SAMSUNG K6R4016C1C-C15

PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
Document Title
256Kx16 Bit High Speed Static RAM(5V Operating).
Operated at Extended and Industrial Temperature Ranges.
Revision History
Rev No.
History
Draft Data
Remark
Rev. 0.0
Initial release with Preliminary.
Feb. 12. 1999
Preliminary
Rev. 1.0
1.1 Removed Low power Version.
1.2 Removed Data Retention Characteristics
1.3 Changed ISB1 to 20mA
Mar. 29. 1999
Preliminary
Rev. 2.0
2.1 Relax D.C parameters.
Aug. 19. 1999
Preliminary
Mar. 27. 2000
Final
Sep. 24. 2001
Final
Item
Previous
190mA
185mA
180mA
12ns
15ns
20ns
ICC
Current
200mA
195mA
190mA
2.2 Relax Absolute Maximum Rating.
Item
Voltage on Any Pin Relative to Vss
Rev.3.0
Previous
-0.5 to 7.0
Current
-0.5 to Vcc+0.5
3.1 Delete Preliminary
3.2 Update D.C parameters and 10ns part.
10ns
12ns
15ns
20ns
ICC
200mA
195mA
190mA
Previous
Isb
Isb1
70mA
20mA
ICC
185mA
175mA
165mA
160mA
Current
Isb
Isb1
60mA
10mA
3.3 Added Extended temperature range
Rev.4.0
Delete 20ns speed bin
The attached data sheets are prepared and approved by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the
specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.
-1-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
256K x 16 Bit High-Speed CMOS Static RAM
FEATURES
GENERAL DESCRIPTION
• Fast Access Time 10,12,15ns(Max.)
• Low Power Dissipation
Standby (TTL)
: 60mA(Max.)
(CMOS) : 10mA(Max.)
Operating K6R4016C1C-10 : 185mA(Max.)
K6R4016C1C-12 : 175mA(Max.)
K6R4016C1C-15 : 165mA(Max.)
• Single 5.0V ±10% Power Supply
• TTL Compatible Inputs and Outputs
• I/O Compatible with 3.3V Device
• Fully Static Operation
- No Clock or Refresh required
• Three State Outputs
• Center Power/Ground Pin Configuration
• Data Byte Control : LB : I/O1~ I/O8, UB : I/O9~ I/O16
• Standard Pin Configuration
K6R4016C1C-J : 44-SOJ-400
K6R4016C1C-T : 44-TSOP2-400BF
K6R4016C1C-F : 48-Fine pitch BGA with 0.75 Ball pitch
The K6R4016C1C is a 4,194,304-bit high-speed Static Random Access Memory organized as 262,144 words by 16 bits.
The K6R4016C1C uses 16 common input and output lines and
has an output enable pin which operates faster than address
access time at read cycle. Also it allows that lower and upper
byte access by data byte control(UB, LB). The device is fabricated using SAMSUNG′s advanced CMOS process and
designed for high-speed circuit technology. It is particularly well
suited for use in high-density high-speed system applications.
The K6R4016C1C is packaged in a 400mil 44-pin plastic SOJ
or TSOP(II) forward or 48 Fine pitch BGA.
FUNCTIONAL BLOCK DIAGRAM
ORDERING INFORMATION
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
Row Select
Clk Gen.
I/O1 ~I/O8
Data
Cont.
I/O9 ~I/O16
Data
Cont.
Pre-Charge Circuit
K6R4016C1C-C10/C12/C15
Commercial Temp.
K6R4016C1C-E10/E12/E15
Extended Temp.
K6R4016C1C-I10/I12/I15
Industrial Temp.
Memory Array
1024 Rows
256 x 16 Columns
I/O Circuit &
Column Select
Gen.
