SAMSUNG S5N8950

S5N8950
G.dmt ADSL Transceiver for CO and CPE
Preliminary Information Rev.1.2
Nov. 2000.
SAMSUNG ELECTRONICS CONFIDENTIAL PROPRIETARY
Copyright ¨ Ï2000 Samsung Electronics, Inc. All Rights Reserved.
S5N8950
G.dmt ADSL Transceiver for CO and CPE
1 General Description
The S5N8950 is an optimized chip of ADSL transceiver supporting G.992.1, G.992.2 and T1.413, and
provides a total chipset solution with AFE chip (S5N8951) for both CO and CPE applications. The
S5N8950 consists of the ATM framer, DMT modem, and DSP core. It supports various interfaces of
UTOPIA level 2 for ATM data and serial interface for Non-ATM data, and host controller compatible
with Motorola and Intel. It is fully compatible with G.Lite and G.dmt standards to satisfy interoperability
with compatible other chipsets. For CO/CPE application, evaluation tool kit shall be provided.
S5N8950
Telephone
Line
ATM
or
STM
DI
DMT
AI
Host
DSP
RAM
PLL
S5N8951
Hybrid
Figure 1: ADSL Transceiver configuration for S5N8950.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
2 Main Features
l
Power and performance optimized single port DMT.
l
Supports ITU-T G.992.1 (G.dmt) , G.992.2 (G.Lite) and T1.413 standards.
l
STM serial interface and ATM UTOPIA level 1 and level 2 interface.
l
Supports both the FDM-based and EC-based DMT line coding.
l
Analog and digital PLL modes.
l
Adaptive frequency and time domain equalizing.
l
Provides over 10 Mbps downstream data rate and over 640 Kbps upstream data rate
l
Flexible host interface for Motorola and Intel Controller
l
Reed-Solomon Forward Error Correction with Interleaving.
l
3-D trellis coding and Viterbi algorithm.
l
Supports all of the framing modes.
l
Supports Rate Adaptive Mode.
l
12-Bit ADC and DAC with Over-sampling
l
Downloadable coefficients of rate-conversion filter banks.
l
Low power consumption ( less than 0.5 Watt ).
l
Power management
l
Self-diagnostics
l
0.18 um 1.8 V CMOS technology.
l
3.3 V external interface.
l
Operation Temperature : -40 C to 85 C
l
Low Cost & Compact Package (160 QFP)
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
3 External Pin Description
S5N8950
ATM interface
U_TX_ADDR[4:0]
U_TX_DATA[7:0]
U_TX_ENB
U_TX_SOC
U_TX_CLK
U_TX_CLAV
U_RX_ADDR[4:0]
U_RX_DATA[7:0]
U_RX_ENB
U_RX_SOC
U_RX_CLK
U_RX_CLAV
⇒
⇒
→
→
→
←
⇒
⇐
→
←
→
←
STM interface
S1_TX_DAV
S1_TX_CLK
S1_TX_DATA
