ST72324 8-BIT MCU WITH NESTED INTERRUPTS, FLASH, 10-BIT ADC, 4 TIMERS, SPI, SCI INTERFACE ■ ■ ■ ■ ■ Memories – 8 to 32K dual voltage High Density Flash (HDFlash) or ROM with read-out protection capability. In-Application Programming and InCircuit Programming for HDFlash devices – 384 to 1K bytes RAM – HDFlash endurance: 100 cycles, data retention: 20 years at 55°C Clock, Reset And Supply Management – Enhanced low voltage supervisor (LVD) for main supply with 3 programmable reset thresholds and auxiliary voltage detector (AVD) with interrupt capability – Clock sources: crystal/ceramic resonator oscillators, internal RC oscillator, clock security system and bypass for external clock – PLL for 2x frequency multiplication – Four Power Saving Modes: Halt, Active-Halt, Wait and Slow Interrupt Management – Nested interrupt controller – 10 interrupt vectors plus TRAP and RESET – 9/6 external interrupt lines (on 4 vectors) Up to 32 I/O Ports – 32/24 multifunctional bidirectional I/O lines – 22/17 alternate function lines – 12/10 high sink outputs 4 Timers – Main Clock Controller with: Real time base, Beep and Clock-out capabilities – Configurable watchdog timer – 16-bit Timer A with: 1 input capture, 1 output compare, external clock input, PWM and pulse generator modes – 16-bit Timer B with: 2 input captures, 2 output compares, PWM and pulse generator modes TQFP44 10 x 10 SDIP42 600 mil ■ ■ TQFP32 7x7 SDIP32 400 mil 2 Communication Interfaces – SPI synchronous serial interface – SCI asynchronous serial interface (LIN compatible) 1 Analog Peripheral – 10-bit ADC with up to 12 input pins ■ Instruction Set – 8-bit Data Manipulation – 63 Basic Instructions – 17 main Addressing Modes – 8 x 8 Unsigned Multiply Instruction ■ Development Tools – Full hardware/software development package – In-Circuit Testing capability Device Summary Features Program memory - bytes RAM (stack) - bytes Operating Voltage Temp. Range (ROM) Temp. Range (Flash) Packages ST72324(J/K)6 ST72324(J/K)4 ST72324(J/K)2 32K 16K 8K 1024 (256) 512 (256) 384 (256) 3.8V to 5.5V (low voltage Flash version planned with 3.0 to 3.6V range) up to -40°C to +125°C up to -40°C to +125°C -40°C to +85 °C SDIP42 (JxB), TQFP44 10x10 (JxT),SDIP32 (KxB), TQFP32 7x7 (KxT) Rev. 1.9 August 2003 1/161 1 Table of Contents 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 REGISTER & MEMORY MAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3 4 FLASH PROGRAM MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7 4.3 STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.4 4.3.1 Read-out Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 ICC INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.5 ICP (IN-CIRCUIT PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.6 IAP (IN-APPLICATION PROGRAMMING) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7 RELATED DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.7.1 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5 CENTRAL PROCESSING UNIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 MAIN FEATURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 0 5.3 CPU REGISTERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 6 SUPPLY, RESET AND CLOCK MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.1 PHASE LOCKED LOOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 6.2 MULTI-OSCILLATOR (MO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 6.3 RESET SEQUENCE MANAGER (RSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.2 Asynchronous External RESET pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.3 External Power-On RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.4 Internal Low Voltage Detector (LVD) RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.3.5 Internal Watchdog RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4 SYSTEM INTEGRITY MANAGEMENT (SI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 26 26 26 27 6.4.1 Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.2 Auxiliary Voltage Detector (AVD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.3 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.4.5 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 28 29 29 30 31 31 7.2 MASKING AND PROCESSING FLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 7.3 INTERRUPTS AND LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.4 CONCURRENT & NESTED MANAGEMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 7.5 INTERRUPT REGISTER DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.6 EXTERNAL INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.6.1 I/O Port Interrupt Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) . . . . . . . . . . . . . . . . . . . . . . . 38 8 POWER SAVING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 161 8.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 8.2 SLOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2/161 2 Table of Contents 8.3 WAIT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 8.4 ACTIVE-HALT AND HALT MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 8.4.1 ACTIVE-HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.4.2 HALT MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 I/O PORTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2 42 43 45 45 FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9.2.1 Input Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.2 Output Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.2.3 Alternate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9.3 I/O PORT IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45 45 48 9.4 LOW POWER MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.5 INTERRUPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9.5.1 I/O Port Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 10 ON-CHIP PERIPHERALS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1 WATCHDOG TIMER (WDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 10.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.4 How to Program the Watchdog Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.6 Hardware Watchdog Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.7 Using Halt Mode with the WDG (WDGHALT option) . . . . . . . . . . . . . . . . . . . . . . . 10.1.8 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.1.9 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) . 51 51 51 52 54 54 54 54 54 56 10.2.1 Programmable CPU Clock Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.2 Clock-out Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.3 Real Time Clock Timer (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.4 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.2.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3 16-BIT TIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 56 56 56 57 57 57 59 10.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.6 Summary of Timer modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.3.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4 SERIAL PERIPHERAL INTERFACE (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 59 59 71 71 71 72 78 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Phase and Clock Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Error Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 78 78 82 83 3/161 1 Table of Contents 10.4.6 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.7 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.4.8 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.5 SERIAL COMMUNICATIONS INTERFACE (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 85 86 89 10.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.5.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.5.3 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 10.5.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 10.5.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.5.6 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 10.5.7 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 10.6 10-BIT A/D CONVERTER (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 10.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.2 Main Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.4 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.5 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10.6.6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 INSTRUCTION SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 CPU ADDRESSING MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 103 104 104 104 105 107 107 11.1.1 Inherent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.2 Immediate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.3 Direct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.4 Indexed (No Offset, Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.5 Indirect (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.6 Indirect Indexed (Short, Long) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1.7 Relative mode (Direct, Indirect) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 INSTRUCTION GROUPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 108 108 108 108 109 109 110 12 ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 12.1 PARAMETER CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 12.1.1 Minimum and Maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 113 113 113 113 114 12.2.1 Voltage Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.2 Current Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.3 OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 114 115 115 12.3.1 General Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 12.3.2 General Operating Conditions for low voltage Flash devices (planned) . . . . . . . . 116 12.3.3 Operating Conditions with Low Voltage Detector (LVD) . . . . . . . . . . . . . . . . . . . . 117 12.3.4 Auxiliary Voltage Detector (AVD) Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 12.4 SUPPLY CURRENT CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 161 12.4.1 RUN and SLOW Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 12.4.2 WAIT and SLOW WAIT Modes (Flash devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 120 4/161 1 Table of Contents 12.4.3 RUN and SLOW Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.4 WAIT and SLOW WAIT Modes (ROM devices) . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.5 HALT and ACTIVE-HALT Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.6 Supply and Clock Managers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.4.7 On-Chip Peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5 CLOCK AND TIMING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 121 122 122 123 124 12.5.1 General Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.2 External Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.3 Crystal and Ceramic Resonator Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.4 RC Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.5 Clock Security System (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.5.6 PLL Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.6 MEMORY CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 124 125 127 128 128 129 12.6.1 RAM and Hardware Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 12.6.2 FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 12.7 EMC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 12.7.1 Functional EMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.2 Electro Magnetic Interference (EMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.3 Absolute Electrical Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.7.4 ESD Pin Protection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.8 I/O PORT PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 130 131 133 135 12.8.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 12.8.2 Output Driving Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 12.9 CONTROL PIN CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.9.1 Asynchronous RESET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.9.2 ICCSEL/VPP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.10 TIMER PERIPHERAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.10.116-Bit Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 12.11 COMMUNICATION INTERFACE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . 140 12.11.1SPI - Serial Peripheral Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 12.12 10-BIT ADC CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 12.12.1Analog Power Supply and Reference Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.12.2General PCB Design Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12.12.3ADC Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 PACKAGE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.1 PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 143 144 145 145 13.2 THERMAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 13.3 SOLDERING AND GLUEABILITY INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION . . . . . . . . . . . . . . . 149 14.1 FLASH OPTION BYTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE . . . . 151 14.2.1 Version-Specific Sales Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 14.3 DEVELOPMENT TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 14.3.1 Socket and Emulator Adapter Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 14.4 ST7 APPLICATION NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 15 IMPORTANT NOTES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 5/161 1 Table of Contents 15.1 SILICON IDENTIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.2 ALL FLASH AND ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 15.2.1 External RC option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.2 CSS Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.3 Safe Connection of OSC1/OSC2 Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.4 Unexpected Reset Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.5 Internal RC Oscillator with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.2.6 16-bit Timer PWM Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3 FLASH REV “X” AND ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 157 157 157 157 157 158 15.3.1 Read-out protection with LVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.2 External clock source with PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.3 I/O Port A and F Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.3.4 LVD Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.4 ALL ROM DEVICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 158 158 158 158 15.4.1 AVD not supported . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 15.4.2 Internal RC oscillator operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 16 SUMMARY OF CHANGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 To obtain the most recent version of this datasheet, please check at www.st.com>products>technical literature>datasheet. Please also pay special attention to the Section “IMPORTANT NOTES” on page 157 6/161 1 ST72324 1 INTRODUCTION The ST72324K and ST72324J devices are members of the ST7 microcontroller family. They can be grouped as follows: – The 32-pin ST72324K devices are designed for mid-range applications – The 42/44-pin ST72324J devices target the same range of applications requiring more than 24 I/O ports. All devices are based on a common industrystandard 8-bit core, featuring an enhanced instruc- tion set and are available with FLASH or ROM program memory. Under software control, all devices can be placed in WAIT, SLOW, ACTIVE-HALT or HALT mode, reducing power consumption when the application is in idle or stand-by state. The enhanced instruction set and addressing modes of the ST7 offer both power and flexibility to software developers, enabling the design of highly efficient and compact application code. In addition to standard 8-bit data management, all ST7 microcontrollers feature true bit manipulation, 8x8 unsigned multiplication and indirect addressing modes. Figure 1. Device Block Diagram 8-BIT CORE ALU RESET VPP VSS VDD PROGRAM MEMORY (8K - 60K Bytes) CONTROL RAM (384 - 2048 Bytes) LVD WATCHDOG OSC1 OSC2 OSC PORT F PF7:6,4,2:0 (6 bits on J devices) (5 bits on K devices) TIMER A BEEP ADDRESS AND DATA BUS MCC/RTC/BEEP PORT A PA7:3 (5 bits on J devices) (4 bits on K devices) PORT B PB4:0 (5 bits on J devices) (3 bits on K devices) PORT E PE1:0 (2 bits) PORT C SCI TIMER B PC7:0 (8 bits) PORT D PD5:0 (6 bits on J devices) (2 bits on K devices) SPI 10-BIT ADC VAREF VSSA 7/161 3 ST72324 2 PIN DESCRIPTION PE0 / TDO VDD_2 OSC1 OSC2 VSS_2 RESET VPP / ICCSEL PA7 (HS) PA6 (HS) PA5 (HS) PA4 (HS) Figure 2. 42-Pin SDIP and 44-Pin TQFP Package Pinouts 44 43 42 41 40 39 38 37 36 35 34 1 33 2 32 3 ei0 31 ei2 4 30 5 29 ei3 6 28 7 27 8 26 9 25 ei1 10 24 11 23 12 13 14 15 16 17 18 19 20 21 22 VSS_1 VDD_1 PA3 (HS) PC7 / SS / AIN15 PC6 / SCK / ICCCLK PC5 / MOSI / AIN14 PC4 / MISO / ICCDATA PC3 (HS) / ICAP1_B PC2 (HS) / ICAP2_B PC1 / OCMP1_B / AIN13 PC0 / OCMP2_B / AIN12 AIN5 / PD5 VAREF VSSA MCO / AIN8 / PF0 BEEP / (HS) PF1 (HS) PF2 OCMP1_A / AIN10 / PF4 ICAP1_A / (HS) PF6 EXTCLK_A / (HS) PF7 VDD_0 VSS_0 RDI / PE1 PB0 PB1 PB2 PB3 (HS) PB4 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 AIN3 / PD3 AIN4 / PD4 (HS) PB4 AIN0 / PD0 AIN1 / PD1 AIN2 / PD2 1 2 ei3 ei2 3 4 42 41 PB3 PB2 40 39 PB1 PB0 AIN3 / PD3 5 38 PE1 / RDI AIN4 / PD4 AIN5 / PD5 6 7 37 36 PE0 / TDO VDD_2 VAREF 8 35 34 OSC1 VSSA MCO / AIN8 / PF0 9 10 BEEP / (HS) PF1 11 (HS) PF2 AIN10 / OCMP1_A / PF4 12 13 31 30 VPP / ICCSEL PA7 (HS) 29 28 PA6 (HS) ICAP1_A / (HS) PF6 14 EXTCLK_A / (HS) PF7 AIN12 / OCMP2_B / PC0 15 16 AIN13 / OCMP1_B / PC1 17 ICAP2_B/ (HS) PC2 ICAP1_B / (HS) PC3 18 19 ICCDATA / MISO / PC4 AIN14 / MOSI / PC5 33 32 ei1 27 26 25 ei0 OSC2 VSS_2 RESET PA5 (HS) PA4 (HS) VSS_1 VDD_1 PA3 (HS) 20 24 23 PC7 / SS / AIN15 21 22 PC6 / SCK / ICCCLK (HS) 20mA high sink capability eix associated external interrupt vector 8/161 ST72324 PIN DESCRIPTION (Cont’d) Figure 3. 32-Pin SDIP Package Pinout (HS) PB4 1 ei3 32 ei2 PB3 AIN0 / PD0 2 31 PB0 AIN1 / PD1 3 30 PE1 / RDI VAREF 4 29 PE0 / TDO VSSA 5 28 VDD_2 MCO / AIN8 / PF0 6 27 OSC1 BEEP / (HS) PF1 7 26 OSC2 OCMP1_A / AIN10 / PF4 8 25 VSS_2 ICAP1_A / (HS) PF6 9 24 RESET ei1 EXTCLK_A / (HS) PF7 10 23 VPP / ICCSEL AIN12 / OCMP2_B / PC0 11 22 PA7 (HS) AIN13 / OCMP1_B / PC1 12 21 PA6 (HS) ICAP2_B / (HS) PC2 13 20 PA4 (HS) ICAP1_B / (HS) PC3 14 ICCDATA/ MISO / PC4 AIN14 / MOSI / PC5 19 PA3 (HS) 15 18 PC7 / SS / AIN15 16 17 PC6 / SCK / ICCCLK ei0 (HS) 20mA high sink capability eix associated external interrupt vector PD1 / AIN1 PD0 / AIN0 PB4 (HS) PB3 PB0 PE1 / RDI PE0 / TDO VDD_2 Figure 4. 32-Pin TQFP 7x7 Package Pinout 32 31 30 29 28 27 26 25 24 1 ei3 ei2 23 2 22 3 ei1 21 4 20 5 19 6 18 7 ei0 17 8 9 10 11 12 13 14 15 16 AIN13 / OCMP1_B / PC1 ICAP2_B / (HS) PC2 ICAP1_B / (HS) PC3 ICCDATA / MISO / PC4 AIN14 / MOSI / PC5 ICCCLK / SCK / PC6 AIN15 / SS / PC7 (HS) PA3 VAREF VSSA MCO / AIN8 / PF0 BEEP / (HS) PF1 OCMP1_A / AIN10 / PF4 ICAP1_A / (HS) PF6 EXTCLK_A / (HS) PF7 AIN12 / OCMP2_B / PC0 OSC1 OSC2 VSS_2 RESET VPP / ICCSEL PA7 (HS) PA6 (HS) PA4 (HS) (HS) 20mA high sink capability eix associated external interrupt vector 9/161 ST72324 PIN DESCRIPTION (Cont’d) For external pin connection guidelines, refer to See “ELECTRICAL CHARACTERISTICS” on page 113. Legend / Abbreviations for Table 1: Type: I = input, O = output, S = supply Input level: A = Dedicated analog input In/Output level: C = CMOS 0.3VDD/0.7VDD CT= CMOS 0.3VDD/0.7VDD with input trigger Output level: HS = 20mA high sink (on N-buffer only) Port and control configuration: – Input: float = floating, wpu = weak pull-up, int = interrupt 1), ana = analog – Output: OD = open drain 2), PP = push-pull Refer to “I/O PORTS” on page 45 for more details on the software configuration of the I/O ports. The RESET configuration of each pin is shown in bold. This configuration is valid as long as the device is in reset state. Table 1. Device Pin Description 1 30 1 PB4 (HS)5) I/O CT HS X X X Port B4 7 2 31 2 PD0/AIN0 X X X X X Port D0 ADC Analog Input 0 8 3 32 3 PD1/AIN1 I/O CT I/O CT X X X X X Port D1 ADC Analog Input 1 9 4 PD2/AIN2 X X X X X Port D2 ADC Analog Input 2 10 5 PD3/AIN3 I/O CT I/O CT X X X X X Port D3 ADC Analog Input 3 11 6 PD4/AIN4 I/O CT X X X X X Port D4 ADC Analog Input 4 12 7 PD5/AIN5 I/O CT S X X X X X Port D5 ADC Analog Input 5 13 8 1 4 VAREF 14 9 2 5 VSSA 15 10 3 6 PF0/MCO/AIN8 I/O CT 16 11 4 7 PF1 (HS)/BEEP I/O CT PF2 (HS) I/O CT 17 12 ei3 Alternate Function PP ana int Input wpu Pin Name OD float 6 SDIP32 Output Main function Output (after reset) Input Port SDIP42 Type Level TQFP44 TQFP32 Pin n° Analog Reference Voltage for ADC S Analog Ground Voltage X ei1 HS X ei1 HS X X ei1 X X Port F0 Main clock out (fOSC/2) X X Port F1 Beep signal output X X Port F2 X X Port F4 Timer A OutADC Analog put ComInput 10 pare 1 ADC Analog Input 8 18 13 5 8 PF4/OCMP1_A/ AIN10 I/O CT 19 14 6 9 PF6 (HS)/ICAP1_A I/O CT 20 15 7 10 PF7 (HS)/ EXTCLK_A I/O CT 21 VDD_0 S Digital Main Supply Voltage 22 VSS_0 S Digital Ground Voltage 23 16 8 11 PC0/OCMP2_B/ AIN12 10/161 I/O CT X X HS X X X X Port F6 Timer A Input Capture 1 HS X X X X Port F7 Timer A External Clock Source X X X X X X Port C0 Timer B OutADC Analog put ComInput 12 pare 2 ST72324 X HS X X Port C1 Timer B OutADC Analog put ComInput 13 pare 1 X X X Port C2 Timer B Input Capture 2 X X X X Port C3 Timer B Input Capture 1 X X Port C4 SPI Master In / Slave Out Data ICC Data Input X X Port C5 SPI Master Out / Slave In Data ADC Analog Input 14 X X Port C6 SPI Serial Clock ICC Clock Output X X Port C7 SPI Slave Select (active low) ADC Analog Input 15 X X Port A3 26 19 11 14 PC3 (HS)/ICAP1_B I/O CT I/O CT PC4/MISO/ICCDATA I/O CT X X 28 21 13 16 PC5/MOSI/AIN14 I/O CT X X 29 22 14 17 PC6/SCK/ICCCLK I/O CT X X 30 23 15 18 PC7/SS/AIN15 I/O CT X X 31 24 16 19 PA3 (HS) I/O CT S 27 20 12 15 32 25 VDD_1 33 26 VSS_1 HS X X X X ei0 Digital Main Supply Voltage S Digital Ground Voltage 34 27 17 20 PA4 (HS) I/O CT HS X X X X Port A4 35 28 HS X X X X Port A5 36 29 18 21 PA6 (HS) I/O CT I/O CT HS X T Port A6 1) 37 30 19 22 PA7 (HS) I/O CT HS X T Port A7 1) PA5 (HS) 38 31 20 23 VPP /ICCSEL 39 32 21 24 RESET 40 33 22 25 VSS_2 41 34 23 26 OSC2 Alternate Function PP HS Main function Output (after reset) OD X ana X I/O CT int Output Input wpu 25 18 10 13 PC2 (HS)/ICAP2_B Port float PC1/OCMP1_B/ AIN13 Type SDIP32 TQFP32 SDIP42 TQFP44 24 17 9 12 Pin Name Input Level Pin n° Must be tied low. In the flash programming mode, this pin acts as the programming voltage input VPP. See Section 12.9.2 for more details. High voltage must not be applied to ROM devices. I I/O CT Top priority non maskable interrupt. S Digital Ground Voltage O Resonator oscillator inverter output 42 35 24 27 OSC1 I External clock input or Resonator oscillator inverter input 43 36 25 28 VDD_2 44 37 26 29 PE0/TDO S Digital Main Supply Voltage 1 38 27 30 PE1/RDI 2 39 28 31 PB0 I/O CT X X X X Port E0 SCI Transmit Data Out I/O CT I/O CT X X X X Port E1 SCI Receive Data In X ei2 X X Port B0 X ei2 X X Port B1 X ei2 X X Port B2 X X X Port B3 3 40 PB1 4 41 PB2 I/O CT I/O CT 5 42 29 32 PB3 I/O CT ei2 Notes: 1. In the interrupt input column, “eiX” defines the associated external interrupt vector. If the weak pull-up 11/161 ST72324 column (wpu) is merged with the interrupt column (int), then the I/O configuration is pull-up interrupt input, else the configuration is floating interrupt input. 2. In the open drain output column, “T” defines a true open drain I/O (P-Buffer and protection diode to VDD are not implemented). See See “I/O PORTS” on page 45. and Section 12.8 I/O PORT PIN CHARACTERISTICS for more details. 3. OSC1 and OSC2 pins connect a crystal/ceramic resonator, or an external source to the on-chip oscillator; see Section 1 INTRODUCTION and Section 12.5 CLOCK AND TIMING CHARACTERISTICS for more details. 4. On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption. 5. In ROM devices, there is no weak pull-up on PB4. 12/161 ST72324 3 REGISTER & MEMORY MAP As shown in Figure 5, the MCU is capable of addressing 64K bytes of memories and I/O registers. The available memory locations consist of 128 bytes of register locations, up to 1024 bytes of RAM and up to 32 Kbytes of user program memory. The RAM space includes up to 256 bytes for the stack from 0100h to 01FFh. The highest address bytes contain the user reset and interrupt vectors. IMPORTANT: Memory locations marked as “Reserved” must never be accessed. Accessing a reseved area can have unpredictable effects on the device. Figure 5. Memory Map 0000h 007Fh 0080h HW Registers (see Table 2) 087Fh 0880h Reserved 0FFFh 1000h Program Memory (32K, 16K or 8K) FFFFh Short Addressing RAM (zero page) 00FFh 0100h RAM (1024, 512 or 384 Bytes) FFDFh FFE0h 0080h Interrupt & Reset Vectors (see Table 7) 256 Bytes Stack 01FFh 0200h 16-bit Addressing RAM 027Fh or 047Fh 8000h C000h 32 KBytes 16 KBytes E000h 8 Kbytes FFFFh 13/161 ST72324 Table 2. Hardware Register Map Register Label Block 0000h 0001h 0002h Port A2) PADR PADDR PAOR Port A Data Register Port A Data Direction Register Port A Option Register 00h1) 00h 00h R/W R/W R/W 0003h 0004h 0005h Port B PBDR PBDDR PBOR Port B Data Register Port B Data Direction Register Port B Option Register 00h1) 00h 00h R/W R/W R/W 0006h 0007h 0008h Port C PCDR PCDDR PCOR Port C Data Register Port C Data Direction Register Port C Option Register 00h1) 00h 00h R/W R/W R/W D2) PDDR PDDDR PDOR Port D Data Register Port D Data Direction Register Port D Option Register 00h1) 00h 00h R/W R/W R/W 0009h 000Ah 000Bh Port Register Name Reset Status Address Remarks 000Ch 000Dh 000Eh Port E 2) PEDR PEDDR PEOR Port E Data Register Port E Data Direction Register Port E Option Register 00h1) 00h 00h R/W R/W2) R/W2) 000Fh 0010h 0011h Port F 2) PFDR PFDDR PFOR Port F Data Register Port F Data Direction Register Port F Option Register 00h1) 00h 00h R/W R/W R/W 0012h to 0020h 0021h 0022h 0023h 0024h 0025h 0026h 0027h Reserved Area (15 Bytes) SPI ITC 0028h 0029h FLASH 002Ah WATCHDOG 002Bh 002Ch 002Dh 002Eh to 0030h 14/161 MCC SPIDR SPICR SPICSR SPI Data I/O Register SPI Control Register SPI Control/Status Register xxh 0xh 00h R/W R/W R/W ISPR0 ISPR1 ISPR2 ISPR3 Interrupt Interrupt Interrupt Interrupt FFh FFh FFh FFh R/W R/W R/W R/W EICR External Interrupt Control Register 00h R/W FCSR Flash Control/Status Register 00h R/W WDGCR Watchdog Control Register 7Fh R/W SICSR System Integrity Control/Status Register MCCSR MCCBCR Main Clock Control / Status Register Main Clock Controller: Beep Control Register Software Priority Software Priority Software Priority Software Priority Register 0 Register 1 Register 2 Register 3 Reserved Area (3 Bytes) 000x 000x b R/W 00h 00h R/W R/W ST72324 Address 0031h 0032h 0033h 0034h 0035h 0036h 0037h 0038h 0039h 003Ah 003Bh 003Ch 003Dh 003Eh 003Fh Block TIMER A Register Label TACR2 TACR1 TACSR TAIC1HR TAIC1LR TAOC1HR TAOC1LR TACHR TACLR TAACHR TAACLR TAIC2HR TAIC2LR TAOC2HR TAOC2LR 0040h 0041h 0042h 0043h 0044h 0045h 0046h 0047h 0048h 0049h 004Ah 004Bh 004Ch 004Dh 004Eh 004Fh Register Name Timer A Control Register 2 Timer A Control Register 1 Timer A Control/Status Register5 Timer A Input Capture 1 High Register Timer A Input Capture 1 Low Register Timer A Output Compare 1 High Register Timer A Output Compare 1 Low Register Timer A Counter High Register Timer A Counter Low Register Timer A Alternate Counter High Register Timer A Alternate Counter Low Register Reserved3 Reserved3 Timer A Output Compare 2 High Register Timer A Output Compare 2 Low Register Reset Status Remarks 00h 00h xxx0 x0xx b xxh xxh 80h 00h FFh FCh FFh FCh R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only 80h 00h Write Only4 Write Only4 Reserved Area (1 Byte) TIMER B 0050h 0051h 0052h 0053h 0054h 0055h 0056h 0057h SCI 0070h 0071h 0072h ADC TBCR2 TBCR1 TBCSR TBIC1HR TBIC1LR TBOC1HR TBOC1LR TBCHR TBCLR TBACHR TBACLR TBIC2HR TBIC2LR TBOC2HR TBOC2LR Timer B Control Register 2 Timer B Control Register 1 Timer B Control/Status Register Timer B Input Capture 1 High Register Timer B Input Capture 1 Low Register Timer B Output Compare 1 High Register Timer B Output Compare 1 Low Register Timer B Counter High Register Timer B Counter Low Register Timer B Alternate Counter High Register Timer B Alternate Counter Low Register Timer B Input Capture 2 High Register Timer B Input Capture 2 Low Register Timer B Output Compare 2 High Register Timer B Output Compare 2 Low Register 00h 00h xxxx x0xx b xxh xxh 80h 00h FFh FCh FFh FCh xxh xxh 80h 00h R/W R/W R/W Read Only Read Only R/W R/W Read Only Read Only Read Only Read Only Read Only Read Only R/W R/W SCISR SCIDR SCIBRR SCICR1 SCICR2 SCIERPR C0h xxh 00h x000 0000b 00h 00h --00h Read Only R/W R/W R/W R/W R/W SCIETPR SCI Status Register SCI Data Register SCI Baud Rate Register SCI Control Register 1 SCI Control Register 2 SCI Extended Receive Prescaler Register Reserved area SCI Extended Transmit Prescaler Register ADCCSR ADCDRH ADCDRL Control/Status Register Data High Register Data Low Register 00h 00h 00h R/W Read Only Read Only 0073h 007Fh R/W Reserved Area (13 Bytes) Legend: x=undefined, R/W=read/write 15/161 ST72324 Notes: 1. The contents of the I/O port DR registers are readable only in output configuration. In input configuration, the values of the I/O pins are returned instead of the DR register contents. 2. The bits associated with unavailable pins must always keep their reset value. 3. These registers and the ICF2 and OCF2 flags are not present in the ST72324 but are present in the emulator. For compatibility with the emulator, it is recommended to perform a dummy access (read or write) to the TAIC2LR and TAOC2LR registers to clear the interrupt flags. 4. The registers can be written, but reading them will return undefined values. 5. Bits 2 and 4 of this register (ICF2 and OCF2) are forced by hardware to 0. Consequently, the corresponding interrupts cannot be used. 16/161 ST72324 4 FLASH PROGRAM MEMORY 4.1 Introduction The ST7 dual voltage High Density Flash (HDFlash) is a non-volatile memory that can be electrically erased as a single block or by individual sectors and programmed on a Byte-by-Byte basis using an external VPP supply. The HDFlash devices can be programmed and erased off-board (plugged in a programming tool) or on-board using ICP (In-Circuit Programming) or IAP (In-Application Programming). The array matrix organisation allows each sector to be erased and reprogrammed without affecting other sectors. Depending on the overall Flash memory size in the microcontroller device, there are up to three user sectors (see Table 3). Each of these sectors can be erased independently to avoid unnecessary erasing of the whole Flash memory when only a partial erasing is required. The first two sectors have a fixed size of 4 Kbytes (see Figure 6). They are mapped in the upper part of the ST7 addressing space so the reset and interrupt vectors are located in Sector 0 (F000hFFFFh). Table 3. Sectors available in Flash devices Flash Size (bytes) Available Sectors 4K Sector 0 4.2 Main Features ■ ■ ■ ■ Three Flash programming modes: – Insertion in a programming tool. In this mode, all sectors including option bytes can be programmed or erased. – ICP (In-Circuit Programming). In this mode, all sectors including option bytes can be programmed or erased without removing the device from the application board. – IAP (In-Application Programming) In this mode, all sectors except Sector 0, can be programmed or erased without removing the device from the application board and while the application is running. ICT (In-Circuit Testing) for downloading and executing user application test patterns in RAM Read-out protection against piracy Register Access Security System (RASS) to prevent accidental programming or erasing 4.3 Structure 8K Sectors 0,1 > 8K Sectors 0,1, 2 4.3.1 Read-out Protection Read-out protection, when selected, makes it impossible to extract the memory content from the microcontroller, thus preventing piracy. Even ST cannot access the user code. In flash devices, this protection is removed by reprogramming the option. In this case, the entire program memory is first automatically erased and the device can be reprogrammed. Read-out protection selection depends on the device type: – In Flash devices it is enabled and removed through the FMP_R bit in the option byte. – In ROM devices it is enabled by mask option specified in the Option List. The Flash memory is organised in sectors and can be used for both code and data storage. Figure 6. Memory Map and Sector Address 4K 8K 10K 16K 24K 32K 48K 60K 1000h FLASH MEMORY SIZE 3FFFh 7FFFh 9FFFh SECTOR 2 BFFFh D7FFh DFFFh EFFFh FFFFh 2 Kbytes 8 Kbytes 16 Kbytes 24 Kbytes 40 Kbytes 52 Kbytes 4 Kbytes 4 Kbytes SECTOR 1 SECTOR 0 17/161 ST72324 FLASH PROGRAM MEMORY (Cont’d) – – – – ICCCLK: ICC output serial clock pin ICCDATA: ICC input/output serial data pin ICCSEL/VPP: programming voltage OSC1(or OSCIN): main clock input for external source (optional) – VDD: application board power supply (optional, see Figure 7, Note 3) 4.4 ICC Interface ICC needs a minimum of 4 and up to 6 pins to be connected to the programming tool (see Figure 7). These pins are: – RESET: device reset – VSS: device power supply ground Figure 7. Typical ICC Interface PROGRAMMING TOOL ICC CONNECTOR ICC Cable APPLICATION BOARD OPTIONAL (See Note 3) ICC CONNECTOR HE10 CONNECTOR TYPE OPTIONAL (See Note 4) 9 7 5 3 1 10 8 6 4 2 APPLICATION RESET SOURCE See Note 2 10kΩ Notes: 1. If the ICCCLK or ICCDATA pins are only used as outputs in the application, no signal isolation is necessary. As soon as the Programming Tool is plugged to the board, even if an ICC session is not in progress, the ICCCLK and ICCDATA pins are not available for the application. If they are used as inputs by the application, isolation such as a serial resistor has to implemented in case another device forces the signal. Refer to the Programming Tool documentation for recommended resistor values. 