STMICROELECTRONICS M68AR024D

M68AR024D
16 Mbit (1M x16) 1.8V Asynchronous SRAM
PRELIMINARY DATA
FEATURES SUMMARY
■ SUPPLY VOLTAGE: 1.65 to 1.95V
■
I/O SUPPLY VOLTAGE: 1.5 to 1.95V
■
1M WORDS x 16 bits LOW POWER SRAM
■
EQUAL CYCLE and ACCESS TIME: 70ns
■
■
LOW VCC DATA RETENTION: 1.0V
LOW STANDBY CURRENT
■
TRI-STATE COMMON I/O
■
SINGLE BYTE READ/WRITE
■
AUTOMATIC POWER DOWN
Figure 1. Packages
BGA
TFBGA48 (ZH)
8 x 10 mm
(for Engineering
Samples only)
BGA
TFBGA48 (ZB)
6.5 x 10 mm
October 2002
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.
1/19
M68AR024D
TABLE OF CONTENTS
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
DC AND AC PARAMETERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 6. AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 7. Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . 9
Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms . . . . . . . . . . . . . . . . . . 9
Table 7. Read and Standby Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 10. Write Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 11. Chip Enable E1 Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 12. UB/LB Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 8. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . 14
Table 9. Low VCC Data Retention Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 15. TFBGA48 6.5x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline. . 15
Table 11. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . 16
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 13. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2/19
M68AR024D
SUMMARY DESCRIPTION
The M68AR024D is a 16 Mbit (16,777,216 bit) Low
Power SRAM fabricated in STMicroelectronics advanced CMOS technology, organized as 1,048,576
words by 16 bits. The device exhibits fully static operation requiring no external clocks or timing
strobes.
It needs 1.65 to 1.95V supply voltage. By using the
VCCQ pin all the outputs can be powered independently from the core supply voltage allowing to
drive the I/O pins down to 1.5V. V CCQ pin can be
tied to Vcc if the feature is not required.
Figure 2. Logic Diagram
VCC
Table 1. Signal Names
VCCQ
20
16
A0-A19
This device has a standard Asynchronous SRAM
Interface. Read and Write cycles can be performed on a single byte by using UB/LB signals.
The device can be put into standby mode by using
E1/E2 pins. The same pins can be used to cascade more devices in order to achieve deep memory expansion.
Standby mode allows a low current consumption,
up to 99%, by reducing internal activities.
The M68AR024D is available in TFBGA48 (0.75
mm pitch) package with industrial standard footprint.
DQ0-DQ15
W
A0-A19
Address Inputs
DQ0-DQ15
Data Input/Output
E1, E2
Chip Enables
G
Output Enable
W
Write Enable
UB
Upper Byte Enable Input
LB
Lower Byte Enable Input
VCC
Supply Voltage
VCCQ
I/O Supply Voltage
VSS
Ground
NC
Not Connected Internally
DU
Don’t Use as Internally Connected
E1
E2
M68AR024D
G
UB
LB
VSS
AI05400c
3/19
M68AR024D
Figure 3. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
LB
G
A0
A1
A2
E2
B
DQ8
UB
A3
A4
E1
DQ0
C
DQ9
DQ10
A5
A6
DQ1
DQ2
D
VSS
DQ11
A17
A7
DQ3
VCC
E
VCCQ
DQ12
NC
A16
DQ4
VSS
F
DQ14
DQ13
A14
A15
DQ5
DQ6
G
DQ15
A19
A12
A13
W
DQ7
H
A18
A8
A9
A10
A11
DU
AI05918
4/19
M68AR024D
Figure 4. Block Diagram
A19
ROW
DECODER
MEMORY
ARRAY
A8
DQ15
(8)
I/O CIRCUITS
UB
COLUMN
DECODER
DQ0
E1
Ex
E2
(8)
LB
UB
LB
A0
A7
(8)
UB
W
(8)
LB
G
AI05924
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings table may cause permanent damage to the device. These are stress
ratings only and operation of the device at these or
any other conditions above those indicated in the
Operating sections of this specification is not im-
plied. Exposure to Absolute Maximum Rating conditions for periods greater than 1 sec may affect
device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality
documents.
Table 2. Absolute Maximum Ratings
Symbol
Value
Unit
Output Current
20
mA
PD
Power Dissipation
1
W
TA
Ambient Operating Temperature
–55 to 125
°C
TSTG
Storage Temperature
–65 to 150
°C
VCC
Supply Voltage
–0.5 to 2.5
V
VCCQ
I/O Supply Voltage
–0.5 to 2.5
V
VIO (2)
Input or Output Voltage
–0.5 to VCCQ +0.5
V
IO (1)
Parameter
Note: 1. One output at time not to exceed 1 second duration.
