STMICROELECTRONICS TSH93

TSH93
HIGH SPEED LOW POWER TRIPLE
OPERATIONAL AMPLIFIER
■
■
■
■
■
■
■
■
LOW SUPPLY CURRENT : 4.5mA
HIGH SPEED : 150MHz - 110V/µs
UNITY GAIN STABILITY
LOW OFFSET VOLTAGE : 4mV
LOW NOISE 4.2 nV/√Hz
LOW COST
SPECIFIED FOR 600Ω AND 150Ω LOADS
HIGH VIDEO PERFORMANCES :
Differential Gain : 0.03%
Differential Phase : 0.07 o
Gain Flatness : 6MHz, 0.1dB max. @ 10dB
gain
■ HIGH AUDIO PERFORM
■ ESD TOLERANCE : 2kV
D
SO14
(Plastic Micropackage)
PIN CONNECTIONS (top view)
DESCRIPTION
The TSH93 is a triple low power high frequency
op-amp, designated for high quality video signal
processing. The device offers an excellent speed
consumption ratio with 4.5mA per amplifier for
150MHz bandwidth.
High slew rate and low noise make it also suitable
for high quality audio applications.
ORDER CODE
Package
Part Number
Temperature Range
N.C.
1
N.C.
2
-
13 Inverting Input 3
N.C.
3
+
12 Non-inverting Input 3
VCC +
4
Non-inverting Input 1
5
+
+
10 Non-inverting Input 2
Inverting Input 1
6
-
-
9
Inverting Input 2
Output 1
7
8
Output 2
14 Output 3
11 VCC -
D
TSH93I
-40°C, +125°C
•
D = Small Outline Package (SO) - also available in Tape & Reel (DT)
October 2000
1/8
TSH93
SCHEMATIC DIAGRAM (1/3)
V CC+
non inverting
input
Internal
Vref
inverting
input
output
Cc
VCC-
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
VCC
Supply Voltage 1)
14
V
Vid
Differential Input Voltage 2)
±5
V
-0.3 to 12
V
Vi
Input Voltage
3)
Toper
Operating Free-Air Temperature range
-40 to +125
°C
Tstg
Storage Temperature Range
-65 to +150
°C
Value
Unit
1. All voltages values, except differential voltage are with respect to network ground terminal
2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal
3. The magnitude of input and output voltages must never exceed VCC+ +0.3V
OPERATING CONDITIONS
Symbol
VCC
Vic
2/8
Parameter
Supply Voltage
Common Mode Input Voltage Range
7 to 12
-
V
+
VCC +2 to VCC -1
V
TSH93
ELECTRICAL CHARACTERISTICS
VCC+ = 5V, V CC- = -5V, Tamb = 25°C (unless otherwise specified)
Symbol
Parameter
Min.
Typ.
Max.
Unit
4
6
mV
Vio
Input Offset Voltage
Tmin. ≤ Tamb ≤ Tmax.
Iio
Input Offset Current
Tmin. ≤ Tamb ≤ Tmax.
1
2
5
µA
Iib
Input Bias Current.
Tmin. ≤ Tamb ≤ Tmax.
5
15
20
µA
ICC
Supply Current (per amplifier, no load)
Tmin. ≤ Tamb ≤ Tmax.
4.5
6
8
mA
CMR
Common-mode Rejection Ratio Vic = -3V to +4V, Vo = 0V
Tmin. ≤ Tamb ≤ Tmax.
80
70
100
SVR
Supply Voltage Rejection Ratio VCC = ±5V to ±3V
Tmin. ≤ Tamb ≤ Tmax
60
50
75
Avd
Large Signal Voltage Gain RL = 100Ω, Vo = ±2.5V
Tmin. ≤ Tamb ≤ Tmax.
57
54
70
3
2.5
2.4
3.5
3
dB
dB
dB
High Level Output Voltage Vid = 1V
VOH
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
RL = 150Ω
RL = 150Ω
V
Low Level Output Voltage Vid = 11V
VOL
Tmin. ≤ Tamb ≤ Tmax.
RL = 600Ω
RL = 150Ω
RL = 150Ω
-3.5
-2.8
-3
-2.5
-2.4
V
Output Short Circuit Current Vid = ±1V
Io
GBP
fT
SR
en
φm
VO1 /VO2
Gf
Tmin. ≤ Tamb ≤ Tmax.
Source
Sink
Source
Sink
Gain Bandwidth Product
AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz
20
20
15
15
36
40
90
150
Transition Frequency
Slew Rate
Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF
mA
MHz
90
62
MHz
V/µs
110
Equivalent Input Voltage Noise Rs = 50Ω, f = 1kHz
4.2
nV/√Hz
Phase Margin AVM = +1
35
Degrees
Channel Seperation f = 1MHz to 10MHz
65
dB
Gain Flatness f = DC to 6MHz, AVCL = 10dB
0.1
dB
Total Harmonic Distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω
0.01
%
∆G
Differential Gain f = 3.58MHz, AVCL = +2, RL = 150Ω
0.03
%
∆ϕ
Differential Phase f = 3.58MHz, AVCL = +2, RL = 150Ω
0.07
Degree
THD
3/8
TSH93
PRINTED CIRCUIT LAYOUT
As for any high frequency device, a few rules must be observed when designing the PCB to get the best
performances from this high speed op amp.