S1_RX_DAV
S1_RX_CLK
S1_RX_DATA
S2_TX_DAV
S2_TX_CLK
S2_TX_DATA
S2_RX_DAV
S2_RX_CLK
S2_RX_DATA
←
←
→
←
←
←
←
←
→
←
←
←
TeakLite interface
T_MS
T_CLK
T_DI
T_DO
T_INTP
→
→
→
←
←
UART interface
UA_TX_DATA
UA_RX_DATA
←
→
⇐
←
←
⇒
→
→
←
←
←
→
→
→
←
→
→
→
AFE interface
A_AD_DATA[6:0]
A_AD_REF_CLK
A_AD_AUX_CLK
A_DA_DATA[6:0]
A_DA_REF_CLK
A_DA_AUX_CLK
A_SDI
A_AND
A_BUSY
A_SCLK
A_SDO
A_SEN
A_PME
A_TX_PWR
A_RX_PWR
A_RSTN
←
⇒
⇐
←
←
↔
←
←
→
→
Board/PLL interface
B_RSTN
B_GP_OUT[1:0]
B_BMODE[1:0]
B_TMODE
B_NMODE
B_NTR
B_EXT_CLK
P_XTAL_IN
P_XTAL_OUT
P_PLL_FILTER
←
⇒
⇔
←
←
←
→
→
→
Host interface
H_SEL
H_ADDR[9:0]
H_DATA[7:0]
H_CSN
H_RDN
H_WRN
H_READY
H_INT
H_WAKEUP
Figure 2: Pin diagram
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
U_RX_DATA_4
U_RX_DATA_3
U_RX_DATA_2
U_RX_DATA_1
U_TX_CLK
VDD1I
U_TX_CLAV
VSS1I
U_TX_DATA_7
U_RX_DATA_0
U_TX_DATA_6
U_TX_SOC
U_TX_DATA_4
U_TX_DATA_5
T_INTP
U_TX_DATA_3
T_MS
U_TX_ENB
U_TX_DATA_2
VDD3P
T_DO
VSS3P
H_INT
U_TX_DATA_1
U_TX_DATA_0
U_TX_ADDR_4
U_TX_ADDR_3
VSS1I
U_TX_ADDR_2
VDD1I
U_TX_ADDR_1
B_EXT_CLK
U_TX_ADDR_0
VSS3O
B_NTR
VDD3O
T_CLK
B_GP_OUT_1
T_DI
B_GP_OUT_0
G.dmt ADSL Transceiver for CO and CPE
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
S5N8950
G.dmt ADSL Transceiver for CO and CPE
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
A_SDI
A_AND
A_SEN
VSS1I
VDD1I
A_SDO
A_SCLK
A_BUSY
A_RX_PWR
A_TX_PWR
A_PME
VSS3P
VDD3P
A_RSTN
A_AD_AUX_CLK
A_AD_REF_CLK
A_AD_DATA_6
A_AD_DATA_5
A_AD_DATA_4
VSS1I
VDD1I
A_AD_DATA_3
A_AD_DATA_2
A_AD_DATA_1
A_AD_DATA_0
A_DA_AUX_CLK
A_DA_REF_CLK
VSS3O
VDD3O
A_DA_DATA_6
A_DA_DATA_5
A_DA_DATA_4
A_DA_DATA_3
A_DA_DATA_2
A_DA_DATA_1
VSS1I
VDD1I
A_AD_DATA_0
UA_RX_DATA
UA_TX_DATA
H_SEL
H_CSN
H_RDN
VDD3O
H_WRN
VSS3O
H_ADDR_0
H_ADDR_1
B_NMODE
H_ADDR_2
H_ADDR_3
VDD1I
H_ADDR_4
VSS1I
H_ADDR_5
H_ADDR_6
B_TMODE
H_ADDR_7
H_ADDR_8
VDD3OP
H_ADDR_9
VSS3OP
H_DATA_0
H_DATA_1
B_RSTN
H_DATA_2
H_DATA_3
VDD1I
H_DATA_4
VSS1I
H_DATA_5
B_MSC_CLK
H_DATA_6
B_BMODE_0
H_DATA_7
VDD3P
H_READY
VSS3P
H_WAKEUP
B_BMODE_1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
U_RX_DATA_5
U_RX_DATA_6
U_RX_DATA_7
U_RX_ADDR_0
VDD3O
VSS3O
U_RX_ADDR_1
U_RX_ADDR_2
U_RX_ADDR_3
U_RX_ADDR_4
U_RX_ENB
U_RX_SOC
U_RX_CLK
U_RX_CLAV
VDD1I
VSS1I
P_VDD18A2
P_VSS18A2
P_PLL_FILTER
P_VDD18A1
P_VSS18A1
P_VBBA
S1_TX_DAV
S1_TX_CLK
VDD3P
VSS3P
S1_RX_DATA
S1_RX_DAV
P_XTAL_IN
P_XTAL_OUT
S1_TX_DATA
