UTC TDA2003 LINEAR INTEGRATED CIRCUIT 10W CAR RADIO AUDIO AMPLIFIER DESCRIPTION The UTC TDA2003 is a monolithic audio power amplifier integrated circuit. 1 FEATURES *Very low external component required. *High current output ( up to 3 A). *Low harmonic and crossover distortion. *Built-in Over temperature protection. *Short circuit protection between all pins. TO-220B PIN CONFIGURATIONS 1 2 3 4 5 Non inverting input Inverting input Ground Output Supply Voltage BLOCK DIAGRAM 5 4 3 1 2 UTC UNISONIC TECHNOLOGIES CO., LTD. 1 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT ABSOLUTE MAXIMUM RATINGS(Ta=25°C) PARAMETER SYMBOL VALUE UNIT Vs Vs Vs Io Io Ptot Tstg Tj 40 28 18 3.5 4.5 20 -40~+150 -40~+150 V V V A A W °C °C Peak Supply Voltage DC Supply Voltage Operating Supply Voltage Output Peak Current (repetitive) Output Peak Current ( non repetitive) Power Dissipation at Tcase = 90°C Storage Temperature Junction Temperature ELECTRICAL CHARACTERISTICS(Refer to the test circuit,Vs=+-16V,Ta=25°C) PARAMETER SYMBOL DC CHARACTERISTICS Supply Voltage Quiescent Output Voltage Quiescent Drain Current TEST CONDITIONS Vs Vo MIN TYP MAX UNIT 8 6.1 6.9 18 7.7 V V 44 50 mA Id AC CHARACTERISTICS Output Power Po Input Sensitivity Vi Input Saturation Voltage Frequency Response(-3dB) Vi(rms) B Distortion D Input Resistance(Pin 1) Input Noise Current Input Noise Voltage Open Loop Voltage Gain Closed Loop Voltage Gain Ri UTC eN IN Gvo Gvc d=10%,f=1kHz RL=8Ω RL=2Ω RL=3.2Ω RL=1.6Ω f=1kHz Po=0.5W,RL=4Ω Po=6W,RL=4Ω Po=0.5W,RL=2Ω Po=10W,RL=2Ω Po=1W,RL=4Ω f=1kHz Po=0.05 to 4.5W ,RL=4Ω Po=0.05 to 7.5W ,RL=2Ω open loop,f=1kHz f=1kHz f=10kHz f=1kHz RL=4Ω 5.5 9 6 10 7.5 12 W 14 55 10 50 300 40 70 39.3 mV mV mV mV mV 15000 Hz 0.15 0.15 150 % kΩ 60 1 80 60 200 5 pA µV dB dB 40 40.3 dB UNISONIC TECHNOLOGIES CO., LTD. 2 QW-R107-002,A UTC TDA2003 PARAMETER LINEAR INTEGRATED CIRCUIT SYMBOL TEST CONDITIONS MIN TYP MAX UNIT f=1kHz Efficiency ¦ Ç Supply Voltage Rejection SVR Po=6W,RL=4Ω Po=10W,RL=2Ω f=100Hz,Vripple=0.5V Rg=10kΩ,RL=4Ω 30 69 65 % % 36 dB TEST CIRCUIT µF 100 +Vs 1 C1 1 µF C4 1000 µF 5 UTC TDA2003 2 4 3 Rx 39Ω R1 220Ω R3 1Ω C2 470 µF R2 2.2Ω Cx 39nF RL 100nF Vi C3 100nF Cx=1/(2 πB*R1) Rx=20*R2 DC Test Circuit AC Test Circuit +Vs Vi 1 5 UTC TDA2003 2 1000 µF 1 C1 1 µF 4 4 3 RL 470 µF V Rx 39Ω R2 2.2Ω C2 470 µF Cx 39nF Rx=20*R2 UTC C4 1000µF 5 UTC TDA2003 2 R1 220Ω 3 C3 100nF R1 220Ω R3 1Ω R2 2.2Ω RL 100nF 100nF mA Vi 100 µF +Vs Cx=1/(2 πB*R1) UNISONIC TECHNOLOGIES CO., LTD. 3 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT TYPICAL PERFORMANCE CHARACTERISTICS Fig.1 Quiescent output voltage vs.Supply voltage Fig.2 Quiescent drain current vs.Supply voltage Vo(V) Fig.3 Output power vs.Supply voltage Po (W) Id(mA) 8 80 20 6 60 15 4 40 10 2 20 5 Gv=40dB f=1kHz d=10% R=1.6Ω R=2Ω R=3.2Ω R=4Ω 0 0 8 10 12 14 16 0 8 Vs(V) Fig.4 