2. During the ICC session, the programming tool must control the RESET pin. This can lead to conflicts between the programming tool and the application reset circuit if it drives more than 5mA at high level (push pull output or pull-up resistor<1K). A schottky diode can be used to isolate the application RESET circuit in this case. When using a classical RC network with R>1K or a reset man- 18/161 ICCDATA ICCCLK ST7 RESET See Note 1 ICCSEL/VPP OSC1 CL1 OSC2 VDD CL2 VSS APPLICATION POWER SUPPLY APPLICATION I/O agement IC with open drain output and pull-up resistor>1K, no additional components are needed. In all cases the user must ensure that no external reset is generated by the application during the ICC session. 3. The use of Pin 7 of the ICC connector depends on the Programming Tool architecture. This pin must be connected when using most ST Programming Tools (it is used to monitor the application power supply). Please refer to the Programming Tool manual. 4. Pin 9 has to be connected to the OSC1 or OSCIN pin of the ST7 when the clock is not available in the application or if the selected clock option is not programmed in the option byte. ST7 devices with multi-oscillator capability need to have OSC2 grounded in this case. ST72324 FLASH PROGRAM MEMORY (Cont’d) 4.5 ICP (In-Circuit Programming) To perform ICP the microcontroller must be switched to ICC (In-Circuit Communication) mode by an external controller or programming tool. Depending on the ICP code downloaded in RAM, Flash memory programming can be fully customized (number of bytes to program, program locations, or selection serial communication interface for downloading). When using an STMicroelectronics or third-party programming tool that supports ICP and the specific microcontroller device, the user needs only to implement the ICP hardware interface on the application board (see Figure 7). For more details on the pin locations, refer to the device pinout description. 4.6 IAP (In-Application Programming) Register Label 0029h FCSR Reset Value 4.7 Related Documentation For details on Flash programming and ICC protocol, refer to the ST7 Flash Programming Reference Manual and to the ST7 ICC Protocol Reference Manual. 4.7.1 Register Description FLASH CONTROL/STATUS REGISTER (FCSR) Read /Write Reset Value: 0000 0000 (00h) 7 This mode uses a BootLoader program previously stored in Sector 0 by the user (in ICP mode or by plugging the device in a programming tool). This mode is fully controlled by user software. This allows it to be adapted to the user application, (user-defined strategy for entering programming mode, choice of communications protocol used to fetch the data to be stored, etc.). For example, it is possible to download code from the SPI, SCI, USB Address (Hex.) or CAN interface and program it in the Flash. IAP mode can be used to program any of the Flash sectors except Sector 0, which is write/erase protected to allow recovery in case errors occur during the programming operation. 0 0 0 0 0 0 0 0 0 This register is reserved for use by Programming Tool software. It controls the Flash programming and erasing operations. Flash Control/Status Register Address and Reset Value 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 19/161 ST72324 5 CENTRAL PROCESSING UNIT 5.1 INTRODUCTION 5.3 CPU REGISTERS This CPU has a full 8-bit architecture and contains six internal registers allowing efficient 8-bit data manipulation. The 6 CPU registers shown in Figure 8 are not present in the memory mapping and are accessed by specific instructions. Accumulator (A) The Accumulator is an 8-bit general purpose register used to hold operands and the results of the arithmetic and logic calculations and to manipulate data. Index Registers (X and Y) These 8-bit registers are used to create effective addresses or as temporary storage areas for data manipulation. (The Cross-Assembler generates a precede instruction (PRE) to indicate that the following instruction refers to the Y register.) The Y register is not affected by the interrupt automatic procedures. Program Counter (PC) The program counter is a 16-bit register containing the address of the next instruction to be executed by the CPU. It is made of two 8-bit registers PCL (Program Counter Low which is the LSB) and PCH (Program Counter High which is the MSB). 5.2 MAIN FEATURES ■ ■ ■ ■ ■ ■ ■ ■ Enable executing 63 basic instructions Fast 8-bit by 8-bit multiply 17 main addressing modes (with indirect addressing mode) Two 8-bit index registers 16-bit stack pointer Low power HALT and WAIT modes Priority maskable hardware interrupts Non-maskable software/hardware interrupts Figure 8. CPU Registers 7 0 ACCUMULATOR RESET VALUE = XXh 7 0 X INDEX REGISTER RESET VALUE = XXh 7 0 Y INDEX REGISTER RESET VALUE = XXh 15 PCH 8 7 PCL 0 PROGRAM COUNTER RESET VALUE = RESET VECTOR @ FFFEh-FFFFh 7 0 1 1 I1 H I0 N Z C CONDITION CODE REGISTER RESET VALUE = 1 1 1 X 1 X X X 15 8 7 0 STACK POINTER RESET VALUE = STACK HIGHER ADDRESS X = Undefined Value 20/161 ST72324 CENTRAL PROCESSING UNIT (Cont’d) Bit 1 = Z Zero. Condition Code Register (CC) Read/Write Reset Value: 111x1xxx 7 1 0 1 I1 H I0 N Z C The 8-bit Condition Code register contains the interrupt masks and four flags representative of the result of the instruction just executed. This register can also be handled by the PUSH and POP instructions. These bits can be individually tested and/or controlled by specific instructions. Arithmetic Management Bits Bit 4 = H Half carry. This bit is set by hardware when a carry occurs between bits 3 and 4 of the ALU during an ADD or ADC instructions. It is reset by hardware during the same instructions. 0: No half carry has occurred. 1: A half carry has occurred. This bit is tested using the JRH or JRNH instruction. The H bit is useful in BCD arithmetic subroutines. Bit 2 = N Negative . This bit is set and cleared by hardware. It is representative of the result sign of the last arithmetic, logical or data manipulation. It’s a copy of the result 7th bit. 0: The result of the last operation is positive or null. 1: The result of the last operation is negative (i.e. the most significant bit is a logic 1). This bit is accessed by the JRMI and JRPL instructions. This bit is set and cleared by hardware. This bit indicates that the result of the last arithmetic, logical or data manipulation is zero. 0: The result of the last operation is different from zero. 1: The result of the last operation is zero. This bit is accessed by the JREQ and JRNE test instructions. Bit 0 = C Carry/borrow. This bit is set and cleared by hardware and software. It indicates an overflow or an underflow has occurred during the last arithmetic operation. 0: No overflow or underflow has occurred. 1: An overflow or underflow has occurred. This bit is driven by the SCF and RCF instructions and tested by the JRC and JRNC instructions. It is also affected by the “bit test and branch”, shift and rotate instructions. Interrupt Management Bits Bit 5,3 = I1, I0 Interrupt The combination of the I1 and I0 bits gives the current interrupt software priority. Interrupt Software Priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable) I1 1 0 0 1 I0 0 1 0 1 These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (IxSPR). They can be also set/ cleared by software with the RIM, SIM, IRET, HALT, WFI and PUSH/POP instructions. See the interrupt management chapter for more details. 21/161 ST72324 CENTRAL PROCESSING UNIT (Cont’d) Stack Pointer (SP) Read/Write Reset Value: 01 FFh 15 0 8 0 0 0 0 0 0 7 SP7 1 0 SP6 SP5 SP4 SP3 SP2 SP1 SP0 The Stack Pointer is a 16-bit register which is always pointing to the next free location in the stack. It is then decremented after data has been pushed onto the stack and incremented before data is popped from the stack (see Figure 9). Since the stack is 256 bytes deep, the 8 most significant bits are forced by hardware. Following an MCU Reset, or after a Reset Stack Pointer instruction (RSP), the Stack Pointer contains its reset value (the SP7 to SP0 bits are set) which is the stack higher address. The least significant byte of the Stack Pointer (called S) can be directly accessed by a LD instruction. Note: When the lower limit is exceeded, the Stack Pointer wraps around to the stack upper limit, without indicating the stack overflow. The previously stored information is then overwritten and therefore lost. The stack also wraps in case of an underflow. The stack is used to save the return address during a subroutine call and the CPU context during an interrupt. The user may also directly manipulate the stack by means of the PUSH and POP instructions. In the case of an interrupt, the PCL is stored at the first location pointed to by the SP. Then the other registers are stored in the next locations as shown in Figure 9. – When an interrupt is received, the SP is decremented and the context is pushed on the stack. – On return from interrupt, the SP is incremented and the context is popped from the stack. A subroutine call occupies two locations and an interrupt five locations in the stack area. Figure 9. Stack Manipulation Example CALL Subroutine PUSH Y Interrupt Event POP Y RET or RSP IRET @ 0100h SP SP CC A CC A X X X PCH PCH PCL PCL PCL PCH PCH PCH PCH PCH PCL PCL PCL PCL PCL Stack Higher Address = 01FFh Stack Lower Address = 0100h 22/161 SP PCH SP @ 01FFh Y CC A SP SP ST72324 6 SUPPLY, RESET AND CLOCK MANAGEMENT 6.1 PHASE LOCKED LOOP The device includes a range of utility features for securing the application in critical situations (for example in case of a power brown-out), and reducing the number of external components. An overview is shown in Figure 11. For more details, refer to dedicated parametric section. If the clock frequency input to the PLL is in the range 2 to 4 MHz, the PLL can be used to multiply the frequency by two to obtain an fOSC2 of 4 to 8 MHz. The PLL is enabled by option byte. If the PLL is disabled, then fOSC2 = fOSC/2. Caution: The PLL is not recommended for applications where timing accuracy is required. See “PLL Characteristics” on page 128. Main features ■ Optional PLL for multiplying the frequency by 2 (not to be used with internal RC oscillator) ■ Reset Sequence Manager (RSM) ■ Multi-Oscillator Clock Management (MO) – 5 Crystal/Ceramic resonator oscillators – 1 Internal RC oscillator ■ System Integrity Management (SI) – Main supply Low voltage detection (LVD) – Auxiliary Voltage detector (AVD) with interrupt capability for monitoring the main supply – Clock Security System (CSS) with Clock Filter and Backup Safe Oscillator (enabled by option byte) Figure 10. PLL Block Diagram PLL x 2 0 /2 1 fOSC fOSC2 PLL OPTION BIT Figure 11. Clock, Reset and Supply Block Diagram SYSTEM INTEGRITY MANAGEMENT CLOCK SECURITY SYSTEM (CSS) OSC2 MULTI- fOSC OSCILLATOR OSC1 (MO) RESET SEQUENCE RESET MANAGER (RSM) fOSC2 PLL (option) CLOCK SAFE FILTER OSC fOSC2 AVD Interrupt Request SICSR AVD AVD LVD 0 IE F RF MAIN CLOCK fCPU CONTROLLER WITH REALTIME CLOCK (MCC/RTC) WATCHDOG TIMER (WDG) 0 CSS CSS WDG IE D RF CSS Interrupt Request LOW VOLTAGE VSS DETECTOR VDD (LVD) AUXILIARY VOLTAGE DETECTOR (AVD) 23/161 ST72324 6.2 MULTI-OSCILLATOR (MO) 24/161 Table 4. ST7 Clock Sources External Clock Hardware Configuration Crystal/Ceramic Resonators External Clock Source In this external clock mode, a clock signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC1 pin while the OSC2 pin is tied to ground. Note: External clock source is not supported with the PLL enabled. Crystal/Ceramic Oscillators This family of oscillators has the advantage of producing a very accurate rate on the main clock of the ST7. The selection within a list of 4 oscillators with different frequency ranges has to be done by option byte in order to reduce consumption (refer to Section 14.1 on page 149 for more details on the frequency ranges). In this mode of the multioscillator, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. The loading capacitance values must be adjusted according to the selected oscillator. These oscillators are not stopped during the RESET phase to avoid losing time in the oscillator start-up phase. Internal RC Oscillator This oscillator allows a low cost solution for the main clock of the ST7 using only an internal resistor and capacitor. Internal RC oscillator mode has the drawback of a lower frequency accuracy and should not be used in applications that require accurate timing. In this mode, the two oscillator pins have to be tied to ground. Internal RC Oscillator The main clock of the ST7 can be generated by three different source types coming from the multioscillator block: ■ an external source ■ 4 crystal or ceramic resonator oscillators ■ an internal high frequency RC oscillator Each oscillator is optimized for a given frequency range in terms of consumption and is selectable through the option byte. The associated hardware configurations are shown in Table 4. Refer to the electrical characteristics section for more details. Caution: The OSC1 and/or OSC2 pins must not be left unconnected. For the purposes of Failure Mode and Effect Analysis, it should be noted that if the OSC1 and/or OSC2 pins are left unconnected, the ST7 main oscillator may start and, in this configuration, could generate an fOSC clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. The product behaviour must therefore be considered undefined when the OSC pins are left unconnected. ST7 OSC1 OSC2 EXTERNAL SOURCE ST7 OSC1 CL1 OSC2 LOAD CAPACITORS ST7 OSC1 OSC2 CL2 ST72324 6.3 RESET SEQUENCE MANAGER (RSM) 6.3.1 Introduction The reset sequence manager includes three RESET sources as shown in Figure 13: ■ External RESET source pulse ■ Internal LVD RESET (Low Voltage Detection) ■ Internal WATCHDOG RESET These sources act on the RESET pin and it is always kept low during the delay phase. The RESET service routine vector is fixed at addresses FFFEh-FFFFh in the ST7 memory map. The basic RESET sequence consists of 3 phases as shown in Figure 12: ■ Active Phase depending on the RESET source ■ 256 or 4096 CPU clock cycle delay (selected by option byte) ■ RESET vector fetch The 256 or 4096 CPU clock cycle delay allows the oscillator to stabilise and ensures that recovery has taken place from the Reset state. The shorter or longer clock cycle delay should be selected by option byte to correspond to the stabilization time of the external oscillator used in the application (see Section 14.1 on page 149). The RESET vector fetch phase duration is 2 clock cycles. Figure 12. RESET Sequence Phases RESET Active Phase INTERNAL RESET 256 or 4096 CLOCK CYCLES FETCH VECTOR 6.3.2 Asynchronous External RESET pin The RESET pin is both an input and an open-drain output with integrated RON weak pull-up resistor. This pull-up has no fixed value but varies in accordance with the input voltage. It can be pulled low by external circuitry to reset the device. See “CONTROL PIN CHARACTERISTICS” on page 138 for more details. A RESET signal originating from an external source must have a duration of at least th(RSTL)in in order to be recognized (see Figure 14). This detection is asynchronous and therefore the MCU can enter reset state even in HALT mode. Figure 13. Reset Block Diagram VDD RON RESET INTERNAL RESET Filter PULSE GENERATOR WATCHDOG RESET LVD RESET 25/161 ST72324 RESET SEQUENCE MANAGER (Cont’d) The RESET pin is an asynchronous signal which plays a major role in EMS performance. In a noisy environment, it is recommended to follow the guidelines mentioned in the electrical characteristics section. If the external RESET pulse is shorter than tw(RSTL)out (see short ext. Reset in Figure 14), the signal on the RESET pin may be stretched. Otherwise the delay will not be applied (see long ext. Reset in Figure 14). Starting from the external RESET pulse recognition, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out. 6.3.3 External Power-On RESET If the LVD is disabled by option byte, to start up the microcontroller correctly, the user must ensure by means of an external reset circuit that the reset signal is held low until VDD is over the minimum level specified for the selected fOSC frequency. (see “OPERATING CONDITIONS” on page 115) A proper reset signal for a slow rising VDD supply can generally be provided by an external RC network connected to the RESET pin. 6.3.4 Internal Low Voltage Detector (LVD) RESET Two different RESET sequences caused by the internal LVD circuitry can be distinguished: ■ Power-On RESET ■ Voltage Drop RESET The device RESET pin acts as an output that is pulled low when VDD<VIT+ (rising edge) or VDD<VIT- (falling edge) as shown in Figure 14. The LVD filters spikes on VDD larger than tg(VDD) to avoid parasitic resets. 6.3.5 Internal Watchdog RESET The RESET sequence generated by a internal Watchdog counter overflow is shown in Figure 14. Starting from the Watchdog counter underflow, the device RESET pin acts as an output that is pulled low during at least tw(RSTL)out. Figure 14. RESET Sequences VDD VIT+(LVD) VIT-(LVD) LVD RESET RUN SHORT EXT. RESET RUN ACTIVE PHASE tw(RSTL)out th(RSTL)in LONG EXT. RESET RUN ACTIVE PHASE ACTIVE PHASE WATCHDOG RESET RUN ACTIVE PHASE RUN tw(RSTL)out tw(RSTL)out th(RSTL)in DELAY EXTERNAL RESET SOURCE RESET PIN WATCHDOG RESET WATCHDOG UNDERFLOW INTERNAL RESET (256 or 4096 TCPU ) VECTOR FETCH 26/161 ST72324 6.4 SYSTEM INTEGRITY MANAGEMENT (SI) The System Integrity Management block contains the Low Voltage Detector (LVD), Auxiliary Voltage Detector (AVD) functions and Clock Security System (CSS). It is managed by the SICSR register. 6.4.1 Low Voltage Detector (LVD) The Low Voltage Detector function (LVD) generates a static reset when the VDD supply voltage is below a VIT- reference value. This means that it secures the power-up as well as the power-down keeping the ST7 in reset. The VIT- reference value for a voltage drop is lower than the VIT+ reference value for power-on in order to avoid a parasitic reset when the MCU starts running and sinks current on the supply (hysteresis). The LVD Reset circuitry generates a reset when VDD is below: – VIT+ when VDD is rising – VIT- when VDD is falling The LVD function is illustrated in Figure 15. The voltage threshold can be configured by option byte to be low, medium or high. Provided the minimum VDD value (guaranteed for the oscillator frequency) is above VIT-, the MCU can only be in two modes: – under full software control – in static safe reset In these conditions, secure operation is always ensured for the application without the need for external reset hardware. During a Low Voltage Detector Reset, the RESET pin is held low, thus permitting the MCU to reset other devices. Notes: The LVD allows the device to be used without any external RESET circuitry. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. The LVD is an optional function which can be selected by option byte. Figure 15. Low Voltage Detector vs Reset VDD Vhys VIT+ VIT- RESET 27/161 ST72324 SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.2 Auxiliary Voltage Detector (AVD) The Voltage Detector function (AVD) is based on an analog comparison between a VIT-(AVD) and VIT+(AVD) reference value and the VDD main supply. The VIT- reference value for falling voltage is lower than the VIT+ reference value for rising voltage in order to avoid parasitic detection (hysteresis). The output of the AVD comparator is directly readable by the application software through a real time status bit (AVDF) in the SICSR register. This bit is read only. Caution: The AVD function is active only if the LVD is enabled through the option byte. 6.4.2.1 Monitoring the VDD Main Supply The AVD voltage threshold value is relative to the selected LVD threshold configured by option byte (see Section 14.1 on page 149). If the AVD interrupt is enabled, an interrupt is generated when the voltage crosses the VIT+(AVD) or VIT-(AVD) threshold (AVDF bit toggles). In the case of a drop in voltage, the AVD interrupt acts as an early warning, allowing software to shut down safely before the LVD resets the microcontroller. See Figure 16. The interrupt on the rising edge is used to inform the application that the VDD warning state is over. If the voltage rise time trv is less than 256 or 4096 CPU cycles (depending on the reset delay selected by option byte), no AVD interrupt will be generated when VIT+(AVD) is reached. If trv is greater than 256 or 4096 cycles then: – If the AVD interrupt is enabled before the VIT+(AVD) threshold is reached, then 2 AVD interrupts will be received: the first when the AVDIE bit is set, and the second when the threshold is reached. – If the AVD interrupt is enabled after the VIT+(AVD) threshold is reached then only one AVD interrupt will occur. Figure 16. Using the AVD to Monitor VDD VDD Early Warning Interrupt (Power has dropped, MCU not not yet in reset) Vhyst VIT+(AVD) VIT-(AVD) VIT+(LVD) VIT-(LVD) AVDF bit trv VOLTAGE RISE TIME 0 1 RESET VALUE 1 0 AVD INTERRUPT REQUEST IF AVDIE bit = 1 INTERRUPT PROCESS LVD RESET 28/161 INTERRUPT PROCESS ST72324 SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.3 Clock Security System (CSS) The Clock Security System (CSS) protects the ST7 against breakdowns, spikes and overfrequencies occurring on the main clock source (fOSC). It is based on a clock filter and a clock detection control with an internal safe oscillator (fSFOSC). Caution: The CSS function is not guaranteed. Refer to Section 15 6.4.3.1 Clock Filter Control The PLL has an integrated glitch filtering capability making it possible to protect the internal clock from overfrequencies created by individual spikes. This feature is available only when the PLL is enabled. If glitches occur on fOSC (for example, due to loose connection or noise), the CSS filters these automatically, so the internal CPU frequency (fCPU) continues deliver a glitch-free signal (see Figure 17). 6.4.3.2 Clock detection Control If the clock signal disappears (due to a broken or disconnected resonator...), the safe oscillator delivers a low frequency clock signal (fSFOSC) which allows the ST7 to perform some rescue operations. Automatically, the ST7 clock source switches back from the safe oscillator (fSFOSC) if the main clock source (fOSC) recovers. When the internal clock (fCPU) is driven by the safe oscillator (fSFOSC), the application software is notified by hardware setting the CSSD bit in the SIC- SR register. An interrupt can be generated if the CSSIE bit has been previously set. These two bits are described in the SICSR register description. 6.4.4 Low Power Modes Mode WAIT HALT Description No effect on SI. CSS and AVD interrupts cause the device to exit from Wait mode. The CRSR register is frozen. The CSS (including the safe oscillator) is disabled until HALT mode is exited. The previous CSS configuration resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET. 6.4.4.1 Interrupts The CSS or AVD interrupt events generate an interrupt if the corresponding Enable Control Bit (CSSIE or AVDIE) is set and the interrupt mask in the CC register is reset (RIM instruction). Interrupt Event Enable Event Control Flag Bit CSS event detection (safe oscillator acti- CSSD vated as main clock) AVD event AVDF Exit from Wait Exit from Halt CSSIE Yes No AVDIE Yes No Figure 17. Clock Filter Function PLL ON Clock Filter Function fOSC2 fCPU Clock Detection Function fOSC2 fSFOSC fCPU 29/161 ST72324 SYSTEM INTEGRITY MANAGEMENT (Cont’d) 6.4.5 Register Description SYSTEM INTEGRITY (SI) CONTROL/STATUS REGISTER (SICSR) Read /Write 1: Clock security system interrupt enabled When the CSS is disabled by OPTION BYTE, the Reset Value: 000x 000x (00h) CSSIE bit has no effect. 7 0 AVD IE AVD F LVD RF 0 CSS IE CSS WDG D RF Bit 6 = AVDIE Voltage Detector interrupt enable This bit is set and cleared by software. It enables an interrupt to be generated when the AVDF flag changes (toggles). The pending interrupt information is automatically cleared when software enters the AVD interrupt routine. 0: AVD interrupt disabled 1: AVD interrupt enabled Bit 5 = AVDF Voltage Detector flag This read-only bit is set and cleared by hardware. If the AVDIE bit is set, an interrupt request is generated when the AVDF bit changes value. Refer to Figure 16 and to Section 6.4.2.1 for additional details. 0: VDD over VIT+(AVD) threshold 1: VDD under VIT-(AVD) threshold Bit 4 = LVDRF LVD reset flag This bit indicates that the last Reset was generated by the LVD block. It is set by hardware (LVD reset) and cleared by software (writing zero). See WDGRF flag description for more details. When the LVD is disabled by OPTION BYTE, the LVDRF bit value is undefined. Bits 3 = Reserved, must be kept cleared. Bit 2 = CSSIE Clock security syst interrupt enable This bit enables the interrupt when a disturbance is detected by the Clock Security System (CSSD bit set). It is set and cleared by software. 0: Clock security system interrupt disabled . 30/161 Bit 1 = CSSD Clock security system detection This bit indicates that the safe oscillator of the Clock Security System block has been selected by hardware due to a disturbance on the main clock signal (fOSC). It is set by hardware and cleared by reading the SICSR register when the original oscillator recovers. 0: Safe oscillator is not active 1: Safe oscillator has been activated When the CSS is disabled by OPTION BYTE, the CSSD bit value is forced to 0. Bit 0 = WDGRF Watchdog reset flag This bit indicates that the last Reset was generated by the Watchdog peripheral. It is set by hardware (watchdog reset) and cleared by software (writing zero) or an LVD Reset (to ensure a stable cleared state of the WDGRF flag when CPU starts). Combined with the LVDRF flag information, the flag description is given by the following table. RESET Sources LVDRF WDGRF External RESET pin Watchdog LVD 0 0 1 0 1 X Application notes The LVDRF flag is not cleared when another RESET type occurs (external or watchdog), the LVDRF flag remains set to keep trace of the original failure. In this case, a watchdog reset can be detected by software while an external reset can not. CAUTION: When the LVD is not activated with the associated option byte, the WDGRF flag can not be used in the application. ST72324 7 INTERRUPTS 7.1 INTRODUCTION The ST7 enhanced interrupt management provides the following features: ■ Hardware interrupts ■ Software interrupt (TRAP) ■ Nested or concurrent interrupt management with flexible interrupt priority and level management: – Up to 4 software programmable nesting levels – Up to 16 interrupt vectors fixed by hardware – 2 non maskable events: RESET, TRAP This interrupt management is based on: – Bit 5 and bit 3 of the CPU CC register (I1:0), – Interrupt software priority registers (ISPRx), – Fixed interrupt vector addresses located at the high addresses of the memory map (FFE0h to FFFFh) sorted by hardware priority order. This enhanced interrupt controller guarantees full upward compatibility with the standard (not nested) ST7 interrupt controller. When an interrupt request has to be serviced: – Normal processing is suspended at the end of the current instruction execution. – The PC, X, A and CC registers are saved onto the stack. – I1 and I0 bits of CC register are set according to the corresponding values in the ISPRx registers of the serviced interrupt vector. – The PC is then loaded with the interrupt vector of the interrupt to service and the first instruction of the interrupt service routine is fetched (refer to “Interrupt Mapping” table for vector addresses). The interrupt service routine should end with the IRET instruction which causes the contents of the saved registers to be recovered from the stack. Note: As a consequence of the IRET instruction, the I1 and I0 bits will be restored from the stack and the program in the previous level will resume. Table 5. Interrupt Software Priority Levels Interrupt software priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable) 7.2 MASKING AND PROCESSING FLOW The interrupt masking is managed by the I1 and I0 bits of the CC register and the ISPRx registers which give the interrupt software priority level of each interrupt vector (see Table 5). The processing flow is shown in Figure 18 Level Low I1 1 0 0 1 High I0 0 1 0 1 Figure 18. Interrupt Processing Flowchart N FETCH NEXT INSTRUCTION Y “IRET” N RESTORE PC, X, A, CC FROM STACK EXECUTE INSTRUCTION Y TRAP Interrupt has the same or a lower software priority than current one THE INTERRUPT STAYS PENDING Y N I1:0 Interrupt has a higher software priority than current one PENDING INTERRUPT RESET STACK PC, X, A, CC LOAD I1:0 FROM INTERRUPT SW REG. LOAD PC FROM INTERRUPT VECTOR 31/161 ST72324 INTERRUPTS (Cont’d) Servicing Pending Interrupts As several interrupts can be pending at the same time, the interrupt to be taken into account is determined by the following two-step process: – the highest software priority interrupt is serviced, – if several interrupts have the same software priority then the interrupt with the highest hardware priority is serviced first. Figure 19 describes this decision process. Figure 19. Priority Decision Process PENDING INTERRUPTS Same SOFTWARE PRIORITY Different HIGHEST SOFTWARE PRIORITY SERVICED HIGHEST HARDWARE PRIORITY SERVICED When an interrupt request is not serviced immediately, it is latched and then processed when its software priority combined with the hardware priority becomes the highest one. Note 1: The hardware priority is exclusive while the software one is not. This allows the previous process to succeed with only one interrupt. Note 2: RESET and TRAP can be considered as having the highest software priority in the decision process. Different Interrupt Vector Sources Two interrupt source types are managed by the ST7 interrupt controller: the non-maskable type (RESET, TRAP) and the maskable type (external or from internal peripherals). Non-Maskable Sources These sources are processed regardless of the state of the I1 and I0 bits of the CC register (see Figure 18). After stacking the PC, X, A and CC registers (except for RESET), the corresponding 32/161 vector is loaded in the PC register and the I1 and I0 bits of the CC are set to disable interrupts (level 3). These sources allow the processor to exit HALT mode. ■ TRAP (Non Maskable Software Interrupt) This software interrupt is serviced when the TRAP instruction is executed. It will be serviced according to the flowchart in Figure 18. ■ RESET The RESET source has the highest priority in the ST7. This means that the first current routine has the highest software priority (level 3) and the highest hardware priority. See the RESET chapter for more details. Maskable Sources Maskable interrupt vector sources can be serviced if the corresponding interrupt is enabled and if its own interrupt software priority (in ISPRx registers) is higher than the one currently being serviced (I1 and I0 in CC register). If any of these two conditions is false, the interrupt is latched and thus remains pending. ■ External Interrupts External interrupts allow the processor to exit from HALT low power mode. External interrupt sensitivity is software selectable through the External Interrupt Control register (EICR). External interrupt triggered on edge will be latched and the interrupt request automatically cleared upon entering the interrupt service routine. If several input pins of a group connected to the same interrupt line are selected simultaneously, these will be logically ORed. ■ Peripheral Interrupts Usually the peripheral interrupts cause the MCU to exit from HALT mode except those mentioned in the “Interrupt Mapping” table. A peripheral interrupt occurs when a specific flag is set in the peripheral status registers and if the corresponding enable bit is set in the peripheral control register. The general sequence for clearing an interrupt is based on an access to the status register followed by a read or write to an associated register. Note: The clearing sequence resets the internal latch. A pending interrupt (i.e. waiting for being serviced) will therefore be lost if the clear sequence is executed. ST72324 INTERRUPTS (Cont’d) 7.3 INTERRUPTS AND LOW POWER MODES 7.4 CONCURRENT & NESTED MANAGEMENT All interrupts allow the processor to exit the WAIT low power mode. On the contrary, only external and other specified interrupts allow the processor to exit from the HALT modes (see column “Exit from HALT” in “Interrupt Mapping” table). When several pending interrupts are present while exiting HALT mode, the first one serviced can only be an interrupt with exit from HALT mode capability and it is selected through the same decision process shown in Figure 19. Note: If an interrupt, that is not able to Exit from HALT mode, is pending with the highest priority when exiting HALT mode, this interrupt is serviced after the first one serviced. The following Figure 20 and Figure 21 show two different interrupt management modes. The first is called concurrent mode and does not allow an interrupt to be interrupted, unlike the nested mode in Figure 21. The interrupt hardware priority is given in this order from the lowest to the highest: MAIN, IT4, IT3, IT2, IT1, IT0. The software priority is given for each interrupt. Warning: A stack overflow may occur without notifying the software of the failure. IT0 TRAP IT3 IT4 IT1 SOFTWARE PRIORITY LEVEL TRAP IT0 IT1 IT1 IT2 IT3 I1 I0 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 3 1 1 USED STACK = 10 BYTES HARDWARE PRIORITY IT2 Figure 20. Concurrent Interrupt Management RIM IT4 MAIN MAIN 11 / 10 3/0 10 IT0 TRAP IT3 IT4 IT1 SOFTWARE PRIORITY LEVEL TRAP IT0 IT1 IT1 IT2 IT2 IT3 I1 I0 3 1 1 3 1 1 2 0 0 1 0 1 3 1 1 3 1 1 RIM IT4 MAIN 11 / 10 IT4 MAIN USED STACK = 20 BYTES HARDWARE PRIORITY IT2 Figure 21. Nested Interrupt Management 3/0 10 33/161 ST72324 INTERRUPTS (Cont’d) 7.5 INTERRUPT REGISTER DESCRIPTION CPU CC REGISTER INTERRUPT BITS Read /Write Reset Value: 111x 1010 (xAh) 7 1 0 1 I1 H I0 N Z Level Low High I1 1 0 0 1 7 C Bit 5, 3 = I1, I0 Software Interrupt Priority These two bits indicate the current interrupt software priority. Interrupt Software Priority Level 0 (main) Level 1 Level 2 Level 3 (= interrupt disable*) INTERRUPT SOFTWARE PRIORITY REGISTERS (ISPRX) Read/Write (bit 7:4 of ISPR3 are read only) Reset Value: 1111 1111 (FFh) I0 0 1 0 1 These two bits are set/cleared by hardware when entering in interrupt. The loaded value is given by the corresponding bits in the interrupt software priority registers (ISPRx). They can be also set/cleared by software with the RIM, SIM, HALT, WFI, IRET and PUSH/POP instructions (see “Interrupt Dedicated Instruction Set” table). *Note: TRAP and RESET events can interrupt a level 3 program. 