.4
Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
9.4.5
Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
9.4.6
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
9.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
R E Q U I R E D
Section 9. Monitor ROM (MON)
A G R E E M E N T
Data Sheet — MC68HC908QY4
This section describes the monitor read-only memory (MON) and the
monitor mode entry methods. The monitor ROM allows complete testing
of the microcontroller unit (MCU) through a single-wire interface with a
host computer. Monitor mode entry can be achieved without use of the
higher test voltage, VTST, as long as vector addresses $FFFE and
$FFFF are blank, thus reducing the hardware requirements for in-circuit
programming.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
113
N O N - D I S C L O S U R E
9.2 Introduction
9.3 Features
Features of the monitor ROM include:
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Monitor ROM (MON)
•
Normal user-mode pin functionality on most pins
•
One pin dedicated to serial communication between monitor
read-only memory (ROM) and host computer
•
Standard mark/space non-return-to-zero (NRZ) communication
with host computer
•
Execution of code in random-access memory (RAM) or FLASH
•
FLASH memory security feature(1)
•
FLASH memory programming interface
•
Use of external 9.83 MHz crystal or clock to generate internal
frequency of 2.4576 MHz
•
Simple internal oscillator mode of operation (no external clock or
high voltage)
•
574 bytes monitor ROM code size
•
Monitor mode entry without high voltage, VTST, if reset vector is
blank ($FFFE and $FFFF contain $FF)
•
Standard monitor mode entry if high voltage is applied to IRQ
9.4 Functional Description
The monitor ROM receives and executes commands from a host
computer. Figure 9-1, Figure 9-2, and Figure 9-3 show example circuits
used to enter monitor mode and communicate with a host computer via
a standard RS-232 interface.
Simple monitor commands can access any memory address. In monitor
mode, the MCU can execute code downloaded into RAM by a host
computer while most MCU pins retain normal operating mode functions.
All communication between the host computer and the MCU is through
1. No security feature is absolutely secure. However, Motorola’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
114
Monitor ROM (MON)
MOTOROLA
Table 9-1 shows the pin conditions for entering monitor mode. As
specified in the table, monitor mode may be entered after a power-on
reset (POR) and will allow communication at 9600 baud provided one of
the following sets of conditions is met:
•
If $FFFE and $FFFF does not contain $FF (programmed state):
– The external clock is 9.8304 MHz
– IRQ = VTST
•
If $FFFE and $FFFF contain $FF (erased state):
– The external clock is 9.8304 MHz
– IRQ = VDD (this can be implemented through the internal IRQ
pullup)
•
If $FFFE and $FFFF contain $FF (erased state):
– IRQ = VSS (internal oscillator is selected, no external clock
required)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
115
A G R E E M E N T
The monitor code has been updated from previous versions of the
monitor code to allow enabling the internal oscillator to generate the
internal clock. This addition, which is enabled when IRQ is held low out
of reset, is intended to support serial communication/programming at
9600 baud in monitor mode by using the internal oscillator, and the
internal oscillator user trim value OSCTRIM (FLASH location $FFC0, if
programmed) to generate the desired internal frequency (3.2 MHz).
Since this feature is enabled only when IRQ is held low out of reset, it
cannot be used when the reset vector is programmed (i.e., the value is
not $FFFF) because entry into monitor mode in this case requires VTST
on IRQ. The IRQ pin must remain low during this monitor session in
order to maintain communication.
N O N - D I S C L O S U R E
the PTA0 pin. A level-shifting and multiplexing interface is required
between PTA0 and the host computer. PTA0 is used in a wired-OR
configuration and requires a pullup resistor.
R E Q U I R E D
Monitor ROM (MON)
Functional Description
R E Q U I R E D
Monitor ROM (MON)
VDD
N.C.
VDD
0.1 µF
MAX232
1
+
1 µF
16
9.8304 MHz CLOCK
+
3
4
C2+
1 µF
15
C1–
+
1 µF
VDD
C1+
5 C2–
A G R E E M E N T
RST (PTA3)
+
V+
1 µF
10 kΩ*
3
PTA1
N.C.
PTA4
N.C.
2
VDD
IRQ (PTA2)
V– 6
1 µF
10 kΩ
74HC125
5
6
+
DB9
2
OSC1 (PTA5)
7
10
8
9
74HC125
3
2
PTA0
4
VSS
1
5
* Value not critical
Figure 9-1. Monitor Mode Circuit (External Clock, No High Voltage)
VDD
N.C.
RST (PTA3)
VDD
N O N - D I S C L O S U R E
0.1 µF
MAX232
1
1 µF
+
C1+
4
C2+
+
5 C2–
N.C.
1 µF
15
+
3
5
IRQ (PTA2)
1 µF
7
10
8
9
N.C.
PTA4
N.C.
VDD
V– 6
1 µF
PTA1
10 kΩ*
V+ 2
10 kΩ
74HC125
5
6
+
DB9
2
OSC1 (PTA5)
16
+
3 C1–
1 µF
VDD
74HC125
3
2
PTA0
VSS
4
1
* Value not critical
Figure 9-2. Monitor Mode Circuit (Internal Clock, No High Voltage)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
116
Monitor ROM (MON)
MOTOROLA
VDD
VDD
10 kΩ*
RST (PTA3)
VDD
0.1 µF
0.1 µF
9.8304 MHz CLOCK
1 µF
+
3
VTST
1 µF
C2+
V+
+
3
1 kΩ
2
IRQ (PTA2)
VDD
1 µF
7
10
8
9
10 kΩ*
PTA4
9.1 V
10 kΩ
+
VSS
74HC125
5
6
DB9
2
1 µF
V– 6
5 C2–
PTA1
1 µF
15
C1–
+
4
10 kΩ*
16
C1+
74HC125
3
2
PTA0
4
1
5
* Value not critical
Figure 9-3. Monitor Mode Circuit (External Clock, with High Voltage)
Table 9-1. Monitor Mode Signal Requirements and Options
Mode
VTST
monitor
mode
IRQ RST
VTST VDD
Forced
monitor
mode
VDD
Forced
monitor
mode
User
mode
$FFFE/
$FFFF
X
PTA1 PTA4
1
0
External
Bus
Clock Frequency
(MHz)
(MHz)
9.8304
COP
Comment
2.4576
PTA1 and PTA4 voltages
are required. RST and
Disabled
OSC1 functions are
active
OSC1 function is active.
RST and IRQ only
Disabled
available if later
configured.
X
$FF
(blank)
X
X
9.8304
2.4576
VSS
X
$FF
(blank)
X
X
X
3.2
RST, IRQ, and OSC1
Disabled only available if later
configured.
VDD
or
VSS
X
Not
$FF
(programmed)
X
X
X
—
Enters user mode
Enabled RST pin only available if
later configured
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
117
A G R E E M E N T
1
+
VDD
OSC1 (PTA5)
VDD
N O N - D I S C L O S U R E
MAX232
R E Q U I R E D
Monitor ROM (MON)
Functional Description
Monitor ROM (MON)
R E Q U I R E D
If entering monitor mode without high voltage on IRQ (above condition
set 2 or 3, where applied voltage is VDD or VSS), then startup port pin
requirements and conditions, (PTA1/PTA4) are not in effect. This is to
reduce circuit requirements when performing in-circuit programming.
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see
an additional reset cycle after the initial power-on reset (POR). Once the
part has been programmed, the traditional method of applying a voltage,
VTST, to IRQ must be used to enter monitor mode.
A G R E E M E N T
The computer operating properly (COP) module is disabled in monitor
mode based on these conditions:
NOTE:
•
If monitor mode was entered as a result of the reset vector being
blank (above condition set 2 or 3), the COP is always disabled
regardless of the state of IRQ.
•
If monitor mode was entered with VTST on IRQ (condition set 1),
then the COP is disabled as long as VTST is applied to IRQ.
The PTA0 pin must be at logic 1 (pullup) during chip power up to enter
monitor mode properly.
N O N - D I S C L O S U R E
Figure 9-4 shows a simplified diagram of the monitor mode entry when
the reset vector is blank and just 1 x VDD voltage is applied to the IRQ
pin. An external oscillator of 9.8304 MHz is required for a baud rate of
9600, as the internal bus frequency is automatically set to the external
frequency divided by four. No external clock is required if IRQ = 0 since
chip clock will be drive by internal clock generator.
Enter monitor mode with pin configuration shown in Figure 9-1 by pulling
RST low and then high. The rising edge of RST latches monitor mode.
Once monitor mode is latched, the values on the specified pins can
change.
Once out of reset, the MCU waits for the host to send eight security bytes
(see 9.5 Security). After the security bytes, the MCU sends a break
signal (10 consecutive logic 0s) to the host, indicating that it is ready to
receive a command.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
118
Monitor ROM (MON)
MOTOROLA
IS VECTOR
BLANK?
NO
NORMAL USER
MODE
YES
MONITOR MODE
EXECUTE
MONITOR
CODE
POR
TRIGGERED?
NO
YES
Figure 9-4. Low-Voltage Monitor Mode Entry Flowchart
9.4.1 Forced Monitor Mode
If the voltage applied to the IRQ is less than VTST, the MCU will come
out of reset in user mode. The MENRST module monitors the reset
vector fetches and will assert an internal reset if it detects that the reset
vectors are erased ($FF). When the MCU comes out of reset, it is forced
into monitor mode without requiring high voltage on the IRQ pin. Once
out of reset, the monitor code is initially executing off the internal clock
at its default frequency.
If IRQ is tied high, all pins will default to regular input port functions
except for PTA0 and PTA5 which will operate as a serial communication
port and OSC1 input respectively (refer to Figure 9-1). That will allow the
clock to be driven from an external source through OSC1 pin.
If IRQ is tied low, all pins will default to regular input port function except
for PTA0 which will operate as serial communication port. Refer to
Figure 9-2.
Regardless of the state of the IRQ pin, it will not function as a port input
pin in monitor mode. Bit 2 of the Port A data register will always read 0.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
119
N O N - D I S C L O S U R E
POR RESET
A G R E E M E N T
R E Q U I R E D
Monitor ROM (MON)
Functional Description
Monitor ROM (MON)
R E Q U I R E D
The BIH and BIL instructions will behave as if the IRQ pin is enabled,
regardless of the settings in the configuration register. See Section 5.
Configuration Register (CONFIG).
The COP module is disabled in forced monitor mode. Any reset other
than a power-on reset (POR) will automatically force the MCU to come
back to the forced monitor mode.
N O N - D I S C L O S U R E
A G R E E M E N T
In monitor mode, the MCU uses different vectors for reset, SWI
(software interrupt), and break interrupt than those for user mode. The
alternate vectors are in the $FE page instead of the $FF page and allow
code execution from the internal monitor firmware instead of user code.
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset
vector requires a power-on reset (POR). Pulling RST (when RST pin
available) low will not exit monitor mode in this situation.
Table 9-2 summarizes the differences between user mode and monitor
mode regarding vectors.
Table 9-2. Mode Difference
Functions
Reset
Vector
High
Reset
Vector
Low
Break
Vector
High
Break
Vector
Low
SWI
Vector
High
SWI
Vector
Low
User
$FFFE
$FFFF
$FFFC
$FFFD
$FFFC
$FFFD
Monitor
$FEFE
$FEFF
$FEFC
$FEFD
$FEFC
$FEFD
Modes
9.4.2 VTST Monitor Mode
RST and OSC1 functions will be active on the PTA3 and PTA5 pins
respectively as long as VTST is applied to IRQ pin. If the IRQ pin is
lowered (no longer VTST) then the chip will still be operating in monitor
mode, but the pin functions will be determined by the settings in the
configuration registers (see Section 5. Configuration Register
(CONFIG)) when VTST was lowered, except for the IRQ pin. IRQ will not
function as a port input pin in monitor mode. Bit 2 of the Port A data
register will always read 0. The BIH and BIL instructions will behave as
if the IRQ pin is enabled, regardless of the settings in the configuration
registers.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
120
Monitor ROM (MON)
MOTOROLA
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
BIT 7
STOP
BIT
NEXT
START
BIT
Figure 9-5. Monitor Data Format
9.4.4 Break Signal
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When
the monitor receives a break signal, it drives the PTA0 pin high for the
duration of two bits and then echoes back the break signal.
MISSING STOP BIT
2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 9-6. Break Transaction
9.4.5 Baud Rate
The communication baud rate is controlled by the external frequency
and the divide ratio is 1024.
Table 9-3 has the external frequency required to achieve a standard
baud rate of 9600 bps. Other standard baud rates can be accomplished
using proportionally higher or lower frequency generators. If a crystal is
used as the source, be aware of the upper frequency limit that the MCU
can operate.
Table 9-3. Monitor Baud Rate Selection
External Frequency
IRQ
Internal Frequency
Baud Rate (bps)
9.8304 MHz
VTST
or VDD
2.4576 MHz
9600
—
VSS
3.2 MHz (Trimmed)
9600
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
121
A G R E E M E N T
Communication with the monitor ROM is in standard non-return-to-zero
(NRZ) mark/space data format. Transmit and receive baud rates must
be identical.
N O N - D I S C L O S U R E
9.4.3 Data Format
R E Q U I R E D
Monitor ROM (MON)
Functional Description
9.4.6 Commands
The monitor ROM firmware uses these commands:
A G R E E M E N T
R E Q U I R E D
Monitor ROM (MON)
•
READ (read memory)
•
WRITE (write memory)
•
IREAD (indexed read)
•
IWRITE (indexed write)
•
READSP (read stack pointer)
•
RUN (run user program)
The monitor ROM firmware echoes each received byte back to the PTA0
pin for error checking. An 11-bit delay at the end of each command
allows the host to send a break character to cancel the command. A
delay of two bit times occurs before each echo and before READ,
IREAD, or READSP data is returned. The data returned by a read
command appears after the echo of the last byte of the command.
NOTE:
Wait one bit time after each echo before sending the next byte.
FROM
HOST
N O N - D I S C L O S U R E
READ
4
ADDRESS
HIGH
READ
4
1
ADDRESS
HIGH
ADDRESS
LOW
1
ECHO
Notes:
1 = Echo delay, 2 bit times
2 = Data return delay, 2 bit times
ADDRESS
LOW
DATA
1
4
3, 2
4
RETURN
3 = Cancel command delay, 11 bit times
4 = Wait 1 bit time before sending next byte.
Figure 9-7. Read Transaction
FROM
HOST
WRITE
3
ADDRESS
HIGH
WRITE
1
3
ADDRESS
HIGH
1
ADDRESS
LOW
3
ADDRESS
LOW
1
DATA
3
DATA
1
2, 3
ECHO
Notes:
1 = Echo delay, 2 bit times
2 = Cancel command delay, 11 bit times
3 = Wait 1 bit time before sending next byte.
Figure 9-8. Write Transaction
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
122
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
R E Q U I R E D
A brief description of each monitor mode command is given in
Table 9-4 through Table 9-9.
Table 9-4. READ (Read Memory) Command
Description
Read byte from memory
Operand
2-byte address in high-byte:low-byte order
Data
Returned
Returns contents of specified address
Opcode
$4A
SENT TO
MONITOR
READ
READ
ADDRESS ADDRESS ADDRESS
HIGH
HIGH
LOW
ECHO
ADDRESS
LOW
DATA
N O N - D I S C L O S U R E
RETURN
A G R E E M E N T
Command Sequence
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
123
Monitor ROM (MON)
R E Q U I R E D
Table 9-5. WRITE (Write Memory) Command
Description
Write byte to memory
Operand
2-byte address in high-byte:low-byte order; low byte followed by
data byte
Data
Returned
None
Opcode
$49
Command Sequence
A G R E E M E N T
FROM
HOST
WRITE
WRITE
ADDRESS
HIGH
ADDRESS
HIGH
ADDRESS
LOW
ADDRESS
LOW
DATA
DATA
ECHO
Table 9-6. IREAD (Indexed Read) Command
N O N - D I S C L O S U R E
Description
Read next 2 bytes in memory from last address accessed
Operand
2-byte address in high byte:low byte order
Data
Returned
Returns contents of next two addresses
Opcode
$1A
Command Sequence
FROM
HOST
IREAD
IREAD
ECHO
DATA
DATA
RETURN
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
124
Monitor ROM (MON)
MOTOROLA
Monitor ROM (MON)
Functional Description
Description
Write to last address accessed + 1
Operand
Single data byte
Data
Returned
None
Opcode
R E Q U I R E D
Table 9-7. IWRITE (Indexed Write) Command
$19
Command Sequence
IWRITE
IWRITE
DATA
A G R E E M E N T
FROM
HOST
DATA
ECHO
N O N - D I S C L O S U R E
A sequence of IREAD or IWRITE commands can access a block of
memory sequentially over the full 64-Kbyte memory map.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
125
Monitor ROM (MON)
R E Q U I R E D
Table 9-8. READSP (Read Stack Pointer) Command
Description
Reads stack pointer
Operand
None
Data
Returned
Returns incremented stack pointer value (SP + 1) in
high-byte:low-byte order
Opcode
$0C
Command Sequence
A G R E E M E N T
FROM
HOST
READSP
SP
HIGH
READSP
ECHO
SP
LOW
RETURN
Table 9-9. RUN (Run User Program) Command
N O N - D I S C L O S U R E
Description
Executes PULH and RTI instructions
Operand
None
Data
Returned
None
Opcode
$28
Command Sequence
FROM
HOST
RUN
RUN
ECHO
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
126
Monitor ROM (MON)
MOTOROLA
The MCU executes the SWI and PSHH instructions when it enters
monitor mode. The RUN command tells the MCU to execute the PULH
and RTI instructions. Before sending the RUN command, the host can
modify the stacked CPU registers to prepare to run the host program.
