STMICROELECTRONICS M68Z128W

M68Z128W
3V, 1 Mbit (128Kb x8) Low Power SRAM with Output Enable
■
LOW VOLTAGE: 3.0V (+0.6V / –0.3V)
■
128Kb x 8 LOW POWER SRAM with OUTPUT
ENABLE
■
EQUAL CYCLE and ACCESS TIMES: 70ns
■
LOW VCC DATA RETENTION: 1.4V
■
TRI-STATE COMMON I/O
■
LOW ACTIVE and STANDBY POWER
■
INTENDED for USE with ST ZEROPOWER®
and TIMEKEEPER® CONTROLLERS
DESCRIPTION
The M68Z128W is a 1 Mbit (1,048,576 bit) Fast
CMOS SRAM, organized as 131,072 words by 8
bits. The device features fully static operation requiring no external clocks or timing strobes, with
equal address access and cycle times. It requires
a single 3.0V (+0.6V / –0.3V) supply, and all inputs
and outputs are TTL compatible. This device has
an automatic power-down feature, reducing the
power consumption by over 99% when deselected. The M68Z128W is available in the standard
450mil-wide TSOP type 1 package.
TSOP32 (N)
8 x 20mm
Figure 1. Logic Diagram
VCC
17
8
A0-A16
DQ0-DQ7
Table 1. Signal Names
A0-A16
Address Inputs
W
DQ0-DQ7
Data Input/Output
E1
E1
Chip Enable 1
E2
E2
Chip Enable 2
G
G
Output Enable
W
Write Enable
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
M68Z128W
VSS
March 2000
AI01878B
1/12
M68Z128W
Table 2. Absolute Maximum Ratings (1)
Symbol
Parameter
TA
Ambient Operating Temperature
TSTG
Storage Temperature
VIO (2)
Input or Output Voltage
Value
Unit
0 to 70
°C
–65 to 150
°C
–0.5 to VCC + 0.5
V
VCC
Supply Voltage
–0.5 to 4.6
V
IO (3)
Output Current
20
mA
Power Dissipation
1
W
PD
Note: 1. Except for the rating "Operating Temperature Range", stresses above those listed in the Table "Absolute Maximum Ratings" may
cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions
above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.
2. Up to a maximum operating VCC of 3.6V only.
3. One output at a time, not to exceed 1 second duration.
Figure 2. TSOP Connections
A11
A9
A8
A13
W
E2
A15
VCC
NC
A16
A14
A12
A7
A6
A5
A4
1
8
9
16
32
M68Z128W
25
24
17
G
A10
E1
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
AI00698B
READ MODE
The M68Z128W is in the Read mode whenever
Write Enable (W) is High with Output Enable (G)
Low, and both Chip Enables (E1 and E2) are asserted. This provides access to data from eight of
2/12
the 1,048,576 locations in the static memory array,
specified by the 17 address inputs. Valid data will
be available at the eight output pins within tAVQV
after the last stable address, providing G is Low,
E1 is Low and E2 is High. If Chip Enable or Output
Enable access times are not met, data access will
be measured from the limiting parameter (tE1LQV,
tE2HQV, or tGLQV) rather than the address. Data out
may be indeterminate at tE1LQX, t E2HQX and t GLQX,
but data lines will always be valid at tAVQV.
WRITE MODE
The M68Z128W is in the Write mode whenever
the W and E1 pins are Low, with E2 High. Either
the Chip Enable inputs (E1 and E2) or the Write
Enable input (W) must be de-asserted during Address transitions for subsequent write cycles.
Write begins with the concurrence of both Chip
Enables being active with W low. Therefore, address setup time is referenced to Write Enable and
both Chip Enables as tAVWL , tAVE1L and t AVE2H respectively, and is determined by the latter occurring edge.
The Write cycle can be terminated by the earlier
rising edge of E1, W, or the falling edge of E2.