S1_RX_CLK
S2_TX_DATA
S2_TX_DAV
VDD1I
VSS1I
S2_TX_CLK
S2_RX_DATA
S2_RX_DAV
S2_RX_CLK
Figure 3: Pin configuration
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
Interface
Type
Mnemonic
Type
ATM
interface
U_TX_ADDR[4:0]
U_TX_DATA[7:0]
U_TX_ENB
U_TX_SOC
U_TX_CLK
U_TX_CLAV
U_RX_ADDR[4:0]
U_RX_DATA[7:0]
U_RX_ENB
U_RX_SOC
U_RX_CLK
U_RX_CLAV
I
I
I
I
I
OZ
I
OZ
I
OZ
I
OZ
PHTICD
PHTICD
PHTICD
PHTICD
PHTICD
PHTOT4
PHTICD
PHTOT4
PHTICD
PHTOT4
PHTICD
PHTOT4
Utopia Tx Address
Utopia Tx Data
Utopia Tx Enable
Utopia Tx Start of Cell
Utopia Tx Clock. 25 MHz
Utopia Tx Cell Available
Utopia Rx Address[4:0]
Utopia Rx Data[7:0]
Utopia Rx Enable
Utopia Rx Start of Cell
Utopia Rx Clock. 25 MHz
Utopia Rx Cell Available
STM
interface
S1_TX_DAV
S1_TX_CLK
S1_TX_DATA
S1_RX_DAV
S1_RX_CLK
S1_RX_DATA
S2_TX_DAV
S2_TX_CLK
S2_TX_DATA
S2_RX_DAV
S2_RX_CLK
S2_RX_DATA
O
O
I
O
O
O
O
O
I
O
O
O
PHOB4
PHOB4
PHTICD
PHOB4
PHOB4
PHOB4
PHOB4
PHOB4
PHTICD
PHOB4
PHOB4
PHOB4
Serial Tx data valid signal in the 1-st STM
Serial Tx clock in the 1-st STM
Serial Tx data in the 1-st STM
Serial Rx data valid signal in the 1-st STM
Serial Rx clock in the 1-st STM
Serial Rx data in the 1-st STM
Serial Tx data valid signal in the 2-nd STM
Serial Tx clock in the 2-nd STM
Serial Tx data in the 2-nd STM
Serial Rx data valid in the 2-nd STM
Serial Rx clock in the 2-nd STM
Serial Rx data in the 2-nd STM
H_SEL
H_ADDR[9:0]
H_DATA[7:0]
H_CSN
I
I
B
I
PHTICD
PHTICD
PHTBCDT6SM
PHTICD
H_RDN
I
PHTICD
H_WRN
I
PHTICD
OZ
PHTOT4
H_INT
O
PHOB4
H_WAKEUP
O
PHOB4
Host type : [0]=Motorola / [1]= Intel
Host address bus
Host data bus
Chip selection
Motorola
Not used.
Intel
Read enable ( active low )
Motorola
[0]=write enable / [1]=read enable
Intel
Write Enable ( active low )
Motorola
Host CPU DTACK ( active low )
Intel
Host CPU Ready (active high )
Motorola
Interrupt IRQ ( active low )
Intel
Interrupt INT ( active high )
Host Wakeup
Host
Interface
H_READY
CONFIDENTIAL
Driver
Function
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
AFE
interface
Board /
PLL
interface
TeakLite
Interface
A_AD_DATA[6:0]
A_AD_REF_CLK
A_AD_AUX_CLK
A_DA_DATA[6:0]
A_DA_REF_CLK
A_DA_AUX_CLK
A_SDI
A_AND
A_BUSY
A_SCLK
A_SDO
A_SEN
A_PME
A_TX_PWR
A_RX_PWR
A_RSTN
I
I
I
O
O
O
I
I
I
O
O
O
O
O
O
O
PHICD
PHICD
PHICD
PHOB2
PHOB2
PHOB2
PHICU
PHICD
PHICD
PHOB2
PHOB2
PHOB2
PHICD
PHOB2
PHOB2
PHOB2
ADC data for 2 phase.