0 ISPR0 I1_3 I0_3 I1_2 I0_2 I1_1 I0_1 I1_0 I0_0 ISPR1 I1_7 I0_7 I1_6 I0_6 I1_5 I0_5 I1_4 I0_4 ISPR2 I1_11 I0_11 I1_10 I0_10 I1_9 I0_9 I1_8 I0_8 ISPR3 1 1 1 1 I1_13 I0_13 I1_12 I0_12 These four registers contain the interrupt software priority of each interrupt vector. – Each interrupt vector (except RESET and TRAP) has corresponding bits in these registers where its own software priority is stored. This correspondance is shown in the following table. Vector address ISPRx bits FFFBh-FFFAh FFF9h-FFF8h ... FFE1h-FFE0h I1_0 and I0_0 bits* I1_1 and I0_1 bits ... I1_13 and I0_13 bits – Each I1_x and I0_x bit value in the ISPRx registers has the same meaning as the I1 and I0 bits in the CC register. – Level 0 can not be written (I1_x=1, I0_x=0). In this case, the previously stored value is kept. (example: previous=CFh, write=64h, result=44h) The RESET, and TRAP vectors have no software priorities. When one is serviced, the I1 and I0 bits of the CC register are both set. Caution: If the I1_x and I0_x bits are modified while the interrupt x is executed the following behaviour has to be considered: If the interrupt x is still pending (new interrupt or flag not cleared) and the new software priority is higher than the previous one, the interrupt x is re-entered. Otherwise, the software priority stays unchanged up to the next interrupt request (after the IRET of the interrupt x). 34/161 ST72324 INTERRUPTS (Cont’d) Table 6. Dedicated Interrupt Instruction Set Instruction HALT New Description Function/Example Entering Halt mode I1 H 1 I0 N Z C 0 IRET Interrupt routine return Pop CC, A, X, PC JRM Jump if I1:0=11 (level 3) I1:0=11 ? I1 H I0 N Z C JRNM Jump if I1:0<>11 I1:0<>11 ? POP CC Pop CC from the Stack Mem => CC RIM Enable interrupt (level 0 set) Load 10 in I1:0 of CC I1 H I0 N Z C SIM Disable interrupt (level 3 set) Load 11 in I1:0 of CC 1 1 TRAP Software trap Software NMI 1 1 WFI Wait for interrupt 1 0 1 0 Note: During the execution of an interrupt routine, the HALT, POPCC, RIM, SIM and WFI instructions change the current software priority up to the next IRET instruction or one of the previously mentioned instructions. 35/161 ST72324 INTERRUPTS (Cont’d) Table 7. Interrupt Mapping N° Source Block RESET TRAP Register Label Description Reset N/A Software interrupt 0 Priority Order Exit from HALT1) yes FFFEh-FFFFh no FFFCh-FFFDh Not used 1 MCC/RTC CSS 2 ei0 External interrupt port A3..0 3 ei1 External interrupt port F2..0 4 ei2 External interrupt port B3..0 5 ei3 External interrupt port B7..4 7 SPI SPI peripheral interrupts 8 TIMER A 9 TIMER B Address Vector FFFAh-FFFBh Main clock controller time base interrupt Safe oscillator activation interrupt MCCSR SICSR Higher Priority N/A yes FFF8h-FFF9h yes FFF6h-FFF7h yes FFF4h-FFF5h yes FFF2h-FFF3h yes FFF0h-FFF1h SPICSR yes2 FFECh-FFEDh TIMER A peripheral interrupts TASR no FFEAh-FFEBh TIMER B peripheral interrupts TBSR no FFE8h-FFE9h no FFE6h-FFE7h no FFE4h-FFE5h 10 SCI SCI Peripheral interrupts SCISR 11 AVD Auxiliary Voltage detector interrupt SICSR Lower Priority Notes: 1. Valid for HALT mode except for the MCC/RTC or CSS interrupt source which exits from ACTIVE-HALT mode. 2. Exit from HALT possible when SPI is in slave mode. 7.6 EXTERNAL INTERRUPTS 7.6.1 I/O Port Interrupt Sensitivity The external interrupt sensitivity is controlled by the IPA, IPB and ISxx bits of the EICR register (Figure 22). This control allows to have up to 4 fully independent external interrupt source sensitivities. Each external interrupt source can be generated on four (or five) different events on the pin: ■ Falling edge ■ Rising edge ■ Falling and rising edge 36/161 Falling edge and low level Rising edge and high level (only for ei0 and ei2) To guarantee correct functionality, the sensitivity bits in the EICR register can be modified only when the I1 and I0 bits of the CC register are both set to 1 (level 3). This means that interrupts must be disabled before changing sensitivity. The pending interrupts are cleared by writing a different value in the ISx[1:0], IPA or IPB bits of the EICR. ■ ■ ST72324 INTERRUPTS (Cont’d) Figure 22. External Interrupt Control bits PORT A3 INTERRUPT PAOR.3 PADDR.3 EICR IS20 IS21 ei0 INTERRUPT SOURCE SENSITIVITY PA3 CONTROL IPA BIT PORT F [2:0] INTERRUPTS EICR IS20 PFOR.2 PFDDR.2 IS21 SENSITIVITY PF2 CONTROL PORT B [3:0] INTERRUPTS PBOR.3 PBDDR.3 IS10 IS11 SENSITIVITY CONTROL IPB BIT PBOR.7 PBDDR.7 PB7 ei1 INTERRUPT SOURCE EICR PB3 PORT B [7:4] INTERRUPTS PF2 PF1 PF0 PB3 PB2 PB1 PB0 ei2 INTERRUPT SOURCE EICR IS10 IS11 SENSITIVITY CONTROL PB7 PB6 PB5 PB4 ei3 INTERRUPT SOURCE 37/161 ST72324 7.7 EXTERNAL INTERRUPT CONTROL REGISTER (EICR) Bit 4:3 = IS2[1:0] ei0 and ei1 sensitivity The interrupt sensitivity, defined using the IS2[1:0] bits, is applied to the following external interrupts: Read /Write Reset Value: 0000 0000 (00h) 7 IS11 0 IS10 IPB IS21 IS20 IPA 0 0 - ei0 (port A3..0) Bit 7:6 = IS1[1:0] ei2 and ei3 sensitivity The interrupt sensitivity, defined using the IS1[1:0] bits, is applied to the following external interrupts: - ei2 (port B3..0) External Interrupt Sensitivity IS21 IS20 Falling edge & low level Rising edge & high level 0 IPB bit =1 0 1 Rising edge only Falling edge only 1 0 Falling edge only Rising edge only 1 1 IS11 IS10 0 0 Falling edge & low level Rising edge & high level 0 1 Rising edge only Falling edge only 1 0 Falling edge only Rising edge only 1 1 Rising and falling edge Rising and falling edge - ei1 (port F2..0) IS21 IS20 - ei3 (port B4) IS11 IS10 IPA bit =1 0 External Interrupt Sensitivity IPB bit =0 IPA bit =0 External Interrupt Sensitivity 0 0 Falling edge & low level External Interrupt Sensitivity 0 1 Rising edge only 0 0 Falling edge & low level 1 0 Falling edge only 0 1 Rising edge only 1 1 Rising and falling edge 1 0 Falling edge only 1 1 Rising and falling edge These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3). Bit 5 = IPB Interrupt polarity for port B This bit is used to invert the sensitivity of the port B [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion 1: Sensitivity inversion 38/161 These 2 bits can be written only when I1 and I0 of the CC register are both set to 1 (level 3). Bit 2 = IPA Interrupt polarity for port A This bit is used to invert the sensitivity of the port A [3:0] external interrupts. It can be set and cleared by software only when I1 and I0 of the CC register are both set to 1 (level 3). 0: No sensitivity inversion 1: Sensitivity inversion Bits 1:0 = Reserved, must always be kept cleared. ST72324 INTERRUPTS (Cont’d) Table 8. Nested Interrupts Register Map and Reset Values Address (Hex.) Register Label 7 0024h ISPR0 Reset Value I1_3 1 6 5 I0_3 1 I1_2 1 ei1 4 3 I0_2 1 I1_1 1 ei0 ISPR1 Reset Value I1_7 1 0026h ISPR2 Reset Value 0027h ISPR3 Reset Value EICR Reset Value I0_1 1 1 ei3 I0_7 1 I1_6 1 I1_11 1 I0_11 1 1 IS11 0 1 IS10 0 0 1 ei2 I0_6 1 I1_5 1 I1_10 1 I0_10 1 TIMER B I1_9 I0_9 1 1 TIMER A I1_8 I0_8 1 1 1 IPB 0 1 IS21 0 I1_13 1 IS20 0 I1_12 1 I0_12 1 0 0 AVD 0028h 1 MCC + SI SPI 0025h 2 SCI I0_5 1 I0_13 1 IPA 0 I1_4 1 I0_4 1 39/161 ST72324 8 POWER SAVING MODES 8.1 INTRODUCTION 8.2 SLOW MODE To give a large measure of flexibility to the application in terms of power consumption, four main power saving modes are implemented in the ST7 (see Figure 23): SLOW, WAIT (SLOW WAIT), ACTIVE HALT and HALT. After a RESET the normal operating mode is selected by default (RUN mode). This mode drives the device (CPU and embedded peripherals) by means of a master clock which is based on the main oscillator frequency divided or multiplied by 2 (fOSC2). From RUN mode, the different power saving modes may be selected by setting the relevant register bits or by calling the specific ST7 software instruction whose action depends on the oscillator status. This mode has two targets: – To reduce power consumption by decreasing the internal clock in the device, – To adapt the internal clock frequency (fCPU) to the available supply voltage. SLOW mode is controlled by three bits in the MCCSR register: the SMS bit which enables or disables Slow mode and two CPx bits which select the internal slow frequency (fCPU). In this mode, the master clock frequency (fOSC2) can be divided by 2, 4, 8 or 16. The CPU and peripherals are clocked at this lower frequency (fCPU). Note: SLOW-WAIT mode is activated when entering the WAIT mode while the device is already in SLOW mode. Figure 23. Power Saving Mode Transitions Figure 24. SLOW Mode Clock Transitions High fOSC2/2 fOSC2/4 fCPU RUN fOSC2 MCCSR SLOW WAIT CP1:0 00 01 SMS SLOW WAIT NEW SLOW FREQUENCY REQUEST ACTIVE HALT HALT Low POWER CONSUMPTION 40/161 fOSC2 NORMAL RUN MODE REQUEST ST72324 POWER SAVING MODES (Cont’d) 8.3 WAIT MODE WAIT mode places the MCU in a low power consumption mode by stopping the CPU. This power saving mode is selected by calling the ‘WFI’ instruction. All peripherals remain active. During WAIT mode, the I[1:0] bits of the CC register are forced to ‘10’, to enable all interrupts. All other registers and memory remain unchanged. The MCU remains in WAIT mode until an interrupt or RESET occurs, whereupon the Program Counter branches to the starting address of the interrupt or Reset service routine. The MCU will remain in WAIT mode until a Reset or an Interrupt occurs, causing it to wake up. Refer to Figure 25. Figure 25. WAIT Mode Flow-chart WFI INSTRUCTION OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON OFF 10 N RESET Y N INTERRUPT Y OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON OFF ON 10 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON ON XX 1) FETCH RESET VECTOR OR SERVICE INTERRUPT Note: 1. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped. 41/161 ST72324 POWER SAVING MODES (Cont’d) 8.4 ACTIVE-HALT AND HALT MODES ACTIVE-HALT and HALT modes are the two lowest power consumption modes of the MCU. They are both entered by executing the ‘HALT’ instruction. The decision to enter either in ACTIVE-HALT or HALT mode is given by the MCC/RTC interrupt enable flag (OIE bit in MCCSR register). the interrupt occurs (tDELAY = 256 or 4096 tCPU delay depending on option byte). Otherwise, the ST7 enters HALT mode for the remaining tDELAY period. Figure 26. ACTIVE-HALT Timing Overview RUN MCCSR OIE bit Power Saving Mode entered when HALT instruction is executed 0 HALT mode 1 ACTIVE-HALT mode 8.4.1 ACTIVE-HALT MODE ACTIVE-HALT mode is the lowest power consumption mode of the MCU with a real time clock available. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is set (see Section 10.2 on page 56 for more details on the MCCSR register). The MCU can exit ACTIVE-HALT mode on reception of an MCC/RTC interrupt or a RESET. When exiting ACTIVE-HALT mode by means of an MCC/ RTC interrupt, no 256 or 4096 CPU cycle delay occurs. The CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 27). When entering ACTIVE-HALT mode, the I[1:0] bits in the CC register are forced to ‘10b’ to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately. In ACTIVE-HALT mode, only the main oscillator and its associated counter (MCC/RTC) are running to keep a wake-up time base. All other peripherals are not clocked except those which get their clock supply from another clock generator (such as external or auxiliary oscillator). The safeguard against staying locked in ACTIVEHALT mode is provided by the oscillator interrupt. Note: As soon as the interrupt capability of one of the oscillators is selected (MCCSR.OIE bit set), entering ACTIVE-HALT mode while the Watchdog is active does not generate a RESET. This means that the device cannot spend more than a defined delay in this power saving mode. CAUTION: When exiting ACTIVE-HALT mode following an MCC/RTC interrupt, OIE bit of MCCSR register must not be cleared before tDELAY after 42/161 ACTIVE 256 OR 4096 CPU HALT CYCLE DELAY 1) HALT INSTRUCTION [MCCSR.OIE=1] RESET OR INTERRUPT RUN FETCH VECTOR Figure 27. ACTIVE-HALT Mode Flow-chart HALT INSTRUCTION (MCCSR.OIE=1) OSCILLATOR PERIPHERALS 2) CPU I[1:0] BITS N N INTERRUPT 3) Y ON OFF OFF 10 RESET Y OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON OFF ON XX 4) 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON ON XX 4) FETCH RESET VECTOR OR SERVICE INTERRUPT Notes: 1. This delay occurs only if the MCU exits ACTIVEHALT mode by means of a RESET. 2. Peripheral clocked with an external clock source can still be active. 3. Only the MCC/RTC interrupt can exit the MCU from ACTIVE-HALT mode. 4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and restored when the CC register is popped. ST72324 POWER SAVING MODES (Cont’d) 8.4.2 HALT MODE The HALT mode is the lowest power consumption mode of the MCU. It is entered by executing the ‘HALT’ instruction when the OIE bit of the Main Clock Controller Status register (MCCSR) is cleared (see Section 10.2 on page 56 for more details on the MCCSR register). The MCU can exit HALT mode on reception of either a specific interrupt (see Table 7, “Interrupt Mapping,” on page 36) or a RESET. When exiting HALT mode by means of a RESET or an interrupt, the oscillator is immediately turned on and the 256 or 4096 CPU cycle delay is used to stabilize the oscillator. After the start up delay, the CPU resumes operation by servicing the interrupt or by fetching the reset vector which woke it up (see Figure 29). When entering HALT mode, the I[1:0] bits in the CC register are forced to ‘10b’to enable interrupts. Therefore, if an interrupt is pending, the MCU wakes up immediately. In HALT mode, the main oscillator is turned off causing all internal processing to be stopped, including the operation of the on-chip peripherals. All peripherals are not clocked except the ones which get their clock supply from another clock generator (such as an external or auxiliary oscillator). The compatibility of Watchdog operation with HALT mode is configured by the “WDGHALT” option bit of the option byte. The HALT instruction when executed while the Watchdog system is enabled, can generate a Watchdog RESET (see Section 14.1 on page 149 for more details). Figure 29. HALT Mode Flow-chart HALT INSTRUCTION (MCCSR.OIE=0) ENABLE WDGHALT 1) WATCHDOG 0 DISABLE 1 WATCHDOG RESET OSCILLATOR OFF PERIPHERALS 2) OFF CPU OFF I[1:0] BITS 10 N RESET N Y INTERRUPT 3) Y OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON OFF ON XX 4) 256 OR 4096 CPU CLOCK CYCLE DELAY OSCILLATOR PERIPHERALS CPU I[1:0] BITS ON ON ON XX 4) Figure 28. HALT Timing Overview RUN HALT HALT INSTRUCTION [MCCSR.OIE=0] 256 OR 4096 CPU CYCLE DELAY FETCH RESET VECTOR OR SERVICE INTERRUPT RUN RESET OR INTERRUPT FETCH VECTOR Notes: 1. WDGHALT is an option bit. See option byte section for more details. 2. Peripheral clocked with an external clock source can still be active. 3. Only some specific interrupts can exit the MCU from HALT mode (such as external interrupt). Refer to Table 7, “Interrupt Mapping,” on page 36 for more details. 4. Before servicing an interrupt, the CC register is pushed on the stack. The I[1:0] bits of the CC register are set to the current software priority level of the interrupt routine and recovered when the CC register is popped. 43/161 ST72324 POWER SAVING MODES (Cont’d) 8.4.2.1 Halt Mode Recommendations – Make sure that an external event is available to wake up the microcontroller from Halt mode. – When using an external interrupt to wake up the microcontroller, reinitialize the corresponding I/O as “Input Pull-up with Interrupt” before executing the HALT instruction. The main reason for this is that the I/O may be wrongly configured due to external interference or by an unforeseen logical condition. – For the same reason, reinitialize the level sensitiveness of each external interrupt as a precautionary measure. 44/161 – The opcode for the HALT instruction is 0x8E. To avoid an unexpected HALT instruction due to a program counter failure, it is advised to clear all occurrences of the data value 0x8E from memory. For example, avoid defining a constant in ROM with the value 0x8E. – As the HALT instruction clears the interrupt mask in the CC register to allow interrupts, the user may choose to clear all pending interrupt bits before executing the HALT instruction. This avoids entering other peripheral interrupt routines after executing the external interrupt routine corresponding to the wake-up event (reset or external interrupt). ST72324 9 I/O PORTS 9.1 INTRODUCTION The I/O ports offer different functional modes: – transfer of data through digital inputs and outputs and for specific pins: – external interrupt generation – alternate signal input/output for the on-chip peripherals. An I/O port contains up to 8 pins. Each pin can be programmed independently as digital input (with or without interrupt generation) or digital output. 9.2 FUNCTIONAL DESCRIPTION Each port has 2 main registers: – Data Register (DR) – Data Direction Register (DDR) and one optional register: – Option Register (OR) Each I/O pin may be programmed using the corresponding register bits in the DDR and OR registers: bit X corresponding to pin X of the port. The same correspondence is used for the DR register. The following description takes into account the OR register, (for specific ports which do not provide this register refer to the I/O Port Implementation section). The generic I/O block diagram is shown in Figure 30 9.2.1 Input Modes The input configuration is selected by clearing the corresponding DDR register bit. In this case, reading the DR register returns the digital value applied to the external I/O pin. Different input modes can be selected by software through the OR register. Notes: 1. Writing the DR register modifies the latch value but does not affect the pin status. 2. When switching from input to output mode, the DR register has to be written first to drive the correct level on the pin as soon as the port is configured as an output. 3. Do not use read/modify/write instructions (BSET or BRES) to modify the DR register External interrupt function When an I/O is configured as Input with Interrupt, an event on this I/O can generate an external interrupt request to the CPU. Each pin can independently generate an interrupt request. The interrupt sensitivity is independently programmable using the sensitivity bits in the EICR register. Each external interrupt vector is linked to a dedicated group of I/O port pins (see pinout description and interrupt section). If several input pins are selected simultaneously as interrupt sources, these are first detected according to the sensitivity bits in the EICR register and then logically ORed. The external interrupts are hardware interrupts, which means that the request latch (not accessible directly by the application) is automatically cleared when the corresponding interrupt vector is fetched. To clear an unwanted pending interrupt by software, the sensitivity bits in the EICR register must be modified. 9.2.2 Output Modes The output configuration is selected by setting the corresponding DDR register bit. In this case, writing the DR register applies this digital value to the I/O pin through the latch. Then reading the DR register returns the previously stored value. Two different output modes can be selected by software through the OR register: Output push-pull and open-drain. DR register value and output pin status: DR 0 1 Push-pull VSS VDD Open-drain Vss Floating 9.2.3 Alternate Functions When an on-chip peripheral is configured to use a pin, the alternate function is automatically selected. This alternate function takes priority over the standard I/O programming. When the signal is coming from an on-chip peripheral, the I/O pin is automatically configured in output mode (push-pull or open drain according to the peripheral). When the signal is going to an on-chip peripheral, the I/O pin must be configured in input mode. In this case, the pin state is also digitally readable by addressing the DR register. Note: Input pull-up configuration can cause unexpected value at the input of the alternate peripheral input. When an on-chip peripheral use a pin as input and output, this pin has to be configured in input floating mode. 45/161 ST72324 I/O PORTS (Cont’d) Figure 30. I/O Port General Block Diagram ALTERNATE OUTPUT REGISTER ACCESS 1 P-BUFFER (see table below) VDD 0 ALTERNATE ENABLE PULL-UP (see table below) DR VDD DDR PULL-UP CONDITION DATA BUS OR PAD If implemented OR SEL N-BUFFER DIODES (see table below) DDR SEL DR SEL ANALOG INPUT CMOS SCHMITT TRIGGER 1 0 ALTERNATE INPUT EXTERNAL INTERRUPT SOURCE (eix) Table 9. I/O Port Mode Options Configuration Mode Input Output Floating with/without Interrupt Pull-up with/without Interrupt Push-pull Open Drain (logic level) True Open Drain Legend: NI - not implemented Off - implemented not activated On - implemented and activated 46/161 Pull-Up P-Buffer Off On Off Off NI On Off NI Diodes to VDD On to VSS On NI (see note) Note: The diode to VDD is not implemented in the true open drain pads. A local protection between the pad and VSS is implemented to protect the device against positive stress. ST72324 I/O PORTS (Cont’d) Table 10. I/O Port Configurations Hardware Configuration NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS DR REGISTER ACCESS VDD RPU PULL-UP CONDITION DR REGISTER PAD W DATA BUS INPUT 1) R ALTERNATE INPUT EXTERNAL INTERRUPT SOURCE (eix) INTERRUPT CONDITION PUSH-PULL OUTPUT 2) OPEN-DRAIN OUTPUT 2) ANALOG INPUT NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS DR REGISTER ACCESS VDD RPU DR REGISTER PAD ALTERNATE ENABLE NOT IMPLEMENTED IN TRUE OPEN DRAIN I/O PORTS R/W DATA BUS ALTERNATE OUTPUT DR REGISTER ACCESS VDD RPU PAD DR REGISTER ALTERNATE ENABLE R/W DATA BUS ALTERNATE OUTPUT Notes: 1. When the I/O port is in input configuration and the associated alternate function is enabled as an output, reading the DR register will read the alternate function output status. 2. When the I/O port is in output configuration and the associated alternate function is enabled as an input, the alternate function reads the pin status given by the DR register content. 47/161 ST72324 I/O PORTS (Cont’d) CAUTION: The alternate function must not be activated as long as the pin is configured as input with interrupt, in order to avoid generating spurious interrupts. Analog alternate function When the pin is used as an ADC input, the I/O must be configured as floating input. The analog multiplexer (controlled by the ADC registers) switches the analog voltage present on the selected pin to the common analog rail which is connected to the ADC input. It is recommended not to change the voltage level or loading on any port pin while conversion is in progress. Furthermore it is recommended not to have clocking pins located close to a selected analog pin. WARNING: The analog input voltage level must be within the limits stated in the absolute maximum ratings. Figure 31. Interrupt I/O Port State Transitions 01 00 10 11 INPUT floating/pull-up interrupt INPUT floating (reset state) OUTPUT open-drain OUTPUT push-pull XX = DDR, OR 9.4 LOW POWER MODES Mode WAIT HALT Description No effect on I/O ports. External interrupts cause the device to exit from WAIT mode. No effect on I/O ports. External interrupts cause the device to exit from HALT mode. 9.5 INTERRUPTS 9.3 I/O PORT IMPLEMENTATION The hardware implementation on each I/O port depends on the settings in the DDR and OR registers and specific feature of the I/O port such as ADC Input or true open drain. Switching these I/O ports from one state to another should be done in a sequence that prevents unwanted side effects. Recommended safe transitions are illustrated in Figure 31 Other transitions are potentially risky and should be avoided, since they are likely to present unwanted side-effects such as spurious interrupt generation. 48/161 The external interrupt event generates an interrupt if the corresponding configuration is selected with DDR and OR registers and the interrupt mask in the CC register is not active (RIM instruction). Interrupt Event External interrupt on selected external event Enable Event Control Flag Bit - DDRx ORx Exit from Wait Exit from Halt Yes Yes ST72324 I/O PORTS (Cont’d) 9.5.1 I/O Port Implementation The I/O port register configurations are summarised as follows. PA3, PB3, PF2 (without pull-up) MODE floating input floating interrupt input open drain output push-pull output Standard Ports PA5:4, PC7:0, PD5:0, PE1:0, PF7:6, 4 MODE floating input pull-up input open drain output push-pull output DDR 0 0 1 1 OR 0 1 0 1 MODE floating input open drain (high sink ports) DDR 0 0 1 1 OR 0 1 0 1 True Open Drain Ports PA7:6 Interrupt Ports PB4, PB2:0, PF1:0 (with pull-up) MODE floating input pull-up interrupt input open drain output push-pull output DDR 0 0 1 1 DDR 0 1 OR 0 1 0 1 Table 11. Port Configuration Port Pin name Input PA7:6 Port A Output OR = 0 OR = 1 OR = 0 floating OR = 1 true open-drain PA5:4 PA3 floating floating pull-up floating interrupt open drain open drain push-pull push-pull Port B PB3 PB4, PB2:0 floating floating floating interrupt pull-up interrupt open drain open drain push-pull push-pull Port C Port D PC7:0 PD5:0 floating floating pull-up pull-up open drain open drain push-pull push-pull Port E PE1:0 PF7:6, 4 floating floating pull-up pull-up open drain open drain push-pull push-pull Port F PF2 PF1:0 floating floating floating interrupt pull-up interrupt open drain open drain push-pull push-pull 49/161 ST72324 I/O PORTS (Cont’d) Table 12. I/O Port Register Map and Reset Values Address (Hex.) Register Label Reset Value of all I/O port registers 0000h PADR 0001h PADDR 0002h PAOR 0003h PBDR 0004h PBDDR 0005h PBOR 0006h PCDR 0007h PCDDR 0008h PCOR 0009h PDDR 000Ah PDDDR 000Bh PDOR 000Ch PEDR 000Dh PEDDR 000Eh PEOR 000Fh PFDR 0010h PFDDR 0011h PFOR 50/161 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB MSB LSB ST72324 10 ON-CHIP PERIPHERALS 10.1 WATCHDOG TIMER (WDG) 10.1.1 Introduction The Watchdog timer is used to detect the occurrence of a software fault, usually generated by external interference or by unforeseen logical conditions, which causes the application program to abandon its normal sequence. The Watchdog circuit generates an MCU reset on expiry of a programmed time period, unless the program refreshes the counter’s contents before the T6 bit becomes cleared. 10.1.2 Main Features ■ Programmable free-running downcounter ■ Programmable reset ■ Reset (if watchdog activated) when the T6 bit reaches zero ■ Optional reset on HALT instruction (configurable by option byte) ■ Hardware Watchdog selectable by option byte 10.1.3 Functional Description The counter value stored in the Watchdog Control register (WDGCR bits T[6:0]), is decremented every 16384 fOSC2 cycles (approx.), and the length of the timeout period can be programmed by the user in 64 increments. If the watchdog is activated (the WDGA bit is set) and when the 7-bit timer (bits T[6:0]) rolls over from 40h to 3Fh (T6 becomes cleared), it initiates a reset cycle pulling low the reset pin for typically 500ns. The application program must write in the WDGCR register at regular intervals during normal operation to prevent an MCU reset. This downcounter is free-running: it counts down even if the watchdog is disabled. The value to be stored in the WDGCR register must be between FFh and C0h: – The WDGA bit is set (watchdog enabled) – The T6 bit is set to prevent generating an immediate reset – The T[5:0] bits contain the number of increments which represents the time delay before the watchdog produces a reset (see Figure 33. Approximate Timeout Duration). The timing varies between a minimum and a maximum value due to the unknown status of the prescaler when writing to the WDGCR register (see Figure 34). Following a reset, the watchdog is disabled. Once activated it cannot be disabled, except by a reset. The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is cleared). If the watchdog is activated, the HALT instruction will generate a Reset. Figure 32. Watchdog Block Diagram RESET fOSC2 MCC/RTC WATCHDOG CONTROL REGISTER (WDGCR) DIV 64 WDGA T6 T5 T4 T3 T2 T1 T0 6-BIT DOWNCOUNTER (CNT) 12-BIT MCC RTC COUNTER MSB 11 LSB 6 5 0 TB[1:0] bits (MCCSR Register) WDG PRESCALER DIV 4 51/161 ST72324 WATCHDOG TIMER (Cont’d) 10.1.4 How to Program the Watchdog Timeout Figure 33 shows the linear relationship between the 6-bit value to be loaded in the Watchdog Counter (CNT) and the resulting timeout duration in milliseconds. This can be used for a quick calculation without taking the timing variations into account. If more precision is needed, use the formulae in Figure 34. Caution: When writing to the WDGCR register, always write 1 in the T6 bit to avoid generating an immediate reset. Figure 33. Approximate Timeout Duration 3F 38 CNT Value (hex.) 30 28 20 18 10 08 00 1.5 18 34 50 65 82 Watchdog timeout (ms) @ 8 MHz. fOSC2 52/161 98 114 128 ST72324 WATCHDOG TIMER (Cont’d) Figure 34. Exact Timeout Duration (tmin and tmax) WHERE: tmin0 = (LSB + 128) x 64 x tOSC2 tmax0 = 16384 x tOSC2 tOSC2 = 125ns if fOSC2=8 MHz CNT = Value of T[5:0] bits in the WDGCR register (6 bits) MSB and LSB are values from the table below depending on the timebase selected by the TB[1:0] bits in the MCCSR register TB1 Bit TB0 Bit (MCCSR Reg.) (MCCSR Reg.) 0 0 0 1 1 0 1 1 Selected MCCSR Timebase MSB LSB 2ms 4ms 10ms 25ms 4 8 20 49 59 53 35 54 To calculate the minimum Watchdog Timeout (tmin): IF CNT < MSB ------------4 THEN tm in = tmin0 + 16384 × CNT × t osc2 CNT ELSE t min = tmin0 + 16384 × CN T – 4---------------MSB + ( 192 + LS B) × 64 × ----------------- 4CNT MSB × t osc2 4CNT + ( 192 + LSB ) × 64 × ----------------- × t osc2 To calculate the maximum Watchdog Timeout (tmax): IF CNT ≤ MSB ------------4 THEN t ma x = tmax0 + 16384 × C NT × tosc2 ELSE t max = tmax0 + 16384 × C NT – 4CNT ---------------- MSB MSB Note: In the above formulae, division results must be rounded down to the next integer value. Example: With 2ms timeout selected in MCCSR register Value of T[5:0] Bits in WDGCR Register (Hex.) 00 3F Min. Watchdog Timeout (ms) tmin 1.496 128 Max. Watchdog Timeout (ms) tmax 2.048 128.552 53/161 ST72324 WATCHDOG TIMER (Cont’d) 10.1.5 Low Power Modes Mode SLOW WAIT Description No effect on Watchdog. No effect on Watchdog. OIE bit in MCCSR register WDGHALT bit in Option Byte 0 0 0 1 1 x HALT No Watchdog reset is generated. The MCU enters Halt mode. The Watchdog counter is decremented once and then stops counting and is no longer able to generate a watchdog reset until the MCU receives an external interrupt or a reset. If an external interrupt is received, the Watchdog restarts counting after 256 or 4096 CPU clocks. If a reset is generated, the Watchdog is disabled (reset state) unless Hardware Watchdog is selected by option byte. For application recommendations see Section 10.1.7 below. A reset is generated. No reset is generated. The MCU enters Active Halt mode. The Watchdog counter is not decremented. It stop counting. When the MCU receives an oscillator interrupt or external interrupt, the Watchdog restarts counting immediately. When the MCU receives a reset the Watchdog restarts counting after 256 or 4096 CPU clocks. 10.1.6 Hardware Watchdog Option If Hardware Watchdog is selected by option byte, the watchdog is always active and the WDGA bit in the WDGCR is not used. Refer to the Option Byte description. 10.1.7 Using Halt Mode with the WDG (WDGHALT option) The following recommendation applies if Halt mode is used when the watchdog is enabled. – Before executing the HALT instruction, refresh the WDG counter, to avoid an unexpected WDG reset immediately after waking up the microcontroller. 10.1.8 Interrupts None. 54/161 10.1.9 Register Description CONTROL REGISTER (WDGCR) Read /Write Reset Value: 0111 1111 (7Fh) 7 WDGA 0 T6 T5 T4 T3 T2 T1 T0 Bit 7 = WDGA Activation bit. This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the watchdog can generate a reset. 0: Watchdog disabled 1: Watchdog enabled Note: This bit is not used if the hardware watchdog option is enabled by option byte. Bit 6:0 = T[6:0] 7-bit counter (MSB to LSB). These bits contain the value of the watchdog counter. It is decremented every 16384 fOSC2 cycles (approx.). A reset is produced when it rolls over from 40h to 3Fh (T6 becomes cleared). ST72324 Table 13. Watchdog Timer Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 002Ah WDGCR Reset Value WDGA 0 T6 1 T5 1 T4 1 T3 1 T2 1 T1 1 T0 1 55/161 ST72324 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) The Main Clock Controller consists of three different functions: ■ a programmable CPU clock prescaler ■ a clock-out signal to supply external devices ■ a real time clock timer with interrupt capability Each function can be used independently and simultaneously. 10.2.1 Programmable CPU Clock Prescaler The programmable CPU clock prescaler supplies the clock for the ST7 CPU and its internal peripherals. It manages SLOW power saving mode (See Section 8.2 SLOW MODE for more details). The prescaler selects the fCPU main clock frequency and is controlled by three bits in the MCCSR register: CP[1:0] and SMS. 10.2.2 Clock-out Capability The clock-out capability is an alternate function of an I/O port pin that outputs a f OSC2 clock to drive external devices. It is controlled by the MCO bit in the MCCSR register. CAUTION: When selected, the clock out pin suspends the clock during ACTIVE-HALT mode. 10.2.3 Real Time Clock Timer (RTC) The counter of the real time clock timer allows an interrupt to be generated based on an accurate real time clock. Four different time bases depending directly on fOSC2 are available. The whole functionality is controlled by four bits of the MCCSR register: TB[1:0], OIE and OIF. When the RTC interrupt is enabled (OIE bit set), the ST7 enters ACTIVE-HALT mode when the HALT instruction is executed. See Section 8.4 ACTIVE-HALT AND HALT MODES for more details. 10.2.4 Beeper The beep function is controlled by the MCCBCR register. It can output three selectable frequencies on the BEEP pin (I/O port alternate function). Figure 35. Main Clock Controller (MCC/RTC) Block Diagram BC1 BC0 MCCBCR BEEP BEEP SIGNAL SELECTION MCO 12-BIT MCC RTC COUNTER DIV 64 MCO CP1 CP0 SMS TB1 TB0 MCCSR fOSC2 DIV 2, 4, 8, 16 OIF MCC/RTC INTERRUPT 1 0 56/161 OIE TO WATCHDOG TIMER fCPU CPU CLOCK TO CPU AND PERIPHERALS ST72324 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont’d) 10.2.5 Low Power Modes Mode WAIT ACTIVEHALT HALT Description No effect on MCC/RTC peripheral. MCC/RTC interrupt cause the device to exit from WAIT mode. No effect on MCC/RTC counter (OIE bit is set), the registers are frozen. MCC/RTC interrupt cause the device to exit from ACTIVE-HALT mode. MCC/RTC counter and registers are frozen. MCC/RTC operation resumes when the MCU is woken up by an interrupt with “exit from HALT” capability. 