The READSP command returns the incremented stack pointer value,
SP + 1. The high and low bytes of the program counter are at addresses
SP + 5 and SP + 6.
SP + 1
CONDITION CODE REGISTER
SP + 2
ACCUMULATOR
SP + 3
LOW BYTE OF INDEX REGISTER
SP + 4
HIGH BYTE OF PROGRAM COUNTER
SP + 5
LOW BYTE OF PROGRAM COUNTER
SP + 6
SP + 7
Figure 9-9. Stack Pointer at Monitor Mode Entry
9.5 Security
A security feature discourages unauthorized reading of FLASH locations
while in monitor mode. The host can bypass the security feature at
monitor mode entry by sending eight security bytes that match the bytes
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain
user-defined data.
NOTE:
Do not leave locations $FFF6–$FFFD blank. For security reasons,
program locations $FFF6–$FFFD even if they are not used for vectors.
During monitor mode entry, the MCU waits after the power-on reset for
the host to send the eight security bytes on pin PTA0. If the received
bytes match those at locations $FFF6–$FFFD, the host bypasses the
security feature and can read all FLASH locations and execute code
from FLASH. Security remains bypassed until a power-on reset occurs.
If the reset was not a power-on reset, security remains bypassed and
security code entry is not required. See Figure 9-10.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Monitor ROM (MON)
127
N O N - D I S C L O S U R E
HIGH BYTE OF INDEX REGISTER
A G R E E M E N T
SP
R E Q U I R E D
Monitor ROM (MON)
Security
R E Q U I R E D
Monitor ROM (MON)
VDD
4096 + 32 CGMXCLK CYCLES
COMMAND
BYTE 8
BYTE 2
BYTE 1
RST
FROM HOST
PA0
4
BREAK
2
1
COMMAND ECHO
1
BYTE 8 ECHO
Notes:
1 = Echo delay, 2 bit times
2 = Data return delay, 2 bit times
4 = Wait 1 bit time before sending next byte.
1
BYTE 2 ECHO
A G R E E M E N T
FROM MCU
4
1
BYTE 1 ECHO
256 BUS CYCLES
(MINIMUM)
Figure 9-10. Monitor Mode Entry Timing
N O N - D I S C L O S U R E
Upon power-on reset, if the received bytes of the security code do not
match the data at locations $FFF6–$FFFD, the host fails to bypass the
security feature. The MCU remains in monitor mode, but reading a
FLASH location returns an invalid value and trying to execute code from
FLASH causes an illegal address reset. After receiving the eight security
bytes from the host, the MCU transmits a break character, signifying that
it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends
the eight security bytes.
To determine whether the security code entered is correct, check to see
if bit 6 of RAM address $80 is set. If it is, then the correct security code
has been entered and FLASH can be accessed.
If the security sequence fails, the device should be reset by a power-on
reset and brought up in monitor mode to attempt another entry. After
failing the security sequence, the FLASH module can also be mass
erased by executing an erase routine that was downloaded into internal
RAM. The mass erase operation clears the security code locations so
that all eight security bytes become $FF (blank).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
128
Monitor ROM (MON)
MOTOROLA
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
10.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
10.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
10.5.3 Output Compare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
10.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 134
10.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .135
10.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 135
10.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 136
10.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 137
10.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
10.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.7
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
10.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.9
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
10.10 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
10.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 141
10.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
10.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 144
10.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 145
10.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . .148
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
129
R E Q U I R E D
10.1 Contents
A G R E E M E N T
Section 10. Timer Interface Module (TIM)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
10.2 Introduction
This section describes the timer interface module (TIM). The TIM is a
two-channel timer that provides a timing reference with input capture,
output compare, and pulse-width-modulation functions. Figure 10-1 is a
block diagram of the TIM.
10.3 Features
Features of the TIM include the following:
•
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Timer Interface Module (TIM)
Two input capture/output compare channels
– Rising-edge, falling-edge, or any-edge input capture trigger
– Set, clear, or toggle output compare action
•
Buffered and unbuffered pulse width modulation (PWM) signal
generation
•
Programmable TIM clock input with 7-frequency internal bus clock
prescaler selection
•
Free-running or modulo up-count operation
•
Toggle any channel pin on overflow
•
TIM counter stop and reset bits
10.4 Pin Name Conventions
The TIM shares two input/output (I/O) pins with two port A I/O pins. The
full names of the TIM I/O pins are listed in Table 10-1. The generic pin
name appear in the text that follows.
Table 10-1. Pin Name Conventions
TIM Generic Pin Names:
Full TIM Pin Names:
TCH0
TCH1
PTA0/TCH0
PTA1/TCH1
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
130
Timer Interface Module (TIM)
MOTOROLA
10.5 Functional Description
Figure 10-1 shows the structure of the TIM. The central component of
the TIM is the 16-bit TIM counter that can operate as a free-running
counter or a modulo up-counter. The TIM counter provides the timing
reference for the input capture and output compare functions. The TIM
counter modulo registers, TMODH:TMODL, control the modulo value of
the TIM counter. Software can read the TIM counter value at any time
without affecting the counting sequence.
A G R E E M E N T
The two TIM channels are programmable independently as input
capture or output compare channels.
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
TSTOP
PS2
TRST
PS1
PS0
16-BIT COUNTER
TOF
TOIE
R E Q U I R E D
Timer Interface Module (TIM)
Functional Description
INTERRUPT
LOGIC
16-BIT COMPARATOR
N O N - D I S C L O S U R E
TMODH:TMODL
TOV0
CHANNEL 0
ELS0B
ELS0A
CH0MAX
16-BIT COMPARATOR
TCH0H:TCH0L
PORT
LOGIC
TCH0
CH0F
16-BIT LATCH
CH0IE
MS0A
INTERRUPT
LOGIC
MS0B
INTERNAL BUS
TOV1
CHANNEL 1
ELS1B
ELS1A
CH1MAX
PORT
LOGIC
TCH1
16-BIT COMPARATOR
TCH1H:TCH1L
CH1F
16-BIT LATCH
MS1A
CH1IE
INTERRUPT
LOGIC
Figure 10-1. TIM Block Diagram
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
131
A G R E E M E N T
R E Q U I R E D
Timer Interface Module (TIM)
Addr.
$0020
$0021
$0022
$0023
$0024
N O N - D I S C L O S U R E
$0025
$0026
$0027
$0028
Register Name
Bit 7
6
5
TOIE
TSTOP
4
3
0
0
2
1
Bit 0
PS2
PS1
PS0
TIM Status and Control Read:
Register
Write:
(TSC)
See page 141. Reset:
TOF
0
0
1
0
0
0
0
0
Read:
TIM Counter Register High
(TCNTH) Write:
See page 144.
Reset:
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Read:
TIM Counter Register Low
(TCNTL) Write:
See page 144.
Reset:
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 2
Bit 1
Bit 0
TIM Counter Modulo Read:
Register High
Write:
(TMODH)
See page 144. Reset:
TIM Counter Modulo Read:
Register Low
Write:
(TMODL)
See page 144. Reset:
TIM Channel 0 Status and Read:
Control Register
Write:
(TSC0)
See page 145. Reset:
TIM Channel 0 Read:
Register High
Write:
(TCH0H)
See page 149. Reset:
TIM Channel 0 Read:
Register Low
Write:
(TCH0L)
See page 149. Reset:
TIM Channel 1 Status and Read:
Control Register
Write:
(TSC1)
See page 145. Reset:
0
TRST
CH0F
0
Indeterminate after reset
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Indeterminate after reset
CH1F
0
CH1IE
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 10-2. TIM I/O Register Summary
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
132
Timer Interface Module (TIM)
MOTOROLA
$002A
TIM Channel 1 Read:
Register High
Write:
(TCH1H)
See page 149. Reset:
TIM Channel 1 Read:
Register Low
Write:
(TCH1L)
See page 149. Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Bit 2
Bit 1
Bit 0
Indeterminate after reset
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Indeterminate after reset
= Unimplemented
Figure 10-2. TIM I/O Register Summary (Continued)
10.5.1 TIM Counter Prescaler
The TIM clock source is one of the seven prescaler outputs. The
prescaler generates seven clock rates from the internal bus clock. The
prescaler select bits, PS[2:0], in the TIM status and control register
(TSC) select the TIM clock source.
10.5.2 Input Capture
With the input capture function, the TIM can capture the time at which an
external event occurs. When an active edge occurs on the pin of an input
capture channel, the TIM latches the contents of the TIM counter into the
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is
programmable. Input captures can generate TIM central processor unit
(CPU) interrupt requests.
10.5.3 Output Compare
With the output compare function, the TIM can generate a periodic pulse
with a programmable polarity, duration, and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIM can set, clear, or toggle the channel pin. Output compares can
generate TIM CPU interrupt requests.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
133
A G R E E M E N T
$0029
Register Name
N O N - D I S C L O S U R E
Addr.
R E Q U I R E D
Timer Interface Module (TIM)
Functional Description
10.5.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in 10.5.3 Output Compare. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIM channel registers.
An unsynchronized write to the TIM channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIM overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIM may pass
the new value before it is written.
A G R E E M E N T
R E Q U I R E D
Timer Interface Module (TIM)
N O N - D I S C L O S U R E
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
•
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
•
When changing to a larger output compare value, enable TIM
overflow interrupts and write the new value in the TIM overflow
interrupt routine. The TIM overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
134
Timer Interface Module (TIM)
MOTOROLA
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The output compare value in the TIM
channel 0 registers initially controls the output on the TCH0 pin. Writing
to the TIM channel 1 registers enables the TIM channel 1 registers to
synchronously control the output after the TIM overflows. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
output are the ones written to last. TSC0 controls and monitors the
buffered output compare function, and TIM channel 1 status and control
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,
TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
10.5.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIM can generate a PWM signal. The value in the TIM counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIM counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 10-3 shows, the output compare value in the TIM channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIM to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIM to set the pin if the state of the PWM
pulse is logic 0.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
135
A G R E E M E N T
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the TCH0 pin. The TIM channel
registers of the linked pair alternately control the output.
N O N - D I S C L O S U R E
10.5.3.2 Buffered Output Compare
R E Q U I R E D
Timer Interface Module (TIM)
Functional Description
Timer Interface Module (TIM)
R E Q U I R E D
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PULSE
WIDTH
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
N O N - D I S C L O S U R E
A G R E E M E N T
Figure 10-3. PWM Period and Pulse Width
The value in the TIM counter modulo registers and the selected
prescaler output determines the frequency of the PWM output. The
frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIM counter modulo registers produces a PWM
period of 256 times the internal bus clock period if the prescaler select
value is 000. See 10.10.1 TIM Status and Control Register.
The value in the TIM channel registers determines the pulse width of the
PWM output. The pulse width of an 8-bit PWM signal is variable in 256
increments. Writing $0080 (128) to the TIM channel registers produces
a duty cycle of 128/256 or 50%.
10.5.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as
described in 10.5.4 Pulse Width Modulation (PWM). The pulses are
unbuffered because changing the pulse width requires writing the new
pulse width value over the old value currently in the TIM channel
registers.
An unsynchronized write to the TIM channel registers to change a pulse
width value could cause incorrect operation for up to two PWM periods.
For example, writing a new value before the counter reaches the old
value but after the counter reaches the new value prevents any compare
during that PWM period. Also, using a TIM overflow interrupt routine to
write a new, smaller pulse width value may cause the compare to be
missed. The TIM may pass the new value before it is written.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
136
Timer Interface Module (TIM)
MOTOROLA
NOTE:
•
When changing to a shorter pulse width, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the
PWM period to write the new value.
•
When changing to a longer pulse width, enable TIM overflow
interrupts and write the new value in the TIM overflow interrupt
routine. The TIM overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt
routine (at the end of the current pulse) could cause two output
compares to occur in the same PWM period.
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to
self-correct in the event of software error or noise. Toggling on output
compare also can cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
A G R E E M E N T
Use the following methods to synchronize unbuffered changes in the
PWM pulse width on channel x:
R E Q U I R E D
Timer Interface Module (TIM)
Functional Description
Channels 0 and 1 can be linked to form a buffered PWM channel whose
output appears on the TCH0 pin. The TIM channel registers of the linked
pair alternately control the pulse width of the output.
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The TIM channel 0 registers initially
control the pulse width on the TCH0 pin. Writing to the TIM channel 1
registers enables the TIM channel 1 registers to synchronously control
the pulse width at the beginning of the next PWM period. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
pulse width are the ones written to last. TSC0 controls and monitors the
buffered PWM function, and TIM channel 1 status and control register
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,
is available as a general-purpose I/O pin.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
137
N O N - D I S C L O S U R E
10.5.4.2 Buffered PWM Signal Generation
R E Q U I R E D
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
10.5.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
A G R E E M E N T
1. In the TIM status and control register (TSC):
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.
b. Reset the TIM counter and prescaler by setting the TIM reset
bit, TRST.
2. In the TIM counter modulo registers (TMODH:TMODL), write the
value for the required PWM period.
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for
the required pulse width.
4. In TIM channel x status and control register (TSCx):
N O N - D I S C L O S U R E
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB:MSxA. See Table 10-3.
b. Write 1 to the toggle-on-overflow bit, TOVx.
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on
compare) to the edge/level select bits, ELSxB:ELSxA. The
output action on compare must force the output to the
complement of the pulse width level. See Table 10-3.
NOTE:
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to
self-correct in the event of software error or noise. Toggling on output
compare can also cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
5. In the TIM status control register (TSC), clear the TIM stop bit,
TSTOP.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
138
Timer Interface Module (TIM)
MOTOROLA
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the
TOVx bit generates a 100% duty cycle output. See 10.10.4 TIM Channel
Status and Control Registers.
10.6 Interrupts
The following TIM sources can generate interrupt requests:
•
TIM overflow flag (TOF) — The TOF bit is set when the TIM
counter reaches the modulo value programmed in the TIM counter
modulo registers. The TIM overflow interrupt enable bit, TOIE,
enables TIM overflow CPU interrupt requests. TOF and TOIE are
in the TIM status and control register.
•
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an
input capture or output compare occurs on channel x. Channel x
TIM CPU interrupt requests are controlled by the channel x
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests
are enabled when CHxIE =1. CHxF and CHxIE are in the TIM
channel x status and control register.
10.7 Wait Mode
The WAIT instruction puts the MCU in low power-consumption standby
mode.
The TIM remains active after the execution of a WAIT instruction. In wait
mode the TIM registers are not accessible by the CPU. Any enabled
CPU interrupt request from the TIM can bring the MCU out of wait mode.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
139
A G R E E M E N T
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM
overflows. Subsequent output compares try to force the output to a state
it is already in and have no effect. The result is a 0% duty cycle output.
N O N - D I S C L O S U R E
Setting MS0B links channels 0 and 1 and configures them for buffered
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially
control the buffered PWM output. TIM status control register 0 (TSCR0)
controls and monitors the PWM signal from the linked channels. MS0B
takes priority over MS0A.
R E Q U I R E D
Timer Interface Module (TIM)
Interrupts
If TIM functions are not required during wait mode, reduce power
consumption by stopping the TIM before executing the WAIT instruction.
10.8 TIM During Break Interrupts
A break interrupt stops the TIM counter.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the break flag control register (BFCR) enables software to clear status
bits during the break state. See 7.9.2 Break Flag Control Register.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Timer Interface Module (TIM)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a two-step read/write clearing procedure. If software
does the first step on such a bit before the break, the bit cannot change
during the break state as long as BCFE is at logic 0. After the break,
doing the second step clears the status bit.
10.9 Input/Output Signals
Port A shares two of its pins with the TIM. The two TIM channel I/O pins
are PTA0/TCH0 and PTA1/TCH1.