ADC data reference clock for DMT b2b test
ADC data strobe clock for DMT b2b test
DAC data for 2 phase
DAC data reference clock
DAC data strobe clock
AFE serial input data
Audible noise detection (active high)
AFE busy ( active high)
AFE serial clock
AFE serial output data
AFE serial enable ( active low )
AFE power management enable
TX line driver power enable ( active high )
RX line driver power enable ( active high )
AFE reset ( active low )
B_RSTN
B_GP_OUT[1:0]
I
O
PHIS
PHOB2
B_BMODE[1:0]
I
PHIC
B_TMODE
I
PHIC
B_NMODE
I
PHIC
B_NTR
B_EXT_CLK
B_MSC_CLK
P_XTAL_IN
P_XTAL_OUT
P_PLL_FILTER
B
I
I
I
O
O
PHTBCT4
PHIC
PHIC
POAR50_ABB
System reset ( active low )
General purpose output
TeakLite boot mode selection
[0] = simple reset
[1] = boot from Host CPU ( normal mode )
[2] = boot from JTAG ( emulation mode )
[3] = self-booting ( test mode )
Test Mode Enable
(DSP view, Scan Test, Memory BIST, PLL Test)
[0] Normal, [1] Test Mode
NAND tree test mode
[0] Normal, [1] NAND tree test mode
ATM Network Timing Reference
external clock
misc. clock for BIRA test
XTAL input for clock.
XTAL output for clock.
Internal PLL pump out connected to filter.
T_MS
T_CLK
T_DI
T_DO
T_INTP
I
I
I
OZ
O
PHTICD
PHTICD
PHTICD
PHTOT4
PHOB4
TeakLite JTAG test mode select
TeakLite JTAG test clock
TeakLite JTAG test input data
TeakLite JTAG test output data
TeakLite TJAM interrupt to host
CONFIDENTIAL
PHSOSCM26
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
UART
interface
UA_TX_DATA
UA_RX_DATA
O
I
Power
interface
P_VDD18A2
P_VSS18A2
P_VDD18A1
P_VSS18A1
P_VBBA
P_VDD1I
P_VSS1I
P_VDD3O
P_VSS3O
P_VDD3P
P_VSS3P
P_VDD3OP
P_VSS3OP
I
I
I
I
I
I
I
I
I
I
I
I
I
PHOB4
PHTICD
VDD1T_ABB
VSS1T_ABB
VDD1T_ADD
VSS1T_ABB
VBB1_ABB
VDD1I
VSS1I
VDD3O
VSS3O
VDD3P
VSS3P
VDD3OP
VSS3OP
UART Rx data
UART Rx data
Digital power supply
Digital ground
Analog power supply
Analog ground
bulk ground
1.8 V internal power.
1.8 V internal ground
3.3 V output-driver power
3.3 V output-driver ground
3.3 V pre-driver power
3.3 V pre-driver ground
3.3 V output driver and pre-driver power
3.3 V output driver and pre-driver ground
Table 1: Pin configuration
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
Pad
PHTIC
PHTICD
PHTOT4
PHOB4
PHOB2
PHIC
PHICD
PHICU
PHICD
PHIS
PHTBCT4
I/O
I
I
OZ
O
O
I
I
I
I
I
B
PHTBCT6SM
B
PHTBCDT6SM
B
POAR50_ABB
O
PHSOSCM26
VDD1T_ABB
VSS1T_ABB
VBB1_ABB
VDD1I
VSS1I
VDD3O
VSS3O
VDD3P
VSS3P
VDD3OP
VSS3OP
I/O
I
I
I
I
I
I
I
I
I
I
I
Description
5V tolerant for 3.3 V interface LVCMOS level input buffer
5V tolerant for 3.3 V interface LVCMOS level input buffer with pull-down register.
5V tolerant for 3.3 V interface tri-state output buffer driving 4 mA
3.3 V LVCMOS normal output buffer driving 4 mA
3.3 V LVCMOS normal output buffer driving 2 mA
3.3 V interface LVCMOS level input buffer
3.3 V interface LVCMOS level input buffer with pull-down register.
3.3 V interface LVCMOS level input buffer with pull-up resister
3.3 V interface LVCMOS level input buffer with pull-down resister
3.3 V interface LVCMOS Schmitt-trigger level input buffer
3.3 V interface 5 V tolerant LVCMOS level tri-state bi-directional buffer
driving 4 mA
3.3 V interface 5 V tolerant LVCMOS level tri-state bi-directional buffer
driving 6 mA medium slew rate control
3.3 V interface 5 V tolerant LVCMOS level tri-state bi-directional buffer
driving 6 mA medium slew rate control with pull-down register.
