56F8335/56F8135 Data Sheet Preliminary Technical Data 56F8300 16-bit Digital Signal Controller MC56F8335 Rev. 1 12/2005 freescale.com Document Revision History Version History Description of Change Rev. 0 Initial Release Rev. 1 Deleted RSTO from Pin Group 2 (listed after Table 10-1). Deleted formula for Max Ambient Operating Temperature (Automotive) and Max Ambient Operating Temperature (Industrial) in Table 10-4. Added RoHS-compliance and “pb-free” language to back cover. Please see http://www.freescale.com for the most current Data Sheet revision. 56F8335 Technical Data, Rev. 1 2 Freescale Semiconductor Preliminary 56F8335/56F8135 General Description Note: Features in italics are NOT available in the 56F8135 device. • Up to 60 MIPS at 60MHz core frequency • Up to two Quadrature Decoders • DSP and MCU functionality in a unified, C-efficient architecture • FlexCAN module • 64KB Program Flash • Two Serial Communication Interfaces (SCIs) • 4KB Program RAM • Up to two Serial Peripheral Interface (SPIs) • 8KB Data Flash • Up to four general-purpose Quad Timers • 8KB Data RAM • Computer Operating Properly (COP)/Watchdog • 8KB Boot Flash • Up to two 6-channel PWM modules • JTAG/Enhanced On-Chip Emulation (OnCE™) for unobtrusive, real-time debugging • Four 4-channel, 12-bit ADCs • Up to 49 GPIO lines • Temperature Sensor • 128-pin LQFP Package • Optional On-Chip Regulator RSTO 5 RESET JTAG/ EOnCE Port PWMA Current Sense Inputs or GPIOC 4 VCAP 2 4 PWMB 3 Current Sense Inputs or GPIOD 4 Fault Inputs 4 AD0 ADCA 4 Memory 5 VREF 4 AD0 4 AD1 Program Memory 32K x 16 Flash 2K x 16 RAM 4K x 16 Boot Flash TEMP_SENSE 4 4 2 Quadrature Decoder 0 or Quad Timer A or GPIOC Quadrature Decoder 1 or Quad Timer B or SP1I or GPIOC Quad Timer C or GPIOE 4 Quad Timer D or GPIOE 2 FlexCAN VDDA VSSA 2 Analog Reg Low Voltage Supervisor Data ALU 16 x 16 + 36 -->36-Bit MAC Three 16-bit Input Registers Four 36-bit Accumulators Bit Manipulation Unit PAB PDB CDBR CDBW AD1 ADCB 5 Digital Reg Address Generation Unit Program Controller and Hardware Looping Unit 7 16-Bit 56800E Core Fault Inputs 6 PWM Outputs OCR_DIS VDD VSS R/W Control Data Memory 4K x 16 Flash 4K x 16 RAM XDB2 XAB1 XAB2 External Bus Interface Unit 6 PWM Outputs 3 VPP PAB System Bus Control PDB CDBR CDBW * External Address Bus Switch * External Data Bus Switch * Bus Control 6 A8-13 or GPIOA0-5 5 GPIOB0-4 or A16-20 4 D7-10 or GPIOF0-3 6 GPIOD0-5 or CS2-7 IPBus Bridge (IPBB) Peripheral Device Selects RW Control Decoding Peripherals IPAB IPWDB IPRDB Clock resets SPI0 or GPIOE 4 SCI1 or GPIOD 2 SCI0 or GPIOE COP/ Interrupt Watchdog Controller P System O Integration R Module PLL O Clock S Generator C * EMI not functional in this package; use as GPIO pins XTAL EXTAL 2 IRQA IRQB CLKO CLKMODE 56F8335/56F8135 Block Diagram - 128 LQFP 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 3 Table of Contents Part 1: Overview. . . . . . . . . . . . . . . . . . . . . . . 5 1.1. 1.2. 1.3. 1.4. 1.5. 1.6. 56F8335 Features . . . . . . . . . . . . . . . . . . . . . .5 Device Description . . . . . . . . . . . . . . . . . . . . . .6 Award-Winning Development Environment . . .8 Architecture Block Diagram . . . . . . . . . . . . . . .8 Product Documentation . . . . . . . . . . . . . . . . .11 Data Sheet Conventions . . . . . . . . . . . . . . . .12 Part 2: Signal/Connection Descriptions . . . 13 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .13 2.2. Signal Pins . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Part 3: On-Chip Clock Synthesis (OCCS) . . 30 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . .30 3.2. External Clock Operation . . . . . . . . . . . . . . . 30 3.3. Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Part 4: Memory Map . . . . . . . . . . . . . . . . . . . 32 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Program Map . . . . . . . . . . . . . . . . . . . . . . . . .33 Interrupt Vector Table . . . . . . . . . . . . . . . . . . .34 Data Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flash Memory Map . . . . . . . . . . . . . . . . . . . . 38 EOnCE Memory Map . . . . . . . . . . . . . . . . . . .40 Peripheral Memory Mapped Registers . . . . . 41 Factory Programmed Memory. . . . . . . . . . . . 66 Part 5: Interrupt Controller (ITCN) . . . . . . . . 67 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Functional Description . . . . . . . . . . . . . . . . . .67 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . .69 Operating Modes . . . . . . . . . . . . . . . . . . . . . . 69 Register Descriptions . . . . . . . . . . . . . . . . . . .70 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95 Part 6: System Integration Module (SIM) . . 96 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 6.7. 6.8. 6.9. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Operating Modes . . . . . . . . . . . . . . . . . . . . . . 97 Operating Mode Register . . . . . . . . . . . . . . . .97 Register Descriptions . . . . . . . . . . . . . . . . . . .98 Clock Generation Overview . . . . . . . . . . . . .111 Power-Down Modes Overview . . . . . . . . . . .111 Stop and Wait Mode Disable Function . . . . .112 Resets . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112 Part 8: General Purpose Input/Output (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 116 8.2. Memory Maps . . . . . . . . . . . . . . . . . . . . . . . 116 8.3. Configuration . . . . . . . . . . . . . . . . . . . . . . . . 116 Part 9: Joint Test Action Group (JTAG) . 120 9.1. JTAG Information . . . . . . . . . . . . . . . . . . . . . 120 Part 10: Specifications . . . . . . . . . . . . . . . 121 10.1. General Characteristics . . . . . . . . . . . . . . . 121 10.2. DC Electrical Characteristics. . . . . . . . . . . 125 10.3. AC Electrical Characteristics . . . . . . . . . . . 129 10.4. Flash Memory Characteristics . . . . . . . . . . 130 10.5. External Clock Operation Timing . . . . . . . . 130 10.6. Phase Locked Loop Timing . . . . . . . . . . . . 131 10.7. Crystal Oscillator Timing . . . . . . . . . . . . . . 131 10.8. Reset, Stop, Wait, Mode Select, and Interrupt Timing . . . . . . . . . . . . . . . . . . . . . . 132 10.9. Serial Peripheral Interface (SPI) Timing . . . 134 10.10. Quad Timer Timing . . . . . . . . . . . . . . . . . 137 10.11. Quadrature Decoder Timing . . . . . . . . . . . 137 10.12. Serial Communication Interface (SCI) Timing . . . . . . . . . . . . . . . . . 138 10.13. Controller Area Network (CAN) Timing . . 139 10.14. JTAG Timing . . . . . . . . . . . . . . . . . . . . . . 