Each channel I/O pin is programmable independently as an input
capture pin or an output compare pin. PTA0/TCH0 can be configured as
a buffered output compare or buffered PWM pin.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
140
Timer Interface Module (TIM)
MOTOROLA
Timer Interface Module (TIM)
Input/Output Registers
R E Q U I R E D
10.10 Input/Output Registers
TIM status and control register (TSC)
•
TIM control registers (TCNTH:TCNTL)
•
TIM counter modulo registers (TMODH:TMODL)
•
TIM channel status and control registers (TSC0 and TSC1)
•
TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L)
10.10.1 TIM Status and Control Register
The TIM status and control register (TSC) does the following:
•
Enables TIM overflow interrupts
•
Flags TIM overflows
•
Stops the TIM counter
•
Resets the TIM counter
•
Prescales the TIM counter clock
Address: $0020
Bit 7
Read:
6
5
TOIE
TSTOP
TOF
Write:
0
Reset:
0
4
3
0
0
2
1
Bit 0
PS2
PS1
PS0
0
0
0
TRST
0
1
0
0
= Unimplemented
Figure 10-4. TIM Status and Control Register (TSC)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
141
N O N - D I S C L O S U R E
•
A G R E E M E N T
The following I/O registers control and monitor operation of the TIM:
Timer Interface Module (TIM)
R E Q U I R E D
TOF — TIM Overflow Flag Bit
A G R E E M E N T
This read/write flag is set when the TIM counter reaches the modulo
value programmed in the TIM counter modulo registers. Clear TOF by
reading the TIM status and control register when TOF is set and then
writing a logic 0 to TOF. If another TIM overflow occurs before the
clearing sequence is complete, then writing logic 0 to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic
1 to TOF has no effect.
1 = TIM counter has reached modulo value
0 = TIM counter has not reached modulo value
TOIE — TIM Overflow Interrupt Enable Bit
This read/write bit enables TIM overflow interrupts when the TOF bit
becomes set. Reset clears the TOIE bit.
1 = TIM overflow interrupts enabled
0 = TIM overflow interrupts disabled
TSTOP — TIM Stop Bit
N O N - D I S C L O S U R E
This read/write bit stops the TIM counter. Counting resumes when
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM
counter until software clears the TSTOP bit.
1 = TIM counter stopped
0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required
to exit wait mode.
TRST — TIM Reset Bit
Setting this write-only bit resets the TIM counter and the TIM
prescaler. Setting TRST has no effect on any other registers.
Counting resumes from $0000. TRST is cleared automatically after
the TIM counter is reset and always reads as logic 0. Reset clears the
TRST bit.
1 = Prescaler and TIM counter cleared
0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter
at a value of $0000.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
142
Timer Interface Module (TIM)
MOTOROLA
Table 10-2. Prescaler Selection
PS2
PS1
PS0
TIM Clock Source
0
0
0
Internal bus clock ÷ 1
0
0
1
Internal bus clock ÷ 2
0
1
0
Internal bus clock ÷ 4
0
1
1
Internal bus clock ÷ 8
1
0
0
Internal bus clock ÷ 16
1
0
1
Internal bus clock ÷ 32
1
1
0
Internal bus clock ÷ 64
1
1
1
Not available
10.10.2 TIM Counter Registers
The two read-only TIM counter registers contain the high and low bytes
of the value in the TIM counter. Reading the high byte (TCNTH) latches
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of
TCNTH do not affect the latched TCNTL value until TCNTL is read.
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)
also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL
retains the value latched during the break.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
143
A G R E E M E N T
These read/write bits select one of the seven prescaler outputs as the
input to the TIM counter as Table 10-2 shows. Reset clears the
PS[2:0] bits.
N O N - D I S C L O S U R E
PS[2:0] — Prescaler Select Bits
R E Q U I R E D
Timer Interface Module (TIM)
Input/Output Registers
Timer Interface Module (TIM)
Read:
$0021
TCNTH
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Write:
Reset:
Address: $0022
Read:
TCNTL
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 10-5. TIM Counter Registers (TCNTH:TCNTL)
10.10.3 TIM Counter Modulo Registers
The read/write TIM modulo registers contain the modulo value for the
TIM counter. When the TIM counter reaches the modulo value, the
overflow flag (TOF) becomes set, and the TIM counter resumes counting
from $0000 at the next timer clock. Writing to the high byte (TMODH)
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is
written. Reset sets the TIM counter modulo registers.
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Address:
Address: $0023
Read:
TMODH
Bit 7
6
5
4
3
2
1
Bit 0
Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
1
1
1
1
1
1
1
1
Write:
Reset:
Address: $0024
Read:
TMODL
Bit 7
6
5
4
3
2
1
Bit 0
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
1
1
1
1
1
1
1
1
Write:
Reset:
Figure 10-6. TIM Counter Modulo Registers (TMODH:TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
144
Timer Interface Module (TIM)
MOTOROLA
•
Flags input captures and output compares
•
Enables input capture and output compare interrupts
•
Selects input capture, output compare, or PWM operation
•
Selects high, low, or toggling output on output compare
•
Selects rising edge, falling edge, or any edge as the active input
capture trigger
•
Selects output toggling on TIM overflow
•
Selects 0% and 100% PWM duty cycle
•
Selects buffered or unbuffered output compare/PWM operation
Address: $0025
TSC0
Bit 7
6
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
5
4
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
Read:
CH0F
Write:
0
Reset:
0
0
Address: $0028
TSC1
Bit 7
Read:
CH1F
Write:
0
Reset:
0
6
CH1IE
0
0
0
= Unimplemented
Figure 10-7. TIM Channel Status and Control
Registers (TSC0:TSC1)
CHxF — Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set
when an active edge occurs on the channel x pin. When channel x is
an output compare channel, CHxF is set when the value in the TIM
counter registers matches the value in the TIM channel x registers.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
145
A G R E E M E N T
Each of the TIM channel status and control registers does the following:
N O N - D I S C L O S U R E
10.10.4 TIM Channel Status and Control Registers
R E Q U I R E D
Timer Interface Module (TIM)
Input/Output Registers
Timer Interface Module (TIM)
R E Q U I R E D
Clear CHxF by reading the TIM channel x status and control register
with CHxF set and then writing a logic 0 to CHxF. If another interrupt
request occurs before the clearing sequence is complete, then writing
logic 0 to CHxF has no effect. Therefore, an interrupt request cannot
be lost due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.
1 = Input capture or output compare on channel x
0 = No input capture or output compare on channel x
CHxIE — Channel x Interrupt Enable Bit
A G R E E M E N T
This read/write bit enables TIM CPU interrupt service requests on
channel x. Reset clears the CHxIE bit.
1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled
MSxB — Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation.
MSxB exists only in the TIM channel 0 status and control register.
Setting MS0B disables the channel 1 status and control register and
reverts TCH1 to general-purpose I/O.
N O N - D I S C L O S U R E
Reset clears the MSxB bit.
1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled
MSxA — Mode Select Bit A
When ELSxB:A ≠ 00, this read/write bit selects either input capture
operation or unbuffered output compare/PWM operation.
See Table 10-3.
1 = Unbuffered output compare/PWM operation
0 = Input capture operation
When ELSxB:A = 00, this read/write bit selects the initial output level
of the TCHx pin (see Table 10-3). Reset clears the MSxA bit.
1 = Initial output level low
0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit,
set the TSTOP and TRST bits in the TIM status and control register
(TSC).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
146
Timer Interface Module (TIM)
MOTOROLA
When channel x is an output compare channel, ELSxB and ELSxA
control the channel x output behavior when an output compare
occurs.
When ELSxB and ELSxA are both clear, channel x is not connected
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.
Table 10-3 shows how ELSxB and ELSxA work. Reset clears the
ELSxB and ELSxA bits.
Table 10-3. Mode, Edge, and Level Selection
MSxB
MSxA
ELSxB
ELSxA
X
0
0
0
Mode
Configuration
Pin under port control;
initial output level high
Output preset
NOTE:
X
1
0
0
Pin under port control;
initial output level low
0
0
0
1
Capture on rising edge only
0
0
1
0
0
0
1
1
0
1
0
1
0
1
1
0
0
1
1
1
1
X
0
1
1
X
1
0
1
X
1
1
Input capture
Capture on falling edge only
Capture on rising
or falling edge
Output
compare
or PWM
Buffered
output
compare or
buffered PWM
Toggle output on compare
Clear output on compare
Set output on compare
Toggle output on compare
Clear output on compare
Set output on compare
After initially enabling a TIM channel register for input capture operation
and selecting the edge sensitivity, clear CHxF to ignore any erroneous
edge detection flags.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
147
A G R E E M E N T
When channel x is an input capture channel, these read/write bits
control the active edge-sensing logic on channel x.
N O N - D I S C L O S U R E
ELSxB and ELSxA — Edge/Level Select Bits
R E Q U I R E D
Timer Interface Module (TIM)
Input/Output Registers
Timer Interface Module (TIM)
R E Q U I R E D
TOVx — Toggle-On-Overflow Bit
When channel x is an output compare channel, this read/write bit
controls the behavior of the channel x output when the TIM counter
overflows. When channel x is an input capture channel, TOVx has no
effect. Reset clears the TOVx bit.
1 = Channel x pin toggles on TIM counter overflow.
0 = Channel x pin does not toggle on TIM counter overflow.
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a
channel x output compare if both occur at the same time.
A G R E E M E N T
CHxMAX — Channel x Maximum Duty Cycle Bit
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the
duty cycle of buffered and unbuffered PWM signals to 100%. As
Figure 10-8 shows, the CHxMAX bit takes effect in the cycle after it
is set or cleared. The output stays at the 100% duty cycle level until
the cycle after CHxMAX is cleared.
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
N O N - D I S C L O S U R E
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
CHxMAX
Figure 10-8. CHxMAX Latency
10.10.5 TIM Channel Registers
These read/write registers contain the captured TIM counter value of the
input capture function or the output compare value of the output
compare function. The state of the TIM channel registers after reset is
unknown.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
148
Timer Interface Module (TIM)
MOTOROLA
In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of
the TIM channel x registers (TCHxH) inhibits output compares until the
low byte (TCHxL) is written.
Address: $0026
TCH0H
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after reset
Address: $0027
TCH0L
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after reset
TCH1H
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
Read:
Write:
Reset:
Indeterminate after reset
Address: $02A
TCH1L
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Read:
Write:
Reset:
Indeterminate after reset
Figure 10-9. TIM Channel Registers (TCH0H/L:TCH1H/L)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Timer Interface Module (TIM)
149
N O N - D I S C L O S U R E
Address: $0029
A G R E E M E N T
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the
TIM channel x registers (TCHxH) inhibits input captures until the low
byte (TCHxL) is read.
R E Q U I R E D
Timer Interface Module (TIM)
Input/Output Registers
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Timer Interface Module (TIM)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
150
Timer Interface Module (TIM)
MOTOROLA
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
11.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
11.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154
11.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
11.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
11.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
11.7
Input/Output Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8 Input/Output Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . . 157
11.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.2 Introduction
This section describes the analog-to-digital converter (ADC). The ADC
is an 8-bit, 4-channel analog-to-digital converter. The ADC module is
only available on the MC68HC908QY2, MC68HC908QT2,
MC68HC908QY4, and MC68HC908QT4.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Analog-to-Digital Converter (ADC)
151
R E Q U I R E D
11.1 Contents
A G R E E M E N T
Section 11. Analog-to-Digital Converter (ADC)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Analog-to-Digital Converter (ADC)
11.3 Features
Features of the ADC module include:
•
4 channels with multiplexed input
•
Linear successive approximation with monotonicity
•
8-bit resolution
•
Single or continuous conversion
•
Conversion complete flag or conversion complete interrupt
•
Selectable ADC clock
Figure 11-1 provides a summary of the input/output (I/O) registers.
Addr.
$003C
Register Name
Bit 7
ADC Status and Control Read:
Register
Write:
(ADSCR)
See page 157. Reset:
$003D
Unimplemented
$003E
ADC Data Register
(ADR)
See page 159.
ADC Input Clock Register
$003F
(ADICLK)
See page 159.
Read:
6
5
4
3
2
1
Bit 0
AIEN
ADCO
CH4
CH3
CH2
CH1
CH0
0
0
0
1
1
1
1
1
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
COCO
Write:
Reset:
Indeterminate after reset
Read:
ADIV2
ADIV1
ADIV0
0
0
0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 11-1. ADC I/O Register Summary
11.4 Functional Description
Four ADC channels are available for sampling external sources at pins
PTA0, PTA1, PTA4, and PTA5. An analog multiplexer allows the single
ADC converter to select one of the four ADC channels as an ADC
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
152
Analog-to-Digital Converter (ADC)
MOTOROLA
voltage input (ADCVIN). ADCVIN is converted by the successive
approximation register-based counters. The ADC resolution is eight bits.
When the conversion is completed, ADC puts the result in the ADC data
register and sets a flag or generates an interrupt.
Figure 11-2 shows a block diagram of the ADC.
INTERNAL
DATA BUS
A G R E E M E N T
READ DDRA
DISABLE
WRITE DDRA
DDRAx
RESET
WRITE PTA
ADCx
PTAx
R E Q U I R E D
Analog-to-Digital Converter (ADC)
Functional Description
READ PTA
DISABLE
ADC CHANNEL x
INTERRUPT
LOGIC
AIEN
CONVERSION
COMPLETE
COCO
BUS CLOCK
ADC VOLTAGE IN
ADCVIN
ADC
CHANNEL
SELECT
(1 OF 4 CHANNELS)
CH[4:0]
ADC CLOCK
CLOCK
GENERATOR
ADIV[2:0]
Figure 11-2. ADC Block Diagram
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Analog-to-Digital Converter (ADC)
153
N O N - D I S C L O S U R E
ADC DATA REGISTER
A G R E E M E N T
R E Q U I R E D
Analog-to-Digital Converter (ADC)
11.4.1 ADC Port I/O Pins
PTA0, PTA1, PTA4, and PTA5 are general-purpose I/O pins that are
shared with the ADC channels. The channel select bits (ADC status and
control register (ADSCR), $003C), define which ADC channel/port pin
will be used as the input signal. The ADC overrides the port I/O logic by
forcing that pin as input to the ADC. The remaining ADC channels/port
pins are controlled by the port I/O logic and can be used as
general-purpose I/O. Writes to the port register or data direction register
(DDR) will not have any affect on the port pin that is selected by the ADC.
Read of a port pin which is in use by the ADC will return a logic 0 if the
corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value
in the port data latch is read.
11.4.2 Voltage Conversion
When the input voltage to the ADC equals VDD, the ADC converts the
signal to $FF (full scale). If the input voltage equals VSS, the ADC
converts it to $00. Input voltages between VDD and VSS are a
straight-line linear conversion. All other input voltages will result in $FF
if greater than VDD and $00 if less than VSS.
N O N - D I S C L O S U R E
NOTE:
Input voltage should not exceed the analog supply voltages.
11.4.3 Conversion Time
Sixteen ADC internal clocks are required to perform one conversion. The
ADC starts a conversion on the first rising edge of the ADC internal clock
immediately following a write to the ADSCR. If the ADC internal clock is
selected to run at 1 MHz, then one conversion will take 16 µs to
complete. With a 1-MHz ADC internal clock the maximum sample rate
is 62.5 kHz.
Conversion Time =
16 ADC Clock Cycles
ADC Clock Frequency
Number of Bus Cycles = Conversion Time × Bus Frequency
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
154
Analog-to-Digital Converter (ADC)
MOTOROLA
11.4.5 Accuracy and Precision
The conversion process is monotonic and has no missing codes.
11.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a
central processor unit (CPU) interrupt after each ADC conversion. A
CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit
is not used as a conversion complete flag when interrupts are enabled.
11.6 Low-Power Modes
The following subsections describe the ADC in low-power modes.
11.6.1 Wait Mode
The ADC continues normal operation during wait mode. Any enabled
CPU interrupt request from the ADC can bring the microcontroller unit
(MCU) out of wait mode. If the ADC is not required to bring the MCU out
of wait mode, power down the ADC by setting the CH[4:0] bits in ADSCR
to logic 1’s before executing the WAIT instruction.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Analog-to-Digital Converter (ADC)
155
A G R E E M E N T
In the continuous conversion mode, the ADC continuously converts the
selected channel filling the ADC data register (ADR) with new data after
each conversion. Data from the previous conversion will be overwritten
whether that data has been read or not. Conversions will continue until
the ADCO bit is cleared. The COCO bit (ADSCR, $003C) is set after
each conversion and can be cleared by writing the ADC status and
control register or reading of the ADC data register.
N O N - D I S C L O S U R E
11.4.4 Continuous Conversion
R E Q U I R E D
Analog-to-Digital Converter (ADC)
Interrupts
11.6.2 Stop Mode
The ADC module is inactive after the execution of a STOP instruction.
Any pending conversion is aborted. ADC conversions resume when the
MCU exits stop mode. Allow one conversion cycle to stabilize the analog
circuitry before attempting a new ADC conversion after exiting stop
mode.
11.7 Input/Output Signals
The ADC module has four channels that are shared with I/O port A.
ADC voltage in (ADCVIN) is the input voltage signal from one of the four
ADC channels to the ADC module.
