TOSHIBA TA31273FN

TA31273FN
TOSHIBA Bipolar Linear Integrated Circuit
Silicon Monolithic
TA31273FN
AM RF/IF Detector IC
The TA31273FN is an RF/IF detector IC for AM radio.
The IC incorporates an RF amp, 2-level comparator, and local x8
circuit.
Features
•
RF frequency: 240 to 450 MHz
•
IF frequency: 10.7 MHz
•
Operating voltage range: 3.0 to 5.5 V
•
Current dissipation: 6.8 mA (typ.)
•
(Not operating local oscillator)
Current dissipation at BS: 0 µA (typ.)
•
Small package: 20-pin SSOP (0.65-mm pitch)
Weight: 0.09 g (typ.)
Block Diagram
SAW
20
19
FIL
FIL
OUT IN
18
17
RSSI BS
16
15
14
13
12
11
RF
RF
MIX GND1 RF MONI
OUT
DEC
IN
IN
RSSI
Comparator
×8
OSC
VCC1 LOBS
IN
1
2
3
MIX
IF
IF
OUT VCC2 IN DEC
REF GND2 DATA
4
5
6
7
8
9
10
1
2002-07-08
TA31273FN
Pin Function (The Values Of Resistor And Capacitor In The Internal Equivalent Circuit
Are Typical.)
Internal Equivalent Circuit
1
OSC IN
Local oscillator input pin.
2
VCC1
Power supply pin 1.
3
LOBS
Lo switch pin.
H: x8 circuit in operation
Lo: Through pass
3
4
MIX OUT
Mixer output pin.
4
5
VCC2
Power supply pin 2.
6
IF IN
IF amp input pin.
7
IF DEC
IF amp input pin.
Used as a bias coupling pin.
5 kΩ
2 pF
5 kΩ
1
15 kΩ
Function
5 kΩ
Pin Name
15 kΩ
Pin
No.

60 kΩ
210 Ω

170 Ω
170 Ω
3 kΩ
6
7
500 Ω
8
20
8
REF
40 kΩ
AM comparator REF pin.
COMP
19
DATA
5.5 kΩ
9
GND2
GND pin 2.
10
DATA
AM waveform shaping output pin.
Open collector output.
Connect a pull-up resistor.
40 kΩ

10
2
2 kΩ
2002-07-08
TA31273FN
Pin
No.
Pin Name
Function
11
RF IN
RF signal input pin.
12
RF DEC
Emitter pin for internal transistor.
Internal Equivalent Circuit
14
3 kΩ
11
14
RF OUT
RF amp output pin.
13
MONI
Since this pin is connected to an internal circuit, it
should either be left open or connected to GND.
15
GND1
GND pin 1.
16
MIX IN
Mixer input pin.
17
BS
Battery saving pin.
17
18
RSSI
RSSI output pin.
18
19
FIL IN
AM LPF input pin.
12
20 kΩ
13
50 kΩ
20 kΩ
2.4 kΩ
16
500 Ω

