TSH93 HIGH SPEED LOW POWER TRIPLE OPERATIONAL AMPLIFIER ■ ■ ■ ■ ■ ■ ■ ■ LOW SUPPLY CURRENT : 4.5mA HIGH SPEED : 150MHz - 110V/µs UNITY GAIN STABILITY LOW OFFSET VOLTAGE : 4mV LOW NOISE 4.2 nV/√Hz LOW COST SPECIFIED FOR 600Ω AND 150Ω LOADS HIGH VIDEO PERFORMANCES : Differential Gain : 0.03% Differential Phase : 0.07 o Gain Flatness : 6MHz, 0.1dB max. @ 10dB gain ■ HIGH AUDIO PERFORM ■ ESD TOLERANCE : 2kV D SO14 (Plastic Micropackage) PIN CONNECTIONS (top view) DESCRIPTION The TSH93 is a triple low power high frequency op-amp, designated for high quality video signal processing. The device offers an excellent speed consumption ratio with 4.5mA per amplifier for 150MHz bandwidth. High slew rate and low noise make it also suitable for high quality audio applications. ORDER CODE Package Part Number Temperature Range N.C. 1 N.C. 2 - 13 Inverting Input 3 N.C. 3 + 12 Non-inverting Input 3 VCC + 4 Non-inverting Input 1 5 + + 10 Non-inverting Input 2 Inverting Input 1 6 - - 9 Inverting Input 2 Output 1 7 8 Output 2 14 Output 3 11 VCC - D TSH93I -40°C, +125°C • D = Small Outline Package (SO) - also available in Tape & Reel (DT) October 2000 1/8 TSH93 SCHEMATIC DIAGRAM (1/3) V CC+ non inverting input Internal Vref inverting input output Cc VCC- MAXIMUM RATINGS Symbol Parameter Value Unit VCC Supply Voltage 1) 14 V Vid Differential Input Voltage 2) ±5 V -0.3 to 12 V Vi Input Voltage 3) Toper Operating Free-Air Temperature range -40 to +125 °C Tstg Storage Temperature Range -65 to +150 °C Value Unit 1. All voltages values, except differential voltage are with respect to network ground terminal 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal 3. The magnitude of input and output voltages must never exceed VCC+ +0.3V OPERATING CONDITIONS Symbol VCC Vic 2/8 Parameter Supply Voltage Common Mode Input Voltage Range 7 to 12 - V + VCC +2 to VCC -1 V TSH93 ELECTRICAL CHARACTERISTICS VCC+ = 5V, V CC- = -5V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit 4 6 mV Vio Input Offset Voltage Tmin. ≤ Tamb ≤ Tmax. Iio Input Offset Current Tmin. ≤ Tamb ≤ Tmax. 1 2 5 µA Iib Input Bias Current. Tmin. ≤ Tamb ≤ Tmax. 5 15 20 µA ICC Supply Current (per amplifier, no load) Tmin. ≤ Tamb ≤ Tmax. 4.5 6 8 mA CMR Common-mode Rejection Ratio Vic = -3V to +4V, Vo = 0V Tmin. ≤ Tamb ≤ Tmax. 80 70 100 SVR Supply Voltage Rejection Ratio VCC = ±5V to ±3V Tmin. ≤ Tamb ≤ Tmax 60 50 75 Avd Large Signal Voltage Gain RL = 100Ω, Vo = ±2.5V Tmin. ≤ Tamb ≤ Tmax. 57 54 70 3 2.5 2.4 3.5 3 dB dB dB High Level Output Voltage Vid = 1V VOH Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω RL = 150Ω RL = 150Ω V Low Level Output Voltage Vid = 11V VOL Tmin. ≤ Tamb ≤ Tmax. RL = 600Ω RL = 150Ω RL = 150Ω -3.5 -2.8 -3 -2.5 -2.4 V Output Short Circuit Current Vid = ±1V Io GBP fT SR en φm VO1 /VO2 Gf Tmin. ≤ Tamb ≤ Tmax. Source Sink Source Sink Gain Bandwidth Product AVCL = 100, RL = 600Ω, CL = 15pF, f = 7.5MHz 20 20 15 15 36 40 90 150 Transition Frequency Slew Rate Vin = -2 to +2V, AVCL = +1, RL = 600Ω, CL = 15pF mA MHz 90 62 MHz V/µs 110 Equivalent Input Voltage Noise Rs = 50Ω, f = 1kHz 4.2 nV/√Hz Phase Margin AVM = +1 35 Degrees Channel Seperation f = 1MHz to 10MHz 65 dB Gain Flatness f = DC to 6MHz, AVCL = 10dB 0.1 dB Total Harmonic Distortion f = 1kHz, Vo = ±2.5V, RL = 600Ω 0.01 % ∆G Differential Gain f = 3.58MHz, AVCL = +2, RL = 150Ω 0.03 % ∆ϕ Differential Phase f = 3.58MHz, AVCL = +2, RL = 150Ω 0.07 Degree THD 3/8 TSH93 PRINTED CIRCUIT LAYOUT As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp. From the most to the least important points : ❑ Each power supply lead has to be bypassed to ground with a 10nF ceramic capacitor very close to the device and a 10µF capacitor. ❑ To provide