11.8 Input/Output Registers
These I/O registers control and monitor ADC operation:
•
ADC status and control register (ADSCR)
•
ADC data register (ADR)
•
ADC clock register (ADICLK)
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Analog-to-Digital Converter (ADC)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
156
Analog-to-Digital Converter (ADC)
MOTOROLA
Address: $003C
Bit 7
Read:
6
5
4
3
2
1
Bit 0
AIEN
ADCO
CH4
CH3
CH2
CH1
CH0
0
0
1
1
1
1
1
COCO
Write:
Reset:
0
= Unimplemented
Figure 11-3. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
When the AIEN bit is a logic 0, the COCO is a read-only bit which is
set each time a conversion is completed. This bit is cleared whenever
ADSCR is written or whenever the ADR is read. Reset clears this bit.
1 = Conversion completed (AIEN = 0)
0 = Conversion not completed (AIEN = 0)
When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is
a read-only bit, and will always be logic 0 when read.
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC
conversion. The interrupt signal is cleared when ADR is read or
ADSCR is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled
0 = ADC interrupt disabled
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update
ADR at the end of each conversion. Only one conversion is allowed
when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion
0 = One ADC conversion
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Analog-to-Digital Converter (ADC)
157
A G R E E M E N T
The following paragraphs describe the function of the ADC status and
control register (ADSCR).
N O N - D I S C L O S U R E
11.8.1 ADC Status and Control Register
R E Q U I R E D
Analog-to-Digital Converter (ADC)
Input/Output Registers
Analog-to-Digital Converter (ADC)
R E Q U I R E D
CH[4:0] — ADC Channel Select Bits
CH4, CH3, CH2, CH1, and CH0 form a 5-bit field which is used to
select one of the four ADC channels. The five select bits are detailed
in Table 11-1. Care should be taken when using a port pin as both an
analog and a digital input simultaneously to prevent switching noise
from corrupting the analog signal.
A G R E E M E N T
The ADC subsystem is turned off when the channel select bits are all
set to 1. This feature allows for reduced power consumption for the
MCU when the ADC is not used. Reset sets all of these bits to a
logic 1.
NOTE:
Recovery from the disabled state requires one conversion cycle to
stabilize.
N O N - D I S C L O S U R E
Table 11-1. MUX Channel Select
CH4
CH3
CH2
CH1
CH0
ADC
Channel
Input Select
0
0
0
0
0
ADC0
PTA0
0
0
0
0
1
ADC1
PTA1
0
0
0
1
0
ADC2
PTA4
0
0
0
1
1
ADC3
PTA5
0
0
1
0
0
—
↓
↓
↓
↓
↓
—
1
1
0
1
0
—
1
1
0
1
1
—
Reserved
1
1
1
0
0
—
Unused
1
1
1
0
1
—
VDDA(2)
1
1
1
1
0
—
VSSA(2)
1
1
1
1
1
—
ADC power off
Unused (1)
1. If any unused channels are selected, the resulting ADC conversion will be unknown.
2. The voltage levels supplied from internal reference nodes, as specified in the table, are used
to verify the operation of the ADC converter both in production test and for user applications.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
158
Analog-to-Digital Converter (ADC)
MOTOROLA
11.8.2 ADC Data Register
One 8-bit result register is provided. This register is updated each time
an ADC conversion completes.
Address: $003E
6
5
4
3
2
1
Bit 0
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
Write:
Indeterminate after reset
= Unimplemented
Figure 11-4. ADC Data Register (ADR)
11.8.3 ADC Input Clock Register
This register selects the clock frequency for the ADC.
Address: $003F
Bit 7
6
5
ADIV2
ADIV1
ADIV0
0
0
0
Read:
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 11-5. ADC Input Clock Register (ADICLK)
ADIV2–ADIV0 — ADC Clock Prescaler Bits
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide
ratio used by the ADC to generate the internal ADC clock. Table 11-2
shows the available clock configurations. The ADC clock should be
set to approximately 1 MHz.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Analog-to-Digital Converter (ADC)
159
A G R E E M E N T
Reset:
N O N - D I S C L O S U R E
Read:
Bit 7
R E Q U I R E D
Analog-to-Digital Converter (ADC)
Input/Output Registers
Analog-to-Digital Converter (ADC)
R E Q U I R E D
Table 11-2. ADC Clock Divide Ratio
ADIV2
ADIV1
ADIV0
ADC Clock Rate
0
0
0
Bus clock ÷ 1
0
0
1
Bus clock ÷ 2
0
1
0
Bus clock ÷ 4
0
1
1
Bus clock ÷ 8
1
X
X
Bus clock ÷ 16
N O N - D I S C L O S U R E
A G R E E M E N T
X = don’t care
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
160
Analog-to-Digital Converter (ADC)
MOTOROLA
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
12.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
12.3.2 Data Direction Register A. . . . . . . . . . . . . . . . . . . . . . . . . . 164
12.3.3 Port A Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 166
12.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
12.4.2 Data Direction Register B. . . . . . . . . . . . . . . . . . . . . . . . . . 168
12.4.3 Port B Input Pullup Enable Register. . . . . . . . . . . . . . . . . . 169
12.2 Introduction
The MC68HC908QT1, MC68HC908QT2, and MC68HC908QT4 have
five bidirectional input-output (I/O) pins and one input only pin. The
MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4 have
thirteen bidirectional pins and one input only pin. All I/O pins are
programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or
VSS. Although the I/O ports do not require termination for proper
operation, termination reduces excess current consumption and the
possibility of electrostatic damage.
Figure 12-1 provides a summary of the I/O registers.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Input/Output (I/O) Ports
161
R E Q U I R E D
12.1 Contents
A G R E E M E N T
Section 12. Input/Output (I/O) Ports
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
A G R E E M E N T
R E Q U I R E D
Input/Output (I/O) Ports
Addr.
Register Name
$0000
Port A Data Register
(PTA)
See page 163.
$0001
Port B Data Register
(PTB)
See page 167.
Data Direction Register A
$0004
(DDRA)
See page 164.
Data Direction Register B
$0005
(DDRB)
See page 168.
$000B
$000C
Read:
Bit 7
6
0
AWUL
5
4
3
PTA5
PTA4
PTA3
2
PTA2
1
Bit 0
PTA1
PTA0
PTB1
PTB0
DDRA1
DDRA0
Write:
Reset:
Read:
Unaffected by reset
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
Write:
Reset:
Read:
Unaffected by reset
0
0
0
0
DDRA5
DDRA4
DDRA3
0
0
0
0
0
0
0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
Write:
Reset:
Read:
Write:
Reset:
Port A Input Pullup Read:
OSC2EN
Enable Register
Write:
(PTAPUE)
See page 166. Reset:
0
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE1 PTAPUE0
0
0
0
0
0
0
0
Port B Input Pullup Read:
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE1 PTBPUE0
Enable Register
Write:
(PTBPUE)
See page 169. Reset:
0
0
0
0
0
0
0
0
N O N - D I S C L O S U R E
= Unimplemented
Figure 12-1. I/O Port Register Summary
12.3 Port A
Port A is an 6-bit special function port that shares all six of its pins with
the keyboard interrupt (KBI) module (see Section 14. Keyboard
Interrupt Module (KBI)). Each port A pin also has a software
configurable pullup device if the corresponding port pin is configured as
an input port.
NOTE:
PTA2 is input only.
When the IRQ function is enabled in the configuration register 2
(CONFIG2), bit 2 of the port A data register (PTA) will always read a
logic 0. In this case, the BIH and BIL instructions can be used to read the
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
162
Input/Output (I/O) Ports
MOTOROLA
logic level on the PTA2 pin. When the IRQ function is disabled, these
instructions will behave as if the PTA2 pin is a logic 1. However, reading
bit 2 of PTA will read the actual logic level on the pin.
12.3.1 Port A Data Register
The port A data register (PTA) contains a data latch for each of the six
port A pins.
R E Q U I R E D
Input/Output (I/O) Ports
Port A
6
0
AWUL
5
4
3
PTA5
PTA4
PTA3
2
PTA2
1
Bit 0
PTA1
PTA0
KBI1
KBI0
Write:
Reset:
Additional Functions:
Unaffected by reset
KBI5
KBI4
KBI3
KBI2
= Unimplemented
Figure 12-2. Port A Data Register (PTA)
PTA[5:0] — Port A Data Bits
These read/write bits are software programmable. Data direction of
each port A pin is under the control of the corresponding bit in data
direction register A. Reset has no effect on port A data.
AWUL — Auto Wake-up Latch Data Bit
This is a read-only bit which has the value of the auto wake-up
interrupt request latch. The wake-up request signal is generated
internally (see 14.4.4 Auto Wake-up Interrupt Request). There is no
PTA6 port nor any of the associated bits such as PTA6 data register,
pullup enable or direction.
KBI[5:0] — Port A Keyboard Interrupts
The keyboard interrupt enable bits, KBIE5–KBIE0, in the keyboard
interrupt control enable register (KBIER) enable the port A pins as
external interrupt pins (see Section 14. Keyboard Interrupt Module
(KBI)).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Input/Output (I/O) Ports
163
N O N - D I S C L O S U R E
Read:
Bit 7
A G R E E M E N T
Address: $0000
12.3.2 Data Direction Register A
Data direction register A (DDRA) determines whether each port A pin is
an input or an output. Writing a logic 1 to a DDRA bit enables the output
buffer for the corresponding port A pin; a logic 0 disables the output
buffer.
Address: $0004
Read:
Bit 7
6
0
0
5
4
3
DDRA5
DDRA4
DDRA3
0
0
0
2
1
Bit 0
DDRA1
DDRA0
0
0
0
Write:
A G R E E M E N T
R E Q U I R E D
Input/Output (I/O) Ports
Reset:
0
0
0
= Unimplemented
Figure 12-3. Data Direction Register A (DDRA)
DDRA[5:0] — Data Direction Register A Bits
These read/write bits control port A data direction. Reset clears
DDRA[5:0], configuring all port A pins as inputs.
1 = Corresponding port A pin configured as output
0 = Corresponding port A pin configured as input
N O N - D I S C L O S U R E
NOTE:
Avoid glitches on port A pins by writing to the port A data register before
changing data direction register A bits from 0 to 1.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
164
Input/Output (I/O) Ports
MOTOROLA
Figure 12-4 shows the port A I/O logic.
READ DDRA ($0004)
PTAPUEx
INTERNAL DATA BUS
WRITE DDRA ($0004)
RESET
DDRAx
30 k
WRITE PTA ($0000)
PTAx
PTAx
R E Q U I R E D
Input/Output (I/O) Ports
Port A
TO KEYBOARD INTERRUPT CIRCUIT
Figure 12-4. Port A I/O Circuit
NOTE:
Figure 12-4 does not apply to PTA2
N O N - D I S C L O S U R E
When DDRAx is a logic 1, reading address $0000 reads the PTAx data
latch. When DDRAx is a logic 0, reading address $0000 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
A G R E E M E N T
READ PTA ($0000)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Input/Output (I/O) Ports
165
R E Q U I R E D
Input/Output (I/O) Ports
12.3.3 Port A Input Pullup Enable Register
The port A input pullup enable register (PTAPUE) contains a software
configurable pullup device for each if the six port A pins. Each bit is
individually configurable and requires the corresponding data direction
register, DDRAx, to be configured as input. Each pullup device is
automatically and dynamically disabled when its corresponding DDRAx
bit is configured as output.
Address: $000B
A G R E E M E N T
Bit 7
6
5
4
3
2
1
Bit 0
Read:
PTAPUE5 PTAPUE4 PTAPUE3 PTAPUE2 PTAPUE2 PTAPUE0
OSC2EN
Write:
Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 12-5. Port A Input Pullup Enable Register (PTAPUE)
OSC2EN — Enable PTA4 on OSC2 Pin
N O N - D I S C L O S U R E
This read/write bit configures the OSC2 pin function when internal
oscillator or RC oscillator option is selected. This bit has no effect for
the XTAL or external oscillator options.
1 = OSC2 pin outputs the internal or RC oscillator clock
(BUSCLKX4)
0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and
pullup functions
PTAPUE[5:0] — Port A Input Pullup Enable Bits
These read/write bits are software programmable to enable pullup
devices on port A pins.
1 = Corresponding port A pin configured to have internal pull if its
DDRA bit is set to 0
0 = Pullup device is disconnected on the corresponding port A pin
regardless of the state of its DDRA bit
Table 12-1 summarizes the operation of the port A pins.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
166
Input/Output (I/O) Ports
MOTOROLA
DDRA
Bit
PTA
Bit
I/O Pin
Mode
Accesses to DDRA
Accesses to PTA
Read/Write
Read
Write
1
0
X(1)
Input, VDD(2)
DDRA5–DDRA0
Pin
PTA5–PTA0(3)
0
0
X
Input, Hi-Z(4)
DDRA5–DDRA0
Pin
PTA5–PTA0(3)
X
1
X
Output
DDRA5–DDRA0
PTA5–PTA0
PTA5–PTA0(5)
1. X = don’t care
2. I/O pin pulled to VDD by internal pullup.
3. Writing affects data register, but does not affect input.
4. Hi-Z = high impedance
5. Output does not apply to PTA2
12.4 Port B
Port B is an 8-bit general purpose I/O port. Port B is only available on the
MC68HC908QY1, MC68HC908QY2, and MC68HC908QY4.
12.4.1 Port B Data Register
The port B data register (PTB) contains a data latch for each of the eight
port B pins.
Address: $0001
Bit 7
6
5
4
3
2
1
Bit 0
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
Read:
Write:
Reset:
Unaffected by reset
Figure 12-6. Port B Data Register (PTB)
PTB[7:0] — Port B Data Bits
These read/write bits are software programmable. Data direction of
each port B pin is under the control of the corresponding bit in data
direction register B. Reset has no effect on port B data.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Input/Output (I/O) Ports
167
A G R E E M E N T
PTAPUE
Bit
N O N - D I S C L O S U R E
Table 12-1. Port A Pin Functions
R E Q U I R E D
Input/Output (I/O) Ports
Port B
12.4.2 Data Direction Register B
Data direction register B (DDRB) determines whether each port B pin is
an input or an output. Writing a logic 1 to a DDRB bit enables the output
buffer for the corresponding port B pin; a logic 0 disables the output
buffer.
Address: $0005
Bit 7
6
5
4
3
2
1
Bit 0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
Read:
Write:
A G R E E M E N T
R E Q U I R E D
Input/Output (I/O) Ports
Reset:
Figure 12-7. Data Direction Register B (DDRB)
DDRB[7:0] — Data Direction Register B Bits
These read/write bits control port B data direction. Reset clears
DDRB[7:0], configuring all port B pins as inputs.
1 = Corresponding port B pin configured as output
0 = Corresponding port B pin configured as input
N O N - D I S C L O S U R E
NOTE:
Avoid glitches on port B pins by writing to the port B data register before
changing data direction register B bits from 0 to 1. Figure 12-8 shows
the port B I/O logic.
READ DDRB ($0005)
PTBPUEx
INTERNAL DATA BUS
WRITE DDRB ($0005)
RESET
DDRBx
30 k
WRITE PTB ($0001)
PTBx
PTBx
READ PTB ($0001)
Figure 12-8. Port B I/O Circuit
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
168
Input/Output (I/O) Ports
MOTOROLA
DDRB
Bit
PTB
Bit
I/O Pin
Mode
Accesses to DDRB
Accesses to PTB
Read/Write
Read
Write
0
X(1)
Input, Hi-Z(2)
DDRB7–DDRB0
Pin
PTB7–PTB0(3)
1
X
Output
DDRB7–DDRB0
Pin
PTB7–PTB0
1. X = don’t care
2. Hi-Z = high impedance
3. Writing affects data register, but does not affect the input.
12.4.3 Port B Input Pullup Enable Register
The port B input pullup enable register (PTBPUE) contains a software
configurable pullup device for each of the eight port B pins. Each bit is
individually configurable and requires the corresponding data direction
register, DDRBx, be configured as input. Each pullup device is
automatically and dynamically disabled when its corresponding DDRBx
bit is configured as output.
Address:
$000C
Bit 7
6
5
4
3
2
1
Bit 0
Read:
PTBPUE7 PTBPUE6 PTBPUE5 PTBPUE4 PTBPUE3 PTBPUE2 PTBPUE2 PTBPUE0
Write:
Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 12-9. Port B Input Pullup Enable Register (PTBPUE)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Input/Output (I/O) Ports
169
A G R E E M E N T
Table 12-2. Port B Pin Functions
N O N - D I S C L O S U R E
When DDRBx is a logic 1, reading address $0001 reads the PTBx data
latch. When DDRBx is a logic 0, reading address $0001 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit. Table 12-2 summarizes the operation
of the port B pins.
R E Q U I R E D
Input/Output (I/O) Ports
Port B
Input/Output (I/O) Ports
These read/write bits are software programmable to enable pullup
devices on port B pins
1 = Corresponding port B pin configured to have internal pull if its
DDRB bit is set to 0
0 = Pullup device is disconnected on the corresponding port B pin
regardless of the state of its DDRB bit.
Table 12-3 summarizes the operation of the port B pins.