Analog normal output pad for 1.8 V interface
with resister 50 Ohm and separated bulk bias
Oscillator cell with enable and feedback resistor.
Power, 1.8 V total with separate bulk bias
Ground, 1.8 V total with separate bulk bias
Ground, 1.8 V bulk bias
VDD for 1.8 V internal power
VSS for 1.8 V internal power
VDD for 3.3 V output driver power
VSS for 3.3 V output driver power
VDD for 3.3 V pre- driver power
VSS for 3.3 V pre- driver power
VDD for 3.3 V output driver and pre- driver power
VSS for 3.3 V output driver and pre- driver power
Table 2: Pad description
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
4 Functional Description
The G.dmt ADSL transceiver consists of two main chips; G.dmt ADSL transceiver chip (S5N8950) and
Analog Front End chip (S5N8951). The AFE provides an analog interface with line driver and hybrid
components to connect the PSTN. The G.dmt ADSL transceiver provides all the digital functional as
DMT
Modulator
Channel
Encoder
Interpolator
AFE Tx
interface
DMT
Demodulator
Echo
canceller
Channel
Decoder
Serial
interface
Framer/de-Framer
UTOPIA
interface
TC
depicted in Figure 4.
Decimator
AFE Rx
interface
Control
Bus
Host
interface
JTAG
interface
PLL
TeakLite
DSP core
SRAM for
Program & Data
UART
interface
Figure 4: Block diagram
The input bit stream is divided into bit slices and they are fed into the QAM, which are allocated to 256
sub-channels according to the bit loading table. The bit slices are then converted to frequency-domain
complex samples by the QAM encoder. The 256 complex samples are changed to 512 time-domain
samples by IFFT. The Tx filter performs band separation and interpolation functions.
The received signals are attenuated and distorted in terms of both phase and amplitude. PLL fixes the
phase errors within 4 samples using the 276 kHz pilot tone transmitted from the CO side. The ones over 4
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
samples are fixed by the sync recovery algorithm using a known synchronization symbol. The TEQ is a
filter that adaptively alters the channel so that the impulse response is reduced to the length of the cyclic
prefix which will be removed prior to FFT. The FEQ is a one tap complex adaptive filter for each subchannel, which adjusts the gains and phases of the received signals. The equalizers are adaptively updated
due to the transmission channel environment.
In FDM-based DMT modulation, the frequency band, 0 to 1.104 MHz, is divided into 256 equi-spaced
sub-channels, of which 26 KHz (#6) to 134 KHz (#31) is allocated for the upstream, and 142 KHz (#33)
to 1.100 MHz (#255) for the downstream. The Nyquist rate, therefore, should be 2.208 MHz (276kHz).
DMT inherently transmits an optimized time-variable spectrum. This spectrum is adjusted according to
the desired data rate and the transmission characteristics (transfer function and noise spectrum) on each
and every sub-channel. For this, CO and CPE transmit 128.4 KHz wide tone downstream and upstream
respectively to each other during initialization. They measure the quality of each of these received tones
and then decided whether a tone has sufficient quality to be used for further transmission and, if so, how
much data this tone should carry relative to the other tones that are used. They inform the bit lo9ading
result to each other.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
5 I/O Timing Description
5.1 AFE Data Interface Timing Information
t1
t2
t3
A_DA_REF_CLK
(8.832 MHz)
A_DA_AUX_CLK
(4.416 MHz)
A_DA_DATA[6:0]
N-1
N-1
N
N
phase1(LSB)
phase2(MSB)
phase1(LSB)
phase2(MSB)
A_AD_DATA[6:0]
N-1
N-1
N
N
phase1(LSB)
phase2(MSB)
phase1(LSB)
phase2(MSB)
Table 3: AFE data interface timing diagram.