139 10.15. Analog-to-Digital Converter (ADC) Parameters . . . . . . . . . . . . 141 10.16. Equivalent Circuit for ADC Inputs . . . . . . . 144 10.17. Power Consumption . . . . . . . . . . . . . . . . . 144 Part 11: Packaging . . . . . . . . . . . . . . . . . . 146 11.1. 56F8335 Package and Pin-Out Information 146 Part 12: Design Considerations . . . . . . . . 150 12.1. Thermal Design Considerations . . . . . . . . . 150 12.2. Electrical Design Considerations . . . . . . . . 151 12.3. Power Distribution and I/O Ring Implementation . . . . . . . . . . . . . . . . 152 Part 13: Ordering Information . . . . . . . . . 153 Part 7: Security Features . . . . . . . . . . . . . . 113 7.1. Operation with Security Enabled . . . . . . . . . 113 7.2. Flash Access Blocking Mechanisms . . . . . . 113 56F8335 Technical Data, Rev. 1 4 Freescale Semiconductor Preliminary 56F8335/56F8135 Features Part 1 Overview 1.1 56F8335/56F8135 Features 1.1.1 • • • • • • • • • • • • • • 1.1.2 Core Efficient 16-bit 56800E family controller engine with dual Harvard architecture Up to 60 Million Instructions Per Second (MIPS) at 60MHz core frequency Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC) Four 36-bit accumulators, including extension bits Arithmetic and logic multi-bit shifter Parallel instruction set with unique DSP addressing modes Hardware DO and REP loops Three internal address buses Four internal data buses Instruction set supports both DSP and controller functions Controller-style addressing modes and instructions for compact code Efficient C compiler and local variable support Software subroutine and interrupt stack with depth limited only by memory JTAG/EOnCE debug programming interface Differences Between Devices Table 1-1 outlines the key differences between the 56F8335 and 56F8135 devices. Table 1-1 Device Differences Feature 56F8335 56F8135 Guaranteed Speed 60MHz/60 MIPS 40MHz/40MIPS Program RAM 4KB Not Available Data Flash 8KB Not Available PWM 2x6 1x6 CAN 1 Not Available Quad Timer 4 2 Quadrature Decoder 2x4 1x4 Temperature Sensor 1 Not Available 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 5 1.1.3 Memory Note: Features in italics are NOT available in the 56F8135 device. • • • Harvard architecture permits as many as three simultaneous accesses to program and data memory Flash security protection feature On-chip memory, including a low-cost, high-volume Flash solution — 64KB of Program Flash — 4KB of Program RAM — 8KB of Data Flash — 8KB of Data RAM — 8KB of Boot Flash • 1.1.4 EEPROM emulation capability Peripheral Circuits Note: Features in italics are NOT available in the 56F8135 device. • Pulse Width Modulator module: — In the 56F8335, two Pulse Width Modulator modules, each with six PWM outputs, three Current Sense inputs, and four Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes — In the 56F8135, one Pulse Width Modulator module with six PWM outputs, three Current Sense inputs and three Fault inputs; fault-tolerant design with dead time insertion; supports both center-aligned and edge-aligned modes • • Four 12-bit, Analog-to-Digital Converters (ADCs), which support four simultaneous conversions with quad, 4-pin multiplexed inputs; ADC and PWM modules can be synchronized through Timer C, channels 2 and 3 Quadrature Decoder: — In the 56F8335, two four-input Quadrature Decoders or two additional Quad Timers — In the 56F8135, one four-input Quadrature Decoder, which works in conjunction with Quad Timer A • • Temperature Sensor can be connected, on the board, to any of the ADC inputs to monitor the on-chip temperature Quad Timer: — In the 56F8335, four dedicated general-purpose Quad Timers totaling six dedicated pins: Timer C with two pins and Timer D with four pins — In the 56F8135, two Quad Timers; Timer A and Timer C both work in conjunction with GPIO • • • • • • Optional On-Chip Regulator FlexCAN (CAN Version 2.0 B-compliant) module with 2-pin port for transmit and receive Two Serial Communication Interfaces (SCIs), each with two pins (or four additional GPIO lines) Up to two Serial Peripheral Interfaces (SPIs), both with configurable 4-pin port (or eight additional GPIO lines); SPI 1 can also be used as Quadrature Decoder 1 or Quad Timer B Computer Operating Properly (COP)/Watchdog timer Two dedicated external interrupt pins 56F8335 Technical Data, Rev. 1 6 Freescale Semiconductor Preliminary Device Description • • • • • • 1.1.5 • • • • • • 49 General Purpose I/O (GPIO) pins; 28 pins dedicated to GPIO External reset input pin for hardware reset External reset output pin for system reset Integrated low-voltage interrupt module JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, processor speed-independent, real-time debugging Software-programmable, Phase Lock Loop-based frequency synthesizer for the core clock Energy Information Fabricated in high-density CMOS with 5V-tolerant, TTL-compatible digital inputs On-board 3.3V down to 2.6V voltage regulator for powering internal logic and memories; can be disabled On-chip regulators for digital and analog circuitry to lower cost and reduce noise Wait and Stop modes available ADC smart power management Each peripheral can be individually disabled to save power 1.2 Device Description The 56F8335 and 56F8135 are members of the 56800E core-based family of controllers. Each combines, on a single chip, the processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a flexible set of peripherals to create an extremely cost-effective solution. Because of their low cost, configuration flexibility, and compact program code, the 56F8335 and 56F8135 are well-suited for many applications. The devices include many peripherals that are especially useful for motion control, smart appliances, steppers, encoders, tachometers, limit switches, power supply and control, automotive control (56F8335 only), engine management, noise suppression, remote utility metering, industrial control for power, lighting, and automation applications. The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in parallel, allowing as many as six operations per instruction cycle. The MCU-style programming model and optimized instruction set allow straightforward generation of efficient, compact DSP and control code. The instruction set is also highly efficient for C/C++ Compilers to enable rapid development of optimized control applications. The 56F8335 and 56F8135 support program execution from internal memories. Two data operands can be accessed from the on-chip data RAM per instruction cycle. These devices also provide two external dedicated interrupt lines and up to 49 General Purpose Input/Output (GPIO) lines, depending on peripheral configuration. 