UTC-IC UTCTDA2003

UTC TDA2003
LINEAR INTEGRATED CIRCUIT
10W CAR RADIO AUDIO AMPLIFIER
DESCRIPTION
The UTC TDA2003 is a monolithic audio power amplifier
integrated circuit.
1
FEATURES
*Very low external component required.
*High current output ( up to 3 A).
*Low harmonic and crossover distortion.
*Built-in Over temperature protection.
*Short circuit protection between all pins.
TO-220B
PIN CONFIGURATIONS
1
2
3
4
5
Non inverting input
Inverting input
Ground
Output
Supply Voltage
BLOCK DIAGRAM
5
4
3
1 2
UTC
UNISONIC TECHNOLOGIES CO., LTD.
1
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
ABSOLUTE MAXIMUM RATINGS(Ta=25°C)
PARAMETER
SYMBOL
VALUE
UNIT
Vs
Vs
Vs
Io
Io
Ptot
Tstg
Tj
40
28
18
3.5
4.5
20
-40~+150
-40~+150
V
V
V
A
A
W
°C
°C
Peak Supply Voltage
DC Supply Voltage
Operating Supply Voltage
Output Peak Current (repetitive)
Output Peak Current ( non repetitive)
Power Dissipation at Tcase = 90°C
Storage Temperature
Junction Temperature
ELECTRICAL CHARACTERISTICS(Refer to the test circuit,Vs=+-16V,Ta=25°C)
PARAMETER
SYMBOL
DC CHARACTERISTICS
Supply Voltage
Quiescent Output
Voltage
Quiescent Drain
Current
TEST CONDITIONS
Vs
Vo
MIN
TYP
MAX
UNIT
8
6.1
6.9
18
7.7
V
V
44
50
mA
Id
AC CHARACTERISTICS
Output Power
Po
Input Sensitivity
Vi
Input Saturation
Voltage
Frequency
Response(-3dB)
Vi(rms)
B
Distortion
D
Input
Resistance(Pin 1)
Input Noise Current
Input Noise Voltage
Open Loop
Voltage Gain
Closed Loop
Voltage Gain
Ri
UTC
eN
IN
Gvo
Gvc
d=10%,f=1kHz
RL=8Ω
RL=2Ω
RL=3.2Ω
RL=1.6Ω
f=1kHz
Po=0.5W,RL=4Ω
Po=6W,RL=4Ω
Po=0.5W,RL=2Ω
Po=10W,RL=2Ω
Po=1W,RL=4Ω
f=1kHz
Po=0.05 to 4.5W ,RL=4Ω
Po=0.05 to 7.5W ,RL=2Ω
open loop,f=1kHz
f=1kHz
f=10kHz
f=1kHz
RL=4Ω
5.5
9
6
10
7.5
12
W
14
55
10
50
300
40
70
39.3
mV
mV
mV
mV
mV
15000
Hz
0.15
0.15
150
%
kΩ
60
1
80
60
200
5
pA
µV
dB
dB
40
40.3
dB
UNISONIC TECHNOLOGIES CO., LTD.
2
QW-R107-002,A
UTC TDA2003
PARAMETER
LINEAR INTEGRATED CIRCUIT
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNIT
f=1kHz
Efficiency
¦
Ç
Supply Voltage
Rejection
SVR
Po=6W,RL=4Ω
Po=10W,RL=2Ω
f=100Hz,Vripple=0.5V
Rg=10kΩ,RL=4Ω
30
69
65
%
%
36
dB
TEST CIRCUIT
µF
100
+Vs
1
C1
1 µF
C4
1000 µF
5
UTC
TDA2003
2
4
3
Rx
39Ω
R1
220Ω R3
1Ω
C2
470 µF
R2
2.2Ω
Cx
39nF
RL
100nF
Vi
C3
100nF
Cx=1/(2 πB*R1)
Rx=20*R2
DC Test Circuit
AC Test Circuit
+Vs
Vi
1
5
UTC
TDA2003
2
1000 µF
1
C1
1 µF
4
4
3
RL
470 µF
V
Rx
39Ω
R2
2.2Ω
C2
470 µF
Cx
39nF
Rx=20*R2
UTC
C4
1000µF
5
UTC
TDA2003
2
R1
220Ω
3
C3
100nF
R1
220Ω R3
1Ω
R2
2.2Ω
RL
100nF
100nF
mA
Vi
100 µF
+Vs
Cx=1/(2 πB*R1)
UNISONIC TECHNOLOGIES CO., LTD.