Parameter
t1
t2
t3
Description
A_DA_AUX_CLK setup to A_DA_REF_CLK ↑
DATA delay after A_DA_REF_CLK ↓
A_DA_AUX_CLK hold to A_DA_REF_CLK ↑
Min
Max
10
10
10
Unit
§ À
§ À
§ À
Table 4: AFE data interface timing table.
5.2 AFE Control Interface Timing Information
t2
t3
A_SEN
A_SCLK
(1.104 MHz)
A_SDO
CS1
CS0
A4
...
A0
RW
D15
...
D0
D15
...
D0
t1
A_SDI
A_BUSY
Figure 5: AFE control interface timing diagram.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
Parameter
t1
t2
t3
Description
A_SDI setup to A_SCLK ↑
A_SEN ↓ before A_SCLK ↑
A_SEN ↓ from A_SCLK ↑
Min
30
30
15
Max
Unit
§ À
§ À
§ À
Max
Unit
§ À
§ À
§ À
§ À
§ À
Table 5: AFE control interface timing table.
5.3 Motorola Read Cycle Timing Information
H_ADDR[9:0]
H_DATA[15:0]
VALID
t1
H_CSN
t5
H_WRN
t2
t3
t4
H_READY
(DTACKN)
Figure 6: Motorola read cycle timing diagram.
Parameter
t1
t2
t3
t4
t5
Description
H_ADDR setup to H_CSN ↓
H_WRN ↑ before H_CSN ↓
H_DATA valid from H_READY ↓
H_READY hi-Z from H_CSN ↑
H_DATA hold after H_CSN ↑
Min
0
0
1
10
5
5
Table 6: Motorola read cycle timing table.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
5.4 Motorola Write Cycle Timing Information
H_ADDR[9:0]
H_DATA[15:0]
VALID
t1
t3
H_CSN
t2
t5
H_WRN
t4
H_READY
(DTACKN)
Figure 7: Motorola write cycle timing diagram.
Parameter
t1
t2
t3
t4
t5
Description
H_ADDR setup to H_CSN ↓
H_WRN ↓ before H_CSN ↓
H_DATA valid from H_READY ↓
H_READY hi-Z from H_CSN ↑
H_DATA hold after H_CSN ↑
Min
0
0
Max
50
5
1
5
Unit
§ À
§ À
§ À
§ À
§ À
Table 7: Motorola write cycle timing table.
5.5 Intel Read Cycle Timing Information
H_ADDR[9:0]
H_DATA[15:0]
VALID
t1
t2
t3
t6
H_CSN
H_RDN
t5
t4
H_READY
Figure 8: Intel read cycle timing diagram.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
Parameter
t1
t2
t3
t4
t5
t6
Description
H_ADDR setup to H_CSN ↓
H_CSN ↓ before H_RDN ↓
H_DATA valid from H_RDN ↓
H_CSN ↑ from H_RDN ↑
H_READY ↓ from H_RDN ↓
H_DATA hold after H_RDN ↑
Min
0
0
Max
170
0
0
20
5
Unit
§ À
§ À
§ À
§ À
§ À
§ À
Table 8: Intel read cycle timing table.
5.6 Intel Write Cycle Timing Information
H_ADDR[9:0]
H_DATA[15:0]
VALID
t1
t2
t3
t6
H_CSN
H_WRN
t5
t4
H_READY
Figure 9: Intel write cycle timing diagram.
Parameter
t1
t2
t3
t4
t5
t6
Description
H_ADDR setup to H_CSN ↓
H_CSN ↓ before H_WRN ↓
H_DATA valid from H_WRN ↓
H_CSN ↑ from H_WRN ↑
H_READY ↓ from H_WRN ↓
H_DATA hold after H_WRN ↑
Min
0
0
Max
50
0
0
5
20
Unit
§ À
§ À
§ À
§ À
§ À
§ À
Table 9: Intel write cycle timing table.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
5.7 Byte Mode Non-ATM Interface Timing Information.
t1
S1(2)_TX_CLK
S1(2)_TX_DAV
S1(2)_TX_DATA
D0
D1
D2
D3
D4
D5
D6
D7
D0
D1
D2
D3
D4
D5
D6
D7
S1(2)_RX_CLK
S1(2)_RX_DAV
S1(2)_RX_DATA
Figure 10: Byte mode non-ATM interface timing diagram.