From the most to the least important points :
❑ Each power supply lead has to be bypassed to ground with a 10nF ceramic capacitor very close
to the device and a 10µF capacitor.
❑ To provide low inductance and low resistance common return, use a ground plane or common point
return for power and signal.
❑ All leads must be wide and as short as possible especially for op amp inputs. This is in order to
decrease parasitic capacitance and inductance.
❑ Use small resistor values to decrease time constant with parasitic capacitance.
❑ Choose component sizes as small as possible (SMD).
On output, decrease capacitor load so as to avoid circuit stability being degraded which may cause
oscillation. You can also add a serial resistor in order to minimise its influence.
INPUT OFFSET VOLTAGE DRIFT VERSUS
TEMPERATURE
LARGE SIGNAL FOLLOWER RESPONSE
4/8
STATIC OPEN LOOP VOLTAGE GAIN
SMALL SIGNAL FOLLOWER RESPONSE
TSH93
OPEN LOOP FREQUENCY RESPONSE AND
PHASE SHIFT
CLOSE LOOP FREQUENCY RESPONSE
AUDIO BANDWIDTH FREQUENCY
RESPONSE AND PHASE SHIFT
(TSH93 vs Standard 15MHz Audio Op-Amp)
GAIN FLATNESS AND PHASE SHIFT VERSUS
FREQUENCY
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO14 PACKAGE)
CROSS TALK ISOLATION VERSUS
FREQUENCY (SO14 PACKAGE)
5/8
TSH93
DIFFERENTIAL INPUT IMPEDANCE VERSUS
FREQUENCY
COMMON INPUT IMPEDANCE VERSUS
FREQUENCY
4.5
120
4.0
100
3.5
Zin-com (MW )
Zin-diff (kW )
3.0
2.5
2.0
80
60
40
1.5
1.0
20
0.5
1k
10k
100k
1M
Frequency (Hz)
6/8
10M
100M
1k
10k
100k
1M
Frequency (Hz)
10M
100M
TSH93
MACROMODEL
Applies to: TSH93I
** Standard Linear Ics Macromodels, 1997.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVEPOWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TSH93 1 3 2 4 5(analog)
********************************************************
.MODEL MDTH D IS=1E-8 KF=1.809064E-15
CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E-01
RIN 15 16 2.600000E-01
RIS 11 15 3.645298E-01
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0.000000E+00
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-03
CPS 11 15 2.986990E-10
DINN 17 13 MDTH 400E-12
VIN 17 5 2.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 1.000000E+00
FCP 4 5 VOFP 3.500000E+00
FCN 5 4 VOFN 3.500000E+00
FIBP 2 5 VOFP 1.000000E-02
FIBN 5 1 VOFN 1.000000E-02
* AMPLIFYING STAGE
FIP 5 19 VOFP 2.530000E+02
FIN 5 19 VOFN 2.530000E+02
RG1 19 5 3.160721E+03
RG2 19 4 3.160721E+03
CC 19 5 2.00000E-09
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 1.504000E+03
VIPM 28 4 5.000000E+01
HONM 21 27 VOUT 1.400000E+03
VINM 5 27 5.000000E+01
***********************
RZP1 5 80 1E+06
RZP2 4 80 1E+06
GZP 5 82 19 80 2.5E-05
RZP2H 83 4 10000
RZP1H 83 82 80000
RZP2B 84 5 10000
RZP1B 82 84 80000
LZPH 4 83 3.535e-02
LZPB 84 5 3.535e-02
EOUT 26 23 82 5 1
VOUT 23 5 0
ROUT 26 3 35
COUT 3 5 30.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.361965E+00
DON 24 19 MDTH 400E-12
VON 24 5 2.361965E+00
.ENDS
ELECTRICAL CHARACTERISTICS
VCC = ±5V, Tamb = 25°C (unless otherwise specificed)
Symbol
Conditions
Vio
Avd
RL = 600Ω
ICC
No load / Ampli
Vicm
Value
Unit
0
mV
3.2
V/mV
5.2
mA
-3 to 4
V
V
VOH
RL = 600Ω
+3.6
VOL
RL = 600Ω
-3.6
V
Isink
Vo = 0V
40
mA
Isource
Vo = 0V
40
mA
GBP
RL = 600Ω, CL = 15pF
147
MHz
SR
RL = 600Ω, CL = 15pF
110
V/µs
φm
RL = 600Ω, CL = 15pF
42
Degrees
7/8
TSH93
PACKAGE MECHANICAL DATA
14 PINS - PLASTIC MICROPACKAGE (SO)
Millimeters
Inches
Dim.
Min.
A
a1
a2
b
b1
C
c1
D (1)
E
e
e3
F (1)
G
L
M
S
Typ.
Max.
Min.
1.75
0.2
1.6
0.46
0.25
0.1
0.35
0.19
Typ.
0.004
0.014
0.007
0.5
Max.
0.069
0.008
0.063
0.018
0.010
0.020
45° (typ.)
8.55
5.8
8.75
6.2
0.336
0.228
1.27
7.62
3.8
4.6
0.5
0.344
0.244
0.050
0.300
4.0
5.3
1.27
0.68
0.150
0.181
0.020
0.157
0.208
0.050
0.027
8° (max.)
Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco
Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com
8/8