1.2.1 56F8335 Features The 56F8335 includes 64KB of Program Flash and 8KB of Data Flash (each programmable through the JTAG port) with 4KB of Program RAM and 8KB of Data RAM. A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program and Data Flash memory areas. Both Program and Data Flash memories can be 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 7 independently bulk erased or erased in pages. Program Flash page erase size is 1KB. Boot and Data Flash page erase size is 512 bytes. The Boot Flash memory can also be either bulk or page erased. A key application-specific feature of the 56F8335 is the inclusion of two Pulse Width Modulator (PWM) modules. These modules each incorporate three complementary, individually programmable PWM signal output pairs (each module is also capable of supporting six independent PWM functions, for a total of 12 PWM outputs) to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWMs incorporate fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. Each PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM modules provide reference outputs to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C. The 56F8335 incorporates two Quadrature Decoders capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded. This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and four Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. A Flex Controller Area Network (FlexCAN) interface (CAN Version 2.0 B-compliant) and an internal interrupt controller are also a part of the 56F8335. 1.2.2 56F8135 Features The 56F8135 includes 64KB of Program Flash, programmable through the JTAG port, and 8KB of Data RAM. A total of 8KB of Boot Flash is incorporated for easy customer inclusion of field-programmable software routines that can be used to program the main Program Flash memory area. The Program Flash memory can be independently bulk erased or erased in pages; Program Flash page erase size is 1KB. The Boot Flash page erase size is 512 bytes; Boot Flash memory can also be either bulk or page erased. A key application-specific feature of the 56F8135 is the inclusion of one Pulse Width Modulator (PWM) module. This module incorporates three complementary, individually programmable PWM signal output pairs and can also support six independent PWM functions to enhance motor control functionality. Complementary operation permits programmable dead time insertion, distortion correction via current sensing by software, and separate top and bottom output polarity control. The up-counter value is programmable to support a continuously variable PWM frequency. Edge-aligned and center-aligned synchronous pulse width control (0% to 100% modulation) is supported. The device is capable of controlling most motor types: ACIM (AC Induction Motors); both BDC and BLDC (Brush and Brushless 56F8335 Technical Data, Rev. 1 8 Freescale Semiconductor Preliminary Award-Winning Development Environment DC motors); SRM and VRM (Switched and Variable Reluctance Motors); and stepper motors. The PWM incorporates fault protection and cycle-by-cycle current limiting with sufficient output drive capability to directly drive standard optoisolators. A “smoke-inhibit”, write-once protection feature for key parameters is also included. A patented PWM waveform distortion correction circuit is also provided. The PWM is double-buffered and includes interrupt controls to permit integral reload rates to be programmable from 1 to 16. The PWM module provides reference outputs to synchronize the Analog-to-Digital Converters through two channels of Quad Timer C. The 56F8135 incorporates a Quadrature Decoder capable of capturing all four transitions on the two-phase inputs, permitting generation of a number proportional to actual position. Speed computation capabilities accommodate both fast- and slow-moving shafts. An integrated watchdog timer in the Quadrature Decoder can be programmed with a time-out value to alert when no shaft motion is detected. Each input is filtered to ensure only true transitions are recorded. This controller also provides a full set of standard programmable peripherals that include two Serial Communications Interfaces (SCIs); two Serial Peripheral Interfaces (SPIs); and two Quad Timers. Any of these interfaces can be used as General Purpose Input/Outputs (GPIOs) if that function is not required. An internal interrupt controller is also a part of the 56F8135. 1.3 Award-Winning Development Environment Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use component-based software application creation with an expert knowledge system. The CodeWarrior Integrated Development Environment is a sophisticated tool for code navigation, compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards will support concurrent engineering. Together, PE, CodeWarrior and EVMs create a complete, scalable tools solution for easy, fast, and efficient development. 1.4 Architecture Block Diagram Note: Features in italics are NOT available in the 56F8135 device and are shaded in the following figures. The 56F8335/56F8135 architecture is shown in Figure 1-1 and Figure 1-2. Figure 1-1 illustrates how the 56800E system buses communicate with internal memories and the IPBus Bridge. Table 1-2 lists the internal buses in the 56800E architecture and provides a brief description of their function. Figure 1-2 shows the peripherals and control blocks connected to the IPBus Bridge. The figures do not show the on-board regulator and power and ground signals. They also do not show the multiplexing between peripherals or the dedicated GPIOs. Please see Part 2, Signal/Connection Descriptions, to see which signals are multiplexed with those of other peripherals. Also shown in Figure 1-2 are connections between the PWM, Timer C and ADC blocks. These connections allow the PWM and/or Timer C to control the timing of the start of ADC conversions. The Timer C channel indicated can generate periodic start (SYNC) signals to the ADC to start its conversions. In another operating mode, the PWM load interrupt (SYNC output) signal is routed internally to the Timer C input channel as indicated. The timer can then be used to introduce a controllable delay before generating its output signal. The timer output then triggers the ADC. To fully understand this interaction, please see the 56F8300 Peripheral User’s Manual for clarification on the operation of all three of these peripherals. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 9 5 JTAG / EOnCE Boot Flash pdb_m[15:0] pab[20:0] Program Flash cdbw[31:0] Program RAM 56800E EMI* CHIP TAP Controller 11 4 6 TAP Linking Module xab1[23:0] xab2[23:0] Address Data Control Data RAM Data Flash External JTAG Port cdbr_m[31:0] xdb2_m[15:0 IPBus Bridge Flash Memory Module NOT available on the 56F8135 device. * EMI not functional in this package; since only part of the address/data bus is bonded out, use as GPIO pins To Flash Control Logic IPBus Figure 1-1 System Bus Interfaces Note: Flash memories are encapsulated within the Flash Memory (FM) Module. Flash control is accomplished by the I/O to the FM over the peripheral bus, while reads and writes are completed between the core and the Flash memories. Note: The primary data RAM port is 32 bits wide. Other data ports are 16 bits. 56F8335 Technical Data, Rev. 1 10 Freescale Semiconductor Preliminary Architecture Block Diagram To/From IPBus Bridge Interrupt Controller CLKGEN (OSC / PLL) Low-Voltage Interrupt Timer A POR & LVI 4 System POR Quadrature Decoder 0 4 RESET SIM Timer D COP Reset Timer B 4 COP 2 FlexCAN Quadrature Decoder 1 SPI1 13 PWMA SYNC Output GPIOA 13 PWMB GPIOB SYNC Output GPIOC ch3i ch2i 2 Timer C GPIOD ch3o ch2o GPIOE GPIOF 4 2 SPI0 8 ADCA SCI0 TEMP_SENSE 2 8 ADCB SCI1 IPBus NOT available on the 56F8135 device. 1 Note: ADC A and ADC B use the same voltage reference circuit with VREFH, VREFP, VREFMID, VREFN, and VREFLO pins. Figure 1-2 Peripheral Subsystem 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 11 Table 1-2 Bus Signal Names Name Function Program Memory Interface pdb_m[15:0] Program data bus for instruction word fetches or read operations. cdbw[15:0] Primary core data bus used for program memory writes. (Only these 16 bits of the cdbw[31:0] bus are used for writes to program memory.) pab[20:0] Program memory address bus. Data is returned on pdb_m bus. Primary Data Memory Interface Bus cdbr_m[31:0] Primary core data bus for memory reads. Addressed via xab1 bus. cdbw[31:0] Primary core data bus for memory writes. Addressed via xab1 bus. xab1[23:0] Primary data address bus. Capable of addressing bytes1, words, and long data types. Data is written on cdbw and returned on cdbr_m. Also used to access memory-mapped I/O. Secondary Data Memory Interface xdb2_m[15:0] Secondary data bus used for secondary data address bus xab2 in the dual memory reads. xab2[23:0] Secondary data address bus used for the second of two simultaneous accesses. Capable of addressing only words. Data is returned on xdb2_m. Peripheral Interface Bus IPBus [15:0] Peripheral bus accesses all on-chip peripherals registers. This bus operates at the same clock rate as the Primary Data Memory and therefore generates no delays when accessing the processor. Write data is obtained from cdbw. Read data is provided to cdbr_m. 1. Byte accesses can only occur in the bottom half of the memory address space. The MSB of the address will be forced to 0. 1.5 Product Documentation The documents listed in Table 1-3 are required for a complete description and proper design with the 56F8335 and 56F8135 devices. Documentation is available from local Freescale distributors, Freescale semiconductor sales offices, Freescale Literature Distribution Centers, or online at http://www.freescale.com. Table 1-3 Chip Documentation Topic Description Order Number DSP56800E Reference Manual Detailed description of the 56800E family architecture, 16-bit hybrid controller core processor, and the instruction set DSP56800ERM 56F8300 Peripheral User Manual Detailed description of peripherals of the 56F8300 family of devices MC56F8300UM 56F8300 SCI/CAN Bootloader User Manual Detailed description of the SCI/CAN Bootloaders 56F8300 family of devices MC56F83xxBLUM 56F8335/56F8135 Technical Data Sheet Electrical and timing specifications, pin descriptions, device specific peripheral information and package descriptions (this document) MC56F8335 Errata Details any chip issues that might be present MC56F8335E MC56F8135E 56F8335 Technical Data, Rev. 1 12 Freescale Semiconductor Preliminary Data Sheet Conventions 1.6 Data Sheet Conventions This data sheet uses the following conventions: OVERBAR This is used to indicate a signal that is active when pulled low. For example, the RESET pin is active when low. “asserted” A high true (active high) signal is high or a low true (active low) signal is low. “deasserted” A high true (active high) signal is low or a low true (active low) signal is high. Examples: Signal/Symbol Logic State Signal State Voltage1 PIN True Asserted VIL/VOL PIN False Deasserted VIH/VOH PIN True Asserted VIH/VOH PIN False Deasserted VIL/VOL 1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 13 Part 2 Signal/Connection Descriptions 2.1 Introduction The input and output signals of the 56F8335 and 56F8135 are organized into functional groups, as detailed in Table 2-2 and as illustrated in Figure 2-1. In Table 2-2, each table row describes the signal or signals present on a pin. Table 2-1 Functional Group Pin Allocations Number of Pins in Package Functional Group 56F8335 56F8135 Power (VDD or VDDA) 9 9 Power Option Control 1 1 Ground (VSS or VSSA) 6 6 Supply Capacitors1 & VPP 6 6 PLL and Clock 4 4 Bus Control 6 6 Interrupt and Program Control 4 4 Pulse Width Modulator (PWM) Ports 26 13 Serial Peripheral Interface (SPI) Port 0 4 4 Serial Peripheral Interface (SPI) Port 1 — 4 Quadrature Decoder Port 02 4 4 Quadrature Decoder Port 13 4 — Serial Communications Interface (SCI) Ports 4 4 CAN Ports 2 — Analog-to-Digital Converter (ADC) Ports 21 21 Timer Module Ports 6 4 JTAG/Enhanced On-Chip Emulation (EOnCE) 5 5 Temperature Sense 1 — Dedicated GPIO ( Address Bus = 11; Data Bus = 44) 28 28 1. If the on-chip regulator is disabled, the VCAP pins serve as 2.5V VDD_CORE power inputs 2. Alternately, can function as Quad Timer pins or GPIO 3. Pins in this section can function as Quad Timer, SPI 1, orGPIO 4. EMI not functional in these packages; use as GPIO pins. Note: See Table 1-1 for 56F8135 functional differences. 