2. Up to a maximum operating VCC or VCCQ of 1.95V only.
5/19
M68AR024D
DC AND AC PARAMETERS
This section summarizes the operating and measurement conditions, as well as the DC and AC
characteristics of the device. The parameters in
the following DC and AC Characteristic tables are
derived from tests performed under the Measure-
ment Conditions listed in the relevant tables. Designers should check that the operating conditions
in their projects match the measurement conditions when using the quoted parameters.
Table 3. Operating and AC Measurement Conditions
Parameter
M68AR024D
VCC Supply Voltage
1.65 to 1.95V
VCCQ I/O Supply Voltage (VCCQ ≤ VCC)
1.5 to 1.95V
Range 1
0 to 70°C
Range 6
–40 to 85°C
Ambient Operating Temperature
Load Capacitance (CL)
30pF
Output Circuit Protection Resistance (R1)
15.3kΩ
Load Resistance (R2)
11.3kΩ
Input Rise and Fall Times
≤ 1ns/V
0 to VCCQ
Input Pulse Voltages
Input and Output Timing Ref. Voltages
VCCQ/2
Output Transition Timing Ref. Voltages
VRL = 0.3VCCQ; VRH = 0.7VCCQ
Figure 5. AC Measurement I/O Waveform
Figure 6. AC Measurement Load Circuit
VCCQ
I/O Timing Reference Voltage
R1
VCCQ
VCCQ/2
0V
DEVICE
UNDER
TEST
OUT
CL
I/O Transition Timing Reference Voltage
VCCQ
0V
R2
0.7VCCQ
0.3VCCQ
AI05987
CL includes JIG capacitance
AI05988
6/19
M68AR024D
Table 4. Capacitance
CIN
COUT (3)
Test
Condition
Parameter (1,2)
Symbol
Input Capacitance on all pins (except DQ)
Output Capacitance
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
8
pF
Note: 1. Sampled only, not 100% tested.
2. At TA = 25°C, f = 1MHz, VCC = 1.8V.
3. Outputs deselected.
Table 5. DC Characteristics
Symbol
Parameter
Test Condition
ICC1 (1,2)
Operating Supply Current
VCC = 1.95V,
f = 1/tAVAV,
IOUT = 0mA
ICC2 (3)
Operating Supply Current
VCC = 1.95V,
f = 1MHz,
IOUT = 0mA
ILI
Input Leakage Current
ILO (4)
Output Leakage Current
Min
Typ
Max
Unit
5
25
mA
3
mA
0V ≤ VIN ≤ VCC
–1
1
µA
0V ≤ VOUT ≤ VCC
–1
1
µA
15
µA
VCC = 1.95V,
E1 ≥ VCCQ –0.2V OR
E2 ≤ 0.2V OR
UB, LB ≥ VCCQ –0.2V,
f=0
1
ISB
Standby Supply Current CMOS
VIH
Input High Voltage
VCCQ – 0.4
VCCQ + 0.3
V
VIL
Input Low Voltage
–0.3
0.4
V
VOH
Output High Voltage
IOH = –100µA
VOL
Output Low Voltage
IOL = 100µA
Note: 1.
2.
3.
4.
VCCQ – 0.2
V
0.2
V
Average AC current, cycling at tAVAV minimum.
E1 = V IL, E2 = VIH, UB OR/AND LB = V IL, VIN = VIH OR VIL.
E1 ≤ 0.2V or E2 ≥ V CCQ –0.2V, UB OR/AND LB ≤ 0.2V, VIN ≤ 0.2V or VIN ≥ VCCQ –0.2V.
Output disabled.
7/19
M68AR024D
OPERATION
The M68AR024D has a Chip Enable power down
feature which invokes an automatic standby mode
whenever Chip Enable is de-asserted (E1 = High)
or Chip Select is asserted (E2 = Low), or UB/LB
are de-asserted (UB/LB = High). An Output Enable (G) signal provides a high speed tri-state con-
trol, allowing fast read/write cycles to be achieved
with the common I/O data bus. Operational modes
are determined by device control inputs W, E1, LB
and UB as summarized in the Operating Modes table (see Table 6).