10.2.6 Interrupts The MCC/RTC interrupt event generates an interrupt if the OIE bit of the MCCSR register is set and the interrupt mask in the CC register is not active (RIM instruction). Interrupt Event Time base overflow event Enable Event Control Flag Bit OIF OIE Exit from Wait Exit from Halt Yes No 1) Note: The MCC/RTC interrupt wakes up the MCU from ACTIVE-HALT mode, not from HALT mode. 10.2.7 Register Description MCC CONTROL/STATUS REGISTER (MCCSR) Read /Write Reset Value: 0000 0000 (00h ) 7 MCO 0 CP1 CP0 SMS TB1 TB0 OIE Bit 6:5 = CP[1:0] CPU clock prescaler These bits select the CPU clock prescaler which is applied in the different slow modes. Their action is conditioned by the setting of the SMS bit. These two bits are set and cleared by software fCPU in SLOW mode CP1 CP0 fOSC2 / 2 0 0 fOSC2 / 4 0 1 fOSC2 / 8 1 0 fOSC2 / 16 1 1 Bit 4 = SMS Slow mode select This bit is set and cleared by software. 0: Normal mode. fCPU = fOSC2 1: Slow mode. fCPU is given by CP1, CP0 See Section 8.2 SLOW MODE and Section 10.2 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK AND BEEPER (MCC/RTC) for more details. Bit 3:2 = TB[1:0] Time base control These bits select the programmable divider time base. They are set and cleared by software. Time Base Counter Prescaler f OSC2 =4MHz fOSC2=8MHz TB1 TB0 16000 4ms 2ms 0 0 32000 8ms 4ms 0 1 80000 20ms 10ms 1 0 200000 50ms 25ms 1 1 A modification of the time base is taken into account at the end of the current period (previously set) to avoid an unwanted time shift. This allows to use this time base as a real time clock. OIF Bit 7 = MCO Main clock out selection This bit enables the MCO alternate function on the PF0 I/O port. It is set and cleared by software. 0: MCO alternate function disabled (I/O pin free for general-purpose I/O) 1: MCO alternate function enabled (fCPU on I/O port) Note: To reduce power consumption, the MCO function is not active in ACTIVE-HALT mode. Bit 1 = OIE Oscillator interrupt enable This bit set and cleared by software. 0: Oscillator interrupt disabled 1: Oscillator interrupt enabled This interrupt can be used to exit from ACTIVEHALT mode. When this bit is set, calling the ST7 software HALT instruction enters the ACTIVE-HALT power saving mode. 57/161 ST72324 MAIN CLOCK CONTROLLER WITH REAL TIME CLOCK (Cont’d) Bit 0 = OIF Oscillator interrupt flag This bit is set by hardware and cleared by software reading the MCCSR register. It indicates when set that the main oscillator has reached the selected elapsed time (TB1:0). 0: Timeout not reached 1: Timeout reached CAUTION: The BRES and BSET instructions must not be used on the MCCSR register to avoid unintentionally clearing the OIF bit. MCC BEEP CONTROL REGISTER (MCCBCR) Read /Write Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 BC1 BC0 Bit 7:2 = Reserved, must be kept cleared. Bit 1:0 = BC[1:0] Beep control These 2 bits select the PF1 pin beep capability. BC1 BC0 Beep mode with fOSC2=8MHz 0 0 Off 0 1 ~2-KHz 1 0 ~1-KHz 1 1 ~500-Hz Output Beep signal ~50% duty cycle The beep output signal is available in ACTIVEHALT mode but has to be disabled to reduce the consumption. Table 14. Main Clock Controller Register Map and Reset Values Address (Hex.) 002Bh 002Ch 002Dh 58/161 Register Label SICSR Reset Value MCCSR Reset Value MCCBCR Reset Value 7 6 5 4 3 2 1 0 0 MCO 0 AVDIE 0 CP1 0 AVDF 0 CP0 0 LVDRF x SMS 0 0 TB1 0 CSSIE 0 TB0 0 0 0 0 0 0 0 CSSD 0 OIE 0 BC1 0 WDGRF x OIF 0 BC0 0 ST72324 10.3 16-BIT TIMER 10.3.1 Introduction The timer consists of a 16-bit free-running counter driven by a programmable prescaler. It may be used for a variety of purposes, including pulse length measurement of up to two input signals (input capture) or generation of up to two output waveforms (output compare and PWM). Pulse lengths and waveform periods can be modulated from a few microseconds to several milliseconds using the timer prescaler and the CPU clock prescaler. Some ST7 devices have two on-chip 16-bit timers. They are completely independent, and do not share any resources. They are synchronized after a MCU reset as long as the timer clock frequencies are not modified. This description covers one or two 16-bit timers. In ST7 devices with two timers, register names are prefixed with TA (Timer A) or TB (Timer B). 10.3.2 Main Features ■ Programmable prescaler: fCPU divided by 2, 4 or 8. ■ Overflow status flag and maskable interrupt ■ External clock input (must be at least 4 times slower than the CPU clock speed) with the choice of active edge ■ 1 or 2 Output Compare functions each with: – 2 dedicated 16-bit registers – 2 dedicated programmable signals – 2 dedicated status flags – 1 dedicated maskable interrupt ■ 1 or 2 Input Capture functions each with: – 2 dedicated 16-bit registers – 2 dedicated active edge selection signals – 2 dedicated status flags – 1 dedicated maskable interrupt ■ Pulse width modulation mode (PWM) ■ One pulse mode ■ Reduced Power Mode ■ 5 alternate functions on I/O ports (ICAP1, ICAP2, OCMP1, OCMP2, EXTCLK)* The Block Diagram is shown in Figure 36. *Note: Some timer pins may not available (not bonded) in some ST7 devices. Refer to the device pin out description. When reading an input signal on a non-bonded pin, the value will always be ‘1’. 10.3.3 Functional Description 10.3.3.1 Counter The main block of the Programmable Timer is a 16-bit free running upcounter and its associated 16-bit registers. The 16-bit registers are made up of two 8-bit registers called high & low. Counter Register (CR): – Counter High Register (CHR) is the most significant byte (MS Byte). – Counter Low Register (CLR) is the least significant byte (LS Byte). Alternate Counter Register (ACR) – Alternate Counter High Register (ACHR) is the most significant byte (MS Byte). – Alternate Counter Low Register (ACLR) is the least significant byte (LS Byte). These two read-only 16-bit registers contain the same value but with the difference that reading the ACLR register does not clear the TOF bit (Timer overflow flag), located in the Status register, (SR), (see note at the end of paragraph titled 16-bit read sequence). Writing in the CLR register or ACLR register resets the free running counter to the FFFCh value. Both counters have a reset value of FFFCh (this is the only value which is reloaded in the 16-bit timer). The reset value of both counters is also FFFCh in One Pulse mode and PWM mode. The timer clock depends on the clock control bits of the CR2 register, as illustrated in Table 15 Clock Control Bits. The value in the counter register repeats every 131072, 262144 or 524288 CPU clock cycles depending on the CC[1:0] bits. The timer frequency can be fCPU/2, fCPU/4, fCPU/8 or an external frequency. Caution: Timer A functionality has the following restrictions: – TAOC2HR and TAOC2LR registers are write only – Input Capture 2 is not implemented – The corresponding interrupts cannot be used (ICF2, OCF2 forced by hardware to zero) 59/161 ST72324 16-BIT TIMER (Cont’d) Figure 36. Timer Block Diagram ST7 INTERNAL BUS fCPU MCU-PERIPHERAL INTERFACE 8 low 8 8 8 low 8 high 8 low 8 high EXEDG 8 low high 8 high 8-bit buffer low 8 high 16 1/2 1/4 1/8 OUTPUT COMPARE REGISTER 2 OUTPUT COMPARE REGISTER 1 COUNTER REGISTER ALTERNATE COUNTER REGISTER EXTCLK pin INPUT CAPTURE REGISTER 1 INPUT CAPTURE REGISTER 2 16 16 16 CC[1:0] TIMER INTERNAL BUS 16 16 OVERFLOW DETECT CIRCUIT OUTPUT COMPARE CIRCUIT 6 ICF1 OCF1 TOF ICF2 OCF2 TIMD 0 EDGE DETECT CIRCUIT1 ICAP1 pin EDGE DETECT CIRCUIT2 ICAP2 pin LATCH1 OCMP1 pin LATCH2 OCMP2 pin 0 (Control/Status Register) CSR ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1 (Control Register 1) CR1 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG (Control Register 2) CR2 (See note) TIMER INTERRUPT 60/161 Note: If IC, OC and TO interrupt requests have separate vectors then the last OR is not present (See device Interrupt Vector Table) ST72324 16-BIT TIMER (Cont’d) 16-bit read sequence: (from either the Counter Register or the Alternate Counter Register). Beginning of the sequence At t0 Read MS Byte LS Byte is buffered Other instructions Read At t0 +∆t LS Byte Returns the buffered LS Byte value at t0 Sequence completed The user must read the MS Byte first, then the LS Byte value is buffered automatically. This buffered value remains unchanged until the 16-bit read sequence is completed, even if the user reads the MS Byte several times. After a complete reading sequence, if only the CLR register or ACLR register are read, they return the LS Byte of the count value at the time of the read. Whatever the timer mode used (input capture, output compare, one pulse mode or PWM mode) an overflow occurs when the counter rolls over from FFFFh to 0000h then: – The TOF bit of the SR register is set. – A timer interrupt is generated if: – TOIE bit of the CR1 register is set and – I bit of the CC register is cleared. If one of these conditions is false, the interrupt remains pending to be issued as soon as they are both true. Clearing the overflow interrupt request is done in two steps: 1. Reading the SR register while the TOF bit is set. 2. An access (read or write) to the CLR register. Notes: The TOF bit is not cleared by accesses to ACLR register. The advantage of accessing the ACLR register rather than the CLR register is that it allows simultaneous use of the overflow function and reading the free running counter at random times (for example, to measure elapsed time) without the risk of clearing the TOF bit erroneously. The timer is not affected by WAIT mode. In HALT mode, the counter stops counting until the mode is exited. Counting then resumes from the previous count (MCU awakened by an interrupt) or from the reset count (MCU awakened by a Reset). 10.3.3.2 External Clock The external clock (where available) is selected if CC0=1 and CC1=1 in the CR2 register. The status of the EXEDG bit in the CR2 register determines the type of level transition on the external clock pin EXTCLK that will trigger the free running counter. The counter is synchronized with the falling edge of the internal CPU clock. A minimum of four falling edges of the CPU clock must occur between two consecutive active edges of the external clock; thus the external clock frequency must be less than a quarter of the CPU clock frequency. 61/161 ST72324 16-BIT TIMER (Cont’d) Figure 37. Counter Timing Diagram, internal clock divided by 2 CPU CLOCK INTERNAL RESET TIMER CLOCK FFFD FFFE FFFF 0000 COUNTER REGISTER 0001 0002 0003 TIMER OVERFLOW FLAG (TOF) Figure 38. Counter Timing Diagram, internal clock divided by 4 CPU CLOCK INTERNAL RESET TIMER CLOCK COUNTER REGISTER FFFC FFFD 0000 0001 TIMER OVERFLOW FLAG (TOF) Figure 39. Counter Timing Diagram, internal clock divided by 8 CPU CLOCK INTERNAL RESET TIMER CLOCK COUNTER REGISTER FFFC FFFD 0000 TIMER OVERFLOW FLAG (TOF) Note: The MCU is in reset state when the internal reset signal is high, when it is low the MCU is running. 62/161 ST72324 16-BIT TIMER (Cont’d) 10.3.3.3 Input Capture In this section, the index, i, may be 1 or 2 because there are 2 input capture functions in the 16-bit timer. The two 16-bit input capture registers (IC1R and IC2R) are used to latch the value of the free running counter after a transition is detected on the ICAPi pin (see figure 5). ICiR MS Byte ICiHR LS Byte ICiLR ICiR register is a read-only register. The active transition is software programmable through the IEDGi bit of Control Registers (CRi). Timing resolution is one count of the free running counter: (fCPU/CC[1:0]). Procedure: To use the input capture function select the following in the CR2 register: – Select the timer clock (CC[1:0]) (see Table 15 Clock Control Bits). – Select the edge of the active transition on the ICAP2 pin with the IEDG2 bit (the ICAP2 pin must be configured as floating input or input with pull-up without interrupt if this configuration is available). And select the following in the CR1 register: – Set the ICIE bit to generate an interrupt after an input capture coming from either the ICAP1 pin or the ICAP2 pin – Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1pin must be configured as floating input or input with pullup without interrupt if this configuration is available). When an input capture occurs: – ICFi bit is set. – The IC iR register contains the value of the free running counter on the active transition on the ICAPi pin (see Figure 41). – A timer interrupt is generated if the ICIE bit is set and the I bit is cleared in the CC register. Otherwise, the interrupt remains pending until both conditions become true. Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps: 1. Reading the SR register while the ICFi bit is set. 2. An access (read or write) to the ICiLR register. Notes: 1. After reading the ICiHR register, transfer of input capture data is inhibited and ICFi will never be set until the ICiLR register is also read. 2. The ICiR register contains the free running counter value which corresponds to the most recent input capture. 3. The 2 input capture functions can be used together even if the timer also uses the 2 output compare functions. 4. In One pulse Mode and PWM mode only Input Capture 2 can be used. 5. The alternate inputs (ICAP1 & ICAP2) are always directly connected to the timer. So any transitions on these pins activates the input capture function. Moreover if one of the ICAPi pins is configured as an input and the second one as an output, an interrupt can be generated if the user toggles the output pin and if the ICIE bit is set. This can be avoided if the input capture function i is disabled by reading the IC iHR (see note 1). 6. The TOF bit can be used with interrupt generation in order to measure events that go beyond the timer range (FFFFh). 7. The ICAP2 registers (TAIC2HR, TAIC2LR) are not available on Timer A. The corresponding interrupts cannot be used (ICF2 is forced by hardware to 0). 63/161 ST72324 16-BIT TIMER (Cont’d) Figure 40. Input Capture Block Diagram ICAP1 pin ICAP2 pin (Control Register 1) CR1 EDGE DETECT CIRCUIT2 EDGE DETECT CIRCUIT1 ICIE IEDG1 (Status Register) SR IC2R Register IC1R Register ICF1 ICF2 0 16-BIT FREE RUNNING COUNTER CC1 CC0 IEDG2 Figure 41. Input Capture Timing Diagram TIMER CLOCK FF01 FF02 FF03 ICAPi PIN ICAPi FLAG ICAPi REGISTER Note: The rising edge is the active edge. 64/161 0 (Control Register 2) CR2 16-BIT COUNTER REGISTER 0 FF03 ST72324 16-BIT TIMER (Cont’d) 10.3.3.4 Output Compare In this section, the index, i, may be 1 or 2 because there are 2 output compare functions in the 16-bit timer. This function can be used to control an output waveform or indicate when a period of time has elapsed. When a match is found between the Output Compare register and the free running counter, the output compare function: – Assigns pins with a programmable value if the OCiE bit is set – Sets a flag in the status register – Generates an interrupt if enabled Two 16-bit registers Output Compare Register 1 (OC1R) and Output Compare Register 2 (OC2R) contain the value to be compared to the counter register each timer clock cycle. OCiR MS Byte OCiHR LS Byte OCiLR These registers are readable and writable and are not affected by the timer hardware. A reset event changes the OCiR value to 8000h. Timing resolution is one count of the free running counter: (fCPU/CC[1:0]). Procedure: To use the output compare function, select the following in the CR2 register: – Set the OCiE bit if an output is needed then the OCMPi pin is dedicated to the output compare i signal. – Select the timer clock (CC[1:0]) (see Table 15 Clock Control Bits). And select the following in the CR1 register: – Select the OLVLi bit to applied to the OCMP i pins after the match occurs. – Set the OCIE bit to generate an interrupt if it is needed. When a match is found between OCRi register and CR register: – OCFi bit is set. – The OCMPi pin takes OLVLi bit value (OCMPi pin latch is forced low during reset). – A timer interrupt is generated if the OCIE bit is set in the CR1 register and the I bit is cleared in the CC register (CC). The OCiR register value required for a specific timing application can be calculated using the following formula: ∆ OCiR = ∆t * fCPU PRESC Where: ∆t = Output compare period (in seconds) = CPU clock frequency (in hertz) fCPU PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 15 Clock Control Bits) If the timer clock is an external clock, the formula is: ∆ OCiR = ∆t * fEXT Where: ∆t = Output compare period (in seconds) = External timer clock frequency (in hertz) fEXT Clearing the output compare interrupt request (i.e. clearing the OCFi bit) is done by: 1. Reading the SR register while the OCFi bit is set. 2. An access (read or write) to the OCiLR register. The following procedure is recommended to prevent the OCFi bit from being set between the time it is read and the write to the OCiR register: – Write to the OCiHR register (further compares are inhibited). – Read the SR register (first step of the clearance of the OCFi bit, which may be already set). – Write to the OCiLR register (enables the output compare function and clears the OCFi bit). 65/161 ST72324 16-BIT TIMER (Cont’d) Notes: 1. After a processor write cycle to the OCiHR register, the output compare function is inhibited until the OCiLR register is also written. 2. If the OCiE bit is not set, the OCMPi pin is a general I/O port and the OLVLi bit will not appear when a match is found but an interrupt could be generated if the OCIE bit is set. 3. When the timer clock is fCPU/2, OCFi and OCMPi are set while the counter value equals the OCiR register value (see Figure 43 on page 67). This behaviour is the same in OPM or PWM mode. When the timer clock is fCPU/4, fCPU/8 or in external clock mode, OCFi and OCMPi are set while the counter value equals the OC iR register value plus 1 (see Figure 44 on page 67). 4. The output compare functions can be used both for generating external events on the OCMPi pins even if the input capture mode is also used. 5. The value in the 16-bit OCiR register and the OLVi bit should be changed after each successful comparison in order to control an output waveform or establish a new elapsed timeout. 6. The TAOC2HR, TAOC2LR registers are "writeonly" in Timer A. The corresponding event cannot be generated (OCF2 is forced by hardware to 0). Forced Compare Output capability When the FOLVi bit is set by software, the OLVLi bit is copied to the OCMPi pin. The OLVi bit has to be toggled in order to toggle the OCMPi pin when it is enabled (OCiE bit=1). The OCFi bit is then not set by hardware, and thus no interrupt request is generated. The FOLVLi bits have no effect in both one pulse mode and PWM mode. Figure 42. Output Compare Block Diagram 16 BIT FREE RUNNING COUNTER OC1E OC2E CC1 CC0 (Control Register 2) CR2 16-bit (Control Register 1) CR1 OUTPUT COMPARE CIRCUIT 16-bit OCIE FOLV2 FOLV1 OLVL2 OLVL1 16-bit Latch 2 OC1R Register OCF1 OCF2 0 0 0 OC2R Register (Status Register) SR 66/161 Latch 1 OCMP1 Pin OCMP2 Pin ST72324 16-BIT TIMER (Cont’d) Figure 43. Output Compare Timing Diagram, fTIMER =fCPU/2 INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER 2ECF 2ED0 2ED1 2ED2 2ED3 2ED4 OUTPUT COMPARE REGISTER i (OCRi) 2ED3 OUTPUT COMPARE FLAG i (OCFi) OCMPi PIN (OLVLi=1) Figure 44. Output Compare Timing Diagram, fTIMER =fCPU/4 INTERNAL CPU CLOCK TIMER CLOCK COUNTER REGISTER OUTPUT COMPARE REGISTER i (OCRi) 2ECF 2ED0 2ED1 2ED2 2ED3 2ED4 2ED3 COMPARE REGISTER i LATCH OUTPUT COMPARE FLAG i (OCFi) OCMPi PIN (OLVLi=1) 67/161 ST72324 16-BIT TIMER (Cont’d) 10.3.3.5 One Pulse Mode One Pulse mode enables the generation of a pulse when an external event occurs. This mode is selected via the OPM bit in the CR2 register. The one pulse mode uses the Input Capture1 function and the Output Compare1 function. Procedure: To use one pulse mode: 1. Load the OC1R register with the value corresponding to the length of the pulse (see the formula in the opposite column). 2. Select the following in the CR1 register: – Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after the pulse. – Using the OLVL2 bit, select the level to be applied to the OCMP1 pin during the pulse. – Select the edge of the active transition on the ICAP1 pin with the IEDG1 bit (the ICAP1 pin must be configured as floating input). 3. Select the following in the CR2 register: – Set the OC1E bit, the OCMP1 pin is then dedicated to the Output Compare 1 function. – Set the OPM bit. – Select the timer clock CC[1:0] (see Table 15 Clock Control Bits). One pulse mode cycle When event occurs on ICAP1 ICR1 = Counter OCMP1 = OLVL2 Counter is reset to FFFCh ICF1 bit is set When Counter = OC1R OCMP1 = OLVL1 Then, on a valid event on the ICAP1 pin, the counter is initialized to FFFCh and OLVL2 bit is loaded on the OCMP1 pin, the ICF1 bit is set and the value FFFDh is loaded in the IC1R register. Because the ICF1 bit is set when an active edge occurs, an interrupt can be generated if the ICIE bit is set. 68/161 Clearing the Input Capture interrupt request (i.e. clearing the ICFi bit) is done in two steps: 1. Reading the SR register while the ICFi bit is set. 2. An access (read or write) to the ICiLR register. The OC1R register value required for a specific timing application can be calculated using the following formula: t * fCPU -5 OCiR Value = PRESC Where: t = Pulse period (in seconds) fCPU = CPU clock frequency (in hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on the CC[1:0] bits, see Table 15 Clock Control Bits) If the timer clock is an external clock the formula is: OCiR = t * fEXT -5 Where: t = Pulse period (in seconds) fEXT = External timer clock frequency (in hertz) When the value of the counter is equal to the value of the contents of the OC1R register, the OLVL1 bit is output on the OCMP1 pin, (See Figure 45). Notes: 1. The OCF1 bit cannot be set by hardware in one pulse mode but the OCF2 bit can generate an Output Compare interrupt. 2. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one. 3. If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin. 4. The ICAP1 pin can not be used to perform input capture. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each time a valid edge occurs on the ICAP1 pin and ICF1 can also generates interrupt if ICIE is set. 5. When one pulse mode is used OC1R is dedicated to this mode. Nevertheless OC2R and OCF2 can be used to indicate a period of time has been elapsed but cannot generate an output waveform because the level OLVL2 is dedicated to the one pulse mode. 6. On timer A, the OCF2 bit is forced by hardware to 0. ST72324 16-BIT TIMER (Cont’d) Figure 45. One Pulse Mode Timing Example COUNTER 2ED3 01F8 IC1R 01F8 FFFC FFFD FFFE 2ED0 2ED1 2ED2 FFFC FFFD 2ED3 ICAP1 OLVL2 OCMP1 OLVL1 OLVL2 compare1 Note: IEDG1=1, OC1R=2ED0h, OLVL1=0, OLVL2=1 Figure 46. Pulse Width Modulation Mode Timing Example with 2 Output Compare Functions COUNTER 34E2 FFFC FFFD FFFE 2ED0 2ED1 2ED2 OLVL2 OCMP1 compare2 OLVL1 compare1 34E2 FFFC OLVL2 compare2 Note: OC1R=2ED0h, OC2R=34E2, OLVL1=0, OLVL2= 1 69/161 ST72324 16-BIT TIMER (Cont’d) 10.3.3.6 Pulse Width Modulation Mode Pulse Width Modulation (PWM) mode enables the generation of a signal with a frequency and pulse length determined by the value of the OC1R and OC2R registers. Pulse Width Modulation mode uses the complete Output Compare 1 function plus the OC2R register, and so this functionality can not be used when PWM mode is activated. In PWM mode, double buffering is implemented on the output compare registers. Any new values written in the OC1R and OC2R registers are taken into account only at the end of the PWM period (OC2) to avoid spikes on the PWM output pin (OCMP1). Procedure To use pulse width modulation mode: 1. Load the OC2R register with the value corresponding to the period of the signal using the formula in the opposite column. 2. Load the OC1R register with the value corresponding to the period of the pulse if (OLVL1=0 and OLVL2=1) using the formula in the opposite column. 3. Select the following in the CR1 register: – Using the OLVL1 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC1R register. – Using the OLVL2 bit, select the level to be applied to the OCMP1 pin after a successful comparison with the OC2R register. 4. Select the following in the CR2 register: – Set OC1E bit: the OCMP1 pin is then dedicated to the output compare 1 function. – Set the PWM bit. – Select the timer clock (CC[1:0]) (see Table 15 Clock Control Bits). Pulse Width Modulation cycle When Counter = OC1R When Counter = OC2R OCMP1 = OLVL1 OCMP1 = OLVL2 Counter is reset to FFFCh ICF1 bit is set 70/161 If OLVL1=1 and OLVL2=0 the length of the positive pulse is the difference between the OC2R and OC1R registers. If OLVL1=OLVL2 a continuous signal will be seen on the OCMP1 pin. The OCiR register value required for a specific timing application can be calculated using the following formula: t * fCPU - 5 OCiR Value = PRESC Where: t = Signal or pulse period (in seconds) fCPU = CPU clock frequency (in hertz) PRESC = Timer prescaler factor (2, 4 or 8 depending on CC[1:0] bits, see Table 15) If the timer clock is an external clock the formula is: OCiR = t * fEXT -5 Where: t = Signal or pulse period (in seconds) = External timer clock frequency (in hertz) fEXT The Output Compare 2 event causes the counter to be initialized to FFFCh (See Figure 46) Notes: 1. After a write instruction to the OC iHR register, the output compare function is inhibited until the OCiLR register is also written. 2. The OCF1 and OCF2 bits cannot be set by hardware in PWM mode therefore the Output Compare interrupt is inhibited. 3. The ICF1 bit is set by hardware when the counter reaches the OC2R value and can produce a timer interrupt if the ICIE bit is set and the I bit is cleared. 4. In PWM mode the ICAP1 pin can not be used to perform input capture because it is disconnected to the timer. The ICAP2 pin can be used to perform input capture (ICF2 can be set and IC2R can be loaded) but the user must take care that the counter is reset each period and ICF1 can also generates interrupt if ICIE is set. 5. When the Pulse Width Modulation (PWM) and One Pulse Mode (OPM) bits are both set, the PWM mode is the only active one. 6. The TAOC2HR, TAOC2LR registers in Timer A are "write only". A read operation returns an undefined value. 7. The ICAP2 registers (TAIC2HR, TAIC2LR) are not available in Timer A. The ICF2 bit is forced by hardware to 0. ST72324 16-BIT TIMER (Cont’d) 10.3.4 Low Power Modes Mode WAIT HALT Description No effect on 16-bit Timer. Timer interrupts cause the device to exit from WAIT mode. 16-bit Timer registers are frozen. In HALT mode, the counter stops counting until Halt mode is exited. Counting resumes from the previous count when the MCU is woken up by an interrupt with “exit from HALT mode” capability or from the counter reset value when the MCU is woken up by a RESET. If an input capture event occurs on the ICAPi pin, the input capture detection circuitry is armed. Consequently, when the MCU is woken up by an interrupt with “exit from HALT mode” capability, the ICFi bit is set, and the counter value present when exiting from HALT mode is captured into the ICiR register. 10.3.5 Interrupts Event Flag Interrupt Event Input Capture 1 event/Counter reset in PWM mode Input Capture 2 event Output Compare 1 event (not available in PWM mode) Output Compare 2 event (not available in PWM mode) Timer Overflow event ICF1 ICF2* OCF1 OCF2* TOF Enable Control Bit ICIE OCIE TOIE Exit from Wait Yes Yes Yes Yes Yes Exit from Halt No No No No No Note: The 16-bit Timer interrupt events are connected to the same interrupt vector (see Interrupts chapter). These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). * The ICF2 and OCF2 bits are forced by hardware to 0 in Timer A, hence there is no interrupt event for these flags. 10.3.6 Summary of Timer modes MODES Input Capture (1 and/or 2) Output Compare (1 and/or 2) Input Capture 1 Yes Yes One Pulse Mode No PWM Mode No TIMER RESOURCES Input Capture 2 Output Compare 1 Output Compare 2 Yes2)5) Yes Yes4) 5) Yes Yes Yes4) Not No Partially 2) Recommended1)5) Not No No Recommended3)5) 1) See note 4 in Section 10.3.3.5 One Pulse Mode 2) See note 5 and 6 in Section 10.3.3.5 One Pulse Mode 3) See note 4 in Section 10.3.3.6 Pulse Width Modulation Mode 4) The TAOC2HR, TAOC2LR registers are write only in Timer A. Output Compare 2 event cannot be generated, OCF2 is forced by hardware to 0. 5) Input Capture 2 is not implemented in Timer A. ICF2 bit is forced by hardware to 0. 71/161 ST72324 16-BIT TIMER (Cont’d) 10.3.7 Register Description Each Timer is associated with three control and status registers, and with six pairs of data registers (16-bit values) relating to the two input captures, the two output compares, the counter and the alternate counter. CONTROL REGISTER 1 (CR1) Read/Write Reset Value: 0000 0000 (00h) 7 0 Bit 4 = FOLV2 Forced Output Compare 2. This bit is set and cleared by software. 0: No effect on the OCMP2 pin. 1: Forces the OLVL2 bit to be copied to the OCMP2 pin, if the OC2E bit is set and even if there is no successful comparison. Bit 3 = FOLV1 Forced Output Compare 1. This bit is set and cleared by software. 0: No effect on the OCMP1 pin. 1: Forces OLVL1 to be copied to the OCMP1 pin, if the OC1E bit is set and even if there is no successful comparison. ICIE OCIE TOIE FOLV2 FOLV1 OLVL2 IEDG1 OLVL1 Bit 7 = ICIE Input Capture Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the ICF1 or ICF2 bit of the SR register is set. Bit 6 = OCIE Output Compare Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is generated whenever the OCF1 or OCF2 bit of the SR register is set. Bit 5 = TOIE Timer Overflow Interrupt Enable. 0: Interrupt is inhibited. 1: A timer interrupt is enabled whenever the TOF bit of the SR register is set. 72/161 Bit 2 = OLVL2 Output Level 2. This bit is copied to the OCMP2 pin whenever a successful comparison occurs with the OC2R register and OCxE is set in the CR2 register. This value is copied to the OCMP1 pin in One Pulse Mode and Pulse Width Modulation mode. Bit 1 = IEDG1 Input Edge 1. This bit determines which type of level transition on the ICAP1 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. Bit 0 = OLVL1 Output Level 1. The OLVL1 bit is copied to the OCMP1 pin whenever a successful comparison occurs with the OC1R register and the OC1E bit is set in the CR2 register. ST72324 16-BIT TIMER (Cont’d) CONTROL REGISTER 2 (CR2) Read/Write Reset Value: 0000 0000 (00h) 7 0 OC1E OC2E OPM PWM CC1 CC0 IEDG2 EXEDG Bit 7 = OC1E Output Compare 1 Pin Enable. This bit is used only to output the signal from the timer on the OCMP1 pin (OLV1 in Output Compare mode, both OLV1 and OLV2 in PWM and one-pulse mode). Whatever the value of the OC1E bit, the Output Compare 1 function of the timer remains active. 0: OCMP1 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP1 pin alternate function enabled. Bit 6 = OC2E Output Compare 2 Pin Enable. This bit is used only to output the signal from the timer on the OCMP2 pin (OLV2 in Output Compare mode). Whatever the value of the OC2E bit, the Output Compare 2 function of the timer remains active. 0: OCMP2 pin alternate function disabled (I/O pin free for general-purpose I/O). 1: OCMP2 pin alternate function enabled. Note: This bit is not available in Timer A. It must be kept at its reset value. Bit 5 = OPM One Pulse Mode. 0: One Pulse Mode is not active. 1: One Pulse Mode is active, the ICAP1 pin can be used to trigger one pulse on the OCMP1 pin; the active transition is given by the IEDG1 bit. The length of the generated pulse depends on the contents of the OC1R register. Bit 4 = PWM Pulse Width Modulation. 0: PWM mode is not active. 1: PWM mode is active, the OCMP1 pin outputs a programmable cyclic signal; the length of the pulse depends on the value of OC1R register; the period depends on the value of OC2R register. Bit 3, 2 = CC[1:0] Clock Control. The timer clock mode depends on these bits: Table 15. Clock Control Bits Timer Clock fCPU / 4 fCPU / 2 fCPU / 8 External Clock (where available) CC1 0 0 1 CC0 0 1 0 1 1 Note: If the external clock pin is not available, programming the external clock configuration stops the counter. Bit 1 = IEDG2 Input Edge 2. This bit determines which type of level transition on the ICAP2 pin will trigger the capture. 0: A falling edge triggers the capture. 1: A rising edge triggers the capture. Bit 0 = EXEDG External Clock Edge. This bit determines which type of level transition on the external clock pin EXTCLK will trigger the counter register. 0: A falling edge triggers the counter register. 1: A rising edge triggers the counter register. 73/161 ST72324 16-BIT TIMER (Cont’d) CONTROL/STATUS REGISTER (CSR) Read Only (except bit 2 R/W) Reset Value: xxxx x0xx (xxh) 7 ICF1 0 OCF1 TOF ICF2 OCF2 TIMD 0 0 Bit 7 = ICF1 Input Capture Flag 1. 0: No input capture (reset value). 1: An input capture has occurred on the ICAP1 pin or the counter has reached the OC2R value in PWM mode. To clear this bit, first read the SR register, then read or write the low byte of the IC1R (IC1LR) register. Bit 6 = OCF1 Output Compare Flag 1. 0: No match (reset value). 1: The content of the free running counter has matched the content of the OC1R register. To clear this bit, first read the SR register, then read or write the low byte of the OC1R (OC1LR) register. Bit 5 = TOF Timer Overflow Flag. 0: No timer overflow (reset value). 1: The free running counter rolled over from FFFFh to 0000h. To clear this bit, first read the SR register, then read or write the low byte of the CR (CLR) register. Note: Reading or writing the ACLR register does not clear TOF. 74/161 Bit 4 = ICF2 Input Capture Flag 2. 0: No input capture (reset value). 1: An input capture has occurred on the ICAP2 pin. To clear this bit, first read the SR register, then read or write the low byte of the IC2R (IC2LR) register. Note: This bit is not available in Timer A and is forced by hardware to 0. Bit 3 = OCF2 Output Compare Flag 2. 0: No match (reset value). 