If the Output is enabled (E1 = Low, E2 = High and
G = Low), then W will return the outputs to high impedance within tWLQZ of its falling edge. Care must
be taken to avoid bus contention in this type of operation. Data input must be valid for tDVWH before
the rising edge of Write Enable, or for tDVE1H before the rising edge of E1 or for tDVE2L before the
falling edge of E2, whichever occurs first, and remain valid for tWHDX, tE1HDX or tE2LDX.
M68Z128W
Table 3. Operating Modes
Operation
E1
E2
W
G
DQ0-DQ7
Power
Read
VIL
VIH
VIH
VIH
Hi-Z
Active
Read
VIL
VIH
VIH
VIL
Data Output
Active
Write
VIL
VIH
VIL
X
Data Input
Active
Deselect
VIH
X
X
X
Hi-Z
Standby
Deselect
X
VIL
X
X
Hi-Z
Standby
Note: 1. X = VIH or VIL.
Table 4. AC Measurement Conditions
Input Rise and Fall Times
≤ 15ns
Input Pulse Voltages
0 to 3V
Input and Output Timing Ref. Voltages
1.5V
Figure 3. AC Testing Load Circuit
3.3V
Note: Output Hi-Z is defined as the point where data is no longer
driven.
OPERATIONAL MODE
The M68Z128W has a Chip Enable power down
feature which invokes an automatic standby mode
whenever either Chip Enable is de-asserted (E1 =
High or E2 = Low). An Output Enable (G) signal
provides a high speed tri-state control, allowing
fast read/write cycles to be achieved with the common I/O data bus. Operational modes are determined by device control inputs W, E1, and E2 as
summarized in the Operating Modes table.
1213Ω
DEVICE
UNDER
TEST
OUT
1378Ω
CL = 50pF or 5pF
CL includes JIG capacitance
AI00697
Table 5. Capacitance (1) (TA = 25 °C, f = 1 MHz)
Symbol
CIN
COUT (2)
Parameter
Input Capacitance on all pins (except DQ)
Output Capacitance
Test
Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
8
pF
Note: 1. Sampled only, not 100% tested.
2. Outputs deselected.
3/12
M68Z128W
Figure 4. Block Diagram
VCC
VSS
A
ROW
DECODER
(9)
MEMORY
ARRAY
A
CHIP ENABLE.
DQ
I/O CIRCUITS
INPUT
DATA
CTRL
(8)
COLUMN
DECODER
DQ
CHIP ENABLE.
CHIP
ENABLE
(8)
A
A
W
E1
E2
G
AI00665
Table 6. DC Characteristics
(TA = 0 to 70°C; VCC = 3.0V + 0.6V / –0.3V)
Symbol
ILI
ILO
ICC1
(1)
Parameter
Test Condition
Input Leakage Current
Output Leakage Current
0V ≤ VIN ≤ VCC
0V ≤ VOUT ≤ VCC
Supply Current
VCC = 3.6V, (-70)
ICC2 (2)
Supply Current (Standby) TTL
ICC3 (3)
Supply Current (Standby) CMOS
VIL
Input Low Voltage
Max
Unit
±1
µA
±1
µA
20
40
mA
VCC = 3.6V, E1 = VIH or
E2 = VIL, f =0
15
300
µA
VCC = 3.6V, E1 ≥ VCC – 0.2V
or E2 ≤ 0.2V, f =0
0.4
15
µA
–0.5
0.8
V
2
VCC + 0.5
V
0.4
V
VIH
Input High Voltage
VOL
Output Low Voltage
IOL = 2.1mA
VOH
Output High Voltage
IOH = –1mA
Note: 1. Average AC current, Outputs open, cycling at tAVAV minimum.