output power vs.load resistance 12 14 16 Fig.5 Gain vs. Input sensitivity Gv=40dB f=1kHz d=10% Vs=16V 54 48 Vs=12V 10 15 20 Vs(V) Fig.6 Gain vs. Input sensitivity Gv=40dB f=1kHz RL=4Ω 52 Vs=14.4V 12 5 58 54 16 0 Vs(V) 58 Po (W) 8 10 Gv=40dB f=1kHz RL=2Ω 52 48 44 44 40 40 36 36 32 32 28 28 Vs=8V 4 0 0 2 4 6 8 RL(Ω) 24 24 20 10 20 10 Fig.7 Distortion vs. output power 100 Vi(rms) 1000 Fig.8 Distortion vs. frequency 10 R=3.2Ω Gv=40dB Vs=14.4V RL=2Ω/4Ω 0.8 R=4Ω SVR (dB) d(%) R=2Ω Gv=40dB f=1kHz Vs=14.4V R=1.6Ω Vi(rms) 1000 Fig.9 Supply voltage rejection vs. voltage gain 100 d(%) 100 fripple=100Hz Vs=14,4V RL=2.2Ω Rg=10kΩ -10 0.6 -20 1 Po=2.5W -30 0.4 0.1 0.2 0.01 0.1 UTC 0 1 10 Po(Ω) 100 -40 Po=50mW 1 10 2 10 3 10 Frequency (Hz) 4 10 -50 30 35 40 45 50 55 Gv(dB) UNISONIC TECHNOLOGIES CO., LTD. 4 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT Fig. 11 Power dissipation and efficiency vs. output power(Rl=4 Ω) Fig. 10 Supply voltage rejection vs.frequency SVR (dB) -20 η (%) Ptot (W) Vs=14.4V Vripple=0.5V Gv=40dB f=1kHz Rg=10kΩ 0 Fig. 12 Power dissipation and efficiency vs. output power(Rl=2 Ω) η 8 Vs=14.4V Gv=40dB f=1kHz 6 R2=22 Ω -40 4 ¦Ç (%) Ptot (W) Vs=14.4V Gv=40dB f=1kHz 80 80 8 60 6 60 40 4 40 20 2 20 0 0 Ptot R2=1 Ω -60 -80 10 2 10 10 3 2 4 10 10 0 5 0 2 4 6 8 0 0 2 4 6 8 Po(W) frequency(Hz) Fig. 13 Maximum Power dissipation and supply voltage(sine wave operation) Po(W) Fig. 15 Typical values of capacitor(Cx) for different values of frequency response Fig. 14 Maximum allowable dissipation and ambient temperature Ptot (W) 100 Ptot (W) Cx (nF) infinite heatsink 20 20 B=10kHz B=15kHz 15 15 10 RL=1.6 Ω 10 B=20kHz 10 RL=2 Ω 10¢XC/W RL=3.2 Ω 5 R2=2.2Ω 5 RL=4 Ω 30¢XC/W 0 0 0 5 10 15 20 1 0 Vs(V) 50 100 150 200 Tamb(¢XC) 36 40 44 48 Gv(dB) APPLICATION CIRCUIT µF 100 +Vs 1 UTC TDA2003 2 4 3 Rx 39Ω C2 470 µF Cx 39nF Rx=20*R2 C4 1000 µF 5 C1 1 µF R1 220Ω R3 1Ω R2 2.2Ω RL 100nF Vi C3 100nF Cx=1/(2πB*R1) Fig 16 Typical Application Circuit UTC UNISONIC TECHNOLOGIES CO., LTD. 5 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT Vs=14.4V 0.1µF 1Ω 5 1 2 5 UTC TDA2003 4 RL=4Ω 3 200Ω C3 15 µF 1 UTC TDA2003 4 0.1 µF 2.2 µF 3 430Ω 2.2 µF 2 C4 10 µF 16Ω 16Ω Fig.18 20W Bridge Configuration Application The Values of the capacitors C3 and C4 are different to optimize the SVR(Typ. 40dB) 0.1 µF Vs=14.4V 2 5 5 RL=4Ω UTC TDA2003 4 4 3 0.1 µF 1 0.1 µF 0.1 µF C3 15 µF UTC TDA2003 3 1 0.1 µF 2 620Ω 1nF Fig.20 UTC Low Cost Bridge Configuration Application Circuit(Po=18W) UNISONIC TECHNOLOGIES CO., LTD. 6 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT BUILT-IN PROTECTION SYSTEMS LOAD DUMP VOLTAGE SURGE The UTC TDA2003 has a circuit which enables it to withstand a volt. CHARACT age pulse train, on pin 5, of the type shown in Fig. 23. If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in order to assure that the