Parameter
t1
Description
S1(2)_TX_CLK frequency
Min
1
Max
25
Unit
MHz
Table 10: Byte mode non-ATM interface timing table.
5.8 Envelope Mode non-ATM Interface Timing Information
S1(2)_TX_CLK
S1(2)_TX_DAV
S1(2)_TX_DATA
D0
D1
D2
D3
D4
D5
D6
D7
D1
D2
D3
D4
D5
D6
D7
t1
S1(2)_RX_CLK
S1(2)_RX_DAV
S1(2)_RX_DATA
D0
Figure 11: Envelope mode non-ATM interface timing diagram.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
Parameter
t1
Description
S1(2)_RX_CLK frequency
Min
1
Max
25
Unit
MHz
Table 11: Envelope mode non-ATM interface timing table.
5.9 UTOPIA-2 ATM Interface Timing Information
t1
U_TX_CLK
(25 MHz)
U_TX_ADDR[4:0]
00
1F
01
P46
P47
P48
1F
02
1F
03
1F
04
U_TX_CLAV
U_TX_ENB
U_TX_DATA[7:0]
H1
H2
H3
U_TX_SOC
(ATM0)
(ATM1)
Figure 12: UTOPIA-2 ATM interface timing diagram.
Parameter
t1
Description
Signal Hold after U_TX_CLK ↑
Min
5
Max
10
Unit
§ À
Table 12: UTOPIA-2 ATM interface timing table.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
5.10 UTOPIA-2 ATM Interface Timing Information
t1
U_RX_CLK
(25 MHz)
U_RX_ADDR[4:0]
00
1F
01
1F
P45
P46
P47
P48
02
1F
03
1F
04
U_RX_CLAV
U_RX_ENB
U_RX_DATA[7:0]
H1
H2
U_RX_SOC
(ATM0)
(ATM1)
Figure 13: UTOPIA-2 ATM interface timing diagram.
Parameter
t1
Description
Signal Hold after U_RX_CLK ↑
Min
5
Max
10
Unit
§ À
Table 13: UTOPIA-2 ATM interface timing table.
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )
S5N8950
G.dmt ADSL Transceiver for CO and CPE
6
Electrical Characteristics
Symbol
ILATCH
TSTG
Parameter
Latch-up Current
Storage Temperature
Rating
± 200
£ 65 ~ 150
Unit
mA
°C
Table 14: Absolute Maximum Ratings
Symbol
VDD
TA
Parameter
DC Input Voltage
Analog Core DC Supply Voltage
Operating Temperature (Ambient)
Rating
1.8 V I/O
3.3 V I/O
5V-tolerant I/O
1.8 V Core
Unit
1.65 ~ 1.95
3.0 ~ 3.6
3.0 ~ 3.6
1.8±5%
-40 to 85
V
°C
Table 15: Recommended Operating Conditions
Symbol
PD
Parameter
Power Dissipation
Min
Typ
716
Max
Unit
§ Ñ
Table 16: Power Dissipation
Symbol
VIH
VIL
VOH
VOL
VT
VT+
VTIIH
IIL
IOZ
IDD
CIN
COUT
Parameters
Input High Voltage
Input Low Voltage
Output High Voltage
Output Low Voltage
Switching Threshold
Schmitt Trigger, Positive-going Threshold
Schmitt Trigger, Negative-going Threshold
Input High Current (VIN=VDD)
Input Low Current (VIN=VSS)
Tri-state Output Leakage Current
Quiescent Supply Current
Input Capacitance
Output Capacitance
Min
2.0
Typ
Max
Unit
0.8
2.4
0.4
V
1.4
2.0
0.8
-10(10)
-10(-60)
-10
(33)
(-33)
10(60)
10(-10)
10
100
4
4
µA
pF
NOTE: ( ) – Input buffer with pull-down
Table 17: DC Characteristics
CONFIDENTIAL
Preliminary Information ( Rev 1.2 )