19
20
FIL OUT
5.5 kΩ
500 Ω
20
AM LPF output pin.
Equivalent circuits are given to help understand design of the external circuits to be connected. They do not
accurately represent the internal circuits.
3
2002-07-08
TA31273FN
Functions
1. Waveform shaper circuit (comparator)
The output data (pin 10) are inverted.
2. RSSI function
DC potential corresponding to the input level of IF IN (pin 6) is output to RSSI (pin 18). Output to RSSI
(pin 18) is converted to a voltage by the internal resistance. Thus, connecting external resistance R to pin
18 varies the gradient of the RSSI output as shown below. Note that due to the displacement of
temperature coefficients between external resistor R and the internal IC resistor, the temperature
characteristic of the RSSI output may change. Also, the maximum RSSI value should be VCC − 1 V.
After R is connected
R
20 kΩ
18
IF input level
Figure 2
Figure 1
3. VCC pin and GND pin
Use the same voltage supply source for VCC1 (pin 2) and VCC2 (pin 5) (or connect them). Also, use the same
voltage supply source for GND1 (pin 15) and GND2 (pin 9) (or connect them).
4. Local oscillator circuit
The local oscillator circuit is external-input-only. Input to pin 1 at a level from 95 to 105dBµV.
By switching the Lo switch (LOBS), the frequency set by the external circuit can be used as-is without
using the x8 circuit.
Lo Switch (LOBS)
H
L
Local oscillation status
x8 circuit in operation
x8 circuit halted/through pass
5. RF amp current adjustment
R
The RF amp current dissipation can be regulated by varying resistor R as shown in the figure below. When
R = 1 kΩ, the current dissipation is approximately 800 µA.
12
RF DEC
Figure 3
4
2002-07-08
TA31273FN
6. Battery-saving (BS) function and Lo switch LOBS function
The IC incorporates a battery-saving function and a Lo switch function. These functions offer the following
selection.
BS Pin/LOBS Pin
IC Current Dissipation
(at no signal)
Circuit Status in the IC
Circuits in operation
•
•
•
•
•
•
•
H/H
x8 circuit
Mixer
RF amp
Comparator
IF amp
RSSI
Comparator capacitor charger circuit
6.8 mA (typ.)
H/L
x8 circuit only halted, Frequency set by
external circuit can be used as-is.
3.8 mA (typ.)
L/H
x8 circuit only in operation
3.0 mA (typ.)
L/L
All circuits halted
0 mA (typ.)
7. RF amp gain 1
RF amp gain 1 (GV (RF) 1) is a reference value calculated as follows. Measure GRF in the following figure.
6 pF
1 kΩ
27 nH
0.01 µF
1000 pF
6 pF
16
14
4
6
11
33 nH
SAW
SG
50dBµV
GRF
Figure 4
GV (RF) 1 is calculated as follows:
GV (RF) 1 = GRF − GV (MIX)
8. IF amp gain
The intended value is 70dB.
9. Waveform-shaping output duty cycle
The specified range of electrical characteristics is only available for single-tone.
10. Local frequency range (after multiplying frequency by 8)
When the multiplier circuit is used, the local frequency will be in the range 250.7 MHz to 439.3 MHz.
5
2002-07-08
TA31273FN
11. Bit rate filter for AM
The current AM bit rate filter is used as a quadratic filter.
If the filter is to be used at a rate other than 1200 bps, please change the filter constant.
Quadratic filter (NRZ)
(The bit rate filter time constant takes into account the internal resistance RSSI (20 kΩ).)
R9
R8
C14
C13
1200 bps
47 kΩ
68 kΩ
1500 pF
4700 pF
2400 bps
47 kΩ
68 kΩ
680 pF
2200 pF
4800 bps
47 kΩ
68 kΩ
390 pF
1000 pF
When the filter constants shown below are used, it is not necessary to set the R9 constant value.
R9
R8
C14
C13
1200 bps

20 kΩ
2200 pF
6800 pF
2400 bps

20 kΩ
1500 pF
3300 pF
4800 bps

20 kΩ
820 pF
1800 pF
In addition, the current AM bit rate filter can be used as a tertiary filter.
If the filter is to be used at a rate other than 1200 bps, please change the filter constant.
Quadratic filter (NRZ)
(The bit rate filter time constant takes into account the internal resistance RSSI (20 kΩ).)
R10
R9
R8
C16
C14
C13
1200 bps
47 kΩ
68 kΩ
68 kΩ
3300 pF
560 pF
0.01 µF
2400 bps
47 kΩ
68 kΩ
68 kΩ
1500 pF
270 pF
4700 pF
4800 bps
47 kΩ
68 kΩ
68 kΩ
680 pF
150 pF
2200 pF
When the filter constants shown below are used, it is not necessary to set the R10 constant value.
R10
R9
R8
C16
C14
C13
1200 bps