pulses at pin 5 will be head within the limits shown in Fig.22. A suggested LC network is shown in Fig.23.With this network, a train of pulses with amplitude up to 120V and width of 2ms can be applied at point A. This type of protection is ON when the supply voltage(pulsed or DC) exceeds 18V.For this reason the maximum operating supply voltage is 18V. Vs (V) 40 t1=50ms A B 2mH From Supply Voltage To Pin 5 3000 µF 16V 14.4 t t2=1000ms SHORT CIRCUIT (AC and DC Conditions) The UTC TDA2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16V. POLARITY INVERSION High current(up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a quick 1A fuse(normally connected in series with the supply). The feature is added to avoid destruction if, during fitting to the car, a mistake on connection of the supply is made. OPEN GROUND When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be damaged. On the UTC TDA2003 protection diodes are included to avoid any damage. INDUCTIVE LOAD A protection diode is provide between pin 4 and pin 5(see the internal schematic diagram) to allow use of the UTC TDA2003 with inductive loads. In particular, the UTC TDA2003 can drive a coupling transformer for audio modulation. DC VOLTAGE The maximum operating DC voltage on the UTC TDA2003 is 18V. However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two batteries were series connected to crank the engine. UTC UNISONIC TECHNOLOGIES CO., LTD. 7 QW-R107-002,A UTC TDA2003 LINEAR INTEGRATED CIRCUIT THERMAL SHUT-DOWN The presence of a thermal limiting circuit offers the following advantages: 1).an overload on the output (even if it is permanent),or an excessive ambient temperature can be easily withstood. 2).the heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in case of excessive junction temperature: all that happens is that Po ( and there Ptot) and Id are reduced. APPLICATION SUGGESTION The recommended values of the components are those shown on application circuit of Fig.16. Different values can be used. The following table can help the designer. COMPONENT RECOMMENDED VALUE PURPOSE R1 R2 (Gv-1)*R2 2.2π R3 1Ω gain setting. gain and SVR setting. Frequency stability Rx ≈20R2 C1 2.2µF C2 C3 470µF 0.1µF C4 100µF C5 0.1µF Cx ≈1/(2π*B*R1) UTC Upper frequency cutoff Input DC decoupling LARGE THAN RECOMMENDED VALUE increase of Gain Decrease of SVR Danger of oscillation at high frequencies with inductive loads. Poor high frequencies attenuation Dange of oscillation Noise at switch-on switch-off Decrease of SVR Dange of oscillation Ripple rejection Supply voltage bypass Supply voltage bypass Frequency stability Upper frequency cutoff LARGE THAN RECOMMENDED VALUE smaller bandwidth Higher low frequency cutoff Danger of oscillation at high frequencies with inductive loads. Larger bandwidth UNISONIC TECHNOLOGIES CO., LTD. 8 QW-R107-002,A