STMICROELECTRONICS TS27M2I

TS27M2C,I,M
PRECISION LOW POWER
CMOS DUAL OPERATIONAL AMPLIFIERS
■ LOW POWER CONSUMPTION : 150µA/op
■ OUTPUT VOLTAGE CAN SWING TO
GROUND
■ EXCELLENT PHASE MARGIN ON
CAPACITIVE LOADS
N
DIP8
(Plastic Package)
■ STABLE AND LOW OFFSET VOLTAGE
■ THREE INPUT OFFSET VOLTAGE
SELECTIONS
DESCRIPTION
D
SO8
(Plastic Micropackage)
These devices are low cost, low power dual operational amplifiers designed to operate with single
or dual supplies. These operational amplifiers use
the ST silicon gate CMOS process allowing an excellent consumption-speed ratio. These series are
ideally suited for low consumption applications.
Three power consumptions are available allowing
to have always the best consumption-speed ratio:
P
TSSOP8
(Thin Shrink Small Outline Package)
❑ ICC = 10µA/amp.: TS27L2 (very low power)
❑ ICC = 150µA/amp.: TS27M2 (low power)
PIN CONNECTIONS (top view)
❑ ICC = 1mA/amp.: TS272 (standard)
These CMOS amplifiers offer very high input impedance and extremely low input currents. The
major advantage versus JFET devices is the very
low input currents drift with temperature (see figure 2).
ORDER CODE
1
8
2
-
3
+
4
7
-
6
+
5
Package
Part Number
Temperature Range
TS27M2C/AC/BC
0°C, +70°C
TS27M2I/AI/BI
-40°C, +125°C
TS27M2M/AM/BM
-55°C, +125°C
Example : TS27M2ACN
N
D
P
•
•
•
•
•
•
•
•
•
N = Dual in Line Package (DIP)
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
P = Thin Shrink Small Outline Package (TSSOP) - only available
in Tape & Reel (PT)
November 2001
1 - Output 1
2 - Inverting Input 1
3 - Non-inverting Input 1
4 - V CC 5 - Non-inverting Input 2
6 - Inverting Input 2
7 - Output 2
8 - V CC +
1/9
TS27M2C,I,M
BLOCK DIAGRAM
VCC
Current
source
xI
Input
differential
Output
stage
Second
stage
Output
VCC
E
E
ABSOLUTE MAXIMUM RATINGS
Symbol
VCC
+
Vid
Parameter
Supply Voltage
TS27M2C/AC/BC
1)
2)
TS27M2I/AI/BI TS27M2M/AM/BM
Unit
18
V
±18
V
-0.3 to 18
V
Output Current for VCC+ ≥ 15V
±30
mA
Input Current
±5
mA
Differential Input Voltage
Vi
Input Voltage
Io
Iin
3)
Toper
Operating Free-Air Temperature Range
Tstg
Storage Temperature Range
0 to +70
-40 to +125
-55 to +125
-65 to +150
°C
°C
1. All values, except differential voltage are with respect to network ground terminal.
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
3. The magnitude of the input and the output voltages must never exceed the magnitude of the positive supply voltage.
OPERATING CONDITIONS
Symbol
Parameter
VCC+
Supply Voltage
Vicm
Common Mode Input Voltage Range
2/9
Value
Unit
3 to 16
V
0 to VCC+ - 1.5
V
T20
T19
T17
T24
T21
T 18
R2
T 25
VCC
T 22
T 23
T 26
T29
T 28
T27
Input
T3
T1
T5
VCC
T4
T2
C1
Input
R1
T7
T6
T9
T8
T 13
T11
T 10
T 14
T 12
T16
Output
T 15
TS27M2C,I,M
SCHEMATIC DIAGRAM (for 1/2 TS27M2)
3/9
TS27M2C,I,M
ELECTRICAL CHARACTERISTICS
VCC+ = +10V, VCC-= 0V, Tamb = +25°C (unless otherwise specified)
TS27M2C/AC/BC
Symbol
Parameter
Min.
Input Offset Voltage
VO = 1.4V, Vic = 0V
Vio
DVio
Iio
Iib
Tmin ≤ Tamb ≤ Tmax
TS27M2C/I/M
TS27M2AC/AI/AM
TS27M2B/C/I/M
TS27M2C/I/M
TS27M2AC/AI/AM
TS27M2B/C/I/M
Typ.
Max.
