LF147 - LF247 LF347 WIDE BANDWIDTH QUAD J-FET OPERATIONAL AMPLIFIERS ■ LOW POWER CONSUMPTION ■ WIDE COMMON-MODE (UP TO VCC+) AND DIFFERENTIAL VOLTAGE RANGE ■ LOW INPUT BIAS AND OFFSET CURRENT ■ OUTPUT SHORT-CIRCUIT PROTECTION N DIP14 (Plastic Package) ■ HIGH INPUT IMPEDANCE J–FET INPUT STAGE ■ INTERNAL FREQUENCY COMPENSATION ■ LATCH UP FREE OPERATION ■ HIGH SLEW RATE : 16V/µs (typ) D SO14 (Plastic Micropackage) ORDER CODE DESCRIPTION Package These circuits are high speed J–FET input quad operational amplifiers incorporating well matched, high voltage J–FET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset voltage temperature coefficient. Part Number Temperature Range LF147 LF247 LF347 Example : LF347IN -55°C, +125°C -40°C, +105°C 0°C, +70°C N D • • • • • • N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) PIN CONNECTIONS (top view) Output 1 1 14 Output 4 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 11 VCC - VCC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 8 Output 3 Output 2 7 March 2001 1/10 LF147 - LF247 - LF347 SCHEMATIC DIAGRAM (each amplifier) VCC Non-inverting input Inverting input 100W 200 W Output 100 W 30k 8.2k 1.3k 35k 1.3k 35k 100 W VCC ABSOLUTE MAXIMUM RATINGS Symbol VCC Vi Parameter LF147 Supply voltage - note 1) Input Voltage - note 2) Vid Differential Input Voltage - note Ptot Power Dissipation 3) Output Short-circuit Duration - note 4) Toper Operating Free-air Temperature Range Tstg Storage Temperature Range 1. 2. 3. 4. 2/10 LF247 LF347 Unit ±18 V ±15 V ±30 V 680 mW Infinite -55 to +125 -40 to +105 -65 to +150 0 to +70 °C °C All voltage values, except differential voltage, are with respect to the zero reference level (ground) of the supply voltages where the zero reference level is the midpoint between VCC + and VCC -. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 volts, whichever is less. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal. The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded LF147 - LF247 - LF347 ELECTRICAL CHARACTERISTICS VCC = ±15V, Tamb = +25°C (unless otherwise specified) Symbol Vio DVio Parameter Typ. Max. Input Offset Voltage (Rs = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 3 10 13 Input Offset Voltage Drift 10 Input Offset Current - note Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Iib Input Bias Current - note 1 Tamb = 25°C Tmin ≤ Tamb ≤ Tmax mV 100 4 pA nA 20 200 20 pA nA Large Signal Voltage Gain (RL = 2kΩ, Vo = ±10V) , Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 50 25 200 SVR Supply Voltage Rejection Ratio (RS = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 80 80 86 ICC Supply Current, Per Amp, no Load Tamb = 25°C Tmin ≤ Tamb ≤ Tmax Vicm Input Common Mode Voltage Range CMR tr Kov GBP Ri THD en V/mV dB mA 1.4 ±11 +15 -12 Common Mode Rejection Ratio (RS = 10kΩ) Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 70 70 86 Output Short-Circuit Current Tamb = 25°C Tmin ≤ Tamb ≤ Tmax 10 10 40 10 12 10 12 12 13.5 12 16 Output Voltage Swing Tamb = 25°C SR µV/°C 5 Avd ±Vopp Unit 1) Iio IOS Tmin ≤ Tamb ≤ Tmax 2.7 2.7 V dB mA RL = 2kΩ RL = 10kΩ RL = 2kΩ RL = 10kΩ Slew Rate Vi = 10V, RL = 2kΩ, CL = 100pF, Tamb = 25°C, unity gain Rise Time Vi = 20mV, RL = 2kΩ,CL = 100pF, Tamb = 25°C, unity gain Overshoot Vi = 20mV, RL = 2kΩ, CL = 100pF, Tamb = 25°C, unity gain Gain Bandwidth Product f =100kHz, Tamb = 25°C, Vin = 10mV, RL =2kΩ, CL = 100pF Input Resistance Total Harmonic Distortion f =1kHz, Av = 20dB, RL = 2kΩ, CL = 100pF Tamb = 25°C, VO = 2Vpp Equivalent Input Noise Voltage (RS = 100Ω, f = 1KHz) ∅m Phase Margin Vo1/Vo2 Channel Separation ( Av = 100) 1. Min. 60 60 V V/µs µs 0.1 % 10 MHz 2.5 4 1012 Ω % 0.01 15 nV -----------Hz 45 120 Degrees dB The input bias currents are junction leakage currents which approximately double for every 10°C increase in the junction temperature. 