56F8335 Technical Data, Rev. 1 14 Freescale Semiconductor Preliminary Introduction Power VDD_IO Power VDDA_ADC Power VDDA_OSC_PLL Ground VSS Ground VSSA_ADC OCR_DIS VCAP1 - VCAP4 Other Supply Ports VPP1 & VPP2 CLKMODE PLL and Clock EXTAL XTAL CLKO 7 1 1 1 1 5 1 1 1 4 2 1 56F8335 1 1 1 1 1 1 1 1 1 1 1 1 *External A8 - A13 (GPIOA0 - 5) Address Bus or GPIO GPIOB0-4 (A16 - 20) *External D7 - D10 (GPIOF0 - 3) 6 5 6 3 4 Data Bus 6 4 3 4 *External Bus Control GPIOD0 - 5 (CS2 - 7) 8 6 5 8 1 TXD0 (GPIOE0) SCI0 or GPIOE RXD0 (GPIOE1) SCI1 or GPIO TXD1 (GPIOD6) RXD1 (GPIOD7) 1 1 1 1 1 TCK TMS TDI TDO TRST * EMI not functional in this package; use as GPIO pins SCLK0 (GPIOE4) MOSI0 (GPIOE5) MISO0 (GPIOE6) SPI0 or GPIO INDEX0 (TA2, GPIOC6) SS0 (GPIOE7) PHASEA1(TB0, SCLK1, GPIOC0) PHASEB1 (TB1, MOSI1, GPIOC1) INDEX1 (TB2, MISO1, GPIOC2) HOME1 (TB3, SS1, GPIOC3) Quadrature Decoder 1 or Quad Timer B or SPI1 or GPIO PWMA0 - 5 ISA0 - 2 (GPIOC8 - 10) PWMA FAULTA0 - 3 PWMB0 - 5 ISB0 - 2 (GPIOD10 - 12) PWMB FAULTB0-3 ANA0 - 7 VREF ADCA ANB0 - 7 ADCB TEMP_SENSE Temperature Sensor CAN_RX CAN_TX CAN TC0 - 1 (GPIOE8 - 9) Quad Timer C and D or GPIO 1 2 4 JTAG/ EOnCE Port HOME0 (TA3, GPIOC7) Quadrature Decoder 0 or Quad Timer A or GPIO PHASEA0 (TA0, GPIOC4) PHASEB0(TA1, GPIOC5 ) TD0 - 3 (GPIOE10 - 13) 1 1 1 1 1 1 1 1 1 IRQA IRQB RESET Interrupt/ Program Control RSTO Figure 2-1 56F8335 Signals Identified by Functional Group1 (128-Pin LQFP) 1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 15 Power VDD_IO Power VDDA_ADC Power VDDA_OSC_PLL Ground VSS Ground VSSA_ADC OCR_DIS Other Supply Ports VCAP1 - VCAP4 VPP1 & VPP2 CLKMODE PLL and Clock EXTAL XTAL CLKO 7 1 1 1 1 5 1 1 1 56F8135 1 1 1 4 2 1 1 1 1 1 1 1 1 1 1 *External A8 - A13 (GPIOA0 - 5) Address Bus or GPIO GPIOB0-4 (A16 - 20) *External D7 - D10 (GPIOF0 - 3) Data Bus Bus Control GPIOD0 - 5 (CS2 - 7) 5 3 6 4 3 8 6 5 8 TXD0 (GPIOE0) SCI0 or GPIOE RXD0 (GPIOE1) SCI1 or GPIO TXD1 (GPIOD6) RXD1 (GPIOD7) TCK TMS TDI TDO TRST SPI0 or GPIO SS0 (GPIOE7) (SCLK1, GPIOC0) (MOSI1, GPIOC1) SPI1 or GPIO (MISO1, GPIOC2) (SS1,GPIOC3) (GPIOC8 - 10) GPIO PWMB0 - 5 ISB0 - 2 (GPIOD10 - 12) PWMB FAULTB0-3 ANA0 - 7 VREF ADCA ANB0 - 7 ADCB TC0 - 1 (GPIOE8 - 9) QUAD Timer C or GPIO 1 1 1 1 2 4 JTAG/ EOnCE Port SCLK0 (GPIOE4) MOSI0 (GPIOE5) MISO0 (GPIOE6) INDEX0 (TA2, GPIOC6) 6 4 *External HOME0 (TA3, GPIOC7) Quadrature Decoder 0 or Quad Timer A or GPIO PHASEA0 (TA0, GPIOC4) PHASEB0(TA1, GPIOC5) (GPIOE10 - 13) 1 1 1 1 1 1 1 1 1 IRQA IRQB RESET Interrupt/ Program Control RSTO * EMI not functional in this package; use as GPIO pins Figure 2-2 56F8135 Signals Identified by Functional Group1 (128-Pin LQFP) 1. Alternate pin functionality is shown in parenthesis; pin direction/type shown is the default functionality. 56F8335 Technical Data, Rev. 1 16 Freescale Semiconductor Preliminary Signal Pins 2.2 Signal Pins After reset, each pin is configured for its primary function (listed first). Any alternate functionality must be programmed. EMI is not functional in this package; since only part of the address/data bus is bonded out, use as GPIO pins. Note: Signals in italics are NOT available in the 56F8135 device. If the “State During Reset” lists more than one state for a pin, the first state is the actual reset state. Other states show the reset condition of the alternate function, which you get if the alternate pin function is selected without changing the configuration of the alternate peripheral. For example, the A8/GPIOA0 pin shows that it is tri-stated during reset. If the GPIOA_PER is changed to select the GPIO function of the pin, it will become an input if no other registers are changed. Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type VDD_IO 4 Supply VDD_IO 14 I/O Power — This pin supplies 3.3V power to the chip I/O interface and also the Processor core throught the on-chip voltage regulator, if it is enabled. VDD_IO 25 VDD_IO 36 VDD_IO 62 VDD_IO 76 VDD_IO 112 VDDA_ADC 94 Supply ADC Power — This pin supplies 3.3V power to the ADC modules. It must be connected to a clean analog power supply. VDDA_OSC_ 72 Supply Oscillator and PLL Power — This pin supplies 3.3V power to the OSC and to the internal regulator that in turn supplies the Phase Locked Loop. It must be connected to a clean analog power supply. VSS 3 Supply Ground — These pins provide ground for chip logic and I/O drivers. VSS 21 VSS 35 VSS 59 VSS 65 PLL Signal Description 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 17 Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type VSSA_ADC 95 Supply OCR_DIS 71 Input State During Reset Signal Description ADC Analog Ground — This pin supplies an analog ground to the ADC modules. Input On-Chip Regulator Disable — Tie this pin to VSS to enable the on-chip regulator Tie this pin to VDD to disable the on-chip regulator This pin is intended to be a static DC signal from power-up to shut down. Do not try to toggle this pin for power savings during operation. VCAP1 49 VCAP2 122 VCAP3 75 VCAP4 13 Supply Supply VCAP1 - 4 — When OCR_DIS is tied to VSS (regulator enabled), connect each pin to a 2.2µF or greater bypass capacitor in order to bypass the core logic voltage regulator, required for proper chip operation. When OCR_DIS is tied to VDD (regulator disabled), these pins become VDD_CORE and should be connected to a regulated 2.5V power supply. Note: This bypass is required even if the chip is powered with an external supply. VPP1 119 VPP2 5 CLKMODE 79 Input Input VPP1 - 2 — These pins should be left unconnected as an open circuit for normal functionality. Input Input Clock Input Mode Selection — This input determines the function of the XTAL and EXTAL pins. 1 = External clock input on XTAL is used to directly drive the input clock of the chip. The EXTAL pin should be grounded. 0 = A crystal or ceramic resonator should be connected between XTAL and EXTAL. EXTAL 74 Input Input External Crystal Oscillator Input — This input can be connected to an 8MHz external crystal. Tie this pin low if XTAL is driven by an external clock source. XTAL 73 Input/ Output Chip-driven Crystal Oscillator Output — This output connects the internal crystal oscillator output to an external crystal. If an external clock is used, XTAL must be used as the input and EXTAL connected to GND. The input clock can be selected to provide the clock directly to the core. This input clock can also be selected as the input clock for the on-chip PLL. 56F8335 Technical Data, Rev. 1 18 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type State During Reset CLKO 6 Output Tri-Stated Signal Description Clock Output — This pin outputs a buffered clock signal. Using the SIM CLKO Select Register (SIM_CLKOSR), this pin can be programmed as any of the following: disabled, CLK_MSTR (system clock), IPBus clock, oscillator output, prescaler clock and postscaler