1.1
0.9
0.25
10
5
2
12
6.5
3
Input Offset Voltage Drift
2
Input Offset Current note 1)
Vic = 5V, VO = 5V
Tmin ≤ Tamb ≤ Tmax
1
Input Bias Current - see note 1
Vic = 5V, VO = 5V
Tmin ≤ Tamb ≤ Tmax
1
VOH
High Level Output Voltage
Vid = 100mV, RL = 100lΩ
Tmin ≤ Tamb ≤ Tmax
VOL
Low Level Output Voltage
Vid = -100mV
Avd
Large Signal Voltage Gain
ViC = 5V, RL = 100kΩ, Vo = 1V to 6V
Tmin ≤ Tamb ≤ Tmax
TS27M2I/AI/BI
TS27M2M/AM/BM
Min.
Typ.
1.1
0.9
0.25
8.7
8.5
50
30
10
50
CMR
Common Mode Rejection Ratio
ViC = 1V to 7.4V, Vo = 1.4V
65
80
65
80
SVR
Supply Voltage Rejection Ratio
VCC+ = 5V to 10V, Vo = 1.4V
60
80
60
80
MHz
150
dB
dB
200
300
µA
Output Short Circuit Current
Vo = 0V, Vid = 100mV
60
60
Isink
Output Sink Current
Vo = VCC, Vid = -100mV
45
45
SR
Slew Rate at Unity Gain
RL = 100kΩ, CL = 100pF, Vi = 3 to 7V
0.6
0.6
φm
Phase Margin at Unity Gain
Av = 40dB, RL = 100kΩ, CL = 100pF
45
45
KOV
Overshoot Factor
30
30
%
Equivalent Input Noise Voltage
f = 1kHz, Rs = 100Ω
38
38
nV
-----------Hz
Channel Separation
120
120
dB
Vo1/Vo2
4/9
V/mV
1
200
250
mV
Io
en
1.
V
50
1
150
pA
8.9
Gain Bandwidth Product
Av = 40dB, RL = 100kΩ, CL = 100pF, fin = 100kHz
Supply Current (per amplifier)
Av = 1, no load, Vo = 5V
Tmin ≤ Tamb ≤ Tmax
pA
300
GBP
ICC
µV/°C
1
8.9
mV
200
50
30
20
10
5
2
12
6.5
3.5
1
150
8.7
8.6
Max.
2
100
Unit
Maximum values including unavoidable inaccuracies of the industrial test.
mA
mA
V/µs
Degrees
TS27M2C,I,M
TYPICAL CHARACTERISTICS
Figure 1 : Supply Current (each amplifier) versus
Supply Voltage
Figure 3b : High Level Output Voltage versus
High Level Output Current
20
TAMB = 25 ˚C
AV= 1
VO = VCC / 2
150
OUTPUT VOLTAGE, VOH (V)
SUPPLY CURRENT, I CC (µA)
200
100
50
0
4
8
12
16
VCC = 16V
12
8
0
-50
16
-30
-20
-10
0
Figure 4a : Low Level Output Voltage versus Low
Level Output Current
100
1.0
VCC = 10V
V i = 5V
OUTPUT VOLTAGE, VOL (V)
INPUT BIAS CURRENT, IIB (pA)
-40
OUTPUT CURRENT, I OH (mA)
Figure 2 : Input Bias Current versus Free Air
Temperature
10
1
25
50
75
100
VCC = 3V
0.8
VCC = 5V
0.6
0.4
TAMB = 25 ˚C
V i = 0.5V
VID = -1V
0.2
0
125
TEMPERATURE, TAMB (˚C)
1
2
3
OUTPUT CURRENT, I OL (mA)
Figure 3a : High Level Output Voltage versus
High Level Output Current
Figure 4b : Low Level Output Voltage versus Low
Level Output Current
5
3
TAMB = 25˚ C
V ID = 100mV
4
3
OUTPUT VOLTAGE, VOL (V)
OUTPUT VOLTAGE, VOH (V)
VCC = 10V
4
SUPPLY VOLTAGE, V CC (V)
VCC = 5V
2
VCC = 3V
1
0
TAMB = 25˚ C
V ID = 100mV
-10
-8
-6
-4
-2
OUTPUT CURRENT, I OH (mA)
0
VCC = 10V
VCC = 16V
2
1
0
TAMB = 25 ˚C
V i = 0.5V
VID = -1V
4
8
12
16
20
OUTPUT CURRENT, I OL (mA)
5/9
TS27M2C,I,M
GAIN
30
PHASE
20
Tamb = 25˚C