CLK
A10 A11 A12 A13 A14 A15 A16 A17
WE
OE
UB
LB
CS
-2-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
PIN CONFIGURATION (Top View)
A0
1
44 A17
A1
2
43 A16
A2
3
42 A15
A3
4
41 OE
A4
5
40 UB
CS
6
39 LB
I/O1
7
38 I/O16
I/O2
8
37 I/O15
I/O3
9
36 I/O14
SOJ/
TSOP2
I/O4 10
Vcc 11
1
2
3
4
5
6
A
LB
OE
A0
A1
A2
N.C
B
I/O1
UB
A3
A4
CS
I/O9
C
I/O2
I/O3
A5
A6
I/O11
I/O10
D
Vss
I/O4
A17
A7
I/O12
Vcc
E
Vcc
I/O5
N.C
A16
I/O13
Vss
F
I/O7
I/O6
A14
A15
I/O14
I/O15
G
I/O8
N.C
A12
A13
WE
I/O16
H
N.C
A8
A9
A10
A11
N.C
35 I/O13
34 Vss
Vss 12
33 Vcc
I/O5 13
32 I/O12
I/O6 14
31 I/O11
I/O7 15
30 I/O10
I/O8 16
29 I/O9
WE 17
28 N.C
A5 18
27 A14
A6 19
26 A13
A7 20
25 A12
A8 21
24 A11
A9 22
23 A10
48-CSP
PIN FUNCTION
Pin Name
A0 - A17
Pin Function
Address Inputs
WE
Write Enable
CS
Chip Select
OE
Output Enable
LB
Lower-byte Control(I/O1~I/O8)
UB
Upper-byte Control(I/O9~I/O16)
I/O1 ~ I/O16
Data Inputs/Outputs
VCC
Power(+5.0V)
VSS
Ground
N.C
No Connection
ABSOLUTE MAXIMUM RATINGS*
Parameter
Voltage on Any Pin Relative to V SS
Voltage on VCC Supply Relative to VSS
Symbol
Rating
VIN, VOUT
-0.5 to V CC+0.5
V
VCC
-0.5 to 7.0
V
Power Dissipation
Storage Temperature
Operating Temperature
Unit
PD
1.0
W
TSTG
-65 to 150
°C
Commercial
TA
0 to 70
°C
Extended
TA
-25 to 85
°C
Industrial
TA
-40 to 85
°C
* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
-3-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
RECOMMENDED DC OPERATING CONDITIONS*(TA=0 to 70°C)
Symbol
Min
Typ
Max
Unit
Supply Voltage
Parameter
VCC
4.5
5.0
5.5
V
Ground
VSS
0
0
0
V
Input High Voltage
VIH
2.2
-
VCC+0.5***
V
Input Low Voltage
VIL
-0.5**
-
0.8
V
* The above parameters are also guaranteed at extended and industrial temperature range.
** V IL(Min) = -2.0V a.c(Pulse Width ≤ 8ns) for I ≤ 20mA.
*** V IH(Max) = V CC + 2.0V a.c (Pulse Width ≤ 8ns) for I ≤ 20mA.
DC AND OPERATING CHARACTERISTICS*(TA=0 to 70°C, Vcc= 5.0V±10%, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Max
Unit
Input Leakage Current
ILI
VIN=VSS to VCC
-2
2
µA
Output Leakage Current
ILO
CS=VIH or OE=VIH or WE=VIL
VOUT = VSS to VCC
-2
2
µA
Operating Current
ICC
Min. Cycle, 100% Duty
CS=VIL, VIN=VIH or VIL, IOUT=0mA
10ns
-
185
mA
12ns
-
175
15ns
-
165
10ns
-
200
12ns
-
190
15ns
Com.
Ext.
Ind.
Standby Current
-
180
ISB
Min. Cycle, CS=VIH
-
60
ISB1
f=0MHz, CS≥VCC-0.2V,
VIN≥VCC-0.2V or VIN≤0.2V
-
10
mA
Output Low Voltage Level
VOL
IOL=8mA
-
0.4
V
Output High Voltage Level
VOH
IOH=-4mA
2.4
-
V
-
3.95
V
VOH1**
IOH1=-0.1mA
* The above parameters are also guaranteed at extended and industrial temperature range.
** VCC=5.0V±5%, Temp.=25°C.
CAPACITANCE*(TA=25°C, f=1.0MHz)
Item
Symbol
Test Conditions
MIN
Max
Unit
Input/Output Capacitance
CI/O
VI/O=0V
-
8
pF
Input Capacitance
CIN
VIN=0V
-
7
pF
* Capacitance is sampled and not 100% tested.
-4-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
AC CHARACTERISTICS(TA=0 to 70°C, V CC=5.0V±10%, unless otherwise noted.)
TEST CONDITIONS*
Parameter
Value
Input Pulse Levels
0V to 3V
Input Rise and Fall Times
3ns
Input and Output timing Reference Levels
1.5V
Output Loads
See below
* The above test conditions are also applied at extended and industrial temperature range.
Output Loads(B)
for t HZ, tLZ, tWHZ, tOW, tOLZ & tOHZ
Output Loads(A)
+5.0V
RL = 50Ω
DOUT
480Ω
VL = 1.5V
ZO = 50Ω
DOUT
30pF*
255Ω
* Capacitive Load consists of all components of the
test environment.