20 kΩ
20 kΩ
8200 pF
2200 pF
0.033 µF
2400 bps

20 kΩ
20 kΩ
3900 pF
1000 pF
0.015 µF
4800 bps

20 kΩ
20 kΩ
1800 pF
470 pF
6800 pF
6
2002-07-08
TA31273FN
Maximum Ratings (Unless Otherwise Specfied Ta = 25°C, Voltage Value is Determined by
GND (TYP))
Characteristics
Supply voltage
Symbol
Rating
VCC
6
Unit
V
Current dissipation
PD
710
mW
Operating temperature range
Topr
−40~85
°C
Storage temperature range
Tstg
−55~150
°C
The maximum ratings must not be exceeded at any time. Do not operate the device under conditions outside the above ratings.
Operating available Range
(Unless Otherwise Specified Ta = 25℃, Voltage Value is Determined by GND(typ.))
Characteristics
Operating voltage range
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
VCC


3.0
5.0
5.5
V
Operating ranges indicate the conditions for which the device is intended to be functional even with the electrical changes.
Electrical Characteristics (Unless Otherwise Specified : Ta = 25°C, VCC = 5.0V , Rfin = 314.9
MHz, AM = 90%,Ifin = 10.7MHz , af = 600 Hz (square wave))
Symbol
Test
Circuit
Test Condition
Min
Typ.
Max
Unit
Current dissipation at no signal
Iccq
2
VCC = 5.0 V, BS/LOBS =“H/H”
Fin (LO) = 40.7 MHz
5.1
6.8
8.5
mA
Current dissipation at battery saving
Icco
3


0
5
µA
RF amp gain 1
GV (RF) 1

Vin (RF) = 50dBµV

20

dB
RF amp gain 2
GV (RF) 2
1 (5)
50 Ω input/output
−6.5
−3.5
−0.5
dB
RF amp input resistance
R (RF) IN



900

Ω
Characteristics
C (RF) IN



2.5

pF
C (RF) OUT



2

pF
Mixer conversion gain
GV (MIX)
1 (6)

17.5
21.5
25.5
dB
Mixer input resistance
R (MIX) IN



1.5

kΩ
Mixer input capacitance
C (MIX) IN



2.5

dB
Mixer output resistance
R (MIX) OUT



330

Mixer intercept point
IP3



93

dBµV
IF operating frequency
fIF



10.7

MHz
IF amp input resistance
R (IF) IN



330

Ω
RSSI output voltage 1
VRSSI1
1 (1)
Vin (IF) = 35dBµVEMF
0.1
0.3
0.5
V
RSSI output voltage 2
VRSSI2
1 (1)
Vin (IF) = 65dBµVEMF
0.95
1.20
1.45
V
RSSI output voltage 3
VRSSI3
1 (1)
Vin (IF) = 100dBµVEMF
1.9
2.3
2.7
V
RSSI output resistance
RRSSI

15
20
25
kΩ
DR
1 (2)
Vin (IF) = 80dBµVEMF
for single-tone
45
50
55
%
Data output voltage (L level)
VDATAL
1 (3)
IDATAL = 1 mA