VCC+ = 10V
R L = 100k Ω
C L = 100pF
A VCL = 100
10
0
-10
2
10
10
3
45
Phase
Margin
90
135
Gain
Bandwidth
Product
4
10
10 5
10
FREQUENCY, f (Hz)
180
6
10
7
T amb = 25˚C
R L = 100kΩ
AV=1
VCC = 10V
70
60
50
40
0
Figure 6 : Gain Bandwidth Product versus Supply
Voltage
20
40
60
80
CAPACITANCE, C L (pF)
0.9
1800
Tamb = 25˚C
R L = 100kΩ
C L = 100pF
AV = 1
1400
1000
600
200
0
4
8
12
16
T amb = 25˚C
R L = 100kΩ
C L = 100pF
0.8
0.6
SR
0.5
0.4
4
6
8
10
12
14
SUPPLY VOLTAGE, V CC (V)
50
40
Tamb = 25˚C
R L = 100kΩ
C L = 100pF
AV = 1
300
VCC = 10V
Tamb = 25˚C
R S = 100 Ω
200
100
0
20
0
6/9
16
Figure 10 : Input Voltage Noise versus
Frequency
EQUIVALENT INPUT NOISE
VOLTAGE (nV/VHz)
PHASE MARGIN, φm (Degrees)
Figure 7 : Phase Margin versus Supply Voltage
SR
0.7
SUPPLY VOLTAGE, V CC (V)
30
100
Figure 9 : Slew Rate versus Supply Voltage
SLEW RATES, SR (V/ µs)
GAIN BANDW. PROD., GBP (kHz)
(Degrees)
0
PHASE (Degrees)
GAIN (dB)
40
80
φm
50
Figure 8 : Phase Margin versus Capacitive Load
PHASE MARGIN,
Figure 5 : Open Loop Frequency Response and
Phase Shift
4
8
12
SUPPLY VOLTAGE, V CC (V)
16
1
100
10
FREQUENCY (Hz)
1000
TS27M2C,I,M
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC DIP
Millimeters
Inches
Dim.
Min.
A
a1
B
b
b1
D
E
e
e3
e4
F
i
L
Z
Typ.
Max.
Min.
3.32
0.51
1.15
0.356
0.204
1.65
0.55
0.304
10.92
9.75
7.95
0.020
0.045
0.014
0.008
Max.
0.065
0.022
0.012
0.430
0.384
0.313
2.54
7.62
7.62
3.18
Typ.
0.131
0.100
0.300
0.300
6.6
5.08
3.81
1.52
0.125
0260
0.200
0.150
0.060
7/9
TS27M2C,I,M
PACKAGE MECHANICAL DATA
8 PINS - PLASTIC MICROPACKAGE (SO)
s
b1
b
a1
A
a2
C
c1
a3
L
E
e3
D
M
5
1
4
F
8
Millimeters
Inches
Dim.
Min.
A
a1
a2
a3
b
b1
C
c1
D
E
e
e3
F
L
M
S
8/9
Typ.
Max.
0.65
0.35
0.19
0.25
1.75
0.25
1.65
0.85
0.48
0.25
0.5
4.8
5.8
5.0
6.2
0.1
Min.
Typ.
Max.
0.026
0.014
0.007
0.010
0.069
0.010
0.065
0.033
0.019
0.010
0.020
0.189
0.228
0.197
0.244
0.004
45° (typ.)
1.27
3.81
3.8
0.4
0.050
0.150
4.0
1.27
0.6
0.150
0.016
8° (max.)
0.157
0.050
0.024
TS27M2C,I,M
PACKAGE MECHANICAL DATA
8 PINS - THIN SHRINK SMALL OUTLINE PACKAGE (TSSOP)
k
c
0.25mm
.010 inch
GAGE PLANE
L1
L
L
L1
C
SEATING
PLANE
E1
A
E
A2
A1
5
4
4
5
D
b
e
8
1
8
1
PIN 1 IDENTIFICATION
Millimeters
Inches
Dim.
Min.
A
A1
A2
b
c
D
E
E1
e
k
l
L
L1
0.05
0.80
0.19
0.09
2.90
4.30
0°
0.50
0.45
Typ.
1.00
3.00
6.40
4.40
0.65
0.60
0.600
1.000
Max.
Min.
1.20
0.15
1.05
0.30
0.20
3.10
0.01
0.031
0.007
0.003
0.114
4.50
0.169
8°
0.75
0.75
0°
0.09
0.018
Typ.
0.039
0.118
0.252
0.173
0.025
0.0236
0.024
0.039
Max.
0.05
0.006
0.041
0.15
0.012
0.122
0.177
8°
0.030
0.030
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
© http://www.st.com
9/9