3
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
TYPICAL PERFORMANCE CHARACTERISTICS
Fig.1 Quiescent output voltage
vs.Supply voltage
Fig.2 Quiescent drain current
vs.Supply voltage
Vo(V)
Fig.3 Output power vs.Supply
voltage
Po
(W)
Id(mA)
8
80
20
6
60
15
4
40
10
2
20
5
Gv=40dB
f=1kHz
d=10%
R=1.6Ω
R=2Ω
R=3.2Ω
R=4Ω
0
0
8
10
12
14
16
0
8
Vs(V)
Fig.4 output power vs.load
resistance
12
14
16
Fig.5 Gain vs. Input sensitivity
Gv=40dB
f=1kHz
d=10%
Vs=16V
54
48
Vs=12V
10
15
20
Vs(V)
Fig.6 Gain vs. Input sensitivity
Gv=40dB
f=1kHz
RL=4Ω
52
Vs=14.4V
12
5
58
54
16
0
Vs(V)
58
Po
(W)
8
10
Gv=40dB
f=1kHz
RL=2Ω
52
48
44
44
40
40
36
36
32
32
28
28
Vs=8V
4
0
0
2
4
6
8
RL(Ω)
24
24
20
10
20
10
Fig.7 Distortion vs.
output power
100
Vi(rms)
1000
Fig.8 Distortion vs.
frequency
10
R=3.2Ω
Gv=40dB
Vs=14.4V
RL=2Ω/4Ω
0.8
R=4Ω
SVR
(dB)
d(%)
R=2Ω
Gv=40dB
f=1kHz
Vs=14.4V
R=1.6Ω
Vi(rms)
1000
Fig.9 Supply voltage rejection
vs. voltage gain
100
d(%)
100
fripple=100Hz
Vs=14,4V
RL=2.2Ω
Rg=10kΩ
-10
0.6
-20
1
Po=2.5W
-30
0.4
0.1
0.2
0.01
0.1
UTC
0
1
10
Po(Ω)
100
-40
Po=50mW
1
10
2
10
3
10
Frequency (Hz)
4
10
-50
30
35
40
45
50
55
Gv(dB)
UNISONIC TECHNOLOGIES CO., LTD.
4
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
Fig. 11 Power dissipation
and efficiency vs. output
power(Rl=4 Ω)
Fig. 10 Supply voltage
rejection vs.frequency
SVR
(dB)
-20
η
(%)
Ptot
(W)
Vs=14.4V
Vripple=0.5V
Gv=40dB
f=1kHz
Rg=10kΩ
0
Fig. 12 Power dissipation
and efficiency vs. output
power(Rl=2 Ω)
η
8
Vs=14.4V
Gv=40dB
f=1kHz
6
R2=22 Ω
-40
4
¦Ç
(%)
Ptot
(W)
Vs=14.4V
Gv=40dB
f=1kHz
80
80
8
60
6
60
40
4
40
20
2
20
0
0
Ptot
R2=1 Ω
-60
-80
10
2
10
10
3
2
4
10
10
0
5
0
2
4
6
8
0
0
2
4
6
8
Po(W)
frequency(Hz)
Fig. 13 Maximum Power
dissipation and supply
voltage(sine wave operation)
Po(W)
Fig. 15 Typical values of
capacitor(Cx) for different
values of frequency
response
Fig. 14 Maximum allowable
dissipation and ambient
temperature
Ptot
(W)
100
Ptot
(W)
Cx
(nF)
infinite heatsink
20
20
B=10kHz
B=15kHz
15
15
10
RL=1.6 Ω
10
B=20kHz
10
RL=2 Ω
10¢XC/W
RL=3.2 Ω
5
R2=2.2Ω
5
RL=4 Ω
30¢XC/W
0
0
0
5
10
15
20
1
0
Vs(V)
50
100
150
200
Tamb(¢XC)
36
40
44
48
Gv(dB)
APPLICATION CIRCUIT
µF
100
+Vs
1
UTC
TDA2003
2
4
3
Rx
39Ω
C2
470 µF
Cx
39nF
Rx=20*R2
C4
1000 µF
5
C1
1 µF
R1
220Ω R3
1Ω
R2
2.2Ω
RL
100nF
Vi
C3
100nF
Cx=1/(2πB*R1)
Fig 16 Typical Application Circuit
UTC
UNISONIC TECHNOLOGIES CO., LTD.