1: The content of the free running counter has matched the content of the OC2R register. To clear this bit, first read the SR register, then read or write the low byte of the OC2R (OC2LR) register. Note: This bit is not available in Timer A and is forced by hardware to 0. Bit 2 = TIMD Timer disable. This bit is set and cleared by software. When set, it freezes the timer prescaler and counter and disabled the output functions (OCMP1 and OCMP2 pins) to reduce power consumption. Access to the timer registers is still available, allowing the timer configuration to be changed, or the counter reset, while it is disabled. 0: Timer enabled 1: Timer prescaler, counter and outputs disabled Bits 1:0 = Reserved, must be kept cleared. ST72324 16-BIT TIMER (Cont’d) INPUT CAPTURE 1 HIGH REGISTER (IC1HR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the high part of the counter value (transferred by the input capture 1 event). OUTPUT COMPARE 1 HIGH REGISTER (OC1HR) Read/Write Reset Value: 1000 0000 (80h) This is an 8-bit register that contains the high part of the value to be compared to the CHR register. 7 0 7 0 MSB LSB MSB LSB INPUT CAPTURE 1 LOW REGISTER (IC1LR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the low part of the counter value (transferred by the input capture 1 event). OUTPUT COMPARE 1 LOW REGISTER (OC1LR) Read/Write Reset Value: 0000 0000 (00h) This is an 8-bit register that contains the low part of the value to be compared to the CLR register. 7 0 7 0 MSB LSB MSB LSB 75/161 ST72324 16-BIT TIMER (Cont’d) OUTPUT COMPARE 2 HIGH REGISTER (OC2HR) Read/Write Reset Value: 1000 0000 (80h) This is an 8-bit register that contains the high part of the value to be compared to the CHR register. ALTERNATE COUNTER HIGH REGISTER (ACHR) Read Only Reset Value: 1111 1111 (FFh) This is an 8-bit register that contains the high part of the counter value. 7 0 7 0 MSB LSB MSB LSB Note: This register is write-only in Timer A. OUTPUT COMPARE 2 LOW REGISTER (OC2LR) Read/Write Reset Value: 0000 0000 (00h) This is an 8-bit register that contains the low part of the value to be compared to the CLR register. 7 0 MSB LSB ALTERNATE COUNTER LOW REGISTER (ACLR) Read Only Reset Value: 1111 1100 (FCh) This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after an access to CSR register does not clear the TOF bit in the CSR register. 7 0 MSB LSB Note: This register is write-only in Timer A. COUNTER HIGH REGISTER (CHR) Read Only Reset Value: 1111 1111 (FFh) This is an 8-bit register that contains the high part of the counter value. 7 MSB INPUT CAPTURE 2 HIGH REGISTER (IC2HR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the high part of the counter value (transferred by the Input Capture 2 event). 7 0 MSB LSB 0 LSB Note: This register is not implemented in Timer A. COUNTER LOW REGISTER (CLR) Read Only Reset Value: 1111 1100 (FCh) This is an 8-bit register that contains the low part of the counter value. A write to this register resets the counter. An access to this register after accessing the CSR register clears the TOF bit. 7 0 MSB LSB INPUT CAPTURE 2 LOW REGISTER (IC2LR) Read Only Reset Value: Undefined This is an 8-bit read only register that contains the low part of the counter value (transferred by the Input Capture 2 event). 7 0 MSB LSB Note: This register is not implemented in Timer A. 76/161 ST72324 16-BIT TIMER (Cont’d) Table 16. 16-Bit Timer Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 Timer A: 32 Timer B: 42 Timer A: 31 Timer B: 41 Timer A: 33 Timer B: 43 Timer A: 34 Timer B: 44 Timer A: 35 Timer B: 45 Timer A: 36 Timer B: 46 Timer A: 37 Timer B: 47 Timer B: 4E Timer B: 4F Timer A: 38 Timer B: 48 Timer A: 39 Timer B: 49 Timer A: 3A Timer B: 4A Timer A: 3B Timer B: 4B Timer B: 4C Timer B: 4D CR1 Reset Value CR2 Reset Value CSR Reset Value IC1HR Reset Value IC1LR Reset Value OC1HR Reset Value OC1LR Reset Value OC2HR Reset Value OC2LR Reset Value CHR Reset Value CLR Reset Value ACHR Reset Value ACLR Reset Value IC2HR Reset Value IC2LR Reset Value ICIE 0 OC1E 0 ICF1 x MSB x MSB x MSB 1 MSB 0 MSB 1 MSB 0 MSB 1 MSB 1 MSB 1 MSB 1 MSB x MSB x OCIE 0 OC2E1 0 OCF1 x TOIE 0 OPM 0 TOF x FOLV21 0 PWM 0 ICF22 x FOLV1 0 CC1 0 OCF22 x OLVL2 0 CC0 0 TIMD 0 IEDG1 0 IEDG21 0 x x x x x x x x x x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 x x x x x x x x x x x x OLVL1 0 EXEDG 0 x LSB x LSB x LSB 0 LSB 0 LSB 0 LSB 0 LSB 1 LSB 0 LSB 1 LSB 0 LSB x LSB x 1 These bits are not used in Timer A and must be kept cleared. These bits are forced by hardware to 0 in Timer A 2 77/161 ST72324 10.4 SERIAL PERIPHERAL INTERFACE (SPI) 10.4.1 Introduction The Serial Peripheral Interface (SPI) allows fullduplex, synchronous, serial communication with external devices. An SPI system may consist of a master and one or more slaves however the SPI interface can not be a master in a multi-master system. 10.4.2 Main Features ■ Full duplex synchronous transfers (on 3 lines) ■ Simplex synchronous transfers (on 2 lines) ■ Master or slave operation ■ Six master mode frequencies (fCPU/4 max.) ■ fCPU/2 max. slave mode frequency ■ SS Management by software or hardware ■ Programmable clock polarity and phase ■ End of transfer interrupt flag ■ Write collision, Master Mode Fault and Overrun flags 10.4.3 General Description Figure 47 shows the serial peripheral interface (SPI) block diagram. There are 3 registers: – SPI Control Register (SPICR) – SPI Control/Status Register (SPICSR) – SPI Data Register (SPIDR) The SPI is connected to external devices through 3 pins: – MISO: Master In / Slave Out data – MOSI: Master Out / Slave In data – SCK: Serial Clock out by SPI masters and input by SPI slaves – SS: Slave select: This input signal acts as a ‘chip select’ to let the SPI master communicate with slaves individually and to avoid contention on the data lines. Slave SS inputs can be driven by standard I/O ports on the master MCU. Figure 47. Serial Peripheral Interface Block Diagram Data/Address Bus SPIDR Read Interrupt request Read Buffer MOSI MISO 8-Bit Shift Register SPICSR 7 SPIF WCOL OVR MODF SOD bit SS SPI STATE CONTROL 7 SPIE MASTER CONTROL SERIAL CLOCK GENERATOR 78/161 SOD SSM SSI Write SCK SS 0 0 1 0 SPICR 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.3.1 Functional Description A basic example of interconnections between a single master and a single slave is illustrated in Figure 48. The MOSI pins are connected together and the MISO pins are connected together. In this way data is transferred serially between master and slave (most significant bit first). The communication is always initiated by the master. When the master device transmits data to a slave device via MOSI pin, the slave device re- sponds by sending data to the master device via the MISO pin. This implies full duplex communication with both data out and data in synchronized with the same clock signal (which is provided by the master device via the SCK pin). To use a single data line, the MISO and MOSI pins must be connected at each node ( in this case only simplex communication is possible). Four possible data/clock timing relationships may be chosen (see Figure 51) but master and slave must be programmed with the same timing mode. Figure 48. Single Master/ Single Slave Application SLAVE MASTER MSBit LSBit 8-BIT SHIFT REGISTER SPI CLOCK GENERATOR MSBit MISO MISO MOSI MOSI SCK SS LSBit 8-BIT SHIFT REGISTER SCK +5V SS Not used if SS is managed by software 79/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.3.2 Slave Select Management As an alternative to using the SS pin to control the Slave Select signal, the application can choose to manage the Slave Select signal by software. This is configured by the SSM bit in the SPICSR register (see Figure 50) In software management, the external SS pin is free for other application uses and the internal SS signal level is driven by writing to the SSI bit in the SPICSR register. In Master mode: – SS internal must be held high continuously In Slave Mode: There are two cases depending on the data/clock timing relationship (see Figure 49): If CPHA=1 (data latched on 2nd clock edge): – SS internal must be held low during the entire transmission. This implies that in single slave applications the SS pin either can be tied to VSS, or made free for standard I/O by managing the SS function by software (SSM= 1 and SSI=0 in the in the SPICSR register) If CPHA=0 (data latched on 1st clock edge): – SS internal must be held low during byte transmission and pulled high between each byte to allow the slave to write to the shift register. If SS is not pulled high, a Write Collision error will occur when the slave writes to the shift register (see Section 10.4.5.3). Figure 49. Generic SS Timing Diagram MOSI/MISO Byte 1 Byte 2 Master SS Slave SS (if CPHA=0) Slave SS (if CPHA=1) Figure 50. Hardware/Software Slave Select Management SSM bit 80/161 SSI bit 1 SS external pin 0 SS internal Byte 3 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.3.3 Master Mode Operation In master mode, the serial clock is output on the SCK pin. The clock frequency, polarity and phase are configured by software (refer to the description of the SPICSR register). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). To operate the SPI in master mode, perform the following two steps in order (if the SPICSR register is not written first, the SPICR register setting may be not taken into account): 1. Write to the SPICSR register: – Select the clock frequency by configuring the SPR[2:0] bits. – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits. Figure 51 shows the four possible configurations. Note: The slave must have the same CPOL and CPHA settings as the master. – Either set the SSM bit and set the SSI bit or clear the SSM bit and tie the SS pin high for the complete byte transmit sequence. 2. Write to the SPICR register: – Set the MSTR and SPE bits Note: MSTR and SPE bits remain set only if SS is high). The transmit sequence begins when software writes a byte in the SPIDR register. 10.4.3.4 Master Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MOSI pin most significant bit first. When data transfer is complete: – The SPIF bit is set by hardware – An interrupt request is generated if the SPIE bit is set and the interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set 2. A read to the SPIDR register. Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. 10.4.3.5 Slave Mode Operation In slave mode, the serial clock is received on the SCK pin from the master device. To operate the SPI in slave mode: 1. Write to the SPICSR register to perform the following actions: – Select the clock polarity and clock phase by configuring the CPOL and CPHA bits (see Figure 51). Note: The slave must have the same CPOL and CPHA settings as the master. – Manage the SS pin as described in Section 10.4.3.2 and Figure 49. If CPHA=1 SS must be held low continuously. If CPHA=0 SS must be held low during byte transmission and pulled up between each byte to let the slave write in the shift register. 2. Write to the SPICR register to clear the MSTR bit and set the SPE bit to enable the SPI I/O functions. 10.4.3.6 Slave Mode Transmit Sequence When software writes to the SPIDR register, the data byte is loaded into the 8-bit shift register and then shifted out serially to the MISO pin most significant bit first. The transmit sequence begins when the slave device receives the clock signal and the most significant bit of the data on its MOSI pin. When data transfer is complete: – The SPIF bit is set by hardware – An interrupt request is generated if SPIE bit is set and interrupt mask in the CCR register is cleared. Clearing the SPIF bit is performed by the following software sequence: 1. An access to the SPICSR register while the SPIF bit is set. 2. A write or a read to the SPIDR register. Notes: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. The SPIF bit can be cleared during a second transmission; however, it must be cleared before the second SPIF bit in order to prevent an Overrun condition (see Section 10.4.5.2). 81/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.4 Clock Phase and Clock Polarity Four possible timing relationships may be chosen by software, using the CPOL and CPHA bits (See Figure 51). Note: The idle state of SCK must correspond to the polarity selected in the SPICSR register (by pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0). The combination of the CPOL clock polarity and CPHA (clock phase) bits selects the data capture clock edge Figure 51, shows an SPI transfer with the four combinations of the CPHA and CPOL bits. The diagram may be interpreted as a master or slave timing diagram where the SCK pin, the MISO pin, the MOSI pin are directly connected between the master and the slave device. Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Figure 51. Data Clock Timing Diagram CPHA =1 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE CPHA =0 SCK (CPOL = 1) SCK (CPOL = 0) MISO (from master) MOSI (from slave) MSBit MSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit Bit 6 Bit 5 Bit 4 Bit3 Bit 2 Bit 1 LSBit SS (to slave) CAPTURE STROBE Note: This figure should not be used as a replacement for parametric information. Refer to the Electrical Characteristics chapter. 82/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.5 Error Flags 10.4.5.1 Master Mode Fault (MODF) Master mode fault occurs when the master device has its SS pin pulled low. When a Master mode fault occurs: – The MODF bit is set and an SPI interrupt request is generated if the SPIE bit is set. – The SPE bit is reset. This blocks all output from the device and disables the SPI peripheral. – The MSTR bit is reset, thus forcing the device into slave mode. Clearing the MODF bit is done through a software sequence: 1. A read access to the SPICSR register while the MODF bit is set. 2. A write to the SPICR register. Notes: To avoid any conflicts in an application with multiple slaves, the SS pin must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits may be restored to their original state during or after this clearing sequence. Hardware does not allow the user to set the SPE and MSTR bits while the MODF bit is set except in the MODF bit clearing sequence. 10.4.5.2 Overrun Condition (OVR) An overrun condition occurs, when the master device has sent a data byte and the slave device has not cleared the SPIF bit issued from the previously transmitted byte. When an Overrun occurs: – The OVR bit is set and an interrupt request is generated if the SPIE bit is set. In this case, the receiver buffer contains the byte sent after the SPIF bit was last cleared. A read to the SPIDR register returns this byte. All other bytes are lost. The OVR bit is cleared by reading the SPICSR register. 10.4.5.3 Write Collision Error (WCOL) A write collision occurs when the software tries to write to the SPIDR register while a data transfer is taking place with an external device. When this happens, the transfer continues uninterrupted; and the software write will be unsuccessful. Write collisions can occur both in master and slave mode. See also Section 10.4.3.2 Slave Select Management. Note: a "read collision" will never occur since the received data byte is placed in a buffer in which access is always synchronous with the MCU operation. The WCOL bit in the SPICSR register is set if a write collision occurs. No SPI interrupt is generated when the WCOL bit is set (the WCOL bit is a status flag only). Clearing the WCOL bit is done through a software sequence (see Figure 52). Figure 52. Clearing the WCOL bit (Write Collision Flag) Software Sequence Clearing sequence after SPIF = 1 (end of a data byte transfer) 1st Step Read SPICSR RESULT 2nd Step Read SPIDR SPIF =0 WCOL=0 Clearing sequence before SPIF = 1 (during a data byte transfer) 1st Step Read SPICSR RESULT 2nd Step Read SPIDR WCOL=0 Note: Writing to the SPIDR register instead of reading it does not reset the WCOL bit 83/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.5.4 Single Master Systems A typical single master system may be configured, using an MCU as the master and four MCUs as slaves (see Figure 53). The master device selects the individual slave devices by using four pins of a parallel port to control the four SS pins of the slave devices. The SS pins are pulled high during reset since the master device ports will be forced to be inputs at that time, thus disabling the slave devices. Note: To prevent a bus conflict on the MISO line the master allows only one active slave device during a transmission. For more security, the slave device may respond to the master with the received data byte. Then the master will receive the previous byte back from the slave device if all MISO and MOSI pins are connected and the slave has not written to its SPIDR register. Other transmission security methods can use ports for handshake lines or data bytes with command fields. Figure 53. Single Master / Multiple Slave Configuration SS SCK Slave MCU Slave MCU MOSI MISO MOSI MISO SCK Master MCU 5V 84/161 SS Ports MOSI MISO SS SS SCK SS SCK Slave MCU SCK Slave MCU MOSI MISO MOSI MISO ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.6 Low Power Modes Mode WAIT HALT Description No effect on SPI. SPI interrupt events cause the device to exit from WAIT mode. SPI registers are frozen. In HALT mode, the SPI is inactive. SPI operation resumes when the MCU is woken up by an interrupt with “exit from HALT mode” capability. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetching). If several data are received before the wakeup event, then an overrun error is generated. This error can be detected after the fetch of the interrupt routine that woke up the device. 10.4.6.1 Using the SPI to wakeup the MCU from Halt mode In slave configuration, the SPI is able to wakeup the ST7 device from HALT mode through a SPIF interrupt. The data received is subsequently read from the SPIDR register when the software is running (interrupt vector fetch). If multiple data transfers have been performed before software clears the SPIF bit, then the OVR bit is set by hardware. Note: When waking up from Halt mode, if the SPI remains in Slave mode, it is recommended to perform an extra communications cycle to bring the SPI from Halt mode state to normal state. If the SPI exits from Slave mode, it returns to normal state immediately. Caution: The SPI can wake up the ST7 from Halt mode only if the Slave Select signal (external SS pin or the SSI bit in the SPICSR register) is low when the ST7 enters Halt mode. So if Slave selection is configured as external (see Section 10.4.3.2), make sure the master drives a low level on the SS pin when the slave enters Halt mode. 10.4.7 Interrupts Interrupt Event SPI End of Transfer Event Master Mode Fault Event Overrun Error Event Flag Enable Control Bit SPIF MODF OVR SPIE Exit from Wait Exit from Halt Yes Yes Yes No Yes No Note: The SPI interrupt events are connected to the same interrupt vector (see Interrupts chapter). They generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). 85/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) 10.4.8 Register Description CONTROL REGISTER (SPICR) Read/Write Reset Value: 0000 xxxx (0xh) 7 SPIE 0 SPE SPR2 MSTR CPOL CPHA SPR1 SPR0 Bit 7 = SPIE Serial Peripheral Interrupt Enable. This bit is set and cleared by software. 0: Interrupt is inhibited 1: An SPI interrupt is generated whenever SPIF=1, MODF=1 or OVR=1 in the SPICSR register Bit 6 = SPE Serial Peripheral Output Enable. This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS=0 (see Section 10.4.5.1 Master Mode Fault (MODF)). The SPE bit is cleared by reset, so the SPI peripheral is not initially connected to the external pins. 0: I/O pins free for general purpose I/O 1: SPI I/O pin alternate functions enabled Bit 5 = SPR2 Divider Enable. This bit is set and cleared by software and is cleared by reset. It is used with the SPR[1:0] bits to set the baud rate. Refer to Table 17 SPI Master mode SCK Frequency. 0: Divider by 2 enabled 1: Divider by 2 disabled Note: This bit has no effect in slave mode. Bit 4 = MSTR Master Mode. This bit is set and cleared by software. It is also cleared by hardware when, in master mode, SS=0 (see Section 10.4.5.1 Master Mode Fault (MODF)). 0: Slave mode 1: Master mode. The function of the SCK pin changes from an input to an output and the functions of the MISO and MOSI pins are reversed. 86/161 Bit 3 = CPOL Clock Polarity. This bit is set and cleared by software. This bit determines the idle state of the serial Clock. The CPOL bit affects both the master and slave modes. 0: SCK pin has a low level idle state 1: SCK pin has a high level idle state Note: If CPOL is changed at the communication byte boundaries, the SPI must be disabled by resetting the SPE bit. Bit 2 = CPHA Clock Phase. This bit is set and cleared by software. 0: The first clock transition is the first data capture edge. 1: The second clock transition is the first capture edge. Note: The slave must have the same CPOL and CPHA settings as the master. Bits 1:0 = SPR[1:0] Serial Clock Frequency. These bits are set and cleared by software. Used with the SPR2 bit, they select the baud rate of the SPI serial clock SCK output by the SPI in master mode. Note: These 2 bits have no effect in slave mode. Table 17. SPI Master mode SCK Frequency Serial Clock SPR2 SPR1 SPR0 fCPU/4 1 0 0 fCPU/8 0 0 0 fCPU/16 0 0 1 fCPU/32 1 1 0 fCPU/64 0 1 0 fCPU/128 0 1 1 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) CONTROL/STATUS REGISTER (SPICSR) Read/Write (some bits Read Only) Reset Value: 0000 0000 (00h) 7 SPIF Bit 3 = Reserved, must be kept cleared. 0 WCOL OVR MODF - SOD SSM SSI Bit 7 = SPIF Serial Peripheral Data Transfer Flag (Read only). This bit is set by hardware when a transfer has been completed. An interrupt is generated if SPIE=1 in the SPICR register. It is cleared by a software sequence (an access to the SPICSR register followed by a write or a read to the SPIDR register). 0: Data transfer is in progress or the flag has been cleared. 1: Data transfer between the device and an external device has been completed. Note: While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Bit 6 = WCOL Write Collision status (Read only). This bit is set by hardware when a write to the SPIDR register is done during a transmit sequence. It is cleared by a software sequence (see Figure 52). 0: No write collision occurred 1: A write collision has been detected Bit 2 = SOD SPI Output Disable. This bit is set and cleared by software. When set, it disables the alternate function of the SPI output (MOSI in master mode / MISO in slave mode) 0: SPI output enabled (if SPE=1) 1: SPI output disabled Bit 1 = SSM SS Management. This bit is set and cleared by software. When set, it disables the alternate function of the SPI SS pin and uses the SSI bit value instead. See Section 10.4.3.2 Slave Select Management. 0: Hardware management (SS managed by external pin) 1: Software management (internal SS signal controlled by SSI bit. External SS pin free for general-purpose I/O) Bit 0 = SSI SS Internal Mode. This bit is set and cleared by software. It acts as a ‘chip select’ by controlling the level of the SS slave select signal when the SSM bit is set. 0 : Slave selected 1 : Slave deselected DATA I/O REGISTER (SPIDR) Read/Write Reset Value: Undefined 7 Bit 5 = OVR SPI Overrun error (Read only). This bit is set by hardware when the byte currently being received in the shift register is ready to be transferred into the SPIDR register while SPIF = 1 (See Section 10.4.5.2). An interrupt is generated if SPIE = 1 in SPICSR register. The OVR bit is cleared by software reading the SPICSR register. 0: No overrun error 1: Overrun error detected Bit 4 = MODF Mode Fault flag (Read only). This bit is set by hardware when the SS pin is pulled low in master mode (see Section 10.4.5.1 Master Mode Fault (MODF)). An SPI interrupt can be generated if SPIE=1 in the SPICSR register. This bit is cleared by a software sequence (An access to the SPICSR register while MODF=1 followed by a write to the SPICR register). 0: No master mode fault detected 1: A fault in master mode has been detected D7 0 D6 D5 D4 D3 D2 D1 D0 The SPIDR register is used to transmit and receive data on the serial bus. In a master device, a write to this register will initiate transmission/reception of another byte. Notes: During the last clock cycle the SPIF bit is set, a copy of the received data byte in the shift register is moved to a buffer. When the user reads the serial peripheral data I/O register, the buffer is actually being read. While the SPIF bit is set, all writes to the SPIDR register are inhibited until the SPICSR register is read. Warning: A write to the SPIDR register places data directly into the shift register for transmission. A read to the SPIDR register returns the value located in the buffer and not the content of the shift register (see Figure 47). 87/161 ST72324 SERIAL PERIPHERAL INTERFACE (Cont’d) Table 18. SPI Register Map and Reset Values Address (Hex.) 0021h 0022h 0023h 88/161 Register Label 7 6 5 4 3 2 1 0 SPIDR Reset Value SPICR Reset Value SPICSR Reset Value MSB x SPIE 0 SPIF 0 x SPE 0 WCOL 0 x SPR2 0 OR 0 x MSTR 0 MODF 0 x CPOL x x CPHA x SOD 0 x SPR1 x SSM 0 LSB x SPR0 x SSI 0 0 ST72324 10.5 SERIAL COMMUNICATIONS INTERFACE (SCI) 10.5.1 Introduction The Serial Communications Interface (SCI) offers a flexible means of full-duplex data exchange with external equipment requiring an industry standard NRZ asynchronous serial data format. The SCI offers a very wide range of baud rates using two baud rate generator systems. 10.5.2 Main Features ■ Full duplex, asynchronous communications ■ NRZ standard format (Mark/Space) ■ Dual baud rate generator systems ■ Independently programmable transmit and receive baud rates up to 500K baud. ■ Programmable data word length (8 or 9 bits) ■ Receive buffer full, Transmit buffer empty and End of Transmission flags ■ Two receiver wake-up modes: – Address bit (MSB) – Idle line ■ Muting function for multiprocessor configurations ■ Separate enable bits for Transmitter and Receiver ■ Four error detection flags: – Overrun error – Noise error – Frame error – Parity error ■ Five interrupt sources with flags: – Transmit data register empty – Transmission complete – Receive data register full – Idle line received – Overrun error detected ■ Parity control: – Transmits parity bit – Checks parity of received data byte ■ Reduced power consumption mode 10.5.3 General Description The interface is externally connected to another device by two pins (see Figure 55): – TDO: Transmit Data Output. When the transmitter and the receiver are disabled, the output pin returns to its I/O port configuration. When the transmitter and/or the receiver are enabled and nothing is to be transmitted, the TDO pin is at high level. – RDI: Receive Data Input is the serial data input. Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. Through these pins, serial data is transmitted and received as frames comprising: – An Idle Line prior to transmission or reception – A start bit – A data word (8 or 9 bits) least significant bit first – A Stop bit indicating that the frame is complete. This interface uses two types of baud rate generator: – A conventional type for commonly-used baud rates, – An extended type with a prescaler offering a very wide range of baud rates even with non-standard oscillator frequencies. 89/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) Figure 54. SCI Block Diagram Write Read (DATA REGISTER) DR Received Data Register (RDR) Transmit Data Register (TDR) TDO Received Shift Register Transmit Shift Register RDI CR1 R8 TRANSMIT WAKE UP CONTROL UNIT T8 SCID M WAKE PCE PS PIE RECEIVER CLOCK RECEIVER CONTROL CR2 SR TIE TCIE RIE ILIE TE RE RWU SBK TDRE TC RDRF IDLE OR NF FE SCI INTERRUPT CONTROL TRANSMITTER CLOCK TRANSMITTER RATE fCPU CONTROL /16 /PR BRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 90/161 PE ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.4 Functional Description The block diagram of the Serial Control Interface, is shown in Figure 54. It contains 6 dedicated registers: – Two control registers (SCICR1 & SCICR2) – A status register (SCISR) – A baud rate register (SCIBRR) – An extended prescaler receiver register (SCIERPR) – An extended prescaler transmitter register (SCIETPR) Refer to the register descriptions in Section 10.5.7for the definitions of each bit. 10.5.4.1 Serial Data Format Word length may be selected as being either 8 or 9 bits by programming the M bit in the SCICR1 register (see Figure 54). The TDO pin is in low state during the start bit. The TDO pin is in high state during the stop bit. An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the next frame which contains data. A Break character is interpreted on receiving “0”s for some multiple of the frame period. At the end of the last break frame the transmitter inserts an extra “1” bit to acknowledge the start bit. Transmission and reception are driven by their own baud rate generator. Figure 55. Word Length Programming 9-bit Word length (M bit is set) Possible Parity Bit Data Frame Start Bit Bit0 Bit2 Bit1 Bit3 Bit4 Bit5 Bit6 Start Bit Break Frame Extra ’1’ Possible Parity Bit Data Frame Bit0 Bit8 Next Stop Start Bit Bit Idle Frame 8-bit Word length (M bit is reset) Start Bit Bit7 Next Data Frame Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7 Start Bit Next Data Frame Stop Bit Next Start Bit Idle Frame Start Bit Break Frame Extra Start Bit ’1’ 91/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.4.2 Transmitter The transmitter can send data words of either 8 or 9 bits depending on the M bit status. When the M bit is set, word length is 9 bits and the 9th bit (the MSB) has to be stored in the T8 bit in the SCICR1 register. Character Transmission During an SCI transmission, data shifts out least significant bit first on the TDO pin. In this mode, the SCIDR register consists of a buffer (TDR) between the internal bus and the transmit shift register (see Figure 54). Procedure – Select the M bit to define the word length. – Select the desired baud rate using the SCIBRR and the SCIETPR registers. – Set the TE bit to assign the TDO pin to the alternate function and to send a idle frame as first transmission. – Access the SCISR register and write the data to send in the SCIDR register (this sequence clears the TDRE bit). Repeat this sequence for each data to be transmitted. Clearing the TDRE bit is always performed by the following software sequence: 1. An access to the SCISR register 2. A write to the SCIDR register The TDRE bit is set by hardware and it indicates: – The TDR register is empty. – The data transfer is beginning. – The next data can be written in the SCIDR register without overwriting the previous data. This flag generates an interrupt if the TIE bit is set and the I bit is cleared in the CCR register. When a transmission is taking place, a write instruction to the SCIDR register stores the data in the TDR register and which is copied in the shift register at the end of the current transmission. When no transmission is taking place, a write instruction to the SCIDR register places the data directly in the shift register, the data transmission starts, and the TDRE bit is immediately set. 92/161 When a frame transmission is complete (after the stop bit or after the break frame) the TC bit is set and an interrupt is generated if the TCIE is set and the I bit is cleared in the CCR register. Clearing the TC bit is performed by the following software sequence: 1. An access to the SCISR register 2. A write to the SCIDR register Note: The TDRE and TC bits are cleared by the same software sequence. Break Characters Setting the SBK bit loads the shift register with a break character. The break frame length depends on the M bit (see Figure 55). As long as the SBK bit is set, the SCI send break frames to the TDO pin. After clearing this bit by software the SCI insert a logic 1 bit at the end of the last break frame to guarantee the recognition of the start bit of the next frame. Idle Characters Setting the TE bit drives the SCI to send an idle frame before the first data frame. Clearing and then setting the TE bit during a transmission sends an idle frame after the current word. Note: Resetting and setting the TE bit causes the data in the TDR register to be lost. Therefore the best time to toggle the TE bit is when the TDRE bit is set i.e. before writing the next byte in the SCIDR. ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.4.3 Receiver The SCI can receive data words of either 8 or 9 bits. When the M bit is set, word length is 9 bits and the MSB is stored in the R8 bit in the SCICR1 register. Character reception During a SCI reception, data shifts in least significant bit first through the RDI pin. In this mode, the SCIDR register consists or a buffer (RDR) between the internal bus and the received shift register (see Figure 54). Procedure – Select the M bit to define the word length. – Select the desired baud rate using the SCIBRR and the SCIERPR registers. – Set the RE bit, this enables the receiver which begins searching for a start bit. When a character is received: – The RDRF bit is set. It indicates that the content of the shift register is transferred to the RDR. – An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register. – The error flags can be set if a frame error, noise or an overrun error has been detected during reception. Clearing the RDRF bit is performed by the following software sequence done by: 1. An access to the SCISR register 2. A read to the SCIDR register. The RDRF bit must be cleared before the end of the reception of the next character to avoid an overrun error. Break Character When a break character is received, the SPI handles it as a framing error. Idle Character When a idle frame is detected, there is the same procedure as a data received character plus an interrupt if the ILIE bit is set and the I bit is cleared in the CCR register. Overrun Error An overrun error occurs when a character is received when RDRF has not been reset. Data can not be transferred from the shift register to the RDR register as long as the RDRF bit is not cleared. When a overrun error occurs: – The OR bit is set. – The RDR content will not be lost. – The shift register will be overwritten. – An interrupt is generated if the RIE bit is set and the I bit is cleared in the CCR register. The OR bit is reset by an access to the SCISR register followed by a SCIDR register read operation. Noise Error Oversampling techniques are used for data recovery by discriminating between valid incoming data and noise. When noise is detected in a frame: – The NF is set at the rising edge of the RDRF bit. – Data is transferred from the Shift register to the SCIDR register. – No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt. The NF bit is reset by a SCISR register read operation followed by a SCIDR register read operation. Framing Error A framing error is detected when: – The stop bit is not recognized on reception at the expected time, following either a de-synchronization or excessive noise. – A break is received. When the framing error is detected: – the FE bit is set by hardware – Data is transferred from the Shift register to the SCIDR register. – No interrupt is generated. However this bit rises at the same time as the RDRF bit which itself generates an interrupt. The FE bit is reset by a SCISR register read operation followed by a SCIDR register read operation. 