5pF*
* Including Scope and Jig Capacitance
READ CYCLE*
K6R4016C1C-10
K6R4016C1C-12
K6R4016C1C-15
Min
Max
Min
Max
Min
Max
tRC
10
-
12
-
15
-
ns
Address Access Time
tAA
-
10
-
12
-
15
ns
Chip Select to Output
tCO
-
10
-
12
-
15
ns
Output Enable to Valid Output
tOE
-
5
-
6
-
7
ns
UB, LB Access Time
tBA
-
5
-
6
-
7
ns
Chip Enable to Low-Z Output
tLZ
3
-
3
-
3
-
ns
Output Enable to Low-Z Output
tOLZ
0
-
0
-
0
-
ns
UB, LB Enable to Low-Z Output
tBLZ
0
-
0
-
0
-
ns
Chip Disable to High-Z Output
tHZ
0
5
0
6
0
7
ns
Output Disable to High-Z Output
tOHZ
0
5
0
6
0
7
ns
UB, LB Disable to High-Z Output
tBHZ
0
5
0
6
0
7
ns
Output Hold from Address Change
tOH
3
-
3
-
3
-
ns
Parameter
Read Cycle Time
Symbol
Unit
* The above parameters are also guaranteed at extended and industrial temperature range.
-5-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
WRITE CYCLE*
Parameter
Symbol
K6R4016C1C-10
K6R4016C1C-12
K6R4016C1C-15
Min
Max
Min
Max
Min
Max
-
ns
Unit
Write Cycle Time
tWC
10
-
12
-
15
Chip Select to End of Write
tCW
7
-
8
-
10
-
ns
Address Set-up Time
tAS
0
-
0
-
0
-
ns
Address Valid to End of Write
tAW
7
-
8
-
10
-
ns
Write Pulse Width(OE High)
tWP
7
-
8
-
10
-
ns
Write Pulse Width(OE Low)
tWP1
10
-
12
-
15
-
ns
UB, LB Valid to End of Write
tBW
7
-
8
-
10
-
ns
Write Recovery Time
tWR
0
-
0
-
0
-
ns
Write to Output High-Z
tWHZ
0
5
0
6
0
7
ns
Data to Write Time Overlap
tDW
5
-
6
-
7
-
ns
Data Hold from Write Time
tDH
0
-
0
-
0
-
ns
End Write to Output Low-Z
tOW
3
-
3
-
3
-
ns
* The above parameters are also guaranteed at extended and industrial temperature range.
TIMING DIAGRAMS
TIMING WAVEFORM OF READ CYCLE(1)
(Address Controlled, CS=OE=VIL, WE=VIH, UB, LB=VIL)
tRC
Address
tOH
Data Out
tAA
Valid Data
Previous Valid Data
-6-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
TIMING WAVEFORM OF READ CYCLE(2)
CMOS SRAM
(WE=VIH)
tRC
Address
tAA
tCO
CS
tHZ(3,4,5)
tBHZ(3,4,5)
tBA
UB, LB
tBLZ(4,5)
tOHZ
tOE
OE
tOLZ
Data out
High-Z
tOH
tLZ(4,5)
Valid Data
NOTES(READ CYCLE)
1. WE is high for read cycle.
2. All read cycle timing is referenced from the last valid address to the first transition address.
3. t HZ and tOHZ are defined as the time at which the outputs achieve the open circuit condition and are not referenced to V OH or VOL
levels.
4. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to
device.
5. Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
6. Device is continuously selected with CS=VIL.
7. Address valid prior to coincident with CS transition low.
8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
TIMING WAVEFORM OF WRITE CYCLE(1) (OE Clock)
tWC
Address
tAW
tWR(5)
OE
tCW(3)
CS
tBW
UB, LB
tAS(4)
tWP(2)
WE
tDW
Data in
High-Z
Valid Data
tDH
High-Z
tOHZ(6)
Data out
-7-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
TIMING WAVEFORM OF WRITE CYCLE(2)
CMOS SRAM
(OE =Low fixed)
tWC
Address
tAW
tWR(5)
tCW(3)
CS
tBW
UB, LB
tWP1(2)
tAS(4)
WE
tDW
High-Z
Data in
tDH
Valid Data
tWHZ(6)
tOW
(10)
(9)
High-Z
Data out
TIMING WAVEFORM OF WRITE CYCLE(3) (CS=Controlled)
tWC
Address
tAW
tWR(5)
tCW(3)
CS
tBW
UB, LB
tWP(2)
tAS(4)
WE
tDW
Data in
High-Z
High-Z
Valid Data
tLZ
Data out
tDH
tWHZ(6)
High-Z(8)
High-Z
-8-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)
tWC
Address
tAW
tCW(3)
tWR(5)
CS
tBW
UB, LB
tAS(4)
tWP(2)
WE
tDH
tDW
High-Z
Data in
Data Valid
tBLZ
tWHZ(6)
High-Z(8)
High-Z
Data out
NOTES(WRITE CYCLE)