0.4
V
Data output leakage current (H level)
IDATAH
1 (4)



2
µA
BS pin H-level input voltage



2.7

5.5
V
BS pin L-level input voltage



0

0.2
V
LOBS pin H-level input voltage



2.7

5.5
V
LOBS pin L-level input voltage



0

0.2
V
RF amp input capacitance
RF amp output capacitance
Waveform shaping output duty cycle

7
2002-07-08
TA31273FN
Test Circuit
1000 pF
C24
C25 1 kΩ R14
0.01 µF
1000 pF
6 pF
C20
18
17
RSSI BS
C23
R13 1 kΩ
1000 pF
L4
3300 pF
47 kΩ
20
19
FIL
FIL
OUT IN
VCC
27nH
R9
68 kΩ C16
R10
R8
68 kΩ
C14 560 pF
C13 0.01 µF
VCC
16
15
14
13
12
11
MIX GND1 RF MONI
RF
RF
OUT
IN
DEC IN
RSSI
COMP
VCC
REF GND2 DATA
8
9
10
R15
0.22 µF
0.01 µF
C22
C17
C21
MIX
IF
IF
OUT VCC2 IN DEC
4
5
6
7
0.01 µF
0.01 µF
C15
OSC
VCC1 LOBS
IN
1
2
3
100 kΩ
×8
VCC
DATA
VCC
BPF
VCC
0.01 µF
Test Circuit 1
(1) VRSSI
(2) DR
0.01 µF
0.01 µF
6
SG
10
62 Ω
1000 pF
62 Ω
SG
18
100 kΩ
6
V
VCC
(3) VDATA L
(4) IDATA H
V
2.5 V
V
2.5 V
R = 4.7 kΩ
8
10
VCC
V
8
10
VCC
100 kΩ
I = V/100 × 10
V
3.0 V
V
3
3.0 V
19
V
8
19
2002-07-08
TA31273FN
(5) Gv (RF) 2
(6) GV (MIX)
4
1000 pF
16
6
0.01 µF
51 Ω
SG
1
51 Ω
SG
51 Ω
14
51 Ω
11
SG
0.01 µF
1000 pF
1000 pF
Test Circuit 2
1 kΩ
51 kΩ
Iccqam
15
5
SG
0.01 µF
12
9
17
1
2
14
A
Test Circuit 3
1 kΩ
Icco
9
15
2
5
17
12
14
A
VCC
9
2002-07-08
TA31273FN
Reference data(This is temperature characteristics data when it used evaluation boards.
This is not guarantee on condition that it is stating except electrical characteristics. )
Current consumption vs.
Power supply voltage characteristics
Current consumption vs.
Power supply voltage characteristics
10
8
Current consumtion Iccq (mA)
Current consumtion Iccq (mA)
All internal circuits used
8
6
100°C
25°C
−40°C
4
Fin (Lo) = 40.7 MHz
2
Vin (Lo) = 100 dBµV
BH: H
0
0
1
2
3
Multiplier circuit turned off
and external circuit used
4
Only multiplier
circuit used
2
Fin (Lo) = 40.7 MHz
BS
Vin (Lo) = 100 dBµV
LOBS: H
4
Power supply voltage
6
5
Ta = 25°C
0
0
6
1
VCC (V)
2
3
4
Power supply voltage
RF amp gain vs.
Power supply voltage characteristics
5
6
VCC (V)
RSSI output voltage characteristics
(MIX input)
0
3
(V)
VRSSI
−10
−20
RSSI output voltage
RF amp gain 2 Gv (RF) 2
(dB)
110°C
100°C
−30
25°C
−40
−40°C
Fin (RF) = 314.9 MHz
2.5
2
25°C
1
2
3
4
Power supply voltage
5
6
VCC (V)
40
60
80
100
120
Gv (Mix) (dB)
30
110°C
Mixer conversion gain
Gv (Mix) (dB)
Mixer conversion gain
20
Mixer conversion gain vs.
Power supply voltage characteristics
20
0
25°C
Fin (MIX) = 314.9 MHz
−40°C
Vin (MIX) = 50 dBµV
Fin (Lo) = 40.7 MHz
−20
Vin (Lo) = 100 dBµV
LOBS: H
−30
1
0
MIX IN input level Vin (dBµVEMF)
30
−10
Fin (Lo) = 40.7 MHz
Vin (Lo) = 100 dBµV
0
−20
Mixer conversion gain vs.
Power supply voltage characteristics
10
Fin (MIX) = 314.9 MHz
0.5
Vin (RF) = 50 dBµV
−50
1
−40°C
1.5
2
3
Power supply voltage
4
5
20
10
−40°C
0
25°C
−10
VCC (V)
Fin (MIX) = 314.9 MHz
Vin (MIX) = 50 dBµV
−20
Fin (Lo) = 304.2 MHz
Vin (Lo) = 100 dBµV
−30
LOBS: L
−40
1
6
110°C
2
3
Power supply voltage
10
4
5
6
VCC (V)
2002-07-08
TA31273FN
Mixer conversion gain vs.
Local input level characteristics
S/N characteristics (IF input)
10
20
0
110°C