5
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
Vs=14.4V
0.1µF
1Ω
5
1
2
5
UTC
TDA2003
4
RL=4Ω
3
200Ω
C3
15 µF
1
UTC
TDA2003
4
0.1 µF
2.2 µF
3
430Ω
2.2 µF
2
C4
10 µF
16Ω
16Ω
Fig.18
20W Bridge Configuration Application
The Values of the capacitors C3 and C4 are different to optimize the SVR(Typ. 40dB)
0.1 µF
Vs=14.4V
2
5
5
RL=4Ω
UTC
TDA2003
4
4
3
0.1 µF
1
0.1 µF
0.1 µF
C3
15 µF
UTC
TDA2003
3
1
0.1 µF
2
620Ω
1nF
Fig.20
UTC
Low Cost Bridge Configuration Application Circuit(Po=18W)
UNISONIC TECHNOLOGIES CO., LTD.
6
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
BUILT-IN PROTECTION SYSTEMS
LOAD DUMP VOLTAGE SURGE
The UTC TDA2003 has a circuit which enables it to withstand a volt. CHARACT age pulse train, on pin 5, of the type
shown in Fig. 23.
If the supply voltage peaks to more than 40V, then an LC filter must be inserted between the supply and pin 5, in
order to assure that the pulses at pin 5 will be head within the limits shown in Fig.22.
A suggested LC network is shown in Fig.23.With this network, a train of pulses with amplitude up to 120V and width of
2ms can be applied at point A. This type of protection is ON when the supply voltage(pulsed or DC) exceeds 18V.For
this reason the maximum operating supply voltage is 18V.
Vs
(V)
40
t1=50ms
A
B
2mH
From
Supply
Voltage
To
Pin 5
3000 µF
16V
14.4
t
t2=1000ms
SHORT CIRCUIT (AC and DC Conditions)
The UTC TDA2003 can withstand a permanent short-circuit on the output for a supply voltage up to 16V.
POLARITY INVERSION
High current(up to 5A) can be handled by the device with no damage for a longer period than the blow-out time of a
quick 1A fuse(normally connected in series with the supply).
The feature is added to avoid destruction if, during fitting to the car, a mistake on connection of the supply is made.
OPEN GROUND
When the radio is in the ON condition and the ground is accidentally opened, a standard audio amplifier will be
damaged. On the UTC TDA2003 protection diodes are included to avoid any damage.
INDUCTIVE LOAD
A protection diode is provide between pin 4 and pin 5(see the internal schematic diagram) to allow use of the UTC
TDA2003 with inductive loads. In particular, the UTC TDA2003 can drive a coupling transformer for audio modulation.
DC VOLTAGE
The maximum operating DC voltage on the UTC TDA2003 is 18V.
However the device can withstand a DC voltage up to 28V with no damage. This could occur during winter if two
batteries were series connected to crank the engine.
UTC
UNISONIC TECHNOLOGIES CO., LTD.
7
QW-R107-002,A
UTC TDA2003
LINEAR INTEGRATED CIRCUIT
THERMAL SHUT-DOWN
The presence of a thermal limiting circuit offers the following advantages:
1).an overload on the output (even if it is permanent),or an excessive ambient temperature can be easily withstood.
2).the heat-sink can have a smaller factor compared with that of a conventional circuit. There is no device damage in
case of excessive junction temperature: all that happens is that Po ( and there Ptot) and Id are reduced.
APPLICATION SUGGESTION
The recommended values of the components are those shown on application circuit of Fig.16. Different values can be
used. The following table can help the designer.
COMPONENT
RECOMMENDED
VALUE
PURPOSE
R1
R2
(Gv-1)*R2
2.2π
R3
1Ω
gain setting.
gain and SVR
setting.
Frequency stability
Rx
≈20R2
C1
2.2µF
C2
C3
470µF
0.1µF
C4
100µF
C5
0.1µF
Cx
≈1/(2π*B*R1)
UTC
Upper frequency
cutoff
Input DC decoupling
LARGE THAN
RECOMMENDED
VALUE
increase of Gain
Decrease of SVR
Danger of oscillation
at high frequencies
with inductive loads.
Poor high frequencies
attenuation
Dange of oscillation
Noise at switch-on
switch-off
Decrease of SVR
Dange of oscillation
Ripple rejection
Supply voltage
bypass
Supply voltage
bypass
Frequency stability
Upper frequency
cutoff
LARGE THAN
RECOMMENDED
VALUE
smaller bandwidth
Higher low frequency
cutoff
Danger of oscillation
at high frequencies
with inductive loads.
Larger bandwidth
UNISONIC TECHNOLOGIES CO., LTD.
8
QW-R107-002,A