low inductance and low resistance common return, use a ground plane or common point return for power and signal. ❑ All leads must be wide and as short as possible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance. ❑ Use small resistor values to decrease time constant with parasitic capacitance. ❑ Choose component sizes as small as possible (SMD). On output, decrease capacitor load so as to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence. INPUT OFFSET VOLTAGE DRIFT VERSUS TEMPERATURE LARGE SIGNAL FOLLOWER RESPONSE 4/8 STATIC OPEN LOOP VOLTAGE GAIN SMALL SIGNAL FOLLOWER RESPONSE TSH93 OPEN LOOP FREQUENCY RESPONSE AND PHASE SHIFT CLOSE LOOP FREQUENCY RESPONSE AUDIO BANDWIDTH FREQUENCY RESPONSE AND PHASE SHIFT (TSH93 vs Standard 15MHz Audio Op-Amp) GAIN FLATNESS AND PHASE SHIFT VERSUS FREQUENCY CROSS TALK ISOLATION VERSUS FREQUENCY (SO14 PACKAGE) CROSS TALK ISOLATION VERSUS FREQUENCY (SO14 PACKAGE) 5/8 TSH93 DIFFERENTIAL INPUT IMPEDANCE VERSUS FREQUENCY COMMON INPUT IMPEDANCE VERSUS FREQUENCY 4.5 120 4.0 100 3.5 Zin-com (MW ) Zin-diff (kW ) 3.0 2.5 2.0 80 60 40 1.5 1.0 20 0.5 1k 10k 100k 1M Frequency (Hz) 6/8 10M 100M 1k 10k 100k 1M Frequency (Hz) 10M 100M TSH93 MACROMODEL Applies to: TSH93I ** Standard Linear Ics Macromodels, 1997. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVEPOWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TSH93 1 3 2 4 5(analog) ******************************************************** .MODEL MDTH D IS=1E-8 KF=1.809064E-15 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 2.600000E-01 RIN 15 16 2.600000E-01 RIS 11 15 3.645298E-01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0.000000E+00 VOFN 13 14 DC 0 IPOL 13 5 1.000000E-03 CPS 11 15 2.986990E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 2.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.000000E+00 FCP 4 5 VOFP 3.500000E+00 FCN 5 4 VOFN 3.500000E+00 FIBP 2 5 VOFP 1.000000E-02 FIBN 5 1 VOFN 1.000000E-02 * AMPLIFYING STAGE FIP 5 19 VOFP 2.530000E+02 FIN 5 19 VOFN 2.530000E+02 RG1 19 5 3.160721E+03 RG2 19 4 3.160721E+03 CC 19 5 2.00000E-09 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 1.504000E+03 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 1.400000E+03 VINM 5 27 5.000000E+01 *********************** RZP1 5 80 1E+06 RZP2 4 80 1E+06 GZP 5 82 19 80 2.5E-05 RZP2H 83 4 10000 RZP1H 83 82 80000 RZP2B 84 5 10000 RZP1B 82 84 80000 LZPH 4 83 3.535e-02 LZPB 84 5 3.535e-02 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 35 COUT 3 5 30.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 2.361965E+00 DON 24 19 MDTH 400E-12 VON 24 5 2.361965E+00 .ENDS ELECTRICAL CHARACTERISTICS VCC = ±5V, Tamb = 25°C (unless otherwise specificed) Symbol Conditions Vio Avd RL = 600Ω ICC No load / Ampli Vicm Value Unit 0 mV 3.2 V/mV 5.2 mA -3 to 4 V V VOH RL = 600Ω +3.6 VOL RL = 600Ω -3.6 V Isink Vo = 0V 40 mA Isource Vo = 0V 40 mA GBP RL = 600Ω, CL = 15pF 147 MHz SR RL = 600Ω, CL = 15pF 110 V/µs φm RL = 600Ω, CL = 15pF 42 Degrees 7/8 TSH93 PACKAGE MECHANICAL DATA 14 PINS - PLASTIC MICROPACKAGE (SO) Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D (1) E e e3 F (1) G L M S Typ. Max. Min. 1.75 0.2 1.6 0.46 0.25 0.1 0.35 0.19 Typ. 0.004 0.014 0.007 0.5 Max. 0.069 0.008 0.063 0.018 0.010 0.020 45° (typ.) 8.55 5.8 8.75 6.2 0.336 0.228 1.27 7.62 3.8 4.6 0.5 0.344 0.244 0.050 0.300 4.0 5.3 1.27 0.68 0.150 0.181 0.020 0.157 0.208 0.050 0.027 8° (max.) Note : (1) D and F do not include mold flash or protrusions - Mold flash or protrusions shall not exceed 0.15mm (.066 inc) ONLY FOR DATA BOOK. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics © 2000 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom © http://www.st.com 8/8