2. All other Inputs at V IL ≤ 0.8V or VIH ≥ 2.0V.
3. All other Inputs at V IL ≤ 0.2V or VIH ≥ VCC –0.2V.
4/12
Min
2.4
Typ
V
M68Z128W
Table 7. Read and Standby Modes AC Characteristics
(TA = 0 to 70°C; VCC = 3.0V + 0.6V / –0.3V)
M68Z128W
Symbol
Parameter
-70
Min
tAVAV
Read Cycle Time
Unit
Max
70
ns
tAVQV (1)
Address Valid to Output Valid
70
ns
tE1LQV (1)
Chip Enable 1 Low to Output Valid
70
ns
tE2HQV (1)
Chip Enable 2 High to Output Valid
70
ns
tGLQV (1)
Output Enable Low to Output Valid
35
ns
tE1LQX (3)
Chip Enable 1 Low to Output Transition
10
ns
tE2HQX (3)
Chip Enable 2 High to Output Transition
10
ns
tGLQX (3)
Output Enable Low to Output Transition
10
ns
tE1HQZ (2,3)
Chip Enable 1 High to Output Hi-Z
0
25
ns
tE2LQZ (2,3)
Chip Enable 2 Low to Output Hi-Z
0
25
ns
tGHQZ (2,3)
Output Enable High to Output Hi-Z
0
25
ns
Address Transition to Output Transition
10
ns
tPU
Chip Enable 1 Low or Chip Enable 2 High to Power Up
0
ns
tPD
Chip Enable 1 High or Chip Enable 2 Low to Power Down
tAXQX (1)
70
ns
Note: 1. CL = 50pF (see Figure 3).
2. CL = 5pF (see Figure 3).
3. At any given temperature and voltage condition, tEIHQZ + tEZHQZ is less than tEILQX and tEZLQX, tGHQZ is less than tGLQX for any
given device.
Figure 5. Address Controlled, Read Mode AC Waveforms
tAVAV
A0-A16
VALID
tAVQV
DQ0-DQ7
tAXQX
DATA VALID
AI01078
Note: E1 = Low, E2 = High, G = Low, W = High.
5/12
M68Z128W
Figure 6. Chip Enable or Output Enable Controlled, Read Mode AC Waveforms.
tAVAV
VALID
A0-A16
tAVQV
tAXQX
tE1LQV
tE1HQZ
E1
tE1LQX
tE2HQV
tE2LQZ
E2
tE2HQX
tGLQV
tGHQZ
G
tGLQX
DQ0-DQ7
VALID
AI00805
Note: Write Enable (W) = High.
Figure 7. Standby Mode AC Waveforms
E1
E2
ICC1
ICC2
tPU
tPD
50%
AI00806B
6/12
M68Z128W
Table 8. Write Mode AC Characteristics
(TA = 0 to 70°C; VCC = 3.0V + 0.6V / –0.3V)
M68Z128W
Symbol
Parameter
Unit
-70
Min
Max
tAVAV
Write Cycle Time
70
ns
tAVWL
Address Valid to Write Enable Low
0
ns
tAVWH
Address Valid to Write Enable High
60
ns
tAVE1H
Address Valid to Chip Enable 1 High
60
ns
tAVE2L
Address Valid to Chip Enable 2 Low
60
ns
tWLWH
Write Enable Pulse Width
55
ns
tWHAX
Write Enable High to Address Transition
0
ns
tWHDX
Write Enable High to Input Transition
0
ns
tWHQX (2)
Write Enable High to Output Transition
0
ns
tWLQZ (1,2)
Write Enable Low to Output Hi-Z
25
ns
tAVE1L
Address Valid to Chip Enable 1 Low
0
ns
tAVE2H
Address Valid to Chip Enable 2 High
0
ns
tE1LE1H
Chip Enable 1 Low to Chip Enable 1 High
60
ns
tE2HE2L
Chip Enable 2 High to Chip Enable 2 Low
60
ns
tE1HAX
Chip Enable 1 High to Address Transition
0
ns
tE2LAX
Chip Enable 2 Low to Address Transition
0
ns
tDVWH
Input Valid to Write Enable High
30
ns
tDVE1H
Input Valid to Chip Enable 1 High
30
ns
tDVE2L
Input Valid to Chip Enable 2 Low
30
ns
Note: 1. CL = 5pF.