clock. Other signals are also available for test purposes. See Part 6.5.7 for details. A8 15 Output Tri-stated Input A9 (GPIOA1) 16 Schmitt Input/ Output A10 (GPIOA2) 17 A11 (GPIOA3) 18 A12 (GPIOA4) 19 A13 (GPIOA5) 20 GPIOB0 27 (GPIOA0) To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOA_PUR register. Note: Primary function is not available in this package configuration; GPIO function must be used instead. Schmitt Input/ Output Input Output Tri-stated Port B GPIO — These four GPIO pins can be individually programmed as an input or output pin. 28 29 After reset, the default state is GPIO. (A18) GPIOB3 After reset, these pins default to address bus functionality and must be programmed as GPIO. Address Bus — A16 - A19 specify four of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A16 - A19 and EMI control signals are tri-stated when the external bus is inactive. (A17) GPIOB2 Port A GPIO — These six GPIO pins can be individually programmed as input or output pins. Example: GPIOA0, clear bit 0 in the GPIOA_PUR register. (A16) GPIOB1 Address Bus — A8 - A13 specify six of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A8 - A13 and EMI control signals are tri-stated when the external bus is inactive. 30 (A19) To deactivate the internal pull-up resistor, clear bit 0 in the GPIOB_PUR register. Example: GPIOB1, clear bit 1 in the GPIOB_PUR register. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 19 Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type GPIOB4 31 Schmitt Input/ Output Input Port B GPIO — This GPIO pin can be individually programmed as an input or output pin. (A20) Output Tri-stated Address Bus — A20 specifies one of the address lines for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), A20 and EMI control signals are tri-stated when the external bus is inactive. (prescaler_ clock) Output Output Clock Output — can be used to monitor the prescaler_clock on GPIOB4. Signal Description After reset, the default state is GPIO. This pin can also be used to view the prescaler_clock. In these cases, the GPIOB_PER can be used to disable the GPIO. The CLKOSR register in the SIM can then be used to choose between address and clock functions; see Part 6.5.7 for details. To deactivate the internal pull-up resistor, clear bit 4 in the GPIOB_PUR register. D7 22 (GPIOF0) D8 (GPIOF1) 23 D9 (GPIOF2) 24 D10 (GPIOF3) 26 Input/ Output Tri-stated Input/ Output Input Data Bus — D7 - D10 specify part of the data for external program or data memory accesses. Depending upon the state of the DRV bit in the EMI bus control register (BCR), D7 - D10 are tri-stated when the external bus is inactive Port F GPIO — These four GPIO pins can be individually programmed as input or output pins. After reset, these pins default to data bus functionality and should be programmed as GPIO. To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOF_PUR register. Example: GPIOF0, clear bit 0 in the GPIOF_PUR register. Note: Primary function is not available in this package configuration; GPIO function must be used instead. 56F8335 Technical Data, Rev. 1 20 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type GPIOD0 42 Input/ Output Input Port D GPIO — These six GPIO pins can be individually programmed as input or output pins. Output Input Chip Select — CS2 - CS7 may be programmed within the EMI module to act as chip selects for specific areas of the external memory map. Depending upon the state of the DRV bit in the EMI bus control register (BCR), CS2 - CS7 are tri-stated when the external bus is inactive. (CS2) GPIOD1 (CS3) 43 GPIOD2 (CS4) 44 GPIOD3 (CS5) 45 GPIOD4 (CS6) 46 GPIOD5 (CS7) 47 TXD0 7 Signal Description After reset, these pins are configured as GPIO. (GPIOE0) To deactivate the internal pull-up resistor, clear the appropriate GPIO bit in the GPIOD_PUR register. Example: GPIOD0, clear bit 0 in the GPIOD_PUR register. Output Tri-stated Input/ Output Input Transmit Data — SCI0 transmit data output Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SCI output. To deactivate the internal pull-up resistor, clear bit 0 in the GPIOE_PUR register. RXD0 8 (GPIOE1) Input Input Receive Data — SCI0 receive data input Input/ Output Input Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SCI output. To deactivate the internal pull-up resistor, clear bit 1 in the GPIOE_PUR register. TXD1 40 (GPIOD6) Output Tri-stated Input/ Output Input Transmit Data — SCI1 transmit data output Port D GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SCI output. To deactivate the internal pull-up resistor, clear bit 6 in the GPIOD_PUR register. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 21 Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type State During Reset RXD1 41 Input Input Receive Data — SCI1 receive data input Input/ Output Input Port D GPIO — This GPIO pin can be individually programmed as an input or output pin. (GPIOD7) Signal Description After reset, the default state is SCI input. To deactivate the internal pull-up resistor, clear bit 7 in the GPIOD_PUR register. TCK 115 Schmitt Input Input, pulled low internally Test Clock Input — This input pin provides a gated clock to synchronize the test logic and shift serial data to the JTAG/EOnCE port. The pin is connected internally to a pull-down resistor. TMS 116 Schmitt Input Input, pulled high internally Test Mode Select Input — This input pin is used to sequence the JTAG TAP controller’s state machine. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor. To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register. TDI 117 Schmitt Input Input, pulled high internally Test Data Input — This input pin provides a serial input data stream to the JTAG/EOnCE port. It is sampled on the rising edge of TCK and has an on-chip pull-up resistor. To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register. TDO 118 Output Tri-stated Test Data Output — This tri-stateable output pin provides a serial output data stream from the JTAG/EOnCE port. It is driven in the shift-IR and shift-DR controller states, and changes on the falling edge of TCK. TRST 114 Schmitt Input Input, pulled high internally Test Reset — As an input, a low signal on this pin provides a reset signal to the JTAG TAP controller. To ensure complete hardware reset, TRST should be asserted whenever RESET is asserted. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET, but do not assert TRST. To deactivate the internal pull-up resistor, set the JTAG bit in the SIM_PUDR register. 