1. All write cycle timing is referenced from the last valid address to the first transition address.
2. A write occurs during the overlap of a low CS,WE,LB and UB. A write begins at the latest transition CS going low and WE going
low ; A write ends at the earliest transition CS going high or WE going high. tWP is measured from the beginning of write to the
end of write.
3. tCW is measured from the later of CS going low to end of write.
4. tAS is measured from the address valid to the beginning of write.
5. tWR is measured from the end of write to the address change. t WR applied in case a write ends as CS or WE going high.
6. If OE, CS and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of
the output must not be applied because bus contention can occur.
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
9. Dout is the read data of the new address.
10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be
applied.
FUNCTIONAL DESCRIPTION
CS
WE
OE
LB
UB
I/O Pin
Mode
Supply Current
I/O1~I/O8
I/O9~I/O16
H
X
X*
X
X
Not Select
High-Z
High-Z
ISB, ISB1
L
H
H
X
X
Output Disable
High-Z
High-Z
ICC
L
X
X
H
H
L
H
L
L
H
Read
DOUT
High-Z
ICC
H
L
High-Z
DOUT
L
L
DOUT
DOUT
L
L
X
L
H
DIN
High-Z
H
L
Write
High-Z
DIN
L
L
DIN
DIN
ICC
* X means Don′t Care.
-9-
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
PACKAGE DIMENSIONS
Units:millimeters/Inches
44-SOJ-400
#23
9.40 ±0.25
0.370 ±0.010
10.16
0.400
#44
11.18 ±0.12
0.440 ±0.005
0.20 +0.10
-0.05
0.008 +0.004
-0.002
#1
#22
28.98 MAX
1.141
0.69 MIN
0.027
25.58 ±0.12
1.125 ±0.005
1.19
)
0.047
3.76
1.27
( 0.050 ) 0.148 MAX
0.10 MAX
0.004
(
0.43
0.017
( 0.95 )
0.0375
+0.10
-0.05
+0.004
-0.002
+0.10
1.27
0.050
0.71 -0.05
0.028 +0.004
-0.002
44-TSOP2-400BF
Units:millimeters/Inches
0~8°
0.25
0.010 TYP
#23
#44
11.76 ±0.20
0.463 ±0.008
10.16
0.400
0.45 ~0.75
0.018 ~ 0.030
( 0.50 )
0.020
#1
#22
18.81
MAX
0.741
0.075
0.125 +- 0.035
+ 0.003
18.41 ±0.10
0.725 ±0.004
0.005 - 0.001
1.00 ±0.10
0.039 ±0.004
( 0.805 )
0.032
0.30 +0.10
−0.05
0.012 +0.004
−0.002
0.05
MIN
0.002
0.80
0.0315
- 10
1.20
MAX
0.047
0.10
0.004 MAX
Rev 4.0
September 2001
PRELIMPreliminaryPPPPPPPPPINARY
K6R4016C1C-C, K6R4016C1C-E, K6R4016C1C-I
CMOS SRAM
PACKAGE DIMENSIONS
Units : millimeter.
Top View
Bottom View
B
B
A1 INDEX MARK
0.50
B1
6
5
4
3
2
0.50
1
A
B
#A1
C
C
C1
C
D
C1/2
E
F
G
H
B/2
Detail A
Side View
Y
0.80/Typ.
E1
E
0.25/Typ.
E2
0.30
A
D
C
Min
Typ
Max
A
-
0.75
-
B
8.90
9.00
9.10
B1
-
3.75
-
C
8.90
9.00
9.10
C1
-
5.25
-
D
0.30
0.35
0.40
E
-
1.05
1.20
E1
-
0.80
-
E2
0.20
0.25
0.30
Y
-
-
0.08
Notes.
1. Bump counts: 48(8row x 6column)
2. Bump pitch : (x,y)=(0.75 x 0.75)(typ.)
3. All tolerence are +/-0.050 unless
otherwise specified.
4. Typ : Typical
5. Y is coplanarity: 0.08(Max)
- 11
Rev 4.0
September 2001