93/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) Figure 56. SCI Baud Rate and Extended Prescaler Block Diagram TRANSMITTER CLOCK EXTENDED PRESCALER TRANSMITTER RATE CONTROL SCIETPR EXTENDED TRANSMITTER PRESCALER REGISTER SCIERPR EXTENDED RECEIVER PRESCALER REGISTER RECEIVER CLOCK EXTENDED PRESCALER RECEIVER RATE CONTROL EXTENDED PRESCALER fCPU TRANSMITTER RATE CONTROL /16 /PR SCIBRR SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1SCR0 RECEIVER RATE CONTROL CONVENTIONAL BAUD RATE GENERATOR 94/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.4.4 Conventional Baud Rate Generation with: The baud rate for the receiver and transmitter (Rx ETPR = 1,..,255 (see SCIETPR register) and Tx) are set independently and calculated as ERPR = 1,.. 255 (see SCIERPR register) follows: 10.5.4.6 Receiver Muting and Wake-up Feature fCPU fCPU In multiprocessor configurations it is often desiraRx = Tx = ble that only the intended message recipient (16*PR)*RR (16*PR)*TR should actively receive the full message contents, with: thus reducing redundant SCI service overhead for all non addressed receivers. PR = 1, 3, 4 or 13 (see SCP[1:0] bits) The non addressed devices may be placed in TR = 1, 2, 4, 8, 16, 32, 64,128 sleep mode by means of the muting function. (see SCT[2:0] bits) Setting the RWU bit by software puts the SCI in RR = 1, 2, 4, 8, 16, 32, 64,128 sleep mode: (see SCR[2:0] bits) All the reception status bits can not be set. All these bits are in the SCIBRR register. All the receive interrupts are inhibited. Example: If fCPU is 8 MHz (normal mode) and if A muted receiver may be awakened by one of the PR=13 and TR=RR=1, the transmit and receive following two ways: baud rates are 38400 baud. – by Idle Line detection if the WAKE bit is reset, Note: the baud rate registers MUST NOT be – by Address Mark detection if the WAKE bit is set. changed while the transmitter or the receiver is enabled. Receiver wakes-up by Idle Line detection when the Receive line has recognised an Idle Frame. 10.5.4.5 Extended Baud Rate Generation Then the RWU bit is reset by hardware but the The extended prescaler option gives a very fine IDLE bit is not set. tuning on the baud rate, using a 255 value prescalReceiver wakes-up by Address Mark detection er, whereas the conventional Baud Rate Generawhen it received a “1” as the most significant bit of tor retains industry standard software compatibilia word, thus indicating that the message is an adty. dress. The reception of this particular word wakes The extended baud rate generator block diagram up the receiver, resets the RWU bit and sets the is described in the Figure 56. RDRF bit, which allows the receiver to receive this word normally and to use it as an address word. The output clock rate sent to the transmitter or to the receiver will be the output from the 16 divider Caution: In Mute mode, do not write to the divided by a factor ranging from 1 to 255 set in the SCICR2 register. If the SCI is in Mute mode during SCIERPR or the SCIETPR register. the read operation (RWU=1) and a address mark wake up event occurs (RWU is reset) before the Note: the extended prescaler is activated by setwrite operation, the RWU bit will be set again by ting the SCIETPR or SCIERPR register to a value this write operation. Consequently the address other than zero. The baud rates are calculated as byte is lost and the SCI is not woken up from Mute follows: mode. fCPU fCPU Rx = Tx = 16*ERPR*(PR*RR) 16*ETPR*(PR*TR) 95/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.4.7 Parity Control Parity control (generation of parity bit in trasmission and and parity chencking in reception) can be enabled by setting the PCE bit in the SCICR1 register. Depending on the frame length defined by the M bit, the possible SCI frame formats are as listed in Table 19. Table 19. Frame Formats M bit 0 0 1 1 PCE bit 0 1 0 1 SCI frame | SB | 8 bit data | STB | | SB | 7-bit data | PB | STB | | SB | 9-bit data | STB | | SB | 8-bit data PB | STB | Legend: SB = Start Bit, STB = Stop Bit, PB = Parity Bit Note: In case of wake up by an address mark, the MSB bit of the data is taken into account and not the parity bit Even parity: the parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Ex: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit = 0). Odd parity: the parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit. Ex: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit = 1). Transmission mode: If the PCE bit is set then the MSB bit of the data written in the data register is not transmitted but is changed by the parity bit. Reception mode: If the PCE bit is set then the interface checks if the received data byte has an even number of “1s” if even parity is selected 96/161 (PS=0) or an odd number of “1s” if odd parity is selected (PS=1). If the parity check fails, the PE flag is set in the SCISR register and an interrupt is generated if PIE is set in the SCICR1 register. 10.5.5 Low Power Modes Mode Description No effect on SCI. WAIT SCI interrupts cause the device to exit from Wait mode. SCI registers are frozen. HALT In Halt mode, the SCI stops transmitting/receiving until Halt mode is exited. 10.5.6 Interrupts Interrupt Event Enable Exit Event Control from Flag Bit Wait Transmit Data Register TDRE Empty Transmission ComTC plete Received Data Ready RDRF to be Read Overrun Error Detected OR Idle Line Detected IDLE Parity Error PE Exit from Halt TIE Yes No TCIE Yes No Yes No Yes Yes Yes No No No RIE ILIE PIE The SCI interrupt events are connected to the same interrupt vector. These events generate an interrupt if the corresponding Enable Control Bit is set and the interrupt mask in the CC register is reset (RIM instruction). ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) 10.5.7 Register Description Note: The IDLE bit will not be set again until the RDRF bit has been set itself (i.e. a new idle line ocSTATUS REGISTER (SCISR) curs). Read Only Reset Value: 1100 0000 (C0h) Bit 3 = OR Overrun error. 7 0 This bit is set by hardware when the word currently being received in the shift register is ready to be TDRE TC RDRF IDLE OR NF FE PE transferred into the RDR register while RDRF=1. An interrupt is generated if RIE=1 in the SCICR2 register. It is cleared by a software sequence (an Bit 7 = TDRE Transmit data register empty. access to the SCISR register followed by a read to This bit is set by hardware when the content of the TDR register has been transferred into the shift the SCIDR register). 0: No Overrun error register. An interrupt is generated if the TIE bit=1 1: Overrun error is detected in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register folNote: When this bit is set RDR register content will lowed by a write to the SCIDR register). not be lost but the shift register will be overwritten. 0: Data is not transferred to the shift register 1: Data is transferred to the shift register Bit 2 = NF Noise flag. Note: Data will not be transferred to the shift regThis bit is set by hardware when noise is detected ister unless the TDRE bit is cleared. on a received frame. It is cleared by a software sequence (an access to the SCISR register followed Bit 6 = TC Transmission complete. by a read to the SCIDR register). 0: No noise is detected This bit is set by hardware when transmission of a 1: Noise is detected frame containing Data, a Preamble or a Break is complete. An interrupt is generated if TCIE=1 in Note: This bit does not generate interrupt as it apthe SCICR2 register. It is cleared by a software sepears at the same time as the RDRF bit which itquence (an access to the SCISR register followed self generates an interrupt. by a write to the SCIDR register). 0: Transmission is not complete 1: Transmission is complete Bit 1 = FE Framing error. This bit is set by hardware when a de-synchronizaNote: TC is not set after the transmission of a Pretion, excessive noise or a break character is deamble or a Break. tected. It is cleared by a software sequence (an access to the SCISR register followed by a read to Bit 5 = RDRF Received data ready flag. the SCIDR register). This bit is set by hardware when the content of the 0: No Framing error is detected RDR register has been transferred to the SCIDR 1: Framing error or break character is detected register. An interrupt is generated if RIE=1 in the Note: This bit does not generate interrupt as it apSCICR2 register. It is cleared by a software sepears at the same time as the RDRF bit which itquence (an access to the SCISR register followed self generates an interrupt. If the word currently by a read to the SCIDR register). being transferred causes both frame error and 0: Data is not received overrun error, it will be transferred and only the OR 1: Received data is ready to be read bit will be set. Bit 4 = IDLE Idle line detect. This bit is set by hardware when a Idle Line is detected. An interrupt is generated if the ILIE=1 in the SCICR2 register. It is cleared by a software sequence (an access to the SCISR register followed by a read to the SCIDR register). 0: No Idle Line is detected 1: Idle Line is detected Bit 0 = PE Parity error. This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a software sequence (a read to the status register followed by an access to the SCIDR data register). An interrupt is generated if PIE=1 in the SCICR1 register. 0: No parity error 1: Parity error 97/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) CONTROL REGISTER 1 (SCICR1) Bit 3 = WAKE Wake-Up method. Read/Write This bit determines the SCI Wake-Up method, it is Reset Value: x000 0000 (x0h) set or cleared by software. 0: Idle Line 7 0 1: Address Mark R8 T8 SCID M WAKE PCE PS PIE Bit 7 = R8 Receive data bit 8. This bit is used to store the 9th bit of the received word when M=1. Bit 6 = T8 Transmit data bit 8. This bit is used to store the 9th bit of the transmitted word when M=1. Bit 5 = SCID Disabled for low power consumption When this bit is set the SCI prescalers and outputs are stopped and the end of the current byte transfer in order to reduce power consumption.This bit is set and cleared by software. 0: SCI enabled 1: SCI prescaler and outputs disabled Bit 4 = M Word length. This bit determines the word length. It is set or cleared by software. 0: 1 Start bit, 8 Data bits, 1 Stop bit 1: 1 Start bit, 9 Data bits, 1 Stop bit Note: The M bit must not be modified during a data transfer (both transmission and reception). 98/161 Bit 2 = PCE Parity control enable. This bit selects the hardware parity control (generation and detection). When the parity control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit if M=0) and parity is checked on the received data. This bit is set and cleared by software. Once it is set, PCE is active after the current byte (in reception and in transmission). 0: Parity control disabled 1: Parity control enabled Bit 1 = PS Parity selection. This bit selects the odd or even parity when the parity generation/detection is enabled (PCE bit set). It is set and cleared by software. The parity will be selected after the current byte. 0: Even parity 1: Odd parity Bit 0 = PIE Parity interrupt enable. This bit enables the interrupt capability of the hardware parity control when a parity error is detected (PE bit set). It is set and cleared by software. 0: Parity error interrupt disabled 1: Parity error interrupt enabled. ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) CONTROL REGISTER 2 (SCICR2) Notes: Read/Write – During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble (idle line) Reset Value: 0000 0000 (00 h) after the current word. 7 0 – When TE is set there is a 1 bit-time delay before the transmission starts. TIE TCIE RIE ILIE TE RE RWU SBK Caution: The TDO pin is free for general purpose I/O only when the TE and RE bits are both cleared (or if TE is never set). Bit 7 = TIE Transmitter interrupt enable. This bit is set and cleared by software. 0: Interrupt is inhibited Bit 2 = RE Receiver enable. 1: An SCI interrupt is generated whenever This bit enables the receiver. It is set and cleared TDRE=1 in the SCISR register by software. 0: Receiver is disabled Bit 6 = TCIE Transmission complete interrupt ena1: Receiver is enabled and begins searching for a ble start bit This bit is set and cleared by software. 0: Interrupt is inhibited Bit 1 = RWU Receiver wake-up. 1: An SCI interrupt is generated whenever TC=1 in This bit determines if the SCI is in mute mode or the SCISR register not. It is set and cleared by software and can be cleared by hardware when a wake-up sequence is Bit 5 = RIE Receiver interrupt enable. recognized. This bit is set and cleared by software. 0: Receiver in Active mode 0: Interrupt is inhibited 1: Receiver in Mute mode 1: An SCI interrupt is generated whenever OR=1 Note: Before selecting Mute mode (setting the or RDRF=1 in the SCISR register RWU bit), the SCI must receive some data first, otherwise it cannot function in Mute mode with Bit 4 = ILIE Idle line interrupt enable. wakeup by idle line detection. This bit is set and cleared by software. 0: Interrupt is inhibited Bit 0 = SBK Send break. 1: An SCI interrupt is generated whenever IDLE=1 This bit set is used to send break characters. It is in the SCISR register. set and cleared by software. Bit 3 = TE Transmitter enable. This bit enables the transmitter. It is set and cleared by software. 0: Transmitter is disabled 1: Transmitter is enabled 0: No break character is transmitted 1: Break characters are transmitted Note: If the SBK bit is set to “1” and then to “0”, the transmitter will send a BREAK word at the end of the current word. 99/161 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) DATA REGISTER (SCIDR) Read/Write Reset Value: Undefined Contains the Received or Transmitted data character, depending on whether it is read from or written to. 7 0 DR7 DR6 DR5 DR4 DR3 DR2 DR1 DR0 The Data register performs a double function (read and write) since it is composed of two registers, one for transmission (TDR) and one for reception (RDR). The TDR register provides the parallel interface between the internal bus and the output shift register (see Figure 54). The RDR register provides the parallel interface between the input shift register and the internal bus (see Figure 54). BAUD RATE REGISTER (SCIBRR) Read/Write Reset Value: 0000 0000 (00h) 7 0 SCP1 SCP0 SCT2 SCT1 SCT0 SCR2 SCR1 SCR0 Bits 7:6= SCP[1:0] First SCI Prescaler These 2 prescaling bits allow several standard clock division ranges: PR Prescaling factor SCP1 SCP0 1 0 0 3 0 1 4 1 0 13 1 1 100/161 Bits 5:3 = SCT[2:0] SCI Transmitter rate divisor These 3 bits, in conjunction with the SCP1 & SCP0 bits define the total division applied to the bus clock to yield the transmit rate clock in conventional Baud Rate Generator mode. TR dividing factor SCT2 SCT1 SCT0 1 0 0 0 2 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 32 1 0 1 64 1 1 0 128 1 1 1 Bits 2:0 = SCR[2:0] SCI Receiver rate divisor. These 3 bits, in conjunction with the SCP[1:0] bits define the total division applied to the bus clock to yield the receive rate clock in conventional Baud Rate Generator mode. RR Dividing factor SCR2 SCR1 SCR0 1 0 0 0 2 0 0 1 4 0 1 0 8 0 1 1 16 1 0 0 32 1 0 1 64 1 1 0 128 1 1 1 ST72324 SERIAL COMMUNICATIONS INTERFACE (Cont’d) EXTENDED RECEIVE PRESCALER DIVISION REGISTER (SCIERPR) Read/Write Reset Value: 0000 0000 (00 h) Allows setting of the Extended Prescaler rate division factor for the receive circuit. 7 0 EXTENDED TRANSMIT PRESCALER DIVISION REGISTER (SCIETPR) Read/Write Reset Value:0000 0000 (00h) Allows setting of the External Prescaler rate division factor for the transmit circuit. 7 ERPR ERPR ERPR ERPR ERPR ERPR ERPR ERPR 7 6 5 4 3 2 1 0 ETPR 7 Bits 7:0 = ERPR[7:0] 8-bit Extended Receive Prescaler Register. The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 56) is divided by the binary factor set in the SCIERPR register (in the range 1 to 255). The extended baud rate generator is not used after a reset. 0 ETPR 6 ETPR 5 ETPR 4 ETPR 3 ETPR 2 ETPR ETPR 1 0 Bits 7:0 = ETPR[7:0] 8-bit Extended Transmit Prescaler Register. The extended Baud Rate Generator is activated when a value different from 00h is stored in this register. Therefore the clock frequency issued from the 16 divider (see Figure 56) is divided by the binary factor set in the SCIETPR register (in the range 1 to 255). The extended baud rate generator is not used after a reset. Table 20. Baudrate Selection Conditions Symbol Parameter fCPU Accuracy vs. Standard ~0.16% fTx fRx Communication frequency 8MHz ~0.79% Prescaler Conventional Mode TR (or RR)=128, PR=13 TR (or RR)= 32, PR=13 TR (or RR)= 16, PR=13 TR (or RR)= 8, PR=13 TR (or RR)= 4, PR=13 TR (or RR)= 16, PR= 3 TR (or RR)= 2, PR=13 TR (or RR)= 1, PR=13 Extended Mode ETPR (or ERPR) = 35, TR (or RR)= 1, PR=1 Standard Baud Rate Unit ~300.48 300 1200 ~1201.92 2400 ~2403.84 4800 ~4807.69 9600 ~9615.38 10400 ~10416.67 19200 ~19230.77 38400 ~38461.54 Hz 14400 ~14285.71 101/161 ST72324 SERIAL COMMUNICATION INTERFACE (Cont’d) Table 21. SCI Register Map and Reset Values Address (Hex.) 0050h 0051h 0052h 0053h 0054h 0055h 0057h 102/161 Register Label 7 6 5 4 3 2 1 0 SCISR Reset Value SCIDR Reset Value SCIBRR Reset Value SCICR1 Reset Value SCICR2 Reset Value SCIERPR Reset Value SCIPETPR Reset Value TDRE 1 MSB x SCP1 0 R8 x TIE 0 MSB 0 MSB 0 TC 1 RDRF 0 IDLE 0 OR 0 NF 0 FE 0 x SCP0 0 T8 0 TCIE 0 x SCT2 0 SCID 0 RIE 0 x SCT1 0 M 0 ILIE 0 x SCT0 0 WAKE 0 TE 0 x SCR2 0 PCE 0 RE 0 x SCR1 0 PS 0 RWU 0 0 0 0 0 0 0 0 0 0 0 0 0 PE 0 LSB x SCR0 0 PIE 0 SBK 0 LSB 0 LSB 0 ST72324 10.6 10-BIT A/D CONVERTER (ADC) 10.6.1 Introduction The on-chip Analog to Digital Converter (ADC) peripheral is a 10-bit, successive approximation converter with internal sample and hold circuitry. This peripheral has up to 16 multiplexed analog input channels (refer to device pin out description) that allow the peripheral to convert the analog voltage levels from up to 16 different sources. The result of the conversion is stored in a 10-bit Data Register. The A/D converter is controlled through a Control/Status Register. 10.6.2 Main Features ■ 10-bit conversion ■ Up to 16 channels with multiplexed input ■ Linear successive approximation ■ Data register (DR) which contains the results ■ Conversion complete status flag ■ On/off bit (to reduce consumption) The block diagram is shown in Figure 57. Figure 57. ADC Block Diagram fCPU DIV 4 0 DIV 2 fADC 1 EOC SPEEDADON 0 CH3 CH2 CH1 CH0 ADCCSR 4 AIN0 AIN1 ANALOG TO DIGITAL ANALOG MUX CONVERTER AINx ADCDRH D9 D8 ADCDRL D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 D1 D0 103/161 ST72324 10-BIT A/D CONVERTER (ADC) (Cont’d) 10.6.3 Functional Description The conversion is monotonic, meaning that the result never decreases if the analog input does not and never increases if the analog input does not. If the input voltage (VAIN) is greater than VAREF (high-level voltage reference) then the conversion result is FFh in the ADCDRH register and 03h in the ADCDRL register (without overflow indication). If the input voltage (VAIN) is lower than VSSA (lowlevel voltage reference) then the conversion result in the ADCDRH and ADCDRL registers is 00 00h. The A/D converter is linear and the digital result of the conversion is stored in the ADCDRH and ADCDRL registers. The accuracy of the conversion is described in the Electrical Characteristics Section. RAIN is the maximum recommended impedance for an analog input signal. If the impedance is too high, this will result in a loss of accuracy due to leakage and sampling not being completed in the alloted time. 10.6.3.1 A/D Converter Configuration The analog input ports must be configured as input, no pull-up, no interrupt. Refer to the «I/O ports» chapter. Using these pins as analog inputs does not affect the ability of the port to be read as a logic input. In the ADCCSR register: – Select the CS[3:0] bits to assign the analog channel to convert. 10.6.3.2 Starting the Conversion In the ADCCSR register: – Set the ADON bit to enable the A/D converter and to start the conversion. From this time on, the ADC performs a continuous conversion of the selected channel. When a conversion is complete: – The EOC bit is set by hardware. – The result is in the ADCDR registers. A read to the ADCDRH resets the EOC bit. 104/161 To read the 10 bits, perform the following steps: 1. Poll the EOC bit 2. Read the ADCDRL register 3. Read the ADCDRH register. This clears EOC automatically. Note: The data is not latched, so both the low and the high data register must be read before the next conversion is complete, so it is recommended to disable interrupts while reading the conversion result. To read only 8 bits, perform the following steps: 1. Poll the EOC bit 2. Read the ADCDRH register. This clears EOC automatically. 10.6.3.3 Changing the conversion channel The application can change channels during conversion. When software modifies the CH[3:0] bits in the ADCCSR register, the current conversion is stopped, the EOC bit is cleared, and the A/D converter starts converting the newly selected channel. 10.6.4 Low Power Modes Note: The A/D converter may be disabled by resetting the ADON bit. This feature allows reduced power consumption when no conversion is needed and between single shot conversions. Mode WAIT HALT Description No effect on A/D Converter A/D Converter disabled. After wakeup from Halt mode, the A/D Converter requires a stabilization time tSTAB (see Electrical Characteristics) before accurate conversions can be performed. 10.6.5 Interrupts None. ST72324 10-BIT A/D CONVERTER (ADC) (Cont’d) 10.6.6 Register Description Bit 3:0 = CH[3:0] Channel Selection These bits are set and cleared by software. They select the analog input to convert. CONTROL/STATUS REGISTER (ADCCSR) Read /Write (Except bit 7 read only) Reset Value: 0000 0000 (00h) 7 EOC SPEED ADON 0 0 CH3 CH2 CH1 CH0 Bit 7 = EOC End of Conversion This bit is set by hardware. It is cleared by hardware when software reads the ADCDRH register or writes to any bit of the ADCCSR register. 0: Conversion is not complete 1: Conversion complete Bit 6 = SPEED ADC clock selection This bit is set and cleared by software. 0: fADC = fCPU/4 1: fADC = fCPU/2 Bit 5 = ADON A/D Converter on This bit is set and cleared by software. 0: Disable ADC and stop conversion 1: Enable ADC and start conversion Bit 4 = Reserved. Must be kept cleared. Channel Pin* CH3 CH2 CH1 CH0 AIN0 AIN1 AIN2 AIN3 AIN4 AIN5 AIN6 AIN7 AIN8 AIN9 AIN10 AIN11 AIN12 AIN13 AIN14 AIN15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 *The number of channels is device dependent. Refer to the device pinout description. DATA REGISTER (ADCDRH) Read Only Reset Value: 0000 0000 (00h) 7 D9 0 D8 D7 D6 D5 D4 D3 D2 Bit 7:0 = D[9:2] MSB of Converted Analog Value DATA REGISTER (ADCDRL) Read Only Reset Value: 0000 0000 (00h) 7 0 0 0 0 0 0 0 D1 D0 Bit 7:2 = Reserved. Forced by hardware to 0. Bit 1:0 = D[1:0] LSB of Converted Analog Value 105/161 ST72324 10-BIT A/D CONVERTER (Cont’d) Table 22. ADC Register Map and Reset Values Address (Hex.) Register Label 7 6 5 4 3 2 1 0 0070h ADCCSR Reset Value EOC 0 SPEED 0 ADON 0 0 CH3 0 CH2 0 CH1 0 CH0 0 0071h ADCDRH Reset Value D9 0 D8 0 D7 0 D6 0 D5 0 D4 0 D3 0 D2 0 0072h ADCDRL Reset Value 0 0 0 0 0 0 D1 0 D0 0 106/161 ST72324 11 INSTRUCTION SET 11.1 CPU ADDRESSING MODES The CPU features 17 different addressing modes which can be classified in 7 main groups: Addressing Mode Example Inherent nop Immediate ld A,#$55 Direct ld A,$55 Indexed ld A,($55,X) Indirect ld A,([$55],X) Relative jrne loop Bit operation bset byte,#5 The CPU Instruction set is designed to minimize the number of bytes required per instruction: To do so, most of the addressing modes may be subdivided in two sub-modes called long and short: – Long addressing mode is more powerful because it can use the full 64 Kbyte address space, however it uses more bytes and more CPU cycles. – Short addressing mode is less powerful because it can generally only access page zero (0000h 00FFh range), but the instruction size is more compact, and faster. All memory to memory instructions use short addressing modes only (CLR, CPL, NEG, BSET, BRES, BTJT, BTJF, INC, DEC, RLC, RRC, SLL, SRL, SRA, SWAP) The ST7 Assembler optimizes the use of long and short addressing modes. Table 23. CPU Addressing Mode Overview Mode Syntax Destination Pointer Address (Hex.) Pointer Size (Hex.) Length (Bytes) Inherent nop +0 Immediate ld A,#$55 +1 Short Direct ld A,$10 00..FF +1 Long Direct ld A,$1000 0000..FFFF +2 No Offset Direct Indexed ld A,(X) 00..FF +0 Short Direct Indexed ld A,($10,X) 00..1FE +1 Long Direct Indexed ld A,($1000,X) 0000..FFFF +2 Short Indirect ld A,[$10] 00..FF 00..FF byte +2 Long Indirect ld A,[$10.w] 0000..FFFF 00..FF word +2 Short Indirect Indexed ld A,([$10],X) 00..1FE 00..FF byte +2 Long Indirect Indexed ld A,([$10.w],X) 0000..FFFF 00..FF word +2 Relative Direct jrne loop PC+/-127 Relative Indirect jrne [$10] PC+/-127 Bit Direct bset $10,#7 00..FF Bit Indirect bset [$10],#7 00..FF Bit Direct Relative btjt $10,#7,skip 00..FF Bit Indirect Relative btjt [$10],#7,skip 00..FF +1 00..FF byte +2 +1 00..FF byte +2 +2 00..FF byte +3 107/161 ST72324 INSTRUCTION SET OVERVIEW (Cont’d) 11.1.1 Inherent All Inherent instructions consist of a single byte. The opcode fully specifies all the required information for the CPU to process the operation. Inherent Instruction Function NOP No operation TRAP S/W Interrupt WFI Wait For Interrupt (Low Power Mode) HALT Halt Oscillator (Lowest Power Mode) RET Sub-routine Return IRET Interrupt Sub-routine Return SIM Set Interrupt Mask (level 3) RIM Reset Interrupt Mask (level 0) SCF Set Carry Flag RCF Reset Carry Flag RSP Reset Stack Pointer LD Load CLR Clear PUSH/POP Push/Pop to/from the stack INC/DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement MUL Byte Multiplication SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles 11.1.2 Immediate Immediate instructions have two bytes, the first byte contains the opcode, the second byte contains the operand value. Immediate Instruction Function LD Load CP Compare BCP Bit Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Operations 108/161 11.1.3 Direct In Direct instructions, the operands are referenced by their memory address. The direct addressing mode consists of two submodes: Direct (short) The address is a byte, thus requires only one byte after the opcode, but only allows 00 - FF addressing space. Direct (long) The address is a word, thus allowing 64 Kbyte addressing space, but requires 2 bytes after the opcode. 11.1.4 Indexed (No Offset, Short, Long) In this mode, the operand is referenced by its memory address, which is defined by the unsigned addition of an index register (X or Y) with an offset. The indirect addressing mode consists of three sub-modes: Indexed (No Offset) There is no offset, (no extra byte after the opcode), and allows 00 - FF addressing space. Indexed (Short) The offset is a byte, thus requires only one byte after the opcode and allows 00 - 1FE addressing space. Indexed (long) The offset is a word, thus allowing 64 Kbyte addressing space and requires 2 bytes after the opcode. 11.1.5 Indirect (Short, Long) The required data byte to do the operation is found by its memory address, located in memory (pointer). The pointer address follows the opcode. The indirect addressing mode consists of two sub-modes: Indirect (short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - FF addressing space, and requires 1 byte after the opcode. Indirect (long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. ST72324 INSTRUCTION SET OVERVIEW (Cont’d) 11.1.6 Indirect Indexed (Short, Long) This is a combination of indirect and short indexed addressing modes. The operand is referenced by its memory address, which is defined by the unsigned addition of an index register value (X or Y) with a pointer value located in memory. The pointer address follows the opcode. The indirect indexed addressing mode consists of two sub-modes: Indirect Indexed (Short) The pointer address is a byte, the pointer size is a byte, thus allowing 00 - 1FE addressing space, and requires 1 byte after the opcode. Indirect Indexed (Long) The pointer address is a byte, the pointer size is a word, thus allowing 64 Kbyte addressing space, and requires 1 byte after the opcode. Table 24. Instructions Supporting Direct, Indexed, Indirect and Indirect Indexed Addressing Modes Long and Short Instructions Available Relative Direct/Indirect Instructions Function JRxx Conditional Jump CALLR Call Relative The relative addressing mode consists of two submodes: Relative (Direct) The offset is following the opcode. Relative (Indirect) The offset is defined in memory, which address follows the opcode. Function LD Load CP Compare AND, OR, XOR Logical Operations ADC, ADD, SUB, SBC Arithmetic Additions/Substractions operations BCP Bit Compare Short Instructions Only CLR 11.1.7 Relative mode (Direct, Indirect) This addressing mode is used to modify the PC register value, by adding an 8-bit signed offset to it. Function Clear INC, DEC Increment/Decrement TNZ Test Negative or Zero CPL, NEG 1 or 2 Complement BSET, BRES Bit Operations BTJT, BTJF Bit Test and Jump Operations SLL, SRL, SRA, RLC, RRC Shift and Rotate Operations SWAP Swap Nibbles CALL, JP Call or Jump subroutine 109/161 ST72324 INSTRUCTION SET OVERVIEW (Cont’d) 11.2 INSTRUCTION GROUPS The ST7 family devices use an Instruction Set consisting of 63 instructions. The instructions may Load and Transfer LD CLR Stack operation PUSH POP be subdivided into 13 main groups as illustrated in the following table: RSP Increment/Decrement INC DEC Compare and Tests CP TNZ BCP Logical operations AND OR XOR CPL NEG Bit Operation BSET BRES Conditional Bit Test and Branch BTJT BTJF Arithmetic operations ADC ADD SUB SBC MUL Shift and Rotates SLL SRL SRA RLC RRC SWAP SLA Unconditional Jump or Call JRA JRT JRF JP CALL CALLR NOP Conditional Branch JRxx Interruption management TRAP WFI HALT IRET Condition Code Flag modification SIM RIM SCF RCF Using a pre-byte The instructions are described with one to four opcodes. In order to extend the number of available opcodes for an 8-bit CPU (256 opcodes), three different prebyte opcodes are defined. These prebytes modify the meaning of the instruction they precede. The whole instruction becomes: PC-2 End of previous instruction PC-1 Prebyte PC opcode PC+1 Additional word (0 to 2) according to the number of bytes required to compute the effective address 110/161 RET These prebytes enable instruction in Y as well as indirect addressing modes to be implemented. They precede the opcode of the instruction in X or the instruction using direct addressing mode. The prebytes are: PDY 90 Replace an X based instruction using immediate, direct, indexed, or inherent addressing mode by a Y one. PIX 92 Replace an instruction using direct, direct bit, or direct relative addressing mode to an instruction using the corresponding indirect addressing mode. It also changes an instruction using X indexed addressing mode to an instruction using indirect X indexed addressing mode. PIY 91 Replace an instruction using X indirect indexed addressing mode by a Y one. ST72324 INSTRUCTION SET OVERVIEW (Cont’d) Mnemo Description Function/Example Dst Src I1 H I0 N Z C ADC Add with Carry A=A+M+C A M H N Z C ADD Addition A=A+M A M H N Z C AND Logical And A=A.M A M N Z BCP Bit compare A, Memory tst (A . M) A M N Z BRES Bit Reset bres Byte, #3 M BSET Bit Set bset Byte, #3 M BTJF Jump if bit is false (0) btjf Byte, #3, Jmp1 M C BTJT Jump if bit is true (1) btjt Byte, #3, Jmp1 M C CALL Call subroutine CALLR Call subroutine relative CLR Clear CP Arithmetic Compare tst(Reg - M) reg CPL One Complement A = FFH-A DEC Decrement dec Y HALT Halt IRET Interrupt routine return Pop CC, A, X, PC INC Increment inc X JP Absolute Jump jp [TBL.w] JRA Jump relative always JRT Jump relative JRF Never jump jrf * JRIH Jump if ext. INT pin = 1 (ext. INT pin high) JRIL Jump if ext. INT pin = 0 (ext. INT pin low) JRH Jump if H = 1 H=1? JRNH Jump if H = 0 H=0? JRM Jump if I1:0 = 11 I1:0 = 11 ? JRNM Jump if I1:0 <> 11 I1:0 <> 11 ? JRMI Jump if N = 1 (minus) N=1? JRPL Jump if N = 0 (plus) N=0? JREQ Jump if Z = 1 (equal) Z=1? JRNE Jump if Z = 0 (not equal) Z=0? JRC Jump if C = 1 C=1? JRNC Jump if C = 0 C=0? JRULT Jump if C = 1 Unsigned < JRUGE Jump if C = 0 Jmp if unsigned >= JRUGT Jump if (C + Z = 0) Unsigned > reg, M 0 1 N Z C reg, M N Z 1 reg, M N Z N Z N Z M 1 I1 reg, M 0 H I0 C 111/161 ST72324 INSTRUCTION SET OVERVIEW (Cont’d) Mnemo Description Function/Example Dst Src JRULE Jump if (C + Z = 1) Unsigned <= LD Load MUL I1 H I0 N Z N Z dst <= src reg, M M, reg Multiply X,A = X * A A, X, Y X, Y, A NEG Negate (2's compl) neg $10 reg, M NOP No Operation OR OR operation A=A+M A M POP Pop from the Stack pop reg reg M pop CC CC M PUSH Push onto the Stack push Y M reg, CC RCF Reset carry flag C=0 RET Subroutine Return RIM Enable Interrupts I1:0 = 10 (level 0) RLC Rotate left true C C <= A <= C reg, M N Z C RRC Rotate right true C C => A => C reg, M N Z C RSP Reset Stack Pointer S = Max allowed SBC Substract with Carry A=A-M-C N Z C SCF Set carry flag C=1 SIM Disable Interrupts I1:0 = 11 (level 3) 0 I1 H C 0 I0 N Z N Z N Z C C 0 1 A 0 M 1 1 1 SLA Shift left Arithmetic C <= A <= 0 reg, M N Z C SLL Shift left Logic C <= A <= 0 reg, M N Z C SRL Shift right Logic 0 => A => C reg, M 0 Z C SRA Shift right Arithmetic A7 => A => C reg, M N Z C SUB Substraction A=A-M A N Z C SWAP SWAP nibbles A7-A4 <=> A3-A0 reg, M N Z TNZ Test for Neg & Zero tnz lbl1 N Z TRAP S/W trap S/W interrupt WFI Wait for Interrupt XOR Exclusive OR N Z 112/161 A = A XOR M A M M 1 1 1 0 ST72324 12 ELECTRICAL CHARACTERISTICS 12.1 PARAMETER CONDITIONS Unless otherwise specified, all voltages are referred to VSS. 12.1.1 Minimum and Maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA=25°C and TA=TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 12.1.2 Typical values Unless otherwise specified, typical data are based on TA=25°C, VDD=5V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 12.