3/10 LF147 - LF247 - LF347 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREE AIR TEMP. MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus LOAD RESISTANCE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus SUPPLY VOLTAGE MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE (V) MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE versus FREQUENCY 4/10 30 25 RL = 10 kΩ Tamb = +25˚C 20 15 10 5 0 2 4 6 8 10 12 SUPPLY VOLTAGE ( V) 14 16 LF147 - LF247 - LF347 LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY INPUT BIAS CURRENT versus FREE AIR TEMPERATURE 100 1000 15V 10 DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) INPUT BIAS CURRENT (nA) V CC = 1 0.1 0.01 -50 400 200 100 40 20 10 4 2 1 -25 0 25 50 75 100 V CC = 15V V O = 10V 125 R L = 2k Ω -75 -50 -25 TEMPERATURE (˚C) DIFFERENTIAL VOLTAGE AMPLIFICATION (left scale) PHASE SHIFT (right scale) 180 10 90 R = 2kW L C L = 100pF V CC = 15V T amb = +125°C 1 100 1K 10K 0 100K 1M 10M -25 0 25 50 TEMPERATURE (˚C) 100 125 V CC = 15V No signal No load -75 -50 -25 0 25 50 75 100 125 75 100 COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) V CC = 15V No signal No load -50 75 TEMPERATURE (˚C) SUPPLY CURRENT PER AMPLIFIER versus FREE AIR TEMPERATURE -75 50 250 225 200 175 150 125 100 75 50 25 0 FREQUENCY (Hz) 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 25 TOTAL POWER DISSIPATION versus FREE AIR TEMPERATURE TOTAL POWER DISSIPATION (mW) DIFFERENTIAL VOLTAGE AMPLIFICATION (V/V) LARGE SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT versus FREQUENCY 100 0 TEMPERATURE (˚C) 125 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 Tamb = +25°C No signal No load 0 2 4 6 8 10 12 14 16 SUPPLY VOLTAGE (V) 5/10 LF147 - LF247 - LF347 VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE INPUT AND OUTPUT VOLTAGES (V) COMMON MODE REJECTION RATIO versus FREE AIR TEMPERATURE COMMON MODE MODE REJECTION RATIO (dB) 89 R L = 10 kΩ VC C = 15V 88 87 86 85 84 83 -75 -50 -25 0 25 50 75 100 125 6 4 OUTPUT 0 VCC= 15V R L = 2 kW -2 C L= 100pF Tamb = +25°C -4 -6 0 0.5 OUTPUT VOLTAGE versus ELAPSED TIME 1.5 2 2.5 3 3.5 EQUIVALENT INPUT NOISE VOLTAGE versus FREQUENCY 28 70 24 20 90% 16 12 8 V 4 0 tr 0 0.1 CC = 15V R L = 2k Ω Tamb = +25˚C 10% -4 VCC = 15V A V = 10 R S = 100 Ω T amb = +25˚C 60 OVERSHOOT EQUIVALENT INPUT NOISE VOLTAGE (nV/VHz) OUTPUT VOLTAGE (mV) 1 TIME (m s) TEMPERATURE (˚C) 0.2 0.3 0.4 0.5 0.6 50 40 30 20 10 0 10 0.7 40 100 400 TOTAL HARMONIC DISTORTION versus FREQUENCY 1 TOTAL HARMONIC DISTORTION (%) 1k 4k FREQUENCY (Hz) TIME ( µs) V VCC = = 15V 15V CC A AV V= =1 1 V VO O(rms) = =6V6V (rms) 0.4 0.1 0.04 T amb T amb= =+25˚C +25˚C 0.01 0.004 0.001 100 400 1k 4k 10k FREQUENCY (Hz) 6/10 INPUT 2 40k 100k 10k 40k 100k LF147 - LF247 - LF347 PARAMETER MEASUREMENT INFORMATION Figure 1 : Voltage Follower Figure 2 : Gain-of-10 Inverting Amplifier 10k W eI 1k W 1/4 LF347 eo RL CL= 100pF TYPICAL APPLICATIONS AUDIO DISTRIBUTOR AMPLIFIER fO = 100kHz 1M W 1/4 LF347 Output A 1/4 LF347 Output B 1/4 LF347 Output C 1m F - 1/4 LF347 Input 100k W 100m F 100k W 100k W 100k W VCC+ - 7/10 LF147 - LF247 - LF347 TYPICAL APPLICATIONS (continued) POSITIVE FEEDBACK BANDPASS FILTER 16k W 16k W 220pF 220pF 43k W Input 43k W 43k W 30k W 220pF 4/1 LF347 43k W 220pF 43k W 1.5k W 4/1 LF347 30k W 4/1 LF347 43k W 4/1 LF347 1.5k W Output B Ground Output A OUTPUT A SECOND ORDER BANDPASS FILTER fo = 100kHz; Q = 30; Gain = 16 8/10 OUTPUT B CASCADED BANDPASS FILTER fo = 100kHz; Q = 69; Gain = 16 LF147 - LF247 - LF347 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC DIP Millimeters Inches Dim. Min. a1 B b b1 D E e e3 F i L Z Typ. 0.51 1.39 Max. Min. 1.65 0.020 0.055 0.5 0.25 Typ. 0.065 0.020 0.010 20 0.787 8.5 2.54 15.24 0.335 0.100 0.600 7.1 5.1 0.280 0.201 3.3 1.27 Max. 0.130 2.54 0.050 0.100 9/10 LF147 - LF247 - LF347 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) G c1 b1 e a1 b A a2 C L s e3 E D M 8 1 7 F 14 Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45° (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.344 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 8° (max.) Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2001 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 10/10