Table 6. Operating Modes
Operation
E1
E2
W
G
LB
UB
DQ0-DQ7
DQ8-DQ15
Power
Deselected/Standby
VIH
X
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected/Standby
X
VIL
X
X
X
X
Hi-Z
Hi-Z
Standby (ISB)
Deselected/Standby
X
X
X
X
VIH
VIH
Hi-Z
Hi-Z
Standby (ISB)
Lower Byte Read
VIL
VIH
VIH
VIL
VIL
VIH
Data Output
Hi-Z
Active (ICC)
Lower Byte Write
VIL
VIH
VIL
X
VIL
VIH
Data Input
Hi-Z
Active (ICC)
Output Disabled
VIL
VIH
VIH
VIH
X
X
Hi-Z
Hi-Z
Active (ICC)
Upper Byte Read
VIL
VIH
VIH
VIL
VIH
VIL
Hi-Z
Data Output
Active (ICC)
Upper Byte Write
VIL
VIH
VIL
X
VIH
VIL
Hi-Z
Data Input
Active (ICC)
Word Read
VIL
VIH
VIH
VIL
VIL
VIL
Data Output
Data Output
Active (ICC)
Word Write
VIL
VIH
VIL
X
VIL
VIL
Data Input
Data Input
Active (ICC)
Note: 1. X = VIH or VIL.
Read Mode
The M68AR024D, when Chip Select (E2) is High,
is in the read mode whenever Write Enable (W) is
High with Output Enable (G) Low, and Chip Enable (E1) is asserted. This provides access to data
from eight or sixteen, depending on the status of
the signal UB and LB, of the 16,777,216 locations
in the static memory array, specified by the 20 address inputs. Valid data will be available at the
eight or sixteen output pins within tAVQV after the
last stable address, providing G is Low and E1 is
Low. If Chip Enable or Output Enable access
times are not met, data access will be measured
from the limiting parameter (tELQV, tGLQV or tBLQV)
rather than the address. Data out may be indeterminate at tELQX, tGLQX and tBLQX, but data lines
will always be valid at tAVQV
Figure 7. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A19
VALID
tAVQV
DQ0-DQ7 and/or DQ8-DQ15
tAXQX
DATA VALID
AI05403
Note: E1 = Low, E2 = High, G = Low, W = High, UB = Low and/or LB = Low.
8/19
M68AR024D
Figure 8. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms
tAVAV
VALID
A0-A19
tAVQV
tAXQX
tELQV
tEHQZ
E1
E2
tELQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ15
VALID
tBLQV
tBHQZ
UB, LB
tBLQX
AI07730
Note: Write Enable (W) = High
Figure 9. Chip Enable or UB/LB Controlled, Standby Mode AC Waveforms
E1, UB, LB
E2
ICC
ISB
tPU
tPD
50%
AI05990
9/19
M68AR024D
Table 7. Read and Standby Mode AC Characteristics
M68AR024D
Symbol
Parameter
Unit
70
tAVAV
Read Cycle Time
Min
70
ns
tAVQV
Address Valid to Output Valid
Max
70
ns
Data hold from address change
Min
5
ns
tBHQZ (2, 3)
Upper/Lower Byte Enable High to Output Hi-Z
Max
25
ns
tBLQV
Upper/Lower Byte Enable Low to Output Valid
Max
70
ns
Upper/Lower Byte Enable Low to Output Transition
Min
5
ns
tEHQZ (2, 3)
Chip Enable High to Output Hi-Z
Max
25
ns
tELQV
Chip Enable Low to Output Valid
Max
70
ns
Chip Enable Low to Output Transition
Min
5
ns
tGHQZ (2, 3)
Output Enable High to Output Hi-Z
Max
25
ns
tGLQV
Output Enable Low to Output Valid
Max
35
ns
Output Enable Low to Output Transition
Min
5
ns
tPD (4)
Chip Enable High to Power Down
Max
0
ns
tPU (4)
Chip Enable Low to Power Up
Min
70
ns
tAXQX (1)
tBLQX (1)
tELQX (1)
tGLQX (1)
Note: 1. Test conditions assume transition timing reference level = 0.3VCCQ to 0.7VCCQ.
2. At any given temperature and voltage condition, tGHQZ is less than tGLQX, tBHQZ is less than tBLQX and tEHQZ is less than tELQX for
any given device.
3. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
4. Tested initially and after any design or process changes that may affect these parameters.
10/19
M68AR024D
Write Mode
The M68AR024D, when Chip Select (E2) is High,
is in the Write Mode whenever the W and E1 are
Low. Either the Chip Enable Input (E1) or the Write
Enable input (W) must be de-asserted during Address transitions for subsequent write cycles.
When E1 or W is Low, and UB or LB is Low, write
cycle begins on the W or E1 falling edge. When E1
and W are Low, and UB = LB = High, write cycle
begins on the first falling edge of UB or LB. Therefore, address setup time is referenced to Write Enable, Chip Enables and UB/LB as t AVWL, tAVEL and
tAVBL respectively, and is determined by the latter
occurring falling edge.