2. At any given temperature and voltage condition, tWHQX is less than tWLQZ for any given device.
7/12
M68Z128W
Figure 8. Write Enable Controlled, Write AC Waveforms
tAVAV
VALID
A0-A16
tAVWH
tWHAX
tAVE1L
E1
tAVE2H
E2
tWLWH
tAVWL
W
tWHQX
tWLQZ
tWHDX
DQ0-DQ7
DATA INPUT
tDVWH
AI00807
Note: Output Enable (G) = Low.
Figure 9. Chip Enable Controlled, Write AC Waveforms (1,2)
tAVAV
A0-A16
VALID
tAVE1H
tAVE1L
tE1LE1H
tE1HAX
E1
tAVE2L
tAVE2H
tE2HE2L
tE2LAX
E2
tAVWL
W
tE1HDX
tE2LDX
DQ0-DQ7
DATA INPUT
tDVE1H
tDVE2L
Note: 1. Output Enable (G) = High.
2. If E1 goes High or E2 goes Low simultaneously with W high, the output remains in a high-impedance state.
8/12
AI00808
M68Z128W
Table 9. Low V CC Data Retention Characteristics
(TA = 0 to 70°C)
Symbol
Parameter
Test Condition
ICCDR (1)
Supply Current (Data Retention)
VCC = 3V, E1 ≥ VCC – 0.2V,
E2 ≤ 0.2V, f = 0
VDR (1)
Supply Voltage (Data Retention)
E1 ≥ VCC – 0.2V, E2 ≤ 0.2V, f = 0
1.4
V
Chip Disable to Power Down
E1 ≥ VCC – 0.2V, E2 ≤ 0.2V, f = 0
0
ns
tAVAV
ns
tCDR
(1,2)
tR (2)
Operation Recovery Time
Min
Typ
Max
Unit
0.01
2
µA
Note: 1. All other Inputs at V IH ≥ VCC – 0.2V or VIL ≤ 0.2V.
2. See Figure 10 for measurement points. Guaranteed but not tested. tAVAV is Read cycle time.
Figure 10. Low VCC Data Retention AC Waveforms
DATA RETENTION MODE
3.6V
VCC
3V
VDR > 1.4V
tCDR
tR
E1 ≥ VDR – 0.2V
E1
2.2V
E2
0.8V
E2 ≤ 0.2V
AI00664
9/12
M68Z128W
Table 10. Ordering Information Scheme
Example:
M68Z128W
-70 N
1
T
Device Type
M68Z
Device Function
128 = 1 Mbit (128Kb x8)
Operating Voltage
W = 3V +0.6/–0.3V
Speed
-70 = 70 ns
Package
N = TSOP32 type 1 (8 x 20mm)
Temperature Range
1 = 0 to 70 °C
Shipping Method
T = Tape & Reel Packing
For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you.
Table 11. Revision History
Date
Revision Details
November 1999
First Issue
03/20/00
TSOP32 Package Mechanical Data changed (Table 12)
10/12
M68Z128W
Table 12. TSOP32 (Type I) - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Mechanical Data
mm
inch
Symbol
Typ
Min
Max
A
Typ
Min
1.200
Max
0.0472
A1
0.050
0.150
0.0020
0.0059
A2
0.950
1.050
0.0374
0.0413
B
0.150
0.270
0.0059
0.0106
C
0.100
0.210
0.0039
0.0083
D
19.800
20.200
0.7795
0.7953
D1
18.300
18.500
0.7205
0.7283
–
–
–
–
E
7.900
8.100
0.3110
0.3189
L
0.500
0.700
0.0197
0.0276
α
0°
5°
0°
5°
e
0.500
CP
0.0197
0.100
N
0.0039
32
32
Figure 11. TSOP32 (Type I) - 32 lead Plastic Thin Small Outline, 8 x 20 mm, Package Outline
A2
1
N
e
E
B
N/2
D1
A
CP
D
DIE
C
TSOP-a
A1
α
L
Drawing is not to scale.
11/12
M68Z128W
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is registered trademark of STMicroelectronics
 2000 STMicroelectronics - All Rights Reserved
All other names are the property of their respective owners.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
12/12