Table 12-3. Port B Pin Functions
PTBPUE
Bit
DDRB
Bit
PTB
Bit
I/O Pin
Mode
Accesses to DDRB
Read/Write
Read
Write
1
0
X(1)
Input, VDD(2)
DDRB7–DDRB0
Pin
PTB7–PTB0(3)
0
0
X
Input, Hi-Z(4)
DDRB7–DDRB0
Pin
PTB7–PTB0(3)
X
1
X
Output
DDRB7–DDRB0
PTB7–PTB0
PTB7–PTB0
1.
2.
3.
4.
Accesses to PTB
X = don’t care
I/O pin pulled to VDD by internal pullup.
Writing affects data register, but does not affect input.
Hi-Z = high impedance
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
PTBPUE[7:0] — Port B Input Pullup Enable Bits
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
170
Input/Output (I/O) Ports
MOTOROLA
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
13.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
13.5
IRQ Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
13.6
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 175
13.7
IRQ Status and Control Register . . . . . . . . . . . . . . . . . . . . . . 175
13.2 Introduction
The IRQ pin (external interrupt), shared with PTA2 (general purpose
input) and keyboard interrupt (KBI), provides a maskable interrupt input.
13.3 Features
Features of the IRQ module include the following:
•
External interrupt pin, IRQ
•
IRQ interrupt control bits
•
Hysteresis buffer
•
Programmable edge-only or edge and level interrupt sensitivity
•
Automatic interrupt acknowledge
•
Selectable internal pullup resistor
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
External Interrupt (IRQ)
171
R E Q U I R E D
13.1 Contents
A G R E E M E N T
Section 13. External Interrupt (IRQ)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
13.4 Functional Description
IRQ pin functionality is enabled by setting configuration register 2
(CONFIG2) IRQEN bit accordingly. A 0 disables the IRQ function and
IRQ will assume the other shared functionalities. A1 enables the IRQ
function.
A logic 0 applied to the external interrupt pin can latch a central
processur unit (CPU) interrupt request. Figure 13-1 shows the structure
of the IRQ module.
Interrupt signals on the IRQ pin are latched into the IRQ latch. An
interrupt latch remains set until one of the following actions occurs:
A G R E E M E N T
R E Q U I R E D
External Interrupt (IRQ)
•
Vector fetch — A vector fetch automatically generates an interrupt
acknowledge signal that clears the IRQ latch.
•
Software clear — Software can clear the interrupt latch by writing
to the acknowledge bit in the interrupt status and control register
(ISCR). Writing a logic 1 to the ACK1 bit clears the IRQ latch.
•
Reset — A reset automatically clears the interrupt latch.
ACK1
INTERNAL ADDRESS BUS
N O N - D I S C L O S U R E
RESET
TO CPU FOR
BIL/BIH
INSTRUCTIONS
VECTOR
FETCH
DECODER
VDD
IRQPUD
INTERNAL
PULLUP
DEVICE
VDD
IRQF1
D
CLR
Q
CK
IRQ
SYNCHRONIZER
IRQ
INTERRUPT
REQUEST
HIGH
VOLTAGE
DETECT
TO MODE
SELECT
LOGIC
IRQ
FF
IMASK1
MODE1
Figure 13-1. IRQ Module Block Diagram
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
172
External Interrupt (IRQ)
MOTOROLA
When the interrupt pin is both falling-edge and low-level triggered, the
CPU interrupt request remains set until both of the following occur:
•
Vector fetch or software clear
•
Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt
pin returns to logic 1. As long as the pin is low, the interrupt request
remains pending. A reset will clear the latch and the MODE1 control bit,
thereby clearing the interrupt even if the pin stays low.
When set, the IMASK1 bit in the ISCR mask all external interrupt
requests. A latched interrupt request is not presented to the interrupt
priority logic unless the IMASK1 bit is clear.
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks
all interrupt requests, including external interrupt requests.
See 7.7 Exception Control.
Figure 13-2 provides a summary of the IRQ I/O register.
Addr.
$001D
Register Name
IRQ Status and Control Read:
Register
Write:
(INTSCR)
See page 176. Reset:
Bit 7
6
5
4
3
2
0
0
0
0
IRQF1
0
1
Bit 0
IMASK1
MODE1
0
0
ACK1
0
0
0
0
0
0
= Unimplemented
Figure 13-2. IRQ I/O Register Summary
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
External Interrupt (IRQ)
173
A G R E E M E N T
When the interrupt pin is edge-triggered only, the CPU interrupt request
remains set until a vector fetch, software clear, or reset occurs.
N O N - D I S C L O S U R E
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-level
triggered. The MODE1 bit in the ISCR controls the triggering sensitivity
of the IRQ pin.
R E Q U I R E D
External Interrupt (IRQ)
Functional Description
13.5 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.
A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE1 bit is set, the IRQ pin is both falling-edge sensitive and
low-level sensitive. With MODE1 set, both of the following actions must
occur to clear IRQ:
A G R E E M E N T
R E Q U I R E D
External Interrupt (IRQ)
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the latch. Software may
generate the interrupt acknowledge signal by writing a logic 1 to
the ACK1 bit in the interrupt status and control register (ISCR).
The ACK1 bit is useful in applications that poll the IRQ pin and
require software to clear the IRQ latch. Writing to the ACK1 bit
prior to leaving an interrupt service routine can also prevent
spurious interrupts due to noise. Setting ACK1 does not affect
subsequent transitions on the IRQ pin. A falling edge that occurs
after writing to the ACK1 bit latches another interrupt request. If
the IRQ mask bit, IMASK1, is clear, the CPU loads the program
counter with the vector address at locations $FFFA and $FFFB.
•
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic
0, IRQ remains active.
N O N - D I S C L O S U R E
The vector fetch or software clear and the return of the IRQ pin to logic 1
may occur in any order. The interrupt request remains pending as long
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE1
control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE1 bit is clear, the IRQ pin is falling-edge sensitive only. With
MODE1 clear, a vector fetch or software clear immediately clears the
IRQ latch.
The IRQF1 bit in the ISCR register can be used to check for pending
interrupts. The IRQF1 bit is not affected by the IMASK1 bit, which makes
it useful in applications where polling is preferred.
NOTE:
When the IRQ function is enabled in the CONFIG2 register, the BIH and
BIL instructions can be used to read the logic level on the IRQ pin. If the
IRQ function is disabled, these instructions will behave as if the IRQ pin
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
174
External Interrupt (IRQ)
MOTOROLA
When using the level-sensitive interrupt trigger, avoid false interrupts by
masking interrupt requests in the interrupt routine.
An internal pullup resistor to VDD is connected to the IRQ pin; this can
be disabled by setting the IRQPUD bit in the CONFIG2 register ($001E).
13.6 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ latch can
be cleared during the break state. The BCFE bit in the break flag control
register (BFCR) enables software to clear the latches during the break
state. See Section 7. System Integration Module (SIM).
To allow software to clear the IRQ latch during a break interrupt, write a
logic 1 to the BCFE bit. If a latch is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the latches during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the ACK1 bit in the
IRQ status and control register during the break state has no effect on
the IRQ latch.
13.7 IRQ Status and Control Register
The IRQ status and control register (ISCR) controls and monitors
operation of the IRQ module, see Section 5. Configuration Register
(CONFIG).
The ISCR has the following functions:
•
Shows the state of the IRQ flag
•
Clears the IRQ latch
•
Masks IRQ and interrupt request
•
Controls triggering sensitivity of the IRQ interrupt pin
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
External Interrupt (IRQ)
175
A G R E E M E N T
NOTE:
N O N - D I S C L O S U R E
is a logic 1, regardless of the actual level on the pin. Conversely, when
the IRQ function is enabled, bit 2 of the port A data register will always
read a logic 0.
R E Q U I R E D
External Interrupt (IRQ)
IRQ Module During Break Interrupts
External Interrupt (IRQ)
R E Q U I R E D
Address: $001D
Read:
Bit 7
6
5
4
3
0
0
0
0
IRQF1
1
Bit 0
IMASK1
MODE1
0
0
ACK1
Write:
Reset:
2
0
0
0
0
0
0
= Unimplemented
Figure 13-3. IRQ Status and Control Register (INTSCR)
A G R E E M E N T
IRQF1 — IRQ Flag
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ interrupt pending
0 = IRQ interrupt not pending
ACK1 — IRQ Interrupt Request Acknowledge Bit
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK1
always reads as logic 0. Reset clears ACK1.
IMASK1 — IRQ Interrupt Mask Bit
N O N - D I S C L O S U R E
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.
Reset clears IMASK1.
1 = IRQ interrupt requests disabled
0 = IRQ interrupt requests enabled
MODE1 — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ pin.
Reset clears MODE1.
1 = IRQ interrupt requests on falling edges and low levels
0 = IRQ interrupt requests on falling edges only
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
176
External Interrupt (IRQ)
MOTOROLA
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
14.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.4.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
14.4.2 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 182
14.4.3 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 184
14.4.4 Auto Wake-up Interrupt Request . . . . . . . . . . . . . . . . . . . . 185
14.5
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.6
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
14.7
Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 187
14.2 Introduction
The keyboard interrupt module (KBI) provides six independently
maskable external interrupts, which are accessible via the PTA0–PTA5
pins, plus one internal maskable interrupt controlled by the auto wake-up
logic.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
177
R E Q U I R E D
14.1 Contents
A G R E E M E N T
Section 14. Keyboard Interrupt Module (KBI)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Keyboard Interrupt Module (KBI)
14.3 Features
Features of the keyboard interrupt module include:
•
Six keyboard interrupt pins with separate keyboard interrupt
enable bits and one keyboard interrupt mask
•
One internal interrupt controlled by the auto wake-up logic, with
separate interrupt enable bit, sharing the same keyboard interrupt
mask
•
Software configurable pullup device if input pin is configured as
input port bit
•
Programmable edge-only or edge and level interrupt sensitivity
•
Exit from low-power modes
Figure 14-1 provides a summary of the input/output (I/O) registers
Addr.
Register Name
Bit 7
6
5
4
3
2
Keyboard Status Read:
and Control Register
Write:
(KBSCR)
See page 183. Reset:
0
0
0
0
KEYF
0
$001A
Read:
Keyboard Interrupt Enable
$001B
Register (KBIER) Write:
See page 184.
Reset:
0
1
Bit 0
IMASKK
MODEK
ACKK
0
0
0
0
0
0
0
0
0
AWUIE
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
= Unimplemented
Figure 14-1. KBI I/O Register Summary
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
178
Keyboard Interrupt Module (KBI)
MOTOROLA
Keyboard Interrupt Module (KBI)
Functional Description
R E Q U I R E D
14.4 Functional Description
INTERNAL BUS
VECTOR FETCH
DECODER
ACKK
KBI0
VDD
D
KEYF
Q
SYNCHRONIZER
CK
KEYBOARD
INTERRUPT
REQUEST
A G R E E M E N T
TO PULLUP ENABLE
.
.
.
CLR
Writing to the KBIE0–KBIE5 bits in the keyboard interrupt enable register
(KBIER) independently enables or disables each port A pin as a
keyboard interrupt pin. Enabling a keyboard interrupt pin in port A also
enables its internal pullup device irrespective of PTAPUEx bits in the
port A input pullup enable register (see 12.3.3 Port A Input Pullup
Enable Register). A logic 0 applied to an enabled keyboard interrupt pin
latches a keyboard interrupt request.
N O N - D I S C L O S U R E
KBIE0
RESET
KBI5
KEYBOARD
INTERRUPT FF
IMASKK
MODEK
KBIE5
TO PULLUP ENABLE
AWUIREQ(1)
1. For AWUGEN logic refer to Figure 14-5.
Figure 14-2. Keyboard Interrupt Block Diagram
Writing the AWUIE bit in the keyboard interrupt enable register enables
or disables the auto wake-up interrupt input (see Figure 14-5). A logic 1
applied to the AWUIREQ input with auto wake-up interrupt request
enabled, latches a keyboard interrupt request.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
179
Keyboard Interrupt Module (KBI)
A G R E E M E N T
R E Q U I R E D
A keyboard interrupt is latched when one or more keyboard interrupt
inputs goes low after all were high. The MODEK bit in the keyboard
status and control register controls the triggering mode of the keyboard
interrupt.
•
If the keyboard interrupt is edge-sensitive only, a falling edge on a
keyboard interrupt input does not latch an interrupt request if
another keyboard pin is already low. To prevent losing an interrupt
request on one input because another input is still low, software
can disable the latter input while it is low.
•
If the keyboard interrupt is falling edge and low-level sensitive, an
interrupt request is present as long as any keyboard interrupt input
is low.
N O N - D I S C L O S U R E
If the MODEK bit is set, the keyboard interrupt inputs are both falling
edge and low-level sensitive, and both of the following actions must
occur to clear a keyboard interrupt request:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the interrupt request.
Software may generate the interrupt acknowledge signal by
writing a logic 1 to the ACKK bit in the keyboard status and control
register (KBSCR). The ACKK bit is useful in applications that poll
the keyboard interrupt inputs and require software to clear the
keyboard interrupt request. Writing to the ACKK bit prior to leaving
an interrupt service routine can also prevent spurious interrupts
due to noise. Setting ACKK does not affect subsequent transitions
on the keyboard interrupt inputs. A falling edge that occurs after
writing to the ACKK bit latches another interrupt request. If the
keyboard interrupt mask bit, IMASKK, is clear, the central
processor unit (CPU) loads the program counter with the vector
address at locations $FFE0 and $FFE1.
•
Return of all enabled keyboard interrupt inputs to logic 1 — As
long as any enabled keyboard interrupt pin is at logic 0, the
keyboard interrupt remains set. The auto wake-up interrupt input,
AWUIREQ, will be cleared only by writing to ACKK bit in KBSCR
or reset.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
180
Keyboard Interrupt Module (KBI)
MOTOROLA
Reset clears the keyboard interrupt request and the MODEK bit, clearing
the interrupt request even if a keyboard interrupt input stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register
can be used to see if a pending interrupt exists. The KEYF bit is not
affected by the keyboard interrupt mask bit (IMASKK) which makes it
useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data
direction register to configure the pin as an input and then read the data
register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction
register. However, the data direction register bit must be a logic 0 for
software to read the pin.
Auto wake-up latch, AWUL, can be read directly from the bit 6 position
of port A data register (PTA). This is a read-only bit which is occupying
and empty bit position on PTA. No PTA associated registers, such as
PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit.
14.4.1 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the internal
pullup to reach a logic 1. Therefore a false interrupt can occur as soon
as the pin is enabled. This does not apply to an auto wake-up interrupt,
which is internally generated without pullup.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
181
A G R E E M E N T
If the MODEK bit is clear, the keyboard interrupt pin is falling-edge
sensitive only. With MODEK clear, a vector fetch or software clear
immediately clears the keyboard interrupt request.
N O N - D I S C L O S U R E
The vector fetch or software clear and the return of all enabled keyboard
interrupt pins to logic 1 may occur in any order.
R E Q U I R E D
Keyboard Interrupt Module (KBI)
Functional Description
Keyboard Interrupt Module (KBI)
R E Q U I R E D
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the
keyboard status and control register.
2. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
3. Write to the ACKK bit in the keyboard status and control register
to clear any false interrupts.
4. Clear the IMASKK bit.
N O N - D I S C L O S U R E
A G R E E M E N T
An interrupt signal on an edge-triggered pin can be acknowledged
immediately after enabling the pin. An interrupt signal on an edge- and
level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate
DDRA bits in the data direction register A.
2. Write logic 1s to the appropriate port A data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
14.4.2 Keyboard Status and Control Register
The keyboard status and control register (KBSCR):
•
Flags keyboard interrupt requests
•
Acknowledges keyboard interrupt requests
•
Masks keyboard interrupt requests
•
Controls keyboard interrupt triggering sensitivity
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
182
Keyboard Interrupt Module (KBI)
MOTOROLA
6
5
4
3
2
0
0
0
0
KEYF
0
Bit 0
IMASKK
MODEK
0
0
ACKK
Write:
Reset:
1
0
0
0
0
0
0
= Unimplemented
Figure 14-3. Keyboard Status and Control Register (KBSCR)
Bits 7–4 — Not used
These read-only bits always read as logic 0s.
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending on
port A or auto wake-up. Reset clears the KEYF bit.
1 = Keyboard interrupt pending
0 = No keyboard interrupt pending
ACKK — Keyboard Acknowledge Bit
Writing a logic 1 to this write-only bit clears the keyboard interrupt
request on port A and auto wake-up logic. ACKK always reads as
logic 0. Reset clears ACKK.
IMASKK— Keyboard Interrupt Mask Bit
Writing a logic 1 to this read/write bit prevents the output of the
keyboard interrupt mask from generating interrupt requests on port A
or auto wake-up. Reset clears the IMASKK bit.
1 = Keyboard interrupt requests masked
0 = Keyboard interrupt requests not masked
MODEK — Keyboard Triggering Sensitivity Bit
This read/write bit controls the triggering sensitivity of the keyboard
interrupt pins on port A and auto wake-up. Reset clears MODEK.