The Write cycle can be terminated by the earlier
rising edge of E1, W, UB and LB.
If the Output is enabled (E1 = Low, E2 = High, G =
Low, LB or UB = Low), then W will return the outputs to high impedance within tWLQZ of its falling
edge. Care must be taken to avoid bus contention
in this type of operation. Data input must be valid
for t DVWH before the rising edge of Write Enable,
or for tDVEH before the rising edge of E1 or for t DVBH before the rising edge of UB/LB, whichever
occurs first, and remain valid for t WHDX, tEHDX and
tBHDX respectively.
Figure 10. Write Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A19
tAVWH
tELWH
tAVEL
tWHAX
E1
E2
tWLWH
tAVWL
W
tWLQZ
tWHQX
tWHDX
DATA INPUT
DQ0-DQ15
tDVWH
tBLBH
UB, LB
AI05991
11/19
M68AR024D
Figure 11. Chip Enable E1 Controlled, Write AC Waveforms
tAVAV
VALID
A0-A19
tAVEH
tELEH
tAVEL
tEHAX
E1
E2
tAVWL
tWLEH
W
tEHDX
DATA INPUT
DQ0-DQ15
tDVEH
tBLBH
UB, LB
AI05992
Figure 12. UB/LB Controlled, Write AC Waveforms
tAVAV
VALID
A0-A19
tAVBH
tBHAX
E1
E2
tWLBH
tAVWL
W
tWLQZ
DQ0-DQ15
tBHDX
DATA (1)
DATA INPUT
tDVBH
tAVBL
tBLBH
UB, LB
AI05993
Note: 1. During this period DQ0-DQ15 are in output state and input signals should not be applied.
12/19
M68AR024D
Table 8. Write Mode AC Characteristics
M68AR024D
Symbol
Parameter
Unit
70
tAVAV
Write Cycle Time
Min
70
ns
tAVBH
Address Valid to LB, UB High
Min
60
ns
tAVBL
Addess Valid to LB, UB Low
Min
0
ns
tAVEH
Address Valid to Chip Enable High
Min
60
ns
tAVEL
Address valid to Chip Enable Low
Min
0
ns
tAVWH
Address Valid to Write Enable High
Min
60
ns
tAVWL
Address Valid to Write Enable Low
Min
0
ns
tBHAX
LB, UB High to Address Transition
Min
0
ns
tBHDX
LB, UB High to Input Transition
Min
0
ns
tBLBH
LB, UB Low to LB, UB High
Min
60
ns
tBLEH
LB, UB Low to Chip Enable High
Min
60
ns
tBLWH
LB, UB Low to Write Enable High
Min
60
ns
tDVBH
Input Valid to LB, UB High
Min
30
ns
tDVEH
Input Valid to Chip Enable High
Min
30
ns
tDVWH
Input Valid to Write Enable High
Min
30
ns
tEHAX
Chip Enable High to Address Transition
Min
0
ns
tEHDX
Chip enable High to Input Transition
Min
0
ns
tELBH
Chip Enable Low to LB, UB High
Min
60
ns
tELEH
Chip Enable Low to Chip Enable High
Min
60
ns
tELWH
Chip Enable Low to Write Enable High
Min
60
ns
tWHAX
Write Enable High to Address Transition
Min
0
ns
tWHDX
Write Enable High to Input Transition
Min
0
ns
Write Enable High to Output Transition
Min
5
ns
tWLBH
Write Enable Low to LB, UB High
Min
60
ns
tWLEH
Write Enable Low to Chip Enable High
Min
60
ns
Write Enable Low to Output Hi-Z
Max
20
ns
Write Enable Low to Write Enable High
Min
50
ns
tWHQX (1)
tWLQZ (1, 2)
tWLWH
Note: 1. At any given temperature and voltage condition, tWHQZ is less than t WLQX for any given device.
2. These parameters are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output
voltage levels.