25°C
(dB)
25°C
10
−40°C
5
0
110°C
−3
Fin (IF) = 10.7 MHz
AM = 90%
Fmod = 600 Hz
−5
110°C
−5
−40°C
−7
Fin (MIX) = 314.9 MHz
Vin (MIX) = 50 dBµV
−10
Fin (Lo) = 40.7 MHz
−15
60
70
80
90
Local input level
100
VLO
110
25°C
−9
−10
120
(dBµV)
10
30
50
IF IN input
FSK duty cycle vs.
Power supply voltage characteristics
70
Vin (IF)
90
110
130
(dBµVEMF)
RSSI output voltage characteristics
(IF input)
3.0
(V)
60.0
VRSSI
55.0
RSSI output voltage
FSK duty cycle DR (%)
−40°C
15
S + N, N
Mixer conversion gain
Gv (Mix) (dB)
25
50.0
−40°C
25°C
45.0
Fin (IF) = 10.7 MHz
Vin (IF) = 50 dBµVEMF
AM = 90%
Fmod = 600 Hz
110°C
40.0
1.00
2.00
3.00
4.00
Power supply voltage
5.00
110°C
2.5
2.0
−40°C
25°C
1.5
1.0
0.5
Fin (IF) = 10.7 MHz
40.0
0
6.00
VCC (V)
20
40
IF IN input level
60
Vin
80
100
120
(dBµVEMF)
Mixer conversion gain frequency
characteristics
Mixer conversion gain
Gv (MIX) (dB)
25
20
−40°C
15
25°C
10
VCC = 5 V
Vin (MIX) = 50 dBµV
Vin (Lo) = 100 dBµV
5
LOBS = “L”
110°C
* Terminate the IF input
impedance.
0
100
1000
Input frequency Fin (MIX) (MHz)
11
2002-07-08
TA31273FN
Application Circuit
18
17
RSSI BS
33 nH
SAW
RF IN
1000 pF
C24
C25 1 kΩ R14
1000 pF
0.01 µF
C23
6 pF
C20
L4
1000 pF
6 pF
27nH
3300 pF
47 kΩ
20
19
FIL
FIL
OUT IN
VCC
R13 1 kΩ
R9
68 kΩ C16
R10
R8
68 kΩ
C14 560 pF
C13 0.01 µF
VCC
16
15
14
13
12
11
MIX GND1 RF MONI
RF
RF
OUT
IN
DEC IN
RSSI
Comparator
VCC
100 kΩ
R15
0.22 µF
0.01 µF
C22
C21
C17
0.01 µF
VCC
C9
C7
56 pF
3.3 kΩ
1 pF
MIX
IF
IF
OUT VCC2 IN DEC
REF GND2 DATA
4
5
6
7
8
9
10
0.01 µF
OSC
VCC1 LOBS
IN
1
2
3
C15
0.01 µF
C8
47 pF
R4
R3 C2
33 kΩ
C3
X1
R2
120 kΩ
40.7 MHz
10 µF
×8
VCC
DATA
VCC
BPF
X1 :TR-1(Tokyo Denpa Co., Ltd.)
BPF:SFE10.7MA5-A(Murata Manufacturing Co., Ltd.)
SAW:SAFCH315MSM0T00B0S(Murata Manufacturing Co., Ltd.)
12
2002-07-08
TA31273FN
Package Dimensions
Weight: 0.09 g (typ.)
13
2002-07-08
TA31273FN
RESTRICTIONS ON PRODUCT USE
000707EBA
• TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and
conditions set forth in the “Handling Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..
• The TOSHIBA products listed in this document are intended for usage in general electronics applications
(computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances,
etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires
extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or
bodily injury (“Unintended Usage”). Unintended Usage include atomic energy control instruments, airplane or
spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this
document shall be made at the customer’s own risk.
• The products described in this document are subject to the foreign exchange and foreign trade laws.
• The information contained herein is presented only as a guide for the applications of our products. No
responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
rights of the third parties which may result from its use. No license is granted by implication or otherwise under
any intellectual property or other rights of TOSHIBA CORPORATION or others.
• The information contained herein is subject to change without notice.
14
2002-07-08