1 = Keyboard interrupt requests on falling edges and low levels
0 = Keyboard interrupt requests on falling edges only
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
183
A G R E E M E N T
Read:
Bit 7
N O N - D I S C L O S U R E
Address: $001A
R E Q U I R E D
Keyboard Interrupt Module (KBI)
Functional Description
R E Q U I R E D
Keyboard Interrupt Module (KBI)
14.4.3 Keyboard Interrupt Enable Register
The port A keyboard interrupt enable register (KBIER) enables or
disables each port A pin or auto wake-up to operate as a keyboard
interrupt input.
Address: $001B
Bit 7
Read:
6
5
4
3
2
1
Bit 0
AWUIE
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
Write:
A G R E E M E N T
Reset:
0
Figure 14-4. Keyboard Interrupt Enable Register (KBIER)
KBIE5–KBIE0 — Port A Keyboard Interrupt Enable Bits
Each of these read/write bits enables the corresponding keyboard
interrupt pin on port A to latch interrupt requests. Reset clears the
keyboard interrupt enable register.
1 = KBIx pin enabled as keyboard interrupt pin
0 = KBIx pin not enabled as keyboard interrupt pin
AWUIE — Auto Wake-up Interrupt Enable Bit
N O N - D I S C L O S U R E
This read/write bit enables the auto wake-up interrupt input to latch
interrupt requests. Reset clears AWUIE.
1 = Auto wake-up enabled as interrupt input
0 = Auto wake-up not enabled as interrupt input
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
184
Keyboard Interrupt Module (KBI)
MOTOROLA
14.4.4 Auto Wake-up Interrupt Request
COPRS (FROM CONFIG1)
VDD
TO PTA READ, BIT 6
1 = DIV 29
SHORT 0 = DIV 214
OVERFLOW
32KHz
EN
CLK
E
RST
AWUL
Q
AWUIREQ
R
TO KBI INTERRUPT LOGIC
(SEE Figure 14-2)
A G R E E M E N T
INT RC OSC
D
CLRLOGIC
RESET
CLEAR
ACKK
(CGMXCLK)
BUSCLKX4
CLK
RST
RESET
ISTOP
RESET
AWUIE
Figure 14-5. Auto Wake-up Interrupt Request Generation Logic
The function of the auto wake-up logic is to generate periodic wake-up
requests to bring the microcontroller unit (MCU) out of stop mode. The
wake-up requests are treated as regular keyboard interrupt requests,
with the difference that instead of a pin, the interrupt signal is generated
by an internal logic.
Entering stop mode will enable the auto wake-up generation logic. An
internal RC oscillator (exclusive for the auto wake-up feature) drives the
wake-up request generator. Once the overflow count is reached in the
generator counter, a wake-up request, AWUIREQ, is latched and sent to
the KBI logic (see Figure 14-2).
Wake-up interrupt requests will only be serviced if the associated
interrupt enable bit, AWUIE, in KBIER is set.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
185
N O N - D I S C L O S U R E
AUTOWUGEN
R E Q U I R E D
Keyboard Interrupt Module (KBI)
Functional Description
Keyboard Interrupt Module (KBI)
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
The overflow count can be selected from two options defined by the
COPRS bit in CONFIG1. This bit was “borrowed” from the computer
operating properly (COP) using the fact that the COP feature is idle (no
MCU clock available) in stop mode. The typical values of the periodic
wake-up request (5 V, room temperature) are:
•
COPRS = 0: 512 ms
•
COPRS = 1: 16 ms
The auto wake-up RC oscillator is highly dependent on operating voltage
and temperature.
The wake-up request is latched to allow the interrupt source
identification. The latched value, AWUL, can be read directly from the
bit 6 position of PTA data register. This is a read-only bit which is
occupying an empty bit position on PTA. No PTA associated registers,
such as PTA6 data, PTA6 direction, and PTA6 pullup exist for this bit.
The latch can be cleared by writing to the ACKK bit in the KBSCR
register. Reset also clears the latch. AWUIE bit in KBI interrupt enable
register (see Figure 14-2) has no effect on AWUL reading.
14.5 Wait Mode
The keyboard module remains active in wait mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of wait mode.
14.6 Stop Mode
The keyboard module remains active in stop mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of stop mode.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
186
Keyboard Interrupt Module (KBI)
MOTOROLA
The system integration module (SIM) controls whether the keyboard
interrupt latch can be cleared during the break state. The BCFE bit in the
break flag control register (BFCR) enables software to clear status bits
during the break state.
To allow software to clear the keyboard interrupt latch during a break
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the
break state, it remains cleared when the MCU exits the break state.
N O N - D I S C L O S U R E
To protect the latch during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the keyboard
acknowledge bit (ACKK) in the keyboard status and control register
during the break state has no effect.
A G R E E M E N T
14.7 Keyboard Module During Break Interrupts
R E Q U I R E D
Keyboard Interrupt Module (KBI)
Keyboard Module During Break Interrupts
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Keyboard Interrupt Module (KBI)
187
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Keyboard Interrupt Module (KBI)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
188
Keyboard Interrupt Module (KBI)
MOTOROLA
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
15.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
15.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.4.1 BUSCLKX4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
15.4.2 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
15.4.3 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
15.4.4 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.5 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.6 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.4.7 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 192
15.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
15.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
15.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
15.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 193
15.2 Introduction
The computer operating properly (COP) module contains a free-running
counter that generates a reset if allowed to overflow. The COP module
helps software recover from runaway code. Prevent a COP reset by
clearing the COP counter periodically. The COP module can be disabled
through the COPD bit in the configuration 1 (CONFIG1) register.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Computer Operating Properly (COP)
189
R E Q U I R E D
15.1 Contents
A G R E E M E N T
Section 15. Computer Operating Properly (COP)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
15.3 Functional Description
SIM MODULE
RESET VECTOR FETCH
RESET STATUS REGISTER
COP TIMEOUT
CLEAR STAGES 5–12
CLEAR ALL STAGES
INTERNAL RESET SOURCES(1)
SIM RESET CIRCUIT
12-BIT SIM COUNTER
BUSCLKX4
A G R E E M E N T
R E Q U I R E D
Computer Operating Properly (COP)
COPCTL WRITE
COP CLOCK
COP MODULE
6-BIT COP COUNTER
COPEN (FROM SIM)
COPD (FROM CONFIG1)
RESET
COPCTL WRITE
CLEAR
COP COUNTER
N O N - D I S C L O S U R E
COP RATE SELECT
(COPRS FROM CONFIG1)
1. See Section 7. System Integration Module (SIM) for more details.
Figure 15-1. COP Block Diagram
The COP counter is a free-running 6-bit counter preceded by the 12-bit
system integration module (SIM) counter. If not cleared by software, the
COP counter overflows and generates an asynchronous reset after
218 – 24 or 213 – 24 BUSCLKX4 cycles; depending on the state of the
COP rate select bit, COPRS, in configuration register 1. With a 218 – 24
BUSCLKX4 cycle overflow option, a 8-MHz crystal gives a COP timeout
period of 32.766 ms. Writing any value to location $FFFF before an
overflow occurs prevents a COP reset by clearing the COP counter and
stages 12–5 of the SIM counter.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
190
Computer Operating Properly (COP)
MOTOROLA
A COP reset pulls the RST pin low for 32 × BUSCLKX4 cycles and sets
the COP bit in the reset status register (RSR). See 7.9.1 SIM Reset
Status Register.
NOTE:
Place COP clearing instructions in the main program and not in an
interrupt subroutine. Such an interrupt subroutine could keep the COP
from generating a reset even while the main program is not working
properly.
15.4 I/O Signals
The following paragraphs describe the signals shown in Figure 15-1.
15.4.1 BUSCLKX4
BUSCLKX4 is the oscillator output signal. BUSCLKX4 frequency is
equal to the crystal frequency or the RC-oscillator frequency.
15.4.2 COPCTL Write
Writing any value to the COP control register (COPCTL) (see 15.5 COP
Control Register) clears the COP counter and clears bits 12–5 of the
SIM counter. Reading the COP control register returns the low byte of
the reset vector.
15.4.3 Power-On Reset
The power-on reset (POR) circuit in the SIM clears the SIM counter
4096 × BUSCLKX4 cycles after power up.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Computer Operating Properly (COP)
191
A G R E E M E N T
Service the COP immediately after reset and before entering or after
exiting stop mode to guarantee the maximum time before the first COP
counter overflow.
N O N - D I S C L O S U R E
NOTE:
R E Q U I R E D
Computer Operating Properly (COP)
I/O Signals
R E Q U I R E D
Computer Operating Properly (COP)
15.4.4 Internal Reset
An internal reset clears the SIM counter and the COP counter.
15.4.5 Reset Vector Fetch
A reset vector fetch occurs when the vector address appears on the data
bus. A reset vector fetch clears the SIM counter.
N O N - D I S C L O S U R E
A G R E E M E N T
15.4.6 COPD (COP Disable)
The COPD signal reflects the state of the COP disable bit (COPD) in the
configuration register (CONFIG). See Section 5. Configuration
Register (CONFIG).
15.4.7 COPRS (COP Rate Select)
The COPRS signal reflects the state of the COP rate select bit (COPRS)
in the configuration register 1 (CONFIG1). See Section 5.
Configuration Register (CONFIG).
15.5 COP Control Register
The COP control register (COPCTL) is located at address $FFFF and
overlaps the reset vector. Writing any value to $FFFF clears the COP
counter and starts a new timeout period. Reading location $FFFF
returns the low byte of the reset vector.
Address: $FFFF
Bit 7
6
5
4
3
Read:
LOW BYTE OF RESET VECTOR
Write:
CLEAR COP COUNTER
Reset:
Unaffected by reset
2
1
Bit 0
Figure 15-2. COP Control Register (COPCTL)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
192
Computer Operating Properly (COP)
MOTOROLA
15.6 Interrupts
The COP does not generate CPU interrupt requests.
15.7 Monitor Mode
The COP is disabled in monitor mode when VTST is present on the IRQ
pin.
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
15.8.1 Wait Mode
The COP continues to operate during wait mode. To prevent a COP
reset during wait mode, periodically clear the COP counter.
15.8.2 Stop Mode
Stop mode turns off the BUSCLKX4 input to the COP and clears the SIM
counter. Service the COP immediately before entering or after exiting
stop mode to ensure a full COP timeout period after entering or exiting
stop mode.
15.9 COP Module During Break Mode
The COP is disabled during a break interrupt with monitor mode when
BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Computer Operating Properly (COP)
193
N O N - D I S C L O S U R E
A G R E E M E N T
15.8 Low-Power Modes
R E Q U I R E D
Computer Operating Properly (COP)
Interrupts
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Computer Operating Properly (COP)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
194
Computer Operating Properly (COP)
MOTOROLA
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
16.4.1 Polled LVI Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
16.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 198
16.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
16.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
16.6
LVI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
16.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
16.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which
monitors the voltage on the VDD pin and can force a reset when the VDD
voltage falls below the LVI trip falling voltage, VTRIPF.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Low-Voltage Inhibit (LVI)
195
R E Q U I R E D
16.1 Contents
A G R E E M E N T
Section 16. Low-Voltage Inhibit (LVI)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
A G R E E M E N T
R E Q U I R E D
Low-Voltage Inhibit (LVI)
16.3 Features
Features of the LVI module include:
•
Programmable LVI reset
•
Programmable power consumption
•
Selectable LVI trip voltage
•
Programmable stop mode operation
16.4 Functional Description
Figure 16-1 shows the structure of the LVI module. LVISTOP,
LVIPWRD, LVI5OR3, and LVIRSTD are user selectable options found in
the configuration register (CONFIG1). See Section 5. Configuration
Register (CONFIG).
VDD
STOP INSTRUCTION
LVISTOP
FROM CONFIG
FROM CONFIG
N O N - D I S C L O S U R E
LVIRSTD
LVIPWRD
FROM CONFIG
VDD > LVITRIP = 0
LOW VDD
DETECTOR
LVI RESET
VDD ≤ LVITRIP = 1
LVIOUT
LVI5OR3
FROM CONFIG
Figure 16-1. LVI Module Block Diagram
The LVI is enabled out of reset. The LVI module contains a bandgap
reference circuit and comparator. Clearing the LVI power disable bit,
LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI
reset disable bit, LVIRSTD, enables the LVI module to generate a reset
when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
196
Low-Voltage Inhibit (LVI)
MOTOROLA
After a power-on reset, the LVI’s default mode of operation is 3 volts. If
a 5-V system is used, the user must set the LVI5OR3 bit to raise the trip
point to 5-V operation.
If the user requires 5-V mode and sets the LVI5OR3 bit after power-on
reset while the VDD supply is not above the VTRIPR for 5-V mode, the
microcontroller unit (MCU) will immediately go into reset. The next time
the LVI releases the reset, the supply will be above the VTRIPR for 5-V
mode.
Once an LVI reset occurs, the MCU remains in reset until VDD rises
above a voltage, VTRIPR, which causes the MCU to exit reset. See
Section 7. System Integration Module (SIM) for the reset recovery
sequence.
The output of the comparator controls the state of the LVIOUT flag in the
LVI status register (LVISR) and can be used for polling LVI operation
when the LVI reset is disabled.
16.4.1 Polled LVI Operation
In applications that can operate at VDD levels below the VTRIPF level,
software can monitor VDD by polling the LVIOUT bit. In the configuration
register, the LVIPWRD bit must be at logic 0 to enable the LVI module,
and the LVIRSTD bit must be at logic 1 to disable LVI resets.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Low-Voltage Inhibit (LVI)
197
A G R E E M E N T
NOTE:
N O N - D I S C L O S U R E
mode bit, LVISTOP, enables the LVI to operate in stop mode. Setting the
LVI 5-V or 3-V trip point bit, LVI5OR3, enables the trip point voltage,
VTRIPF, to be configured for 5-V operation. Clearing the LVI5OR3 bit
enables the trip point voltage, VTRIPF, to be configured for 3-V operation.
The actual trip thresholds are specified in 18.6 5-V DC Electrical
Characteristics and 18.9 3-V DC Electrical Characteristics.
R E Q U I R E D
Low-Voltage Inhibit (LVI)
Functional Description
16.4.2 Forced Reset Operation
In applications that require VDD to remain above the VTRIPF level,
enabling LVI resets allows the LVI module to reset the MCU when VDD
falls below the VTRIPF level. In the configuration register, the LVIPWRD
and LVIRSTD bits must be at logic 0 to enable the LVI module and to
enable LVI resets.
16.4.3 Voltage Hysteresis Protection
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI
will maintain a reset condition until VDD rises above the rising trip point
voltage, VTRIPR. This prevents a condition in which the MCU is
continually entering and exiting reset if VDD is approximately equal to
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
16.4.4 LVI Trip Selection
The LVI5OR3 bit in the configuration register selects whether the LVI is
configured for 5-V or 3-V protection.
NOTE:
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Low-Voltage Inhibit (LVI)
The microcontroller is guaranteed to operate at a minimum supply
voltage. The trip point (VTRIPF [5 V] or VTRIPF [3 V]) may be lower than
this. See 18.6 5-V DC Electrical Characteristics and
18.9 3-V DC Electrical Characteristics for the actual trip point voltages.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
198
Low-Voltage Inhibit (LVI)
MOTOROLA
The LVI status register (LVISR) indicates if the VDD voltage was
detected below the VTRIPF level while LVI resets have been disabled.
Address: $FE0C
Bit 7
Read: LVIOUT
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
R
0
0
0
0
0
0
0
Write:
Reset:
0
= Unimplemented
R
= Reserved
Figure 16-2. LVI Status Register (LVISR)
LVIOUT — LVI Output Bit
This read-only flag becomes set when the VDD voltage falls below the
VTRIPF trip voltage and is cleared when VDD voltage rises above
N O N - D I S C L O S U R E
VTRIPR. The difference in these threshold levels results in a hysteresis
that prevents oscillation into and out of reset (see Table 16-1). Reset
clears the LVIOUT bit.
Table 16-1. LVIOUT Bit Indication
VDD
LVIOUT
VDD > VTRIPR
0
VDD < VTRIPF
1
VTRIPF < VDD < VTRIPR
Previous value
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Low-Voltage Inhibit (LVI)
A G R E E M E N T
16.5 LVI Status Register
R E Q U I R E D
Low-Voltage Inhibit (LVI)
LVI Status Register
199
R E Q U I R E D
Low-Voltage Inhibit (LVI)
16.6 LVI Interrupts
The LVI module does not generate interrupt requests.
16.7 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
If enabled, the LVI module remains active in wait mode. If enabled to
generate resets, the LVI module can generate a reset and bring the MCU
out of wait mode.
16.7.2 Stop Mode
When the LVIPWRD bit in the configuration register is cleared and the
LVISTOP bit in the configuration register is set, the LVI module remains
active in stop mode. If enabled to generate resets, the LVI module can
generate a reset and bring the MCU out of stop mode.