13/19
M68AR024D
Figure 13. E1 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
1.95V
VCC
1.65V
VDR > 1.0V
tCDR
tR
E1 ≥ VDR – 0.2V
E1
AI05855
Figure 14. E2 Controlled, Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
1.95V
VCC
1.65V
VDR > 1.0V
tCDR
tR
E2
E2 ≤ 0.2V
AI05875
Table 9. Low V CC Data Retention Characteristics
Symbol
ICCDR
(1)
Parameter
Supply Current (Data Retention)
Test Condition
Min
VCC = 1.0V, E1 ≥ VCCQ –0.2V OR
E2 ≤ 0.2V OR
UB, LB ≥ VCCQ –0.2V,
Typ
Max
Unit
0.5
5
µA
f=0
tCDR (2)
tR (2)
VDR
(1)
Chip deselected to Data
Retention Time
Operation Recovery Time
Supply Voltage (Data Retention)
E1 ≥ VCCQ –0.2V OR
E2 ≤ 0.2V OR
UB, LB ≥ VCCQ –0.2V,
f=0
0
ns
tAVAV
ns
1.0
V
Note: 1. All other Inputs at V IH ≥ VCCQ –0.2V or VIL ≤ 0.2V.
2. Tested initially and after any design or process changes that may affect these parameters. tAVAV is Read cycle time.
3. No input may exceed VCC +0.2V.
14/19
M68AR024D
PACKAGE MECHANICAL
Figure 15. TFBGA48 6.5x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
SD
FD
FE
SE
E
E1
e
BALL "A1"
ddd
e
b
A2
A
A1
BGA-Z30
Note: Drawing is not to scale.
Table 10. TFBGA48 6.5x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.200
A1
A2
Max
0.300
b
0.0472
0.400
0.790
Max
0.0118
0.0157
0.0138
0.0177
0.0311
0.350
0.450
D
6.500
6.400
6.600
0.2559
0.2520
0.2598
D1
3.750
–
–
0.1476
–
–
ddd
0.100
0.0039
E
10.000
9.900
10.100
0.3937
0.3898
0.3976
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
0.875
–
–
0.0344
–
–
FE
3.125
–
–
0.1230
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
15/19
M68AR024D
Figure 16. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Bottom View Package Outline
D
D1
FD
FE
E
SD
SE
E1
ddd
BALL "A1"
A
e
A2
b
A1
BGA-Z28
Note: Drawing is not to scale.
Table 11. TFBGA48 8x10mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data
millimeters
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0102
0.900
b
Max
0.0472
0.260
A2
0.350
0.450
0.0354
0.0138
0.0177
D
8.000
7.900
8.100
0.3150
0.3110
0.3189
D1
3.750
–
–
0.1476
–
–
ddd
16/19
inches
0.100
0.0039
E
10.000
9.900
10.100
0.3937
0.3898
0.3976
E1
5.250
–
–
0.2067
–
–
e
0.750
–
–
0.0295
–
–
FD
2.125
–
–
0.0837
–
–
FE
2.375
–
–
0.0935
–
–
SD
0.375
–
–
0.0148
–
–
SE
0.375
–
–
0.0148
–
–
M68AR024D
PART NUMBERING
Table 12. Ordering Information Scheme
Example:
M68AR016
D
N
70 ZB
6
T
Device Type
M68
Mode
A = Asynchronous
Operating Voltage
R = 1.65 to 1.95V
Array Organization
024 = 16 Mbit (1M x16)
Option 1
D = 2 Chip Enable; Write and Standby from UB and LB
Option 2
N = N-Die
Speed Class
70 = 70 ns
Package
ZH = TFBGA48: 0.75 mm pitch (8x10mm) (1)
ZB = TFBGA48: 0.75 mm pitch (6.5x10mm)
Operative Temperature
1 = 0 to 70°C
6 = –40 to 85 °C
Shipping
T = Tape & Reel Packing
Note: 1. This package is available for Engineering Samples only.
17/19
M68AR024D
REVISION HISTORY
Table 13. Document Revision History
Date
Version
July 2001
-01
First Issue
24-Oct-2001
-02
Table of Contents added
Block Diagram added, Data Retention AC Waveforms clarified
Package Mechanical Data and Drawing added
07-Nov-2001
-03
Voltage range extended up to 2.2V
19-Feb-2002
-04
Document totally revised
12-Mar-2002
-05
Features Summary clarified
Tables 2, 3, 4, 5, 6, 7, 8 and 9 clarified
Figures 8, 10, 11 and 12 clarified
20-Mar-2002
-06
TFBGA 6.5x10 package added
19-Apr-2002
-07
Chip Enable Controlled, Low VCC Data Retention AC Waveforms clarified (Figures 13
and 14)
02-Oct-2002
7.1
Revision numbering modified: a minor revision will be indicated by incrementing the
digit after the dot, and a major revision, by incrementing the digit before the dot
(revision version 07 equals 7.0).
Part number changed.
04-Oct-2002
7.2
Document status changed from Target Specification to Preliminary Data.
09-Oct-2002
7.3
Part number modified.
18/19
Revision Details
M68AR024D
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners.
© 2002 STMicroelectronics - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
19/19