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 12.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 58. 12.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 59. Figure 59. Pin input voltage ST7 PIN VIN Figure 58. Pin loading conditions ST7 PIN CL 113/161 ST72324 12.2 ABSOLUTE MAXIMUM RATINGS Stresses above those listed as “absolute maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these condi12.2.1 Voltage Characteristics Symbol tions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Ratings Maximum value VDD - VSS Supply voltage 6.5 VPP - VSS Programming Voltage 13 VIN 1) & 2) Input Voltage on true open drain pin VSS-0.3 to 6.5 |VSSA - VSSx| V VSS-0.3 to VDD+0.3 Input voltage on any other pin |∆VDDx| and |∆VSSx| Unit Variations between different digital power pins 50 Variations between digital and analog ground pins 50 VESD(HBM) Electro-static discharge voltage (Human Body Model) VESD(MM) Electro-static discharge voltage (Machine Model) mV see Section 12.7.3 on page 131 12.2.2 Current Characteristics Symbol Ratings Maximum value IVDD Total current into VDD power lines (source) 3) 32-pin devices 75 44-pin devices 150 IVSS Total current out of VSS ground lines (sink) for 3) 32-pin devices 75 44-pin devices 150 Output current sunk by any standard I/O and control pin 25 IIO Output current sunk by any high sink I/O pin Output current source by any I/Os and control pin IINJ(PIN) 2) & 4) ±5 ±2 Injected current on any other pin ΣIINJ(PIN) 2) Total injected current (sum of all I/O and control pins) 5) mA 50 Injected current on VPP pin 5) & 6) mA - 25 Injected current on RESET pin Injected current on OSC1 and OSC2 pins Unit mA ±5 ±5 ± 25 Notes: 1. Directly connecting the RESET and I/O pins to VDD or VSS could damage the device if an unintentional internal reset is generated or an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 4.7kΩ for RESET, 10kΩ for I/Os). For the same reason, unused I/O pins must not be directly tied to VDD or VSS. 2. When the current limitation is not possible, the VIN absolute maximum rating must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. 3. All power (VDD) and ground (VSS) lines must always be connected to the external supply. 4. Negative injection disturbs the analog performance of the device. See note in “ADC Accuracy” on page 144. For best reliability, it is recommended to avoid negative injection of more than 1.6mA. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterisation with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device. 6. True open drain I/O port pins do not accept positive injection. 114/161 ST72324 12.2.3 Thermal Characteristics Symbol TSTG TJ Ratings Storage temperature range Value Unit -65 to +150 °C Maximum junction temperature (see Section 13.2 THERMAL CHARACTERISTICS) 12.3 OPERATING CONDITIONS 12.3.1 General Operating Conditions Symbol Parameter Conditions fCPU Internal clock frequency VDD Standard voltage devices (except Flash Write/Erase) Operating Voltage for Flash Write/Erase VPP = 11.4 to 12.6V 1 Suffix Version TA Ambient temperature range Min Max Unit 0 8 MHz 3.8 5.5 4.5 5.5 0 70 5 Suffix Version -10 85 6 or A Suffix Versions -40 85 7 or B Suffix Versions -40 105 C Suffix Version -40 125 V °C Figure 60. fCPU Max Versus VDD for Standard Voltage Devices fCPU [MHz] 8 FUNCTIONALITY NOT GUARANTEED IN THIS AREA 6 4 2 1 0 3.5 3.8 4.0 4.5 5.5 FUNCTIONALITY GUARANTEED IN THIS AREA IN STANDARD VOLTAGE DEVICES (UNLESS OTHERWISE SPECIFIED IN THE TABLES OF PARAMETRIC DATA) SUPPLY VOLTAGE [V] Note: Some temperature ranges are only available with a specific package and memory size. Refer to Ordering Information . 115/161 ST72324 12.3.2 General Operating Conditions for low voltage Flash devices (planned) Symbol Parameter Conditions fCPU Internal clock frequency VDD Low voltage devices (except Flash Write/ Erase)1) Operating Voltage for Flash Write/Erase TA Ambient temperature range Min Max Unit 0 4 MHz 3.0 3.6 3.0 3.6 1 Suffix Version 0 70 5 Suffix Version -10 85 6 Suffix Version -40 85 VPP = 11.4 to 12.6V Figure 61. fCPU Max Versus VDD for Low Voltage Devices FUNCTIONALITY GUARANTEED IN THIS AREA IN LOW VOLTAGE DEVICES UNLESS OTHERWISE SPECIFIED IN THE TABLES OF PARAMETRIC DATA fCPU [MHz] 6 FUNCTIONALITY NOT GUARANTEED IN THIS AREA 4 2 1 0 2.5 3.0 3.5 3.6 SUPPLY VOLTAGE [V] 116/161 4 V °C ST72324 OPERATING CONDITIONS (Cont’d) 12.3.3 Operating Conditions with Low Voltage Detector (LVD) Subject to general operating conditions for VDD, fCPU, and TA. Symbol Parameter VIT+(LVD) Reset release threshold (VDD rise) VIT-(LVD) Reset generation threshold (VDD fall) Vhys(LVD) LVD voltage threshold hysteresis 1) 1)2) VtPOR VDD rise time tg(VDD) VDD glitches filtered (not detected) by LVD 1) Conditions Min Typ Max VD level = High in option byte 4.0 1) 4.2 4.5 VD level = Med. in option byte3) 3.55 1) VD level = Low in option byte3) 2.95 1) 3.75 3.15 4.01) 3.351) VD level = High in option byte 4.0 4.25 1) VD level = Med. in option byte3) 3.351) VD level = Low in option byte3) 2.81) 3.55 3.0 3.751) 3.15 1) VIT+(LVD)-VIT-(LVD) 200 250 mV ∝ µs/V 40 ns 3.8 150 6 Unit V Notes: 1. Data based on characterization results, not tested in production. 2. When VtPOR is faster than 100 µs/V, the Reset signal is released after a delay of max. 42µs after VDD crosses the VIT+(LVD) threshold. 3. If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. 117/161 ST72324 12.3.4 Auxiliary Voltage Detector (AVD) Thresholds Subject to general operating conditions for VDD, fCPU, and TA. Symbol Parameter Conditions Min Typ Max 4.41) 4.6 4.9 VD level = Med. in option byte2) VD level = Low in option byte2) 3.95 1) 3.4 1) 4.15 3.6 4.4 3.8 4.2 3.75 3.2 4.4 4.0 3.4 4.65 1) 4.2 1) 3.6 1) VD level = High in option byte Unit VIT+(AVD) 1⇒0 AVDF flag toggle threshold (VDD rise) VIT-(AVD) 0⇒1 AVDF flag toggle threshold (VDD fall) VD level = High in option byte VD level = Med. in option byte2) VD level = Low in option byte2) Vhys(AVD) AVD voltage threshold hysteresis VIT+(AVD)-VIT-(AVD) 200 mV ∆VIT- Voltage drop between AVD flag set VIT-(AVD)-VIT-(LVD) and LVD reset activated 450 mV 1. Data based on characterization results, not tested in production. 2. Applicable only in low voltage devices (planned). 118/161 V ST72324 12.4 SUPPLY CURRENT CHARACTERISTICS The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode for which the clock is stopped). 12.4.1 RUN and SLOW Modes (Flash devices) Symbol Parameter Typ Max 1) Unit fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.3 2.0 3.6 7.1 3.0 5.0 8.0 15.0 mA fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.6 0.7 0.8 1.1 2.7 3.0 3.6 4.0 mA fOSC=2MHz, fOSC=4MHz, fOSC=8MHz, fCPU=1MHz fCPU=2MHz fCPU=4MHz fOSC=2MHz, fOSC=4MHz, fOSC=8MHz, fCPU=62.5kHz fCPU=125kHz fCPU=250kHz 0.8 1.2 2.0 0.33 0.37 0.44 TBD TBD TBD TBD TBD TBD Conditions 3.8V≤VDD≤5.5V Supply current in RUN mode 2) (see Figure 62) IDD 3V≤VDD≤3.6V Supply current in SLOW mode 2) (see Figure 63) Supply current in RUN mode 2) IDD Supply current in SLOW mode 2) Figure 62. Typical IDD in RUN vs. fCPU 8 7 1.20 500kHz 250kHz 1.00 125kHz 62.5kHz 0.80 Idd (mA) 6 Idd (mA) mA Figure 63. Typical IDD in SLOW vs. fCPU 8MHz 4MHz 2MHz 1MHz 9 mA 5 4 3 0.60 0.40 2 0.20 1 0 0.00 3.2 3.6 4 4.4 Vdd (V) 4.8 5.2 5.5 3.2 3.6 4 4.4 4.8 5.2 5.5 Vdd (V) Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is 50%. - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 119/161 ST72324 SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.2 WAIT and SLOW WAIT Modes (Flash devices) Typ Max 1) Unit fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.0 1.5 2.5 4.5 3.0 4.0 5.0 7.0 mA fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.58 0.65 0.77 1.05 1.2 1.3 1.8 2.0 mA fOSC=2MHz, fOSC=4MHz, fOSC=8MHz, fCPU=1MHz fCPU=2MHz fCPU=4MHz 0.6 0.8 1.6 TBD TBD TBD mA fOSC=2MHz, fOSC=4MHz, fOSC=8MHz, fCPU=62.5kHz fCPU=125kHz fCPU=250kHz 0.33 0.37 0.44 TBD TBD TBD mA Conditions Supply current in WAIT mode 2) (see Figure 64) IDD Supply current in SLOW WAIT mode 2) (see Figure 65) Supply current in WAIT mode 2) IDD Supply current in SLOW WAIT mode 2) 3.8V≤VDD≤5.5V Parameter 3V≤VDD≤3.6V Symbol Figure 64. Typical IDD in WAIT vs. fCPU Figure 65. Typical IDD in SLOW-WAIT vs. fCPU 8MHz 4MHz 2MHz 1MHz 6 5 250kHz 125kHz 62.5kHz 1.00 4 ) 0.80 3 ( Idd (mA) 500kHz 1.20 2 0.60 0.40 1 0.20 0 3.2 3.6 4 4.4 Vdd (V) 4.8 5.2 5.5 0.00 3.2 3.6 4 4.4 4.8 5.2 5.5 Vdd (V) Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. The increase in consumption when executing from Flash is 50%. - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 120/161 ST72324 SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.3 RUN and SLOW Modes (ROM devices) Typ Max 1) fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.3 2.0 3.6 7.1 2.0 3.0 5.0 10.0 fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.6 0.7 0.8 1.1 1.8 2.1 2.4 3.0 Typ Max 1) fOSC=2MHz, fCPU=1MHz fOSC=4MHz, fCPU=2MHz fOSC=8MHz, fCPU=4MHz fOSC=16MHz, fCPU=8MHz 1.0 1.5 2.5 4.5 1.3 2.0 3.3 6.0 fOSC=2MHz, fCPU=62.5kHz fOSC=4MHz, fCPU=125kHz fOSC=8MHz, fCPU=250kHz fOSC=16MHz, fCPU=500kHz 0.07 0.1 0.2 0.35 0.2 0.3 0.6 1.2 Parameter Supply current in RUN mode 2) IDD Supply current in SLOW mode 2) Conditions 3.8V≤VDD≤5.5V Symbol Unit mA 12.4.4 WAIT and SLOW WAIT Modes (ROM devices) Parameter Supply current in WAIT mode 2) IDD Supply current in SLOW WAIT mode 2) Conditions 3.8V≤VDD≤5.5V Symbol Unit mA Notes: 1. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Measurements are done in the following conditions: - Progam executed from RAM, CPU running with RAM access. There is no increase in consumption if programs are executed in ROM - All I/O pins in input mode with a static value at VDD or VSS (no load) - All peripherals in reset state. - CSS and LVD disabled. - Clock input (OSC1) driven by external square wave. - In SLOW and SLOW WAIT mode, fCPU is based on fOSC divided by 32. To obtain the total current consumption of the device, add the clock source (Section 12.5.3 and Section 12.5.4) and the peripheral power consumption (Section 12.4.7). 121/161 ST72324 SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.5 HALT and ACTIVE-HALT Modes Symbol Parameter Conditions Max Unit -40°C≤TA≤+85°C 10 -40°C≤TA≤+125°C 50 µA IDD Supply current in HALT mode 1) VDD=5.5V IDD Supply current in ACTIVE-HALT mode 2) fOSC = 16 MHz, VDD= 5V Typ 650 No max. guaranteed µA Notes: 1. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load), CSS and LVD disabled. Data based on characterization results, tested in production at VDD max. and fCPU max. 2. Data based on characterisation results, not tested in production. All I/O pins in push-pull 0 mode (when applicable) with a static value at VDD or VSS (no load); clock input (OSC1) driven by external square wave, CSS and LVD disabled. To obtain the total current consumption of the device, add the clock source consumption (Section 12.5.3 and Section 12.5.4). 12.4.6 Supply and Clock Managers The previous current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added (except for HALT mode). Symbol Parameter Conditions IDD(RCINT) Supply current of internal RC oscillator IDD(RES) Typ Max 1) Unit 625 see Section 12.5.3 on page 125 Supply current of resonator oscillator 2) & 3) IDD(PLL) PLL supply current IDD(CSS) Clock security system supply current VDD= 5V 250 IDD(LVD) LVD supply current HALT mode, VDD= 5V 150 VDD= 5V µA 360 300 Notes: 1. Data based on characterisation results, not tested in production. 2. Data based on characterization results done with the external components specified in Section 12.5.3, not tested in production. 3. As the oscillator is based on a current source, the consumption does not depend on the voltage. 122/161 ST72324 SUPPLY CURRENT CHARACTERISTICS (Cont’d) 12.4.7 On-Chip Peripherals Measured on S72F521R9T3 on TQFP64 generic board T A = 25°C fCPU=4MHz. Symbol Typ Unit IDD(TIM) 16-bit Timer supply current 1) VDD=5.0V 50 µA IDD(SPI) SPI supply current 3) VDD=5.0V 400 µA VDD=5.0V 400 µA IDD(ADC) Parameter ADC supply current when converting Conditions 6) Notes: 1. Data based on a differential IDD measurement between reset configuration (timer counter running at fCPU/4) and timer counter stopped (only TIMD bit set). Data valid for one timer. 3. Data based on a differential IDD measurement between reset configuration (SPI disabled) and a permanent SPI master communicationat maximum speed (data sent equal to 55h).This measurement includes the pad toggling consumption. 6. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions. 123/161 ST72324 12.5 CLOCK AND TIMING CHARACTERISTICS Subject to general operating conditions for VDD, fCPU, and TA. 12.5.1 General Timings Symbol tc(INST) tv(IT) Parameter Conditions Instruction cycle time Interrupt reaction time tv(IT) = ∆tc(INST) + 10 fCPU=8MHz 2) fCPU=8MHz Min Typ 1) Max Unit 2 3 12 tCPU 250 375 1500 ns 10 22 tCPU 1.25 2.75 µs 12.5.2 External Clock Source Symbol Parameter Conditions Min Typ Max VOSC1H OSC1 input pin high level voltage VDD-1 VDD VOSC1L OSC1 input pin low level voltage VSS VSS+1 tw(OSC1H) tw(OSC1L) tr(OSC1) tf(OSC1) IL OSC1 high or low time 3) see Figure 66 Unit V 5 ns OSC1 rise or fall time 3) 15 VSS≤VIN≤VDD OSCx Input leakage current ±1 µA Figure 66. Typical Application with an External Clock Source 90% VOSC1H 10% VOSC1L tr(OSC1) tf(OSC1) OSC2 tw(OSC1H) tw(OSC1L) Not connected internally fOSC EXTERNAL CLOCK SOURCE OSC1 IL ST72XXX Notes: 1. Data based on typical application software. 2. Time measured between interrupt event and interrupt vector fetch. ∆tc(INST) is the number of tCPU cycles needed to finish the current instruction execution. 3. Data based on design simulation and/or technology characteristics, not tested in production. 124/161 ST72324 CLOCK AND TIMING CHARACTERISTICS (Cont’d) 12.5.3 Crystal and Ceramic Resonator Oscillators The ST7 internal clock can be supplied with four different Crystal/Ceramic resonator oscillators. All the information given in this paragraph are based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as Symbol Parameter fOSC Oscillator Frequency 1) RF Feedback resistor CL1 CL2 Recommended load capacitance versus equivalent serial resistance of the crystal or ceramic resonator (RS) Symbol i2 close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal/ceramic resonator manufacturer for more details (frequency, package, accuracy...). Min Max Unit LP: Low power oscillator MP: Medium power oscillator MS: Medium speed oscillator HS: High speed oscillator Conditions 1 >2 >4 >8 2 4 8 16 MHz 20 40 kΩ RS=200Ω RS=200Ω RS=200Ω RS=100Ω 22 22 18 15 56 46 33 33 pF Typ Max Unit 80 160 310 610 150 250 460 910 µA Parameter LP oscillator MP oscillator MS oscillator HS oscillator Conditions VDD=5V VIN=VSS OSC2 driving current LP oscillator MP oscillator MS oscillator HS oscillator Figure 67. Typical Application with a Crystal or Ceramic Resonator WHEN RESONATOR WITH INTEGRATED CAPACITORS i2 fOSC CL1 OSC1 RESONATOR CL2 RF OSC2 ST72XXX Notes: 1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value. Refer to crystal/ceramic resonator manufacturer for more details. 125/161 ST72324 CLOCK AND TIMING CHARACTERISTICS (Cont’d) Typical Ceramic Resonators (information for guidance only) LP MP MS HS Reference3) MURATA Ceramic Oscil. Freq. CSA2.00MG CSA4.00MG CSA8.00MTZ 4) CSA16.00MXZ040 Characteristic 1) CL1 CL2 tSU(osc) [pF] [pF] [ms] 2) 2MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 22 4MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 22 8MHz ∆fOSC=[±0.5%tolerance,±0.5%∆Ta,±0.3%aging,±x.x%correl] 33 22 22 4 2 33 1 16MHz ∆fOSC=[±0.5%tolerance,±0.3%∆Ta,±0.3%aging,±x.x%correl] 33 33 0.7 Notes: 1. Resonator characteristics given by the ceramic resonator manufacturer. 2. tSU(OSC) is the typical oscillator start-up time measured between VDD=2.8V and the fetch of the first instruction (with a quick VDD ramp-up from 0 to 5V (<50µs). 3. Resonators all have different characteristics. Contact the manufacturer to obtain the appropriate values of external components and to verify oscillator performance. 4. 3rd overtone resonators require specific validation by the resonator manufacturer. 126/161 ST72324 CLOCK CHARACTERISTICS (Cont’d) 12.5.4 RC Oscillators Symbol fOSC (RCINT) Parameter Conditions Internal RC oscillator frequency TA=25°C, VDD=5V See Figure 68 Min Typ Max Unit 2 3.5 5.6 MHz Figure 68. Typical fOSC(RCINT) vs TA fOSC(RCINT) (MHz) 4 Vdd = 5V 3.8 Vdd = 5.5V 3.6 3.4 3.2 3 -45 0 25 70 130 TA(°C) 127/161 ST72324 CLOCK CHARACTERISTICS (Cont’d) 12.5.5 Clock Security System (CSS) Symbol Parameter Conditions Min Typ Safe Oscillator Frequency 1) fSFOSC Max 3 Unit MHz Note: 1. Data based on characterization results. 12.5.6 PLL Characteristics Operating conditions: VDD 3.8 to 5.5V @ TA 0 to 70°C1) or VDD 4.5 to 5.5V @ TA -40 to 125°C Symbol Parameter VDD(PLL) PLL Operating Range fOSC PLL input frequency range ∆ fCPU/ fCPU Instantaneous PLL jitter 1) Conditions Min Typ Max TA 0 to 70°C 3.8 5.5 TA -40 to +125°C 4.5 5.5 2 Unit V 4 MHz fOSC = 4 MHz. 1.0 2.5 % fOSC = 2 MHz. 2.5 4.0 % Note: 1. Data characterized but not tested. Figure 69. PLL Jitter vs. Signal frequency1 0.8 +/-Jitter (%) 0.7 0.6 PLL ON 0.5 PLL OFF 0.4 0.3 0.2 0.1 0 2000 The user must take the PLL jitter into account in the application (for example in serial communication or sampling of high frequency signals). The PLL jitter is a periodic effect, which is integrated over several CPU cycles. Therefore the longer the period of the application signal, the less it will be impacted by the PLL jitter. Figure 69 shows the PLL jitter integrated on application signals in the range 125kHz to 2MHz. At frequencies of less than 125KHz, the jitter is negligible. 1000 500 250 125 Application Signal Frequency (KHz) Note 1: Measurement conditions: fCPU = 4MHz, TA= 25°C 128/161 ST72324 12.6 MEMORY CHARACTERISTICS 12.6.1 RAM and Hardware Registers Symbol VRM Parameter Data retention mode 1) Conditions HALT mode (or RESET) Min Typ Max 1.6 Unit V 12.6.2 FLASH Memory DUAL VOLTAGE HDFLASH MEMORY Symbol Parameter fCPU Operating frequency VPP Programming voltage 3) IDD Supply current4) IPP tVPP tRET NRW TPROG TERASE VPP current4) Internal VPP stabilization time Data retention Write erase cycles Programming or erasing temperature range Conditions Read mode Write / Erase mode 4.5V ≤ VDD ≤ 5.5V RUN mode (fCPU = 4MHz) Write / Erase Power down mode / HALT Read (VPP=12V) Write / Erase Min 2) 0 1 11.4 Typ 0 1 Max 2) 8 8 12.6 3 10 200 30 10 TA=55°C TA=25°C 20 100 -40 25 85 Unit MHz V mA µA mA µs years cycles °C Notes: 1. Minimum VDD supply voltage without losing data stored in RAM (in HALT mode or under RESET) or in hardware registers (only in HALT mode). Not tested in production. 2. Data based on characterization results, not tested in production. 3. VPP must be applied only during the programming or erasing operation and not permanently for reliability reasons. 4. Data based on simulation results, not tested in production. Warning: Do not connect 12V to VPP before VDD is powered on, as this may damage the device. 129/161 ST72324 12.7 EMC CHARACTERISTICS Susceptibility tests are performed on a sample basis during product characterization. 12.7.1 Functional EMS (Electro Magnetic Susceptibility) Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electro magnetic events until a failure occurs (indicated by the LEDs). ESD: Electro-Static Discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard. ■ FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-44 standard. A device reset allows normal operations to be resumed. ■ Symbol Parameter Conditions Neg 1) Pos 1) VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD=5V, TA=+25°C, fOSC=8MHz conforms to IEC 1000-4-2 -1 >1.5 VFFTB Fast transient voltage burst limits to be apVDD=5V, TA=+25°C, fOSC=8MHz plied through 100pF on VDD and VDD pins conforms to IEC 1000-4-4 to induce a functional disturbance -1.7 1.7 Unit kV 12.7.2 Electro Magnetic Interference (EMI) Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin. Symbol Parameter Conditions Monitored Frequency Band 0.1MHz to 30MHz SEMI SEMI Peak level Peak level 8/4MHz 16/8MHz 20 21 26 31 Unit VDD=5V, TA=+25°C, 30MHz to 130MHz TQFP44 package conforming to SAE J 1752/3 130MHz to 1GHz SAE EMI Level 22 28 3.5 4.0 0.1MHz to 30MHz 25 27 30 18 36 23 dBµV 3.0 3.5 - VDD=5V, TA=+25°C, 30MHz to 130MHz TQFP32 package conforming to SAE J 1752/3 130MHz to 1GHz SAE EMI Level Notes: 1. Data based on characterization results, not tested in production. 130/161 Max vs. [fOSC/fCPU] dBµV - ST72324 EMC CHARACTERISTICS (Cont’d) 12.7.3 Absolute Electrical Sensitivity Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the AN1181 ST7 application note. 12.7.3.1 Electro-Static Discharge (ESD) Electro-Static Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends of the number of supply pins of the device (3 parts*(n+1) supply pin). Two models are usually simulated: Human Body Model and Machine Model. This test conforms to the JESD22-A114A/A115A standard. See Figure 70 and the following test sequences. Machine Model Test Sequence – CL is loaded through S1 by the HV pulse generator. – S1 switches position from generator to ST7. – A discharge from CL to the ST7 occurs. – S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse. – R (machine resistance), in series with S2, ensures a slow discharge of the ST7. Human Body Model Test Sequence – C L is loaded through S1 by the HV pulse generator. – S1 switches position from generator to R. – A discharge from CL through R (body resistance) to the ST7 occurs. – S2 must be closed 10 to 100ms after the pulse delivery period to ensure the ST7 is not left in charge state. S2 must be opened at least 10ms prior to the delivery of the next pulse. Absolute Maximum Ratings Symbol Ratings Maximum value 1) Unit Conditions VESD(HBM) Electro-static discharge voltage (Human Body Model) TA=+25°C 2000 VESD(MM) Electro-static discharge voltage (Machine Model) TA=+25°C 200 V Figure 70. Typical Equivalent ESD Circuits S1 CL=100pF ST7 S2 HIGH VOLTAGE PULSE GENERATOR R=10k~10MΩ HIGH VOLTAGE PULSE GENERATOR S1 R=1500Ω ST7 CL=200pF HUMAN BODY MODEL S2 MACHINE MODEL Notes: 1. Data based on characterization results, not tested in production. 131/161 ST72324 EMC CHARACTERISTICS (Cont’d) 12.7.3.2 Static and Dynamic Latch-Up ■ LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the AN1181 ST7 application note. ■ DLU: Electro-Static Discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards and is described in Figure 71. For more details, refer to the AN1181 ST7 application note. 12.7.3.3 Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations: The software flowchart must include the management of runaway conditions such as: – Corrupted program counter – Unexpected reset – Critical Data corruption (control registers...) Prequalification trials: Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behaviour is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electrical Sensitivities Symbol LU DLU Parameter Class 1) Conditions Static latch-up class TA=+25°C TA=+85°C TA=+125°C A A A Dynamic latch-up class VDD=5.5V, fOSC=4MHz, TA=+25°C A Figure 71. Simplified Diagram of the ESD Generator for DLU RCH=50MΩ CS=150pF ESD GENERATOR 2) RD=330Ω DISCHARGE TIP VDD VSS HV RELAY ST7 DISCHARGE RETURN CONNECTION Notes: 1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard). 2. Schaffner NSG435 with a pointed test finger. 132/161 ST72324 EMC CHARACTERISTICS (Cont’d) 12.7.4 ESD Pin Protection Strategy To protect an integrated circuit against ElectroStatic Discharge the stress must be controlled to prevent degradation or destruction of the circuit elements. The stress generally affects the circuit elements which are connected to the pads but can also affect the internal devices when the supply pads receive the stress. The elements to be protected must not receive excessive current, voltage or heating within their structure. An ESD network combines the different input and output ESD protections. This network works, by allowing safe discharge paths for the pins subjected to ESD stress. Two critical ESD stress cases are presented in Figure 72 and Figure 73 for standard pins and in Figure 74 and Figure 75 for true open drain pins. Standard Pin Protection To protect the output structure the following elements are added: – A diode to VDD (3a) and a diode from VSS (3b) – A protection device between VDD and VSS (4) To protect the input structure the following elements are added: – A resistor in series with the pad (1) – A diode to VDD (2a) and a diode from VSS (2b) – A protection device between VDD and VSS (4) Figure 72. Positive Stress on a Standard Pad vs. VSS VDD VDD (2a) (3a) (1) OUT (4) IN Main path (2b) (3b) Path to avoid VSS VSS Figure 73. Negative Stress on a Standard Pad vs. VDD VDD VDD (2a) (3a) (1) OUT (4) IN Main path (3b) VSS (2b) VSS 133/161 ST72324 EMC CHARACTERISTICS (Cont’d) True Open Drain Pin Protection The centralized protection (4) is not involved in the discharge of the ESD stresses applied to true open drain pads due to the fact that a P-Buffer and diode to VDD are not implemented. An additional local protection between the pad and VSS (5a & 5b) is implemented to completely absorb the positive ESD discharge. Multisupply Configuration When several types of ground (VSS, VSSA, ...) and power supply (VDD, VAREF, ...) are available for any reason (better noise immunity...), the structure shown in Figure 76 is implemented to protect the device against ESD. Figure 74. Positive Stress on a True Open Drain Pad vs. VSS VDD VDD Main path (1) Path to avoid OUT (5a) (4) IN (3b) (5b) (2b) VSS VSS Figure 75. Negative Stress on a True Open Drain Pad vs. VDD VDD VDD Main path (1) OUT (3b) (4) IN (3b) (2b) (3b) VSS VSS Figure 76. Multisupply Configuration VDD VAREF VAREF VSS BACK TO BACK DIODE BETWEEN GROUNDS VSSA 134/161 VSSA ST72324 12.8 I/O PORT PIN CHARACTERISTICS 12.8.1 General Characteristics Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. Symbol Parameter Conditions VIL Input low level voltage VIH Input high level voltage 1) Vhys Schmitt trigger voltage hysteresis 2) IINJ(PIN)3) ΣIINJ(PIN)3) Min Typ 1) Max 0.3xVDD CMOS ports 0.7xVDD 0.7 Injected Current on an I/O pin ±4 Total injected current (sum of all I/O VDD=5V and control pins) ± 25 IL Input leakage current VSS≤VIN≤VDD ±1 IS Static current consumption Floating input mode4) 200 RPU Weak pull-up equivalent resistor 5) VIN=VSS CIO I/O pin capacitance tf(IO)out Unit VDD=5V 50 120 V mA µA 250 kΩ 5 Output high to low level fall time 1) tr(IO)out CL=50pF Output low to high level rise time 1) Between 10% and 90% tw(IT)in External interrupt pulse time 6) Figure 77. Connecting Unused I/O Pins pF 25 ns 25 1 tCPU Figure 78. Typical IPU vs. VDD with VIN=VSS 90 VDD ST72XXX Ta=1 40°C 80 Ta=9 5°C 10kΩ 70 UNUSED I/O PORT Ta=2 5°C Ta=-45 °C Ip u(uA) 60 50 40 30 10kΩ UNUSED I/O PORT 20 10 ST72XXX 0 2 2 .5 3 3 .5 4 4.5 V dd(V ) 5 5 .5 6 Notes: 1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested. 3. When the current limitation is not possible, the VIN maximum must be respected, otherwise refer to IINJ(PIN) specification. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. Refer to Section 12.2.2 on page 114 for more details. 4. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see Figure 77). Data based on design simulation and/or technology characteristics, not tested in production. 5. The RPU pull-up equivalent resistor is based on a resistive transistor (corresponding IPU current characteristics described in Figure 78). 6. To generate an external interrupt, a minimum pulse width has to be applied on an I/O port pin configured as an external interrupt source. 135/161 ST72324 I/O PORT PIN CHARACTERISTICS (Cont’d) 12.8.2 Output Driving Current Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions VOL 1) Output low level voltage for a high sink I/O pin when 4 pins are sunk at same time (see Figure 80 and Figure 82) Output high level voltage for an I/O pin when 4 pins are sourced at same time (see Figure 81 and Figure 84) VOH 2) Figure 79. Typical VOL at VDD=5V (standard) 1.2 IIO=+2mA 0.5 IIO=+20mA, TA≤85°C TA≥85°C 1.3 1.5 IIO=+8mA IIO=-5mA, TA≤85°C VDD-1.4 TA≥85°C VDD-1.6 0.6 IIO=-2mA 5 Vdd-Vo h (V) at Vd d=5V 1.2 0.6 Ta =14 0°C " 0.4 Ta =95 °C V VDD-0.7 4.5 4 3.5 V dd= 5V 1 40°C m in 3 V dd= 5v 95°C m in V dd= 5v 25°C m in Ta =25 °C 0.2 Unit Figure 81. Typical VOH at VDD=5V 5.5 0.8 Max IIO=+5mA 1.4 1 V ol (V ) at Vdd=5V VDD=5V Output low level voltage for a standard I/O pin when 8 pins are sunk at same time (see Figure 79) Min 2.5 V dd= 5v -4 5°C m in Ta =-45 °C 2 0 0 0.005 0.0 1 0.01 5 Iio(A) -0.01 -0.008 -0.006 -0.004 -0.002 0 Iio (A) Figure 80. Typical VOL at VDD=5V (high-sink) 1 0.9 Vol(V ) at V dd=5V 0.8 0.7 0.6 0.5 0.4 Ta= 140 °C 0.3 Ta= 95 °C 0.2 Ta= 25 °C 0.1 Ta= -45°C 0 0 0.01 0.02 0.03 Iio(A) Notes: 1. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. The IIO current sourced must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. True open drain I/O pins do not have VOH. 136/161 ST72324 I/O PORT PIN CHARACTERISTICS (Cont’d) Figure 82. Typical VOL vs. VDD (standard) 1 0.45 Ta= -4 5°C 0.9 0.8 Ta=2 5°C Ta= 95°C Ta=9 5°C 0.35 Ta= 140 °C 0.7 Ta=1 40°C Vo l(V ) a t Iio=2 mA Vol(V ) at Iio =5m A Ta=-4 5°C 0.4 Ta= 25°C 0.6 0.5 0.4 0.3 0.3 0.25 0.2 0.15 0.2 0.1 0.1 0.05 0 2 2.5 3 3.5 4 4.5 5 5.5 0 6 2 Vd d(V ) 2 .5 3 3.5 4 4.5 5 5.5 6 Vd d(V ) Figure 83. Typical VOL vs. VDD (high-sink) 1 .6 0 .6 Ta= 140 °C 1 .4 0 .5 Ta=95 °C 1 .2 Ta=25 °C Ta=-45°C Vol(V ) at Iio=20m A Vol(V ) at Iio=8m A 0 .4 0 .3 0 .2 1 0 .8 0 .6 Ta= 14 0°C 0 .4 Ta=9 5°C 0 .1 Ta=2 5°C 0 .2 Ta=-45 °C 0 0 2 2.5 3 3.5 4 4.5 5 5.5 2 6 2.5 3 3.5 4 4.5 5 5.5 6 V dd(V ) Vdd (V ) Figure 84. Typical VDD-VOH vs. VDD 5.5 6 Ta= -4 5°C 5 Vdd-Voh(V) at Iio=-5m A Vdd-Voh(V ) at Iio =-2m A 5 4.5 4 3.5 Ta= -4 5°C 3 Ta= 25°C Ta= 25°C Ta= 95°C Ta= 140°C 4 3 2 Ta= 95°C 2.5 1 Ta= 140°C 2 0 2 2.5 3 3.5 4 Vdd(V) 4.5 5 5.5 6 2 2.5 3 3.5 4 4.5 5 5.5 6 Vdd(V) 137/161 ST72324 12.9 CONTROL PIN CHARACTERISTICS 12.9.1 Asynchronous RESET Pin Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions VIL Input low level voltage VIH Input high level voltage 1) Vhys Schmitt trigger voltage hysteresis 2) VOL Output low level voltage 3) IIO RON tg(RSTL)in Max Unit 0.16xVDD V 2.5 VDD=5V IIO=+2mA 0.2 0.5 2 TBD mA 30 120 kΩ 0 429) µs 20 429) µs Input current on RESET pin Weak pull-up equivalent resistor 20 External pin Internal reset sources External reset pulse hold time 4) Filtered glitch duration Typ 0.85xVDD tw(RSTL)out Generated reset pulse duration th(RSTL)in Min 1) 30 µs 2.5 5) 200 ns Figure 85. Typical Application with RESET pin 6)7)8) Recommended if LVD is disabled VDD USER EXTERNAL RESET CIRCUIT 5) VDD ST72XXX VDD 0.01µF 4.7kΩ RON INTERNAL RESET Filter 0.01µF PULSE GENERATOR WATCHDOG LVD RESET Required if LVD is disabled Notes: 1. Data based on characterization results, not tested in production. 2. Hysteresis voltage between Schmitt trigger switching levels. 3. The IIO current sunk must always respect the absolute maximum rating specified in Section 12.2.2 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 4. To guarantee the reset of the device, a minimum pulse has to be applied to the RESET pin. All short pulses applied on the RESET pin with a duration below th(RSTL)in can be ignored. 5. The reset network (the resistor and two capacitors) protects the device against parasitic resets, especially in noisy environments. 6. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog). 7. Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the VIL max. level specified in Section 12.9.1 . Otherwise the reset will not be taken into account internally. 8. Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for IINJ(RESET) in Section 12.2.2 on page 114. 9. Data guaranteed by design, not tested in production. 138/161 ST72324 CONTROL PIN CHARACTERISTICS (Cont’d) 12.9.2 ICCSEL/VPP Pin Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Symbol Parameter VIL Input low level voltage 1) VIH Input high level voltage 1) IL Input leakage current Conditions FLASH versions Min Max VSS 0.2 ROM versions FLASH versions VSS 0.3xVDD VDD-0.1 12.6 ROM versions 0.7xVDD Unit V VDD VIN=VSS ±1 µA Figure 86. Two typical Applications with ICCSEL/VPP Pin 2) ICCSEL/V PP VPP PROGRAMMING TOOL 10kΩ ST72XXX ST72XXX Notes: 1. Data based on design simulation and/or technology characteristics, not tested in production. 2. When ICC mode is not required by the application ICCSEL/VPP pin must be tied to VSS. 12.10 TIMER PERIPHERAL CHARACTERISTICS Subject to general operating conditions for VDD, fOSC, and TA unless otherwise specified. Refer to I/O port characteristics for more details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output...). 12.10.1 16-Bit Timer Symbol Parameter Conditions tw(ICAP)in Input capture pulse time tres(PWM) PWM resolution time fCPU=8MHz Min Typ Max Unit 1 tCPU 2 tCPU 250 ns fEXT Timer external clock frequency 0 fCPU/4 MHz fPWM PWM repetition rate 0 fCPU/4 MHz 16 bit ResPWM PWM resolution 139/161 ST72324 12.11 COMMUNICATION INTERFACE CHARACTERISTICS 12.11.1 SPI - Serial Peripheral Interface Subject to general operating conditions for V DD, fCPU, and TA unless otherwise specified. Symbol Refer to I/O port characteristics for more details on the input/output alternate function characteristics (SS, SCK, MOSI, MISO). Parameter Conditions Master fSCK 1/tc(SCK) fCPU=8MHz SPI clock frequency Slave fCPU=8MHz Min Max fCPU/128 0.0625 fCPU/4 2 0 fCPU/2 4 tr(SCK) tf(SCK) SPI clock rise and fall time tsu(SS) th(SS) SS setup time SS hold time Slave Slave 120 120 SCK high and low time Master Slave 100 90 Data input setup time Master Slave 100 100 Data input hold time Master Slave 100 100 0 tw(SCKH) tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) ta(SO) Data output access time Slave Data output disable time Slave Data output valid time Data output hold time tv(MO) th(MO) Data output valid time Data output hold time MHz see I/O port pin description tdis(SO) tv(SO) th(SO) Unit ns 120 240 90 Slave (after enable edge) 0 Master (before capture edge) 0.25 0.25 tCPU Figure 87. SPI Slave Timing Diagram with CPHA=0 3) SS INPUT SCK INPUT tsu(SS) tc(SCK) th(SS) CPHA=0 CPOL=0 CPHA=0 CPOL=1 ta(SO) MISO OUTPUT tw(SCKH) tw(SCKL) MSB OUT see note 2 tsu(SI) MOSI INPUT tv(SO) th(SO) BIT6 OUT tdis(SO) tr(SCK) tf(SCK) LSB OUT see note 2 th(SI) MSB IN BIT1 IN LSB IN Notes: 1. Data based on design simulation and/or characterisation results, not tested in production. 