N O N - D I S C L O S U R E
A G R E E M E N T
16.7.1 Wait Mode
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
200
Low-Voltage Inhibit (LVI)
MOTOROLA
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
17.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
17.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 204
17.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204
17.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 204
17.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .204
17.5 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
17.5.1 Break Status and Control Register . . . . . . . . . . . . . . . . . . .205
17.5.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 206
17.5.3 Break Auxiliary Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
17.5.4 Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
17.5.5 Break Flag Control Register . . . . . . . . . . . . . . . . . . . . . . .209
17.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
17.2 Introduction
This section describes the break module. The break module can
generate a break interrupt that stops normal program flow at a defined
address to enter a background program.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Break Module (BREAK)
201
R E Q U I R E D
17.1 Contents
A G R E E M E N T
Section 17. Break Module (BREAK)
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
17.3 Features
Features of the break module include:
•
Accessible input/output (I/O) registers during the break Interrupt
•
Central processor unit (CPU) generated break interrupts
•
Software-generated break interrupts
•
Computer operating properly (COP) disabling during break
interrupts
17.4 Functional Description
When the internal address bus matches the value written in the break
address registers, the break module issues a breakpoint signal (BKPT)
to the system integration module (SIM). The SIM then causes the CPU
to load the instruction register with a software interrupt instruction (SWI)
after completion of the current CPU instruction. The program counter
vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode).
The following events can cause a break interrupt to occur:
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Break Module (BREAK)
•
A CPU generated address (the address in the program counter)
matches the contents of the break address registers.
•
Software writes a logic 1 to the BRKA bit in the break status and
control register.
When a CPU generated address matches the contents of the break
address registers, the break interrupt begins after the CPU completes its
current instruction. A return-from-interrupt instruction (RTI) in the break
routine ends the break interrupt and returns the microcontroller unit
(MCU) to normal operation. Figure 17-1 shows the structure of the break
module.
Figure 17-2 provides a summary of the I/O registers.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
202
Break Module (BREAK)
MOTOROLA
Break Module (BREAK)
Functional Description
R E Q U I R E D
ADDRESS BUS[15:8]
BREAK ADDRESS REGISTER HIGH
8-BIT COMPARATOR
ADDRESS BUS[15:0]
CONTROL
BKPT
(TO SIM)
8-BIT COMPARATOR
BREAK ADDRESS REGISTER LOW
Addr.
Register Name
$FE00
Read:
Break Status Register
(BSR) Write:
See page 208.
Reset:
$FE02
Read:
Break Auxiliary Register
(BRKAR) Write:
See page 207.
Reset:
Read:
Break Flag Control
Register (BFCR) Write:
See page 209.
Reset:
$FE03
$FE09
Read:
Break Address High
Register (BRKH) Write:
See page 206.
Reset:
$FE0A
Read:
Break Address Low
Register (BRKL) Write:
See page 206.
Reset:
Read:
Break Status and Control
$FE0B
Register (BRKSCR) Write:
See page 205.
Reset:
1. Writing a logic 0 clears SBSW.
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
Bit 0
SBSW
Note(1)
R
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
BCFE
R
R
R
R
R
R
R
Bit15
Bit14
Bit13
Bit12
Bit11
Bit10
Bit9
Bit8
0
0
0
0
0
0
0
0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
= Unimplemented
R
0
= Reserved
Figure 17-2. Break I/O Register Summary
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Break Module (BREAK)
203
N O N - D I S C L O S U R E
Figure 17-1. Break Module Block Diagram
A G R E E M E N T
ADDRESS BUS[7:0]
R E Q U I R E D
Break Module (BREAK)
17.4.1 Flag Protection During Break Interrupts
The system integration module (SIM) controls whether or not module
status bits can be cleared during the break state. The BCFE bit in the
break flag control register (BFCR) enables software to clear status bits
during the break state. See 7.9.2 Break Flag Control Register and the
Break Interrupts subsection for each module.
17.4.2 CPU During Break Interrupts
A G R E E M E N T
The CPU starts a break interrupt by:
•
Loading the instruction register with the SWI instruction
•
Loading the program counter with $FFFC:$FFFD ($FEFC:$FEFD
in monitor mode)
The break interrupt begins after completion of the CPU instruction in
progress. If the break address register match occurs on the last cycle of
a CPU instruction, the break interrupt begins immediately.
17.4.3 TIM During Break Interrupts
N O N - D I S C L O S U R E
A break interrupt stops the timer counter.
17.4.4 COP During Break Interrupts
The COP is disabled during a break interrupt with monitor mode when
BDCOP bit is set in break auxiliary register (BRKAR).
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
204
Break Module (BREAK)
MOTOROLA
Break Module (BREAK)
Break Module Registers
These registers control and monitor operation of the break module:
•
Break status and control register (BRKSCR)
•
Break address register high (BRKH)
•
Break address register low (BRKL)
•
Break status register (BSR)
•
Break flag control register (BFCR)
17.5.1 Break Status and Control Register
The break status and control register (BRKSCR) contains break module
enable and status bits.
Address: $FE0B
Bit 7
6
BRKE
BRKA
0
0
Read:
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
A G R E E M E N T
R E Q U I R E D
17.5 Break Module Registers
Figure 17-3. Break Status and Control Register (BRKSCR)
BRKE — Break Enable Bit
This read/write bit enables breaks on break address register matches.
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.
1 = Breaks enabled on 16-bit address match
0 = Breaks disabled
BRKA — Break Active Bit
This read/write status and control bit is set when a break address
match occurs. Writing a logic 1 to BRKA generates a break interrupt.
Clear BRKA by writing a logic 0 to it before exiting the break routine.
Reset clears the BRKA bit.
1 = Break address match
0 = No break address match
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Break Module (BREAK)
205
N O N - D I S C L O S U R E
= Unimplemented
R E Q U I R E D
Break Module (BREAK)
17.5.2 Break Address Registers
The break address registers (BRKH and BRKL) contain the high and low
bytes of the desired breakpoint address. Reset clears the break address
registers.
Address: $FE09
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
Bit 14
Bit 13
Bit 12
Bit 11
Bit 10
Bit 9
Bit 8
0
0
0
0
0
0
0
0
Read:
Write:
A G R E E M E N T
Reset:
Figure 17-4. Break Address Register High (BRKH)
Address: $FE0A
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
0
0
0
0
0
0
0
0
Read:
Write:
Reset:
N O N - D I S C L O S U R E
Figure 17-5. Break Address Register Low (BRKL)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
206
Break Module (BREAK)
MOTOROLA
17.5.3 Break Auxiliary Register
The break auxiliary register (BRKAR) contains a bit that enables
software to disable the COP while the MCU is in a state of break interrupt
with monitor mode.
Address: $FE02
Read:
Bit 7
6
5
4
3
2
1
0
0
0
0
0
0
0
Bit 0
BDCOP
R E Q U I R E D
Break Module (BREAK)
Break Module Registers
Reset:
0
0
0
0
0
0
0
0
= Unimplemented
Figure 17-6. Break Auxiliary Register (BRKAR)
BDCOP — Break Disable COP Bit
N O N - D I S C L O S U R E
This read/write bit disables the COP during a break interrupt. Reset
clears the BDCOP bit.
1 = COP disabled during break interrupt
0 = COP enabled during break interrupt.
A G R E E M E N T
Write:
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Break Module (BREAK)
207
17.5.4 Break Status Register
The break status register (BSR) contains a flag to indicate that a break
caused an exit from wait mode. This register is only used in emulation
mode.
Address: $FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
Read:
A G R E E M E N T
R E Q U I R E D
Break Module (BREAK)
1
Bit 0
SBSW
Write:
Note(1)
Reset:
0
R
= Reserved
R
1. Writing a logic 0 clears SBSW.
Figure 17-7. Break Status Register (BSR)
SBSW — SIM Break Stop/Wait
This status bit is useful in applications requiring a return to wait mode
after exiting from a break interrupt. Clear SBSW by writing a logic 0 to
it. Reset clears SBSW.
1 = Wait mode was exited by break interrupt
0 = Wait mode was not exited by break interrupt
N O N - D I S C L O S U R E
SBSW can be read within the break state SWI routine. The user can
modify the return address on the stack by subtracting one from it.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
208
Break Module (BREAK)
MOTOROLA
Address: $FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
Read:
Write:
Reset:
0
R
= Reserved
Figure 17-8. Break Flag Control Register (BFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
17.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. If enabled, the break module will remain
enabled in wait and stop modes. However, since the internal address
bus does not increment in these modes, a break interrupt will never be
triggered.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Break Module (BREAK)
209
A G R E E M E N T
The break control register (BFCR) contains a bit that enables software
to clear status bits while the MCU is in a break state.
N O N - D I S C L O S U R E
17.5.5 Break Flag Control Register
R E Q U I R E D
Break Module (BREAK)
Low-Power Modes
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Break Module (BREAK)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
210
Break Module (BREAK)
MOTOROLA
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
18.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 212
18.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 213
18.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
18.6
5-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 214
18.7
5-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
18.8
5-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 216
18.9
3-V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 217
18.10 3-V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
18.11 3-V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 219
18.12 Typical Supply Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
18.13 Analog-to-Digital Converter Characteristics . . . . . . . . . . . . . . 221
18.14 Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
18.2 Introduction
This section contains electrical and timing specifications.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
211
R E Q U I R E D
18.1 Contents
A G R E E M E N T
Section 18. Electrical Specifications
N O N - D I S C L O S U R E
Data Sheet — MC68HC908QY4
18.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the microcontroller unit
(MCU) can be exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum
ratings. Refer to 18.6 5-V DC Electrical Characteristics and
18.9 3-V DC Electrical Characteristics for guaranteed operating
conditions.
Characteristic(1)
A G R E E M E N T
R E Q U I R E D
Electrical Specifications
Symbol
Value
Unit
Supply voltage
VDD
–0.3 to +6.0
V
Input voltage
VIN
VSS –0.3 to VDD +0.3
V
VTST
VSS – 0.3 to +9.1
V
I
±15
mA
IPTA0—IPTA5
±25
mA
Storage temperature
TSTG
–55 to +150
°C
Maximum current out of VSS
IMVSS
100
mA
Maximum current into VDD
IMVDD
100
mA
Mode entry voltage, IRQ pin
Maximum current per pin excluding
PTA0–PTA5, VDD, and VSS
N O N - D I S C L O S U R E
Maximum current for pins
PTA0–PTA5
1. Voltages references to VSS.
NOTE:
This device contains circuitry to protect the inputs against damage due
to high static voltages or electric fields; however, it is advised that normal
precautions be taken to avoid application of any voltage higher than
maximum-rated voltages to this high-impedance circuit. For proper
operation, it is recommended that VIN and VOUT be constrained to the
range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if
unused inputs are connected to an appropriate logic voltage level (for
example, either VSS or VDD.)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
212
Electrical Specifications
MOTOROLA
Operating temperature range
Operating voltage range
Symbol
Value
Unit
TA
– 40 to +125
– 40 to +85
– 40 to +125
– 40 to +85
°C
VDD
5 V ± 10%
3 V ± 10%
V
18.5 Thermal Characteristics
Characteristic
Symbol
Value
Unit
Thermal resistance
8-pin PDIP
8-pin SOIC
16-pin PDIP
16-pin SOIC
16-pin TSSOP
θJA
I/O pin power dissipation
PI/O
User determined
W
Power dissipation(1)
PD
PD = (IDD x VDD)
+ PI/O = K/(TJ + 273°C)
W
Constant(2)
K
Average junction temperature
Maximum junction temperature
95
70
66
70
70
PD x (TA + 273°C)
°C/W
+ PD2 x θJA
W/°C
TJ
TA + (PD x θJA)
°C
TJM
100
°C
1. Power dissipation is a function of temperature.
2. K constant unique to the device. K can be determined for a known TA and measured PD. With
this value of K, PD and TJ can be determined for any value of TA.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
213
A G R E E M E N T
Characteristic
N O N - D I S C L O S U R E
18.4 Functional Operating Range
R E Q U I R E D
Electrical Specifications
Functional Operating Range
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Electrical Specifications
18.6 5-V DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Typ(2)
Max
VDD –0.4
VDD –1.5
VDD –0.8
—
—
—
—
—
—
—
—
—
—
—
—
0.4
1.5
0.8
Unit
Output high voltage
ILoad = –2.0 mA, all I/O pins
ILoad = –10.0 mA, all I/O pins
ILoad = –15.0 mA, PTA0–PTA5 only
VOH
Output low voltage
ILoad = 1.6 mA, all I/O pins
ILoad = 10.0 mA, all I/O pins
ILoad = 15.0 mA, PTA0–PTA5 only
VOL
Input high voltage
PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1
VIH
0.7 x VDD
—
VDD
V
Input low voltage
PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1
VIL
VSS
—
0.3 x VDD
V
DC injection current, all ports
IINJ
–2
—
+2
mA
IINJTOT
–25
—
+25
mA
—
7
10
mA
—
5
5.5
mA
—
0.1
5
µA
Total dc current injection (sum of all I/O)
V
V
VDD supply current
Run, fOP = 4 MHz(3)
(4)
Wait
Stop(5), – 40°C to 85°C
IDD
Digital I/O ports Hi-Z leakage current
IIL
—
—
± 10
µA
Input current
IIN
—
—
±1
µA
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR rearm voltage(6)
VPOR
0
—
100
mV
POR rise time ramp rate(7)
RPOR
0.035
—
—
V/ms
Monitor mode entry voltage
VTST
VDD + 2.5
—
9.1
V
Pullup resistors(8)
RST, IRQ, PTA0–PTA5, PTB0–PTB7
RPU
16
26
36
kΩ
VTRIPF
3.90
4.20
4.50
V
Low-voltage inhibit reset, trip falling voltage
Continued on next page
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
214
Electrical Specifications
MOTOROLA
Min
Typ(2)
Max
Unit
Low-voltage inhibit reset, trip rising voltage
VTRIPR
4.00
4.30
4.60
V
Low-voltage inhibit reset/recover hysteresis
VHYS
—
100
—
mV
1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.
4. Wait IDD measured using external square wave clock source (fOP = 4MHz); all inputs 0.2 V from rail; no dc loads; less than
100 pF on all outputs.
5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured
as inputs with pullups enabled.
6. Maximum is highest voltage that POR is guaranteed.
7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
8. R PU1 and RPU2 are measured at VDD = 5.0 V.
18.7 5-V Control Timing
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
8
MHz
RST input pulse width low(3)
tIRL
750
—
ns
1. V DD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VSS, unless otherwise
noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
215
A G R E E M E N T
Symbol
N O N - D I S C L O S U R E
Characteristic(1)
R E Q U I R E D
Electrical Specifications
5-V Control Timing
18.8 5-V Oscillator Characteristics
Characteristic
Symbol
Min
Typ
Max
Unit
Internal oscillator frequency
fINTCLK
—
12.8
—
MHz
Crystal frequency, XTALCLK
fOSCXCLK
1
—
32
MHz
fRCCLK
2
—
12
MHz
fOSCXCLK
dc
—
32
MHz
Crystal load capacitance (2)
CL
—
—
—
—
Crystal fixed capacitance(2)
C1
—
2 x CL
—
—
Crystal tuning capacitance(2)
C2
—
2 x CL
—
—
Feedback bias resistor
RB
—
10
—
MΩ
Series resistor(2), (3)
RS
—
—
—
—
RC oscillator frequency, RCCLK
External clock reference frequency(1)
REXT
RC oscillator external resistor
See Figure 18-1
—
1. No more than 10% duty cycle deviation from 50%.
2. Consult crystal vendor data sheet.
3. Not required for high frequency crystals
14
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Electrical Specifications
5 V @ 25°C
RC FREQUENCY, fRCCLK (MHz)
12
MCU
10
OSC1
8
6
VDD
4
REXT
2
0
0
10
20
30
40
50
Resistor, REXT (kΩ)
Figure 18-1. RC versus Frequency (5 Volts @ 25°C)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
216
Electrical Specifications
MOTOROLA
18.9 3-V DC Electrical Characteristics
Typ(2)
Max
VDD –0.3
VDD – 1.0
VDD – 0.6
—
—
—
—
—
—
Unit
Output high voltage
ILoad = –0.6 mA, all I/O pins
ILoad = –4.0 mA, all I/O pins
ILoad = –10.0 mA, PTA0–PTA4 only
VOH
Output low voltage
ILoad = 0.5 mA, all I/O pins
ILoad = 6.0 mA, all I/O pins
ILoad = 10.0 mA, PTA0-PTA5 only
VOL
—
—
—
—
—
—
0.3
1.0
0.6
V
Input high voltage
PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1
VIH
0.7 x VDD
—
VDD
V
Input low voltage
PTA0–PTA5, PTB0–PTB7, RST, IRQ, OSC1
VIL
VSS
—
0.3 x VDD
V
DC injection current, all ports
IINJ
–2
—
+2
mA
IINJTOT
–25
—
+25
mA
—
5
8
mA
—
1
2.5
mA
—
0.1
5
µA
Total dc current injection (sum of all I/O)
V
A G R E E M E N T
Min
Symbol
VDD supply current
Run, fOP = 2 MHz(3)
Wait, fOP = 2 MHz
Stop
(4)
IDD
(5)
,– 40°C to 85°C
Digital I/O ports Hi-Z leakage current
IIL
—
—
± 10
µA
Input leakage current
IIN
—
—
±1
µA
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR rearm voltage(6)
VPOR
0
—
100
mV
POR rise time ramp rate(7)
RPOR
0.035
—
—
V/ms
Monitor mode entry voltage
VTST
VDD + 2.5
—
VDD + 4.0
V
Pullup resistors(8)
RST, IRQ, PTA0–PTA5, PTB0–PTB7
RPU
16
26
36
kΩ
VTRIPF
2.40
2.55
2.70
V
Low-voltage inhibit reset, trip falling voltage
Continued on next page
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
217
N O N - D I S C L O S U R E
Characteristic(1)
R E Q U I R E D
Electrical Specifications
3-V DC Electrical Characteristics
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Electrical Specifications
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Low-voltage inhibit reset, trip rising voltage
VTRIPR
2.50
2.65
2.80
V
Low-voltage inhibit reset/recover hysteresis
VHYS
—
60
—
mV
1. VDD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25°C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. All ports configured as inputs. Measured with all modules enabled.
4. Wait IDD measured using external square wave clock source (fOP = 4 MHz); all inputs 0.2 V from rail; no dc loads; less than
100 pF on all outputs.
5. All ports configured as inputs. All ports driven 0.2 V or less from rail. No dc loads. On the 8-pin versions, port B is configured
as inputs with pullups enabled.
6. Maximum is highest voltage that POR is guaranteed.
7. If minimum V DD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
8. RPU1 and RPU2 are measured at VDD = 5.0 V
18.10 3-V Control Timing
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
4
MHz
RST input pulse width low(3)
tIRL
1.5
—
µs
1. V DD = 2.7 to 3.3 Vdc, VSS = 0 Vdc, TA = TL to TH; timing shown with respect to 20% VDD and 70% VDD, unless otherwise
noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
218
Electrical Specifications
MOTOROLA
Electrical Specifications
3-V Oscillator Characteristics
Symbol
Min
Typ
Max
Unit
Internal oscillator frequency
fINTCLK
—
12.8
—
MHz
Crystal frequency, XTALCLK
fOSCXCLK
1
—
16
MHz
fRCCLK
2
—
12
MHz
fOSCXCLK
dc
—
16
MHz
Crystal load capacitance (2)
CL
—
—
—
—
Crystal fixed capacitance(2)
C1
—
2 x CL
—
—
Crystal tuning capacitance(2)
C2
—
2 x CL
—
—
Feedback bias resistor
RB
—
10
—
MΩ
Series resistor(2), (3)
RS
—
—
—
—
RC oscillator frequency, RCCLK
External clock reference frequency(1)
REXT
RC oscillator external resistor
See Figure 18-2
A G R E E M E N T
Characteristic
R E Q U I R E D
18.11 3-V Oscillator Characteristics
—
1. No more than 10% duty cycle deviation from 50%
2. Consult crystal vendor data sheet
3. Not required for high frequency crystals
14
N O N - D I S C L O S U R E
3 V @ 25°C
12
RC FREQUENCY, fRCCLK (MHz)
MCU
10
OSC1
8
6
VDD
REXT
4
2
0
0
10
20
30
RESISTOR, REXT (KΩ)
40
50
Figure 18-2. RC versus Frequency (3 Volts @ 25°C)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
219
R E Q U I R E D
Electrical Specifications
18.12 Typical Supply Currents
14
12
10
8
IDD (mA)
6
4
5.5 V
3.3 V
2
0
A G R E E M E N T
0
1
2
3
4
5
fOP OR fBUS (MHz)
6
7
8
9
Figure 18-3. Typical Operating IDD,
with All Modules Turned On (25°C)
2
1.75
1.50
1.25
IDD (mA)
1
0.75
0.5
5.5 V
3.3 V
N O N - D I S C L O S U R E
0.25
0
0
1
2
3
4
fOP OR fBUS (MHz)
5
6
7
8
Figure 18-4. Typical Wait Mode IDD,
with ADC Turned On (25°C)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
220
Electrical Specifications
MOTOROLA
Symbol
Min
Max
Unit
Comments
Supply voltage
VDDAD
2.7
(VDD min)
5.5
(VDD max)
V
—
Input voltages
VADIN
VSS
VDD
V
—
Resolution
BAD
8
8
Bits
—
Absolute accuracy
AAD
± 0.5
± 1.5
LSB
Includes quantization
ADC internal clock
fADIC
0.5
1.048
MHz
tADIC = 1/fADIC,
tested only at 1 MHz
Conversion range
RAD
VSS
VDD
V
—
Power-up time
tADPU
16
tADIC cycles
tADIC = 1/fADIC
Conversion time
tADC
16
17
tADIC cycles
tADIC = 1/fADIC
Sample time(1)
tADS
5
—
tADIC cycles
tADIC = 1/fADIC
Zero input reading(2)
ZADI
00
01
Hex
VIN = VSS
Full-scale reading(3)
FADI
FE
FF
Hex
VIN = VDD
Input capacitance
CADI
—
8
pF
Not tested
—
—
±1
µA
—
Input leakage(3)
N O N - D I S C L O S U R E
Characteristic
1. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling.
2. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions.
3. The external system error caused by input leakage current is approximately equal to the product of R source and input
current.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Electrical Specifications
A G R E E M E N T
18.13 Analog-to-Digital Converter Characteristics
R E Q U I R E D
Electrical Specifications
Analog-to-Digital Converter Characteristics
221
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Electrical Specifications
18.14 Memory Characteristics
Characteristic
Symbol
Min
Max
Unit
VRDR
1.3
—
V
—
1
—
MHz
FLASH read bus clock frequency
fRead(1)
32 k
8M
Hz
FLASH page erase time
<1 K cycles
<10 K cycles
tErase(2)
1
4
—
—
ms
FLASH mass erase time
tMErase(3)
4
—
ms
FLASH PGM/ERASE to HVEN set up time
tnvs
10
—
us
FLASH high-voltage hold time
tnvh
5
—
us
FLASH high-voltage hold time (mass erase)
tnvhl
100
—
us
FLASH program hold time
tpgs
5
—
us
FLASH program time
tPROG
30
40
us
FLASH return to read time
trcv(4)
1
—
us
FLASH cumulative program hv period
tHV(5)
—
4
ms
FLASH row erase endurance(6)
—
10 k
—
Cycles
FLASH row program endurance(7)
—
10 k
—
Cycles
FLASH data retention time(8)
—
10
—
Years
RAM data retention voltage
FLASH program bus clock frequency
1. fRead is defined as the frequency range for which the FLASH memory can be read.
2. If the page erase time is longer than tErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH
memory.
3. If the mass erase time is longer than tMErase (Min), there is no erase disturb, but it reduces the endurance of the FLASH
memory.
4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing
HVEN to logic 0.
5. tHV is defined as the cumulative high voltage programming time to the same row before next erase.
tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG x 32) ≤ tHV max.
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycles.
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycles.
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified.
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
222
Electrical Specifications
MOTOROLA
19.1 Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
19.3
8-Pin Plastic Dual In-Line Package
(Case #626) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
19.4
8-Pin Small Outline Integrated Circuit Package
(Case #968) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
19.5
16-Pin Plastic Dual In-Line Package
(Case #648D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
19.6
16-Pin Small Outline Integrated Circuit Package
(Case #751G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
19.7
16-Pin Thin Shrink Small Outline Package
(Case #948F). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
N O N - D I S C L O S U R E
19.2
19.2 Introduction
This section gives the dimensions for:
•
8-pin plastic dual in-line package (PDIP)
•
8-pin small outline integrated circuit (SOIC) package
•
16-pin PDIP
•
16-pin SOIC
•
16-pin thin shrink small outline package (TSSOP)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Mechanical Specifications
R E Q U I R E D
Section 19. Mechanical Specifications
A G R E E M E N T
Data Sheet — MC68HC908QY4
223
A G R E E M E N T
R E Q U I R E D
Mechanical Specifications
19.3 8-Pin Plastic Dual In-Line Package (Case #626)
8
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
5
-B1
4
DIM
A
B
C
D
F
G
H
J
K
L
M
N
F
-A-
NOTE 2
L
C
J
-TN
SEATING
PLANE
D
STYLE 1:
1.
AC IN
2.
DC + IN
3.
DC - IN
4.
AC IN
5.
GROUND
6.
OUTPUT
7.
AUXILIARY
8.
VCC
M
K
G
H
0.13 (0.005)
M
T A
M
B
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
9.40 10.16 0.370 0.400
6.10
6.60 0.240 0.260
3.94
4.45 0.155 0.175
0.38
0.51 0.015 0.020
1.02
1.78 0.040 0.070
2.54 BSC
0.100 BSC
0.76
1.27 0.030 0.050
0.20
0.30 0.008 0.012
2.92
3.43 0.115 0.135
7.62 BSC
0.300 BSC
--10 °
--10 °
0.76
1.01 0.030 0.040
M
19.4 8-Pin Small Outline Integrated Circuit Package (Case #968)
8
LE
5
N O N - D I S C L O S U R E
Q1
E HE
M×
1
4
L
Z
DETAIL P
D
e
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION D AND E DO NOT INCLUDE MOLD
FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD
FLASH OR PROTRUSIONS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL
CONDITION. DAMBAR CANNOT BE LOCATED
ON THE LOWER RADIUS OR THE FOOT
MINIMUM SPACE BETWEEN PROTRUSIONS
AND ADJACENT LEAD TO BE 0.46 (0.018).
A1
A
P
b
0.13 (0.005)
c
M
0.10 (0.004)
DIM
A
A1
b
c
D
E
e
HE
L
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
--2.05
0.05
0.20
0.35
0.50
0.18
0.27
5.10
5.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
0°
10°
0.70
0.90
--0.94
INCHES
MIN MAX
--- 0.081
0.002 0.008
0.014 0.020
0.007 0.011
0.201 0.217
0.201 0.215
0.050 BSC
0.291 0.323
0.020 0.033
0.043 0.059
0°
10°
0.028 0.035
--- 0.037
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
224
Mechanical Specifications
MOTOROLA
Mechanical Specifications
16-Pin Plastic Dual In-Line Package (Case #648D)
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
5. MOLD FLASH OR PROTRUSIONS SHALL
NOT EXCEED 0.25 (0.010).
6. ROUNDED CORNERS OPTIONAL.
9
-B1
8
F
L
C
S
-T-
SEATING
PLANE
K
H
G
M
J
D 16 PL
0.25 (0.010)
M
T B
S
A
S
DIM
A
B
C
D
F
G
H
J
K
L
M
S
INCHES
MILLIMETERS
MIN
MAX
MIN MAX
0.740 0.760 18.80 19.30
0.245 0.260
6.23
6.60
0.145 0.175
3.69
4.44
0.015 0.021
0.39
0.53
0.050 0.070
1.27
1.77
0.100 BSC
2.54 BSC
0.050 BSC
1.27 BSC
0.008 0.015
0.21
0.38
0.120 0.140
3.05
3.55
0.295 0.305
7.50
7.74
0°
10 °
0°
10 °
0.015 0.035
0.39
0.88
A G R E E M E N T
-A16
R E Q U I R E D
19.5 16-Pin Plastic Dual In-Line Package (Case #648D)
19.6 16-Pin Small Outline Integrated Circuit Package (Case #751G)
q
9
1
8
h X 45 °
H
E
0.25
8X
M
B
M
16
16X
M
14X
e
T A
S
B
S
L
A
0.25
B
B
A1
SEATING
PLANE
T
C
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND
TOLERANCES PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INLCUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER
SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 TOTAL IN
EXCESS OF THE B DIMENSION AT MAXIMUM
MATERIAL CONDITION.
N O N - D I S C L O S U R E
A
D
MILLIMETERS
DIM MIN
MAX
A
2.35
2.65
A1 0.10
0.25
B
0.35
0.49
C
0.23
0.32
D 10.15 10.45
E
7.40
7.60
e
1.27 BSC
H 10.05 10.55
h
0.25
0.75
L
0.40
1.00
q
0°
7°
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Mechanical Specifications
225
R E Q U I R E D
Mechanical Specifications
19.7 16-Pin Thin Shrink Small Outline Package (Case #948F)
16X K REF
0.10 (0.004) M T U
0.15 (0.006) T U
V
S
S
S
K
K1
2X
L/2
16
9
J1
B
-U-
L
SECTION N-N
J
PIN 1
IDENT.
8
1
N
A G R E E M E N T
0.25 (0.010)
0.15 (0.006) T U
S
A
-V-
M
NOTES:
4. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: MILLIMETER.
6. DIMENSION A DOES NOT INCLUDE MOLD
FLASH. PROTRUSIONS OR GATE BURRS.
MOLD FLASH OR GATE BURRS SHALL NOT
EXCEED 0.15 (0.006) PER SIDE.
7. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL
NOT EXCEED
0.25 (0.010) PER SIDE.
8. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL
IN EXCESS OF THE K DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
10. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE -W-.
N
F
DETAIL E
-W-
C
0.10 (0.004)
-T- SEATING
H
D
DETAIL E
G
MILLIMETERS
INCHES
MIN
MAX
MIN MAX
4.90
5.10 0.193 0.200
4.30
4.50 0.169 0.177
--1.20
--- 0.047
0.05
0.15 0.002 0.006
0.50
0.75 0.020 0.030
0.65 BSC
0.026 BSC
0.18
0.28 0.007 0.011
0.09
0.20 0.004 0.008
0.09
0.16 0.004 0.006
0.19
0.30 0.007 0.012
0.19
0.25 0.007 0.010
6.40 BSC
0.252 BSC
0°
8°
0°
8°
N O N - D I S C L O S U R E
PLANE
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
226
Mechanical Specifications
MOTOROLA
Section 20. Ordering Information
20.1 Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
20.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
A G R E E M E N T
20.2
R E Q U I R E D
Data Sheet — MC68HC908QY4
20.2 Introduction
This section contains ordering numbers for MC68HC908QY1,
MC68HC908QY2, MC68HC908QY4, MC68HC908QT1,
MC68HC908QT2, and MC69HC908QT4.
20.3 MC Order Numbers
MC Order Number
ADC
FLASH Memory
MC68HC908QY1
—
1536 bytes
MC68HC908QY2
Yes
1536 bytes
MC68HC908QY4
Yes
4096 bytes
MC68HC908QT1
—
1536 bytes
MC68HC908QT2
Yes
1536 bytes
MC68HC908QT4
Yes
4096 bytes
N O N - D I S C L O S U R E
Table 20-1. MC Order Numbers
Package
16-pins
PDIP, SOIC,
and TSSOP
8-pins
PDIP or SOIC
Temperature and package designators:
C = –40°C to +85°C
V = –40°C to +105°C (available for VDD = 5 V only)
M = –40°C to +125°C (available for VDD = 5 V only)
P = Plastic dual in-line package (PDIP)
DW = Small outline integrated circuit package (SOIC)
DT = Thin shrink small outline package (TSSOP)
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
MOTOROLA
Ordering Information
227
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
Ordering Information
MC68HC908QY4•MC68HC908QT4•MC68HC908QY2•MC68HC908QT2•MC68HC908QY1•MC68HC908QT1
228
Ordering Information
MOTOROLA
N O N - D I S C L O S U R E
A G R E E M E N T
R E Q U I R E D
R E Q U I R E D
A G R E E M E N T
HOW TO REACH US:
USA/EUROPE/LOCATIONS NOT LISTED:
Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217
1-303-675-2140 or 1-800-441-2447
JAPAN:
Motorola Japan Ltd.; SPS, Technical Information Center,
3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan
81-3-3440-3569
ASIA/PACIFIC:
Motorola Semiconductors H.K. Ltd.;
Silicon Harbour Centre, 2 Dai King Street,
Tai Po Industrial Estate, Tai Po, N.T., Hong Kong
852-26668334
TECHNICAL INFORMATION CENTER:
1-800-521-6274
Information in this document is provided solely to enable system and software
implementers to use Motorola products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Motorola reserves the right to make changes without further notice to any products
herein. Motorola makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Motorola assume any
HOME PAGE:
http://www.motorola.com/semiconductors
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters which may be provided in Motorola data sheets
and/or specifications can and do vary in different applications and actual
performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts.
Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which
the failure of the Motorola product could create a situation where personal injury or
N O N - D I S C L O S U R E
death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated
with such unintended or unauthorized use, even if such claim alleges that Motorola
was negligent regarding the design or manufacture of the part.
Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark
Office. digital dna is a trademark of Motorola, Inc. All other product or service
names are the property of their respective owners. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
© Motorola, Inc. 2002
MC68HC908QY4/D