2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends on the I/O port configuration. 3. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 140/161 ST72324 COMMUNICATION INTERFACE CHARACTERISTICS (Cont’d) Figure 88. SPI Slave Timing Diagram with CPHA=11) SS INPUT SCK INPUT tsu(SS) tc(SCK) th(SS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) ta(SO) MISO OUTPUT see note 2 tv(SO) th(SO) MSB OUT HZ tsu(SI) BIT6 OUT LSB OUT see note 2 th(SI) MSB IN MOSI INPUT tdis(SO) tr(SCK) tf(SCK) Figure 89. SPI Master Timing Diagram BIT1 IN LSB IN 1) SS INPUT tc(SCK) SCK INPUT CPHA=0 CPOL=0 CPHA=0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tw(SCKH) tw(SCKL) tsu(MI) MISO INPUT MOSI OUTPUT see note 2 th(MI) MSB IN tv(MO) tr(SCK) tf(SCK) BIT6 IN LSB IN th(MO) MSB OUT BIT6 OUT LSB OUT see note 2 Notes: 1. Measurement points are done at CMOS levels: 0.3xVDD and 0.7xVDD. 2. When no communication is on-going the data output line of the SPI (MOSI in master mode, MISO in slave mode) has its alternate function capability released. In this case, the pin status depends of the I/O port configuration. 141/161 ST72324 12.12 10-BIT ADC CHARACTERISTICS Subject to general operating conditions for VDD, fCPU, and TA unless otherwise specified. Symbol Parameter Conditions Min ADC clock frequency fADC VAREF VAIN Analog reference 0.7*VDD≤VAREF≤VDD voltage 2) Conversion voltage range 3) Max Unit 0.4 2 MHz 3.8 5.5 VSSA VAREF -40°C≤TA≤85°C range Input leakage current for analog input IL Typ 1) External input impedance CAIN External capacitor on analog input fAIN Variation freq. of analog input signal CADC Internal sample and hold capacitor 12 tSTAB Stabilization time after ADC enable 0 5) Conversion time (Sample+Hold) 7.5 fCPU=8MHz, SPEED=0 - No of sample capacitor loading cycles fADC=2MHz - No. of Hold conversion cycles tADC Figure 90. RAIN max. vs fADC with CAIN=0pF4) nA ±1 µA see Figure 90 and Figure 913)4)5) kΩ pF Hz pF µs 4 11 1/fADC Figure 91. Recommended CAIN & RAIN values.5) 45 1000 40 Cain 10 nF 2 MHz 30 1 MHz 25 Cain 22 nF 100 Max. R AIN (Kohm) 35 Max. R AIN (Kohm) ±250 Other TA ranges RAIN V 20 15 10 Cain 47 nF 10 1 5 0 0.1 0 10 30 70 0.01 0.1 CPARASITIC (pF) 1 10 f AIN(KHz) Figure 92. Typical A/D Converter Application VDD RAIN AINx ST72XXX VT 0.6V 2kΩ(max) VAIN CAIN VT 0.6V IL ±1µA 10-Bit A/D Conversion CADC 12pF Notes: 1. Unless otherwise specified, typical data are based on TA=25°C and VDD-VSS=5V. They are given only as design guidelines and are not tested. 2. When VDDA and VSSA pins are not available on the pinout, the ADC refers to VDD and VSS. 3. Any added external serial resistor will downgrade the ADC accuracy (especially for resistance greater than 10kΩ). Data based on characterization results, not tested in production. 4. CPARASITIC represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (3pF). A high CPARASITIC value will downgrade conversion accuracy. To remedy this, fADC should be reduced. 5. This graph shows that depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and decreased to allow the use of a larger serial resistor (RAIN). 142/161 ST72324 ADC CHARACTERISTICS (Cont’d) 12.12.1 Analog Power Supply and Reference Pins Depending on the MCU pin count, the package may feature separate VAREF and VSSA analog power supply pins. These pins supply power to the A/D converter cell and function as the high and low reference voltages for the conversion. In some packages, VAREF and VSSA pins are not available (refer to Table 1). In this case the analog supply and reference pads are internally bonded to the VDD and VSS pins. Separation of the digital and analog power pins allow board designers to improve A/D performance. Conversion accuracy can be impacted by voltage drops and noise in the event of heavily loaded or badly decoupled power supply lines (see Section 12.12.2 General PCB Design Guidelines). 12.12.2 General PCB Design Guidelines To obtain best results, some general design and layout rules should be followed when designing the application PCB to shield the noise-sensitive, analog physical interface from noise-generating CMOS logic signals. – Use separate digital and analog planes. The analog ground plane should be connected to the digital ground plane via a single point on the PCB. – Filter power to the analog power planes. It is recommended to connect capacitors, with good high frequency characteristics, between the power and ground lines, placing 0.1µF and optionally, if needed 10pF capacitors as close as possible to the ST7 power supply pins and a 1 to 10µF capacitor close to the power source (see Figure 93). – The analog and digital power supplies should be connected in a star nework. Do not use a resistor, as VAREF is used as a reference voltage by the A/D converter and any resistance would cause a voltage drop and a loss of accuracy. – Properly place components and route the signal traces on the PCB to shield the analog inputs. Analog signals paths should run over the analog ground plane and be as short as possible. Isolate analog signals from digital signals that may switch while the analog inputs are being sampled by the A/D converter. Do not toggle digital outputs on the same I/O port as the A/D input being converted. Figure 93. Power Supply Filtering 10pF (if needed) 0.1µF 1 to 10µF ST7 DIGITAL NOISE FILTERING ST72XXX VSS VDD VDD POWER SUPPLY SOURCE 10pF (if needed) 0.1µF EXTERNAL NOISE FILTERING VAREF VSSA 143/161 ST72324 10-BIT ADC CHARACTERISTICS (Cont’d) 12.12.3 ADC Accuracy Conditions: VDD=5V Symbol |ET| EO EG Parameter Conditions Typ 1) Gain 3 3.52) -0.5 -22) CPU in run mode @ fADC 2 MHz. 1.5 4.5 2) CPU in run mode @ fADC 2 MHz. 1.5 4.52) 1) Error 1) error 1) |ED| Differential linearity |EL| Integral linearity error 1) Unit 4 Total unadjusted error Offset error Max LSB Notes: 1. Injecting negative current on any of the analog input pins significantly reduces the accuracy of any conversion being performed on any analog input. Analog pins can be protected against negative injection by adding a Schottky diode (pin to ground). Injecting negative current on digital input pins degrades ADC accuracy especially if performed on a pin close to the analog input pins. Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 12.8 does not affect the ADC accuracy. 2. Data based on characterization results, monitored in production. Figure 94. ADC Accuracy Characteristics Digital Result ADCDR EG 1023 1022 1LSB 1021 IDEAL V –V A REF SS A = -------------------------------------------- 1024 (2) ET ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) 7 (1) 6 5 EO 4 (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 144/161 Vin (LSBIDEAL) 2 3 4 5 6 7 1021 1022 1023 1024 VAREF ST72324 13 PACKAGE CHARACTERISTICS 13.1 PACKAGE MECHANICAL DATA Figure 95. 44-Pin Thin Quad Flat Package Dim. A A2 D D1 b e c L1 A1 0.05 A2 1.35 1.40 b 0.30 0.37 C 0.09 inches Max Min Typ Max 1.60 0.063 0.15 0.002 0.006 1.45 0.053 0.055 0.057 0.45 0.012 0.015 0.018 0.20 0.004 0.000 0.008 D 12.00 0.472 D1 10.00 0.394 E 12.00 0.472 E1 10.00 0.394 e 0.80 0.031 θ 0° 3.5° L 0.45 0.60 L1 L Typ A A1 E1 E mm Min 7° 0° 3.5° 7° 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins h N 44 Figure 96. 32-Pin Thin Quad Flat Package Dim. mm Min Typ D A A D1 A2 A1 0.05 A2 1.35 1.40 b 0.30 0.37 C 0.09 A1 e E1 E b c L1 L h inches Max Min Typ 0.063 0.15 0.002 0.006 1.45 0.053 0.055 0.057 0.45 0.012 0.015 0.018 0.20 0.004 0.008 D 9.00 0.354 D1 7.00 0.276 E 9.00 0.354 E1 7.00 0.276 e 0.80 θ 0° 3.5° L 0.45 0.60 L1 Max 1.60 0.031 7° 0° 3.5° 7° 0.75 0.018 0.024 0.030 1.00 0.039 Number of Pins N 32 145/161 ST72324 PACKAGE MECHANICAL DATA (Cont’d) Figure 97. 42-Pin Plastic Dual In-Line Package, Shrink 600-mil Width Dim. E mm Min Typ A A A2 A1 b2 L c e b E1 eA eB D E 0.015 GAGE PLANE eC inches Max Min Typ 5.08 Max 0.200 A1 0.51 0.020 A2 3.05 3.81 4.57 0.120 0.150 0.180 b 0.38 0.46 0.56 0.015 0.018 0.022 b2 0.89 1.02 1.14 0.035 0.040 0.045 c 0.23 0.25 0.38 0.009 0.010 0.015 D 36.58 36.83 37.08 1.440 1.450 1.460 E 15.24 E1 12.70 13.72 14.48 0.500 0.540 0.570 16.00 0.600 0.630 e 1.78 0.070 eA 15.24 0.600 eB 18.54 0.730 eC 1.52 0.000 0.060 eB L 2.54 3.30 3.56 0.100 0.130 0.140 Number of Pins N 42 Figure 98. 32-Pin Plastic Dual In-Line Package, Shrink 400-mil Width Dim. E A2 A A1 L C b b2 D e mm inches Min Typ Max A 3.56 3.76 5.08 0.140 0.148 0.200 A1 0.51 A2 3.05 3.56 4.57 0.120 0.140 0.180 eC Min Typ 0.020 b 0.36 0.46 0.58 0.014 0.018 0.023 E1 b1 0.76 1.02 1.40 0.030 0.040 0.055 eA eB C 0.20 0.25 D 27.43 E 9.91 10.41 11.05 0.390 0.410 0.435 E1 7.62 0.36 0.008 0.010 0.014 28.45 1.080 1.100 1.120 8.89 9.40 0.300 0.350 0.370 e 1.78 0.070 eA 10.16 0.400 eB 12.70 0.500 eC 1.40 0.055 L 2.54 3.05 3.81 0.100 0.120 0.150 Number of Pins N 146/161 Max 32 ST72324 13.2 THERMAL CHARACTERISTICS Symbol Ratings Value RthJA Package thermal resistance (junction to ambient) TQFP44 10x10 TQFP32 7x7 SDIP42 600mil SDIP32 200mil 52 70 55 50 Power dissipation 1) 500 mW 150 °C PD TJmax Maximum junction temperature 2) Unit °C/W Notes: 1. The power dissipation is obtained from the formula PD=PINT+PPORT where PINT is the chip internal power (IDDxVDD) and PPORT is the port power dissipation determined by the user. 2. The average chip-junction temperature can be obtained from the formula TJ = TA + PD x RthJA. 147/161 ST72324 13.3 SOLDERING AND GLUEABILITY INFORMATION Recommended soldering information given only as design guidelines. Figure 99. Recommended Wave Soldering Profile (with 37% Sn and 63% Pb) 250 150 SOLDERING PHASE 80°C Temp. [°C] 100 50 COOLING PHASE (ROOM TEMPERATURE) 5 sec 200 PREHEATING PHASE Time [sec] 0 20 40 60 80 100 120 140 160 Figure 100. Recommended Reflow Soldering Oven Profile (MID JEDEC) 250 Tmax=235+/-5°C for 25 sec 200 150 90 sec at 125°C 150 sec above 183°C Temp. [°C] 100 50 ramp down natural 2°C/sec max ramp up 2°C/sec for 50sec Time [sec] 0 100 200 300 400 Recommended glue for SMD plastic packages dedicated to molding compound with silicone: ■ Heraeus: PD945, PD955 ■ Loctite: 3615, 3298 148/161 ST72324 14 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION Each device is available for production in user programmable versions (FLASH) as well as in factory coded versions (ROM/FASTROM). ST72324 devices are ROM versions. ST72P324 devices are Factory Advanced Service Technique ROM (FASTROM) versions: they are factory-programmed HDFlash devices. FLASH devices are shipped to customers with a default content (FFh), while ROM/FASTROM factory coded parts contain the code supplied by the customer. This implies that FLASH devices have to be configured by the customer using the Option Bytes while the ROM/ FASTROM devices are factory-configured. 14.1 FLASH OPTION BYTES STATIC OPTION BYTE 0 STATIC OPTION BYTE 1 FMP_R PKG1 RSTC SW CSS HALT 1 1 0 0 1 1 1 1 1 The option bytes allows the hardware configuration of the microcontroller to be selected. They have no address in the memory map and can be accessed only in programming mode (for example using a standard ST7 programming tool). The default content of the FLASH is fixed to FFh. To program directly the FLASH devices using ICP, FLASH devices are shipped to customers with the internal RC clock source. In masked ROM devices, the option bytes are fixed in hardware by the ROM code (see option list). OPTION BYTE 0 OPT7= WDG HALT Watchdog and HALT mode This option bit determines if a RESET is generated when entering HALT mode while the Watchdog is active. 0: No Reset generation when entering Halt mode 1: Reset generation when entering Halt mode OSCTYPE OSCRANGE 1 0 2 1 0 PLLOFF 0 VD 1 0 1 WDG Default 7 Reserved 0 Reserved 7 1 0 1 1 1 1 OPT4:3= VD[1:0] Voltage detection These option bits enable the voltage detection block (LVD, and AVD) with a selected threshold for the LVD and AVD (EVD+AVD). Selected Low Voltage Detector LVD and AVD Off Lowest Threshold: (VDD~3V) Med. Threshold (VDD~3.5V) Highest Threshold (VDD~4V) VD1 VD0 1 1 0 0 1 0 1 0 Caution: If the medium or low thresholds are selected, the detection may occur outside the specified operating voltage range. Below 3.8V, device operation is not guaranteed. For details on the AVD and LVD threshold levels refer to Section 12.3.3 on page 117 OPT2:1 = Reserved, must be kept at default value. OPT6= WDG SW Hardware or software watchdog This option bit selects the watchdog type. 0: Hardware (watchdog always enabled) 1: Software (watchdog to be enabled by software) OPT5 = CSS Clock security system on/off This option bit enables or disables the clock security system function (CSS) which includes the clock filter and the backup safe oscillator. 0: CSS enabled 1: CSS disabled Caution: The CSS function is not guaranteed. Refer to Section 15. OPT0= FMP_R Flash memory read-out protection This option indicates if the user flash memory is protected against read-out piracy. This protection is based on read and a write protection of the memory in test modes and ICP mode. Erasing the option bytes when the FMP_R option is selected causes the whole user memory to be erased first, and the device can be reprogrammed. Refer to Section 4.3.1 and the ST7 Flash Programming Reference Manual for more details. 0: Read-out protection enabled 1: Read-out protection disabled 149/161 ST72324 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) OPTION BYTE 1 OPT7= PKG1 Pin package selection bit This option bit selects the package. OSCRANGE Typ. Freq. Range Version Selected Package PKG1 J TQFP44 / SDIP42 1 K TQFP32 / SDIP32 0 Note: On the chip, each I/O port has 8 pads. Pads that are not bonded to external pins are in input pull-up configuration after reset. The configuration of these pads must be kept at reset state to avoid added current consumption. OPT6 = RSTC RESET clock cycle selection This option bit selects the number of CPU cycles applied during the RESET phase and when exiting HALT mode. For resonator oscillators, it is advised to select 4096 due to the long crystal stabilization time. 0: Reset phase with 4096 CPU cycles 1: Reset phase with 256 CPU cycles OPT5:4 = OSCTYPE[1:0] Oscillator Type These option bits select the ST7 main clock source type. OSCTYPE Clock Source 1 0 Resonator Oscillator 0 0 Reserved 0 1 Internal RC Oscillator 1 0 External Source 1 1 OPT3:1 = OSCRANGE[2:0] Oscillator range When the resonator oscillator type is selected, these option bits select the resonator oscillator current source corresponding to the frequency range of the used resonator. Otherwise, these bits are used to select the normal operating frequency 150/161 2 1 0 LP 1~2MHz 0 0 0 MP 2~4MHz 0 0 1 MS 4~8MHz 0 1 0 HS 8~16MHz 0 1 1 OPT0 = PLLOFF PLL activation This option bit activates the PLL which allows multiplication by two of the main input clock frequency. The PLL is guaranteed only with an input frequency between 2 and 4MHz. 0: PLL x2 enabled 1: PLL x2 disabled CAUTION: the PLL can be enabled only if the “OSC RANGE” (OPT3:1) bits are configured to “MP - 2~4MHz”. Otherwise, the device functionality is not guaranteed. ST72324 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) 14.2 DEVICE ORDERING INFORMATION AND TRANSFER OF CUSTOMER CODE ROM devices can be ordered in any combination of memory size and temperature range with the types given in Figure 101 and by completing the option list on the next page. Flash devices are available only in the types listed in Table 25. ROM customer code is made up of the ROM contents and the list of the selected options (if any). The ROM contents are to be sent with the S19 hexadecimal file generated by the development tool. All unused bytes must be set to FFh. Refer to application note AN1635 for information on the counter listing returned by ST after code has been transferred.The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points. Figure 101. ROM Factory Coded Device Types DEVICE PACKAGE VERSION / XXX Code name (defined by STMicroelectronics) 1 = Standard 0 to +70 °C 5 = Standard -10 to +85 °C 6 = Standard -40 to +85 °C A = Automotive -40 to +85 °C B = Automotive -40 to +105 °C C = Automotive -40 to +125 °C T= Plastic Thin Quad Flat Pack B= Plastic Dual in Line ST72324J6, ST72324J4, ST72324J2 ST72324K6, ST72324K4, ST72324K2 151/161 ST72324 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) Table 25. Orderable Flash Device Types Part Number Version Package Flash Memory (KBytes) ST72F324K2TA 8 ST72F324K4TA 16 TQFP32 ST72F324K6TA ST72F324K6TC ST72F324J6TA ST72F324J2TA ST72F324J6TC 16 ST72F324K2T6 8 ST72F324K4T6 16 TQFP32 32 ST72F324K2B5 8 ST72F324K6B5 ST72F324J2T6 ST72F324J4T6 ST72F324J6T6 SDIP32 16 -10°C +85°C 8 TQFP44 16 -40°C +85°C 32 32 ST72F324J2B5 8 SDIP42 ST72F324J6B5 14.2.1 Version-Specific Sales Conditions To satisfy the different customer requirements and to ensure that ST Standard Microcontrollers will consistently meet or exceed the expectations of each Market Segment, the Codification System for Standard Microcontrollers clearly distinguishes products intended for use in automotive environments, from products intended for use in non-automotive environments. It is the responsibility of the Customer to select the appropriate product for his application. 152/161 -40°C +85°C 32 Standard ST72F324J6T5 ST72F324J4B5 -40°C +125°C 32 ST72F324K6T5 ST72F324K4B5 -40°C +85°C 32 32 ST72F324K6T6 -40°C +125°C 8 TQFP44 ST72F324J4TA -40°C +85°C 32 32 Automotive Temp. Range 16 32 -10°C +85°C ST72324 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) ST72324 MICROCONTROLLER OPTION LIST ................................ ................................ ................................ Contact: ................................ Phone No: ................................ Reference/ROM Code* : . . . . . . . . . . . . . . . . . . . . . . . *The ROM code name is assigned by STMicroelectronics. ROM code must be sent in .S19 format. .Hex extension cannot be processed. Customer: Address: Device Type/Memory Size/Package (check only one option): --------------------------------- | ------------------------------------- ------------------------------------- ----------------------------------|| || 32K ROM DEVICE: 16K 8K --------------------------------- | ------------------------------------- ------------------------------------- ----------------------------------TQFP32: | [ ] ST72324K6T | [ ] ST72324K4T | [ ] ST72324K2T DIP32: | [ ] ST72324K6B | [ ] ST72324K4B | [ ] ST72324K2B TQFP44 : | [ ] ST72324J6T | [ ] ST72324J4T | [ ] ST72324J2T DIP42: | [ ] ST72324J6B | [ ] ST72324J4B | [ ] ST72324J2B --------------------------------- | -------------------------------------- -------------------------------------- ----------------------------------DIE FORM: 32K || 16K || 8K --------------------------------- | -------------------------------------- -------------------------------------- -----------------------------------32-pin: | [] | [] | [] 44-pin: | [] | [] | [] Conditioning (check only one option): ------------------------------------------------------------------------ ----------------------------------------------------| Die Product (dice tested at 25°C only) Packaged Product ---------------------------------------------------------------------------------------------------------------------------[ ] Tape & Reel [ ] Tray | [ ] Tape & Reel | [ ] Inked wafer | [ ] Sawn wafer on sticky foil Version/Temp. Range (do not check for die product). Please refer to datasheet for specific sales conditions: -------------------- || ------------------- --------------------------------------Standard Automotive || --------------------------------------Temp. Range -------------------------------------[] | | 0°C to +70°C [] | | -10°C to +85°C [] | [] | -40°C to +85°C | [] | -40°C to +105°C | [] | -40°C to +125°C Special Marking: [ ] No [ ] Yes "_ _ _ _ _ _ _ _ _ _ " (TQFP32 7 char., other pkg. 10 char. max) Authorized characters are letters, digits, '.', '-', '/' and spaces only. Clock Source Selection: [ ] Resonator: PLL2 CSS4 LVD Reset [ ] Internal RC1 [ ] External Clock [ ] LP: Low power resonator (1 to 2 MHz) [ ] MP: Medium power resonator (2 to 4 MHz) [ ] MS: Medium speed resonator (4 to 8 MHz) [ ] HS: High speed resonator (8 to 16 MHz) [ ] Disabled [ ] Disabled [ ] Disabled Reset Delay Watchdog Selection: Halt when Watchdog on: [ ] Enabled [ ] Enabled [ ] High threshold [ ] Med. threshold5 [ ] Low threshold5 [ ] 256 Cycles [ ] 4096 Cycles [ ] Software Activation [ ] Hardware Activation [ ] Reset [ ] No reset [ ] Disabled Readout Protection3: Date Signature ................................ 1LVD must be enabled when internal RC is selected. 2PLL must not be enabled if internal RC or External Clock 3 is selected. [ ] Enabled 4Not guaranteed 5Device operation below 3.8V not guaranteed Readout protection is not supported if LVD is enabled. 153/161 ST72324 DEVICE CONFIGURATION AND ORDERING INFORMATION (Cont’d) 14.3 DEVELOPMENT TOOLS STMicroelectronics offers a range of hardware and software development tools for the ST7 microcontroller family. Full details of tools available for the ST7 from third party manufacturers can be obtain from the STMicroelectronics Internet site: ➟ http//mcu.st.com. Tools from these manufacturers include C compliers, emulators and gang programmers. ST Emulators The emulator is delivered with everything (probes, TEB, adapters etc.) needed to start emulating the devices. To configure the emulator to emulate different ST7 subfamily devices, the active probe for the ST7 EMU3 can be changed and the ST7EMU3 probe is designed for easy interchange of TEBs (Target Emulation Board). See Table 26 for more details. 14.3.1 Socket and Emulator Adapter Information For information on the type of socket that is supplied with the emulator, refer to the suggested list of sockets in Table 27. Note: Before designing the board layout, it is recommended to check the overall dimensions of the socket as they may be greater than the dimensions of the device. For footprint and other mechanical information about these sockets and adapters, refer to the manufacturer’s datasheet (www.yamaichi.de for TQFP44 10 x 10 and www.ironwoodelectronics.com for TQFP32 7 x 7) Table 26. STMicroelectronics Development Tools Supported Products ST72324J, ST72F324J ST72324K, ST72F324K ST7 Evaluation Board ST7 Emulator N/A ST7MDT20JEMU3 Active Probe & T.E.B. ST7 Programming Board ST7MDT20J-EPB/EU ST7MDT20J-TEB ST7MDT20J-EPB/US ST7MDT20J-EPB/UK Note: 1. Flash Programming interface for FLASH devices. Table 27. Suggested List of Socket Types 154/161 Device Socket (supplied with ST7MDT20J-EMU3) Emulator Adapter (supplied with ST7MDT20J-EMU3) TQFP32 7 X 7 IRONWOOD SF-QFE32SA-L-01 IRONWOOD SK-UGA06/32A-01 TQFP44 10 X10 YAMAICHI IC149-044-*52-*5 YAMAICHI ICP-044-5 ST72324 14.4 ST7 APPLICATION NOTES IDENTIFICATION DESCRIPTION EXAMPLE DRIVERS AN 969 SCI COMMUNICATION BETWEEN ST7 AND PC AN 970 SPI COMMUNICATION BETWEEN ST7 AND EEPROM AN 971 I²C COMMUNICATING BETWEEN ST7 AND M24CXX EEPROM AN 972 ST7 SOFTWARE SPI MASTER COMMUNICATION AN 973 SCI SOFTWARE COMMUNICATION WITH A PC USING ST72251 16-BIT TIMER AN 974 REAL TIME CLOCK WITH ST7 TIMER OUTPUT COMPARE AN 976 DRIVING A BUZZER THROUGH ST7 TIMER PWM FUNCTION AN 979 DRIVING AN ANALOG KEYBOARD WITH THE ST7 ADC AN 980 ST7 KEYPAD DECODING TECHNIQUES, IMPLEMENTING WAKE-UP ON KEYSTROKE AN1017 USING THE ST7 UNIVERSAL SERIAL BUS MICROCONTROLLER AN1041 USING ST7 PWM SIGNAL TO GENERATE ANALOG OUTPUT (SINUSOID) AN1042 ST7 ROUTINE FOR I²C SLAVE MODE MANAGEMENT AN1044 MULTIPLE INTERRUPT SOURCES MANAGEMENT FOR ST7 MCUS AN1045 ST7 S/W IMPLEMENTATION OF I²C BUS MASTER AN1046 UART EMULATION SOFTWARE AN1047 MANAGING RECEPTION ERRORS WITH THE ST7 SCI PERIPHERALS AN1048 ST7 SOFTWARE LCD DRIVER AN1078 PWM DUTY CYCLE SWITCH IMPLEMENTING TRUE 0% & 100% DUTY CYCLE AN1082 DESCRIPTION OF THE ST72141 MOTOR CONTROL PERIPHERAL REGISTERS AN1083 ST72141 BLDC MOTOR CONTROL SOFTWARE AND FLOWCHART EXAMPLE AN1105 ST7 PCAN PERIPHERAL DRIVER AN1129 PERMANENT MAGNET DC MOTOR DRIVE. AN INTRODUCTION TO SENSORLESS BRUSHLESS DC MOTOR DRIVE APPLICATIONS AN1130 WITH THE ST72141 AN1148 USING THE ST7263 FOR DESIGNING A USB MOUSE AN1149 HANDLING SUSPEND MODE ON A USB MOUSE AN1180 USING THE ST7263 KIT TO IMPLEMENT A USB GAME PAD AN1276 BLDC MOTOR START ROUTINE FOR THE ST72141 MICROCONTROLLER AN1321 USING THE ST72141 MOTOR CONTROL MCU IN SENSOR MODE AN1325 USING THE ST7 USB LOW-SPEED FIRMWARE V4.X AN1445 USING THE ST7 SPI TO EMULATE A 16-BIT SLAVE AN1475 DEVELOPING AN ST7265X MASS STORAGE APPLICATION AN1504 STARTING A PWM SIGNAL DIRECTLY AT HIGH LEVEL USING THE ST7 16-BIT TIMER PRODUCT EVALUATION AN 910 PERFORMANCE BENCHMARKING AN 990 ST7 BENEFITS VERSUS INDUSTRY STANDARD AN1077 OVERVIEW OF ENHANCED CAN CONTROLLERS FOR ST7 AND ST9 MCUS AN1086 U435 CAN-DO SOLUTIONS FOR CAR MULTIPLEXING AN1150 BENCHMARK ST72 VS PC16 AN1151 PERFORMANCE COMPARISON BETWEEN ST72254 & PC16F876 AN1278 LIN (LOCAL INTERCONNECT NETWORK) SOLUTIONS PRODUCT MIGRATION AN1131 MIGRATING APPLICATIONS FROM ST72511/311/214/124 TO ST72521/321/324 AN1322 MIGRATING AN APPLICATION FROM ST7263 REV.B TO ST7263B AN1365 GUIDELINES FOR MIGRATING ST72C254 APPLICATION TO ST72F264 PRODUCT OPTIMIZATION 155/161 ST72324 IDENTIFICATION AN 982 AN1014 AN1015 AN1040 AN1070 AN1324 AN1477 AN1502 AN1529 DESCRIPTION USING ST7 WITH CERAMIC RESONATOR HOW TO MINIMIZE THE ST7 POWER CONSUMPTION SOFTWARE TECHNIQUES FOR IMPROVING MICROCONTROLLER EMC PERFORMANCE MONITORING THE VBUS SIGNAL FOR USB SELF-POWERED DEVICES ST7 CHECKSUM SELF-CHECKING CAPABILITY CALIBRATING THE RC OSCILLATOR OF THE ST7FLITE0 MCU USING THE MAINS EMULATED DATA EEPROM WITH XFLASH MEMORY EMULATED DATA EEPROM WITH ST7 HDFLASH MEMORY EXTENDING THE CURRENT & VOLTAGE CAPABILITY ON THE ST7265 VDDF SUPPLY ACCURATE TIMEBASE FOR LOW-COST ST7 APPLICATIONS WITH INTERNAL RC OSCILAN1530 LATOR PROGRAMMING AND TOOLS AN 978 KEY FEATURES OF THE STVD7 ST7 VISUAL DEBUG PACKAGE AN 983 KEY FEATURES OF THE COSMIC ST7 C-COMPILER PACKAGE AN 985 EXECUTING CODE IN ST7 RAM AN 986 USING THE INDIRECT ADDRESSING MODE WITH ST7 AN 987 ST7 SERIAL TEST CONTROLLER PROGRAMMING AN 988 STARTING WITH ST7 ASSEMBLY TOOL CHAIN AN 989 GETTING STARTED WITH THE ST7 HIWARE C TOOLCHAIN AN1039 ST7 MATH UTILITY ROUTINES AN1064 WRITING OPTIMIZED HIWARE C LANGUAGE FOR ST7 AN1071 HALF DUPLEX USB-TO-SERIAL BRIDGE USING THE ST72611 USB MICROCONTROLLER AN1106 TRANSLATING ASSEMBLY CODE FROM HC05 TO ST7 PROGRAMMING ST7 FLASH MICROCONTROLLERS IN REMOTE ISP MODE (IN-SITU PROAN1179 GRAMMING) AN1446 USING THE ST72521 EMULATOR TO DEBUG A ST72324 TARGET APPLICATION AN1478 PORTING AN ST7 PANTA PROJECT TO CODEWARRIOR IDE AN1527 DEVELOPING A USB SMARTCARD READER WITH ST7SCR AN1575 ON-BOARD PROGRAMMING METHODS FOR XFLASH AND HDFLASH ST7 MCUS 156/161 ST72324 15 IMPORTANT NOTES 15.1 Silicon Identification 15.2 ALL FLASH AND ROM DEVICES This document refers to ST72F324/ST72324 devices shown in Table 28 and Table 29. They are identifiable both by the last letter of the Trace code marked on the device package and by the last 3 digits of the Internal Sales Type printed on the box label. 15.2.1 External RC option The External RC clock source option described in previous datasheet revisions is no longer supported and has been removed from this specification. 15.2.2 CSS Function The Clock Security System function is not guaranteed. The features described in Section 6.4.3 are subject to revision. 15.2.3 Safe Connection of OSC1/OSC2 Pins The OSC1 and/or OSC2 pins must not be left unconnected otherwise the ST7 main oscillator may start and, in this configuration, could generate an fOSC clock frequency in excess of the allowed maximum (>16MHz.), putting the ST7 in an unsafe/undefined state. Refer to Section 6.2 on page 24. 15.2.4 Unexpected Reset Fetch If an interrupt request occurs while a "POP CC" instruction is executed, the interrupt controller does not recognise the source of the interrupt and, by default, passes the RESET vector address to the CPU. Workaround To solve this issue, a "POP CC" instruction must always be preceded by a "SIM" instruction. 15.2.5 Internal RC Oscillator with LVD The internal RC can only be used if LVD is enabled. 15.2.6 16-bit Timer PWM Mode In PWM mode, the first PWM pulse is missed after writing the value FFFCh in the OC1R register (OC1HR, OC1LR). It leads to either full or no PWM during a period, depending on the OLVL1 and OLVL2 settings. Table 28. Flash Device Identification Part Number ST72F324 xxxx ST72F324 xxxx Trace Code marked on device “xxxxxxxxxW” (current revision) “xxxxxxxxxX” Internal Sales Type on box label 72F324xxxx$A5 72F324xxxx$U5 72F324xxxx$A4 72F324xxxx$U4 Table 29. ROM Device Identification Part Number ST72324xx xx ST72324xx xx Trace Code Internal Sales Type marked on device on box label “xxxxxxxxxY” 72324xxxx/xxx$A3 “xxxxxxxxxA” 72324xxxx/xxx$U1 157/161 ST72324 15.3 FLASH REV “X” and ALL ROM DEVICES 15.3.1 Read-out protection with LVD The LVD is not supported if the read-out protection is enabled. 15.3.2 External clock source with PLL External clock source is not supported with the PLL enabled. 15.3.3 I/O Port A and F Configuration When using an external quartz crystal or ceramic resonator, the fOSC2 clock may be disturbed because the device goes into reserved mode controlled by Port A and F. This happens with either one of the following configurations: PA3=0, PF4=1, PF1=0 while CSS and PLL options are both disabled and PF0 is toggling PA3=0, PF4=1, PF1=0, PF0=1 while CSS or PLL options are enabled This is detailed in the following table: Clock Disturbance Max. 2 clock Tog cycles lost at glin each rising or g falling edge of PF0 Max. 1 clock 1 cycle lost out of every 16 CSS PLL PA3 PF4 PF1 PF0 OFF OFF x ON ON x 0 1 0 0 1 0 As a consequence, for cycle-accurate operations, these configurations are prohibited in either input or output mode. Workaround: To avoid this occurring, it is recommended to connect one of these pins to GND (PF4 or PF0) or VDD (PA3 or PF1). 158/161 15.3.4 LVD Operation Depending on the operating conditions, especially the VDD ramp up speed and ambient temperature, in some cases the LVD may not start. When this occurs, the MCU may operate outside the guaranteed functional area (see datasheet Figure 76) without being forced into reset state. In this case, proper use of the watchdog may make it possible to recover through a watchdog reset and allow normal operations to resume. Consequently, the LVD function is not guaranteed in the current silicon revision. For complete security, an external reset circuit must be added. 15.4 ALL ROM DEVICES 15.4.1 AVD not supported On some devices with a specific VDD ramp up speed the AVD may not start. As a result it cannot generate interrupts when VDD rises and falls. 15.4.2 Internal RC oscillator operation Internal RC oscillator operation is not supported in ROM devices. ST72324 Table 30. Product Evolution Summary Section Limitation Silicon Rev. FLASH Devices ROM Devices Previous Current Current Current Rev “X” Rev“W” Rev “Y” Rev “A” 15.2.1 15.2.2 15.2.3 15.2.4 15.2.5 15.2.6 15.3.1 EXTERNAL RC OPTION CSS FUNCTION SAFE CONNECTION OF OSC1/OSC2 PINS UNEXPECTED RESET FETCH INTERNAL RC OSCILLATOR WITH LVD 16-BIT TIMER PWM MODE READ-OUT PROTECTION WITH LVD ● ● ● ● ● ● ● 15.3.2 EXTERNAL CLOCK WITH PLL ● 15.3.3 I/O PORT A & F CONFIGURATION 15.3.4 15.4.1 15.4.2 LVD OPERATION AVD NOT SUPPORTED INTERNAL RC OSCILLATOR OPERATION ● ● Legend: Limitation present = ●; ❍ ❍ ● ● ● ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● Limitation not present = ❍. 159/161 1 ST72324 16 SUMMARY OF CHANGES Revision Main Changes Date Modified “ACTIVE-HALT AND HALT MODES” on page 42: wakeup from active halt by reset or MCC/RTC interrupt only Changed references to planned low voltage version to refer to flash only 1.7 Reset pin IINJMAX for changed to 2 mA in Section 12.9.1 and Section 12.2 Mar 03 Updated ordering information Section 18.2 on page 230 Updated EMI data in “EMC CHARACTERISTICS” on page 130 Added “IMPORTANT NOTES” on page 157 1.8 Updated Errata sheet July 03 Changed document name from ST72324J/K to ST72324 Removed External RC option from Section 6.2 on page 24 and throughout document Added Caution ‘CSS function is not guaranteed’ to Section 6.4 on page 27 and Section 14.1 on page 149 Removed restrictions on PWM mode in 16-bit timer A. Added notes on Timer A IC2 and OC2 registers and interrupts in Table 2. and throughout Section 10.3 Modified description of internal RC oscillator in Section 6.2. Added note to “MULTI-OSCILLATOR (MO)” on page 24 External clock source not supported if PLL is enabled Added Caution about disconnecting OSC pins in Section 6.2 on page 24 Moved LVD startup behaviour diagram from Section 12.3.3 on page 117 to Section 15 1.9 Modified notes in table of Murata resonators in Section 12.5.3 August 03 Modified description of VAREF/VSSA pins in Section 12.12.1 on page 143 Added phrase “can be reprogrammed” in Section 4.3.1 on page 17 and Section 14.1 on page 149 Added heading “Related Documentation” on page 19 Updated “EMC CHARACTERISTICS” on page 130 Added FASTROM information to Section 14 on page 149 Added note under VD option bit table in Section 14.1 on page 149 Updated option list in Section 14.2 on page 151 Removed Errata sheet and put information in “IMPORTANT NOTES” on page 157 Please read carefully the “IMPORTANT NOTES” on page 157 160/161 1 ST72324 Notes: Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics 2003 STMicroelectronics - All Rights Reserved. Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an I2C system is granted provided that the system conforms to the I2C Standard Specification as defined by Philips. STMicroelectronics Group of Companies Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com 161/161