56F8335 Technical Data, Rev. 1 22 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type PHASEA0 127 Schmitt Input Input Phase A — Quadrature Decoder 0, PHASEA input (TA0) Schmitt Input/ Output Input TA0 — Timer A, Channel 0 (GPIOC4) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. Signal Description After reset, the default state is PHASEA0. To deactivate the internal pull-up resistor, clear bit 4 of the GPIOC_PUR register. PHASEB0 128 Schmitt Input Input Phase B — Quadrature Decoder 0, PHASEB input (TA1) Schmitt Input/ Output Input TA1 — Timer A, Channel 1 (GPIOC5) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is PHASEB0. To deactivate the internal pull-up resistor, clear bit 5 of the GPIOC_PUR register. INDEX0 1 Schmitt Input Input Index — Quadrature Decoder 0, INDEX input (TA2) Schmitt Input/ Output Input TA2 — Timer A, Channel 2 (GPIOC6) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is INDEX0. To deactivate the internal pull-up resistor, clear bit 6 of the GPIOC_PUR register. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 23 Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type HOME0 2 Schmitt Input Input Home — Quadrature Decoder 0, HOME input (TA3) Schmitt Input/ Output Input TA3 — Timer A ,Channel 3 (GPIOC7) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. Signal Description After reset, the default state is HOME0. To deactivate the internal pull-up resistor, clear bit 7 of the GPIOC_PUR register. SCLK0 124 (GPIOE4) Schmitt Input/ Output Input SPI 0 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. Schmitt Input/ Output Input Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SCLK0. To deactivate the internal pull-up resistor, clear bit 4 in the GPIOE_PUR register. MOSI0 (GPIOE5) 126 Input/ Output Tri-stated SPI 0 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data. Input/ Output Input Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is MOSI0. To deactivate the internal pull-up resistor, clear bit 5 in the GPIOE_PUR register. 56F8335 Technical Data, Rev. 1 24 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type MISO0 125 Input/ Output Input SPI 0 Master In/Slave Out — This serial data pin is an input to a master device and an output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data. Input/ Output Input Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. (GPIOE6) Signal Description After reset, the default state is MISO0. To deactivate the internal pull-up resistor, clear bit 6 in the GPIOE_PUR register. SS0 123 (GPIOE7) Input Input SPI 0 Slave Select — SS0 is used in slave mode to indicate to the SPI module that the current transfer is to be received. Input/ Output Input Port E GPIO — This GPIO pin can be individually programmed as an input or output pin. After reset, the default state is SS0. To deactivate the internal pull-up resistor, clear bit 7 in the GPIOE_PUR register. PHASEA1 9 Schmitt Input Input Phase A1 — Quadrature Decoder 1, PHASEA input for decoder 1. Schmitt Input/ Output Input TB0 — Timer B, Channel 0 Schmitt Input/ Output Input SPI 1 Serial Clock — In the master mode, this pin serves as an output, clocking slaved listeners. In slave mode, this pin serves as the data clock input. To activate the SPI function, set the PHSA_ALT bit in the SIM_GPS register. For details, see Part 6.5.8. Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. (TB0) (SCLK1) (GPIOC0) In the 56F8335, the default state after reset is PHASEA1. In the 56F8135, the default state is not one of the functions offered and must be reconfigured. To deactivate the internal pull-up resistor, clear bit 0 in the GPIOC_PUR register. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 25 Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type PHASEB1 10 Schmitt Input Input Phase B1 — Quadrature Decoder 1, PHASEB input for decoder 1. (TB1) Schmitt Input/ Output Input TB1 — Timer B, Channel 1 (MOSI1) Schmitt Input/ Output Tri-stated SPI 1 Master Out/Slave In — This serial data pin is an output from a master device and an input to a slave device. The master device places data on the MOSI line a half-cycle before the clock edge the slave device uses to latch the data. To activate the SPI function, set the PHSB_ALT bit in the SIM_GPS register. For details, see Part 6.5.8. (GPIOC1) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. Signal Description In the 56F8335, the default state after reset is PHASEB1. In the 56F8135, the default state is not one of the functions offered and must be reconfigured. To deactivate the internal pull-up resistor, clear bit 1 in the GPIOC_PUR register. INDEX1 Schmitt Input Input Index1 — Quadrature Decoder 1, INDEX input Schmitt Input/ Output Input TB2 — Timer B, Channel 2 Schmitt Input/ Output Input (MISO1) SPI 1 Master In/Slave Out — This serial data pin is an input to a master device and output from a slave device. The MISO line of a slave device is placed in the high-impedance state if the slave device is not selected. The slave device places data on the MISO line a half-cycle before the clock edge the master device uses to latch the data. To activate the SPI function, set the INDEX_ALT bit in the SIM_GPS register. See Part 6.5.8 for details. Schmitt Input/ Output Input (GPIOC2) Port C GPIO — This GPIO pin can be individually programmed as an input or output pin. (TB2) 11 In the 56F8335, the default state after reset is INDEX1. In the 56F8135, the default state is not one of the functions offered and must be reconfigured. To deactivate the internal pull-up resistor, clear bit 2 in the GPIOC_PUR register. 56F8335 Technical Data, Rev. 1 26 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP State During Reset Signal Name Pin No. Type HOME1 12 Schmitt Input Input Home — Quadrature Decoder 1, HOME input (TB3) Schmitt Input/ Output Input TB3 — Timer B, Channel 3 (SS1) Schmitt Input Input SPI 1 Slave Select — In the master mode, this pin is used to arbitrate multiple masters. In slave mode, this pin is used to select the slave. To activate the SPI function, set the HOME_ALT bit in the SIM_GPS register. See Part 6.5.8 for details. (GPIOC3) Schmitt Input/ Output Input Port C GPIO — This GPIO pin can be individually programmed as input or output pin. Signal Description In the 56F8335, the default state after reset is HOME1. In the 56F8135, the default state is not one of the functions offered and must be reconfigured. To deactivate the internal pull-up resistor, clear bit 3 in the GPIOC_PUR register. PWMA0 58 PWMA1 60 PWMA2 61 PWMA3 63 PWMA4 64 PWMA5 66 ISA0 104 (GPIOC8) ISA1 105 Output Tri-State PWMA0 - 5 — These are six PWMA output pins. Schmitt Input Input ISA0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMA. Schmitt Input/ Output Input Port C GPIO — These GPIO pins can be individually programmed as input or output pins. In the 56F8335, these pins default to ISA functionality. (GPIOC9) ISA2 (GPIOC10) 106 In the 56F8135, the default state is not one of the functions offered and must be reconfigured. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOC_PUR register. See Part 6.5.6 for details. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 27 Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type FAULTA0 67 Schmitt Input FAULTA1 68 FAULTA2 69 FAULTA3 70 State During Reset Input Signal Description FAULTA0 - 2 — These three fault input pins are used for disabling selected PWMA outputs in cases where fault conditions originate off-chip. To deactivate the internal pull-up resistor, set the PWMA0 bit in the SIM_PUDR register. See Part 6.5.6 for details. Schmitt Input Input FAULTA3 — This fault input pin is used for disabling selected PWMA outputs in cases where fault conditions originate off-chip. To deactivate the internal pull-up resistor, set the PWMA1 bit in the SIM_PUDR register. See Part 6.5.6 for details. PWMB0 32 PWMB1 33 PWMB2 34 PWMB3 37 PWMB4 38 PWMB5 39 ISB0 48 (GPIOD10) ISB1 (GPIOD11) 50 ISB2 (GPIOD12) 51 FAULTB0 54 FAULTB1 55 FAULTB2 56 FAULTB3 57 Output Tri-State PWMB0 - 5 — Six PWMB output pins. Schmitt Input Input ISB0 - 2 — These three input current status pins are used for top/bottom pulse width correction in complementary channel operation for PWMB. Schmitt Input/ Output Input Port D GPIO — These GPIO pins can be individually programmed as input or output pins. At reset, these pins default to ISB functionality. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOD_PUR register. See Part 6.5.6 for details. Schmitt Input Input FAULTB0 - 3 — These four fault input pins are used for disabling selected PWMB outputs in cases where fault conditions originate off-chip. To deactivate the internal pull-up resistor, set the PWMB bit in the SIM_PUDR register. See Part 6.5.6 for details. 56F8335 Technical Data, Rev. 1 28 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type State During Reset ANA0 80 Input Input ANA0 - 3 — Analog inputs to ADC A, channel 0 ANA1 81 ANA2 82 ANA3 83 ANA4 84 Input Input ANA4 - 7 — Analog inputs to ADC A, channel 1 ANA5 85 ANA6 86 ANA7 87 VREFH 93 Input Input VREFH — Analog Reference Voltage High. VREFH must be less than or equal to VDDA_ADC. VREFP 92 Input/ Output Input/ Output VREFMID 91 VREFP, VREFMID & VREFN — Internal pins for voltage reference which are brought off-chip so that they can be bypassed. Connect to a 0.1 µF low ESR capacitor. VREFN 90 VREFLO 89 Input Input VREFLO — Analog Reference Voltage Low. This should normally be connected to a low-noise VSSA. ANB0 96 Input Input ANB0 - 3 — Analog inputs to ADC B, channel 0 ANB1 97 ANB2 98 ANB3 99 ANB4 100 Input Input ANB4 - 7 — Analog inputs to ADC B, channel 1 ANB5 101 ANB6 102 ANB7 103 TEMP_ SENSE 88 Signal Description Temperature Sense Diode — This signal connects to an on-chip diode that can be connected to one of the ADC inputs and is used to monitor the temperature of the die. Must be bypassed with a 0.01 µF capacitor. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 29 Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type CAN_RX 121 Schmitt Input State During Reset Input Signal Description FlexCAN Receive Data — This is the CAN input. This pin has an internal pull-up resistor. To deactivate the internal pull-up resistor, set the CAN bit in the SIM_PUDR register. CAN_TX 120 Open Drain Output Output TC0 111 Schmitt Input/ Output Input TC0 - 1 — Timer C, Channels 0 and 1 Schmitt Input/ Output Input Port E GPIO — These GPIO pins can be individually programmed as input or output pins. (GPIOE8) TC1 (GPIOE9) 113 FlexCAN Transmit Data — CAN output At reset, these pins default to Timer functionality. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOE_PUR register. See Part 6.5.6 for details. TD0 107 Schmitt Input/ Output Input TD0 - TD3 — Timer D, Channels 0, 1, 2 and 3 Schmitt Input/ Output Input Port E GPIO — These GPIO pins can be individually programmed as input or output pins. (GPIOE10) TD1 (GPIOE11) 108 TD2 (GPIOE12) 109 TD3 (GPIOE13) 110 IRQA 52 IRQB 53 At reset, these pins default to Timer functionality. To deactivate the internal pull-up resistor, clear the appropriate bit of the GPIOE_PUR register. See Part 6.5.6 for details. Schmitt Input Input External Interrupt Request A and B — The IRQA and IRQB inputs are asynchronous external interrupt requests during Stop and Wait mode operation. During other operating modes, they are synchronized external interrupt requests, which indicate an external device is requesting service. They can be programmed to be level-sensitive or negative-edge triggered. To deactivate the internal pull-up resistor, set the IRQ bit in the SIM_PUDR register. See Part 6.5.6 for details. 56F8335 Technical Data, Rev. 1 30 Freescale Semiconductor Preliminary Signal Pins Table 2-2 Signal and Package Information for the 128-Pin LQFP Signal Name Pin No. Type RESET 78 Schmitt Input State During Reset Input Signal Description Reset — This input is a direct hardware reset on the processor. When RESET is asserted low, the device is initialized and placed in the reset state. A Schmitt trigger input is used for noise immunity. The internal reset signal will be deasserted synchronous with the internal clocks after a fixed number of internal clocks. To ensure complete hardware reset, RESET and TRST should be asserted together. The only exception occurs in a debugging environment when a hardware device reset is required and the JTAG/EOnCE module must not be reset. In this case, assert RESET, but do not assert TRST. Note: The internal Power-On Reset will assert on initial power-up. To deactivate the internal pull-up resistor, set the RESET bit in the SIM_PUDR register. See Part 6.5.6. for details. RSTO 77 Output Output Reset Output — This output reflects the internal reset state of the chip. EXTBOOT Internal Ground Schmitt Input Input External Boot — This input is tied to VDD to force the device to boot from off-chip memory (assuming that the on-chip Flash memory is not in a secure state). Otherwise, it is tied to ground. For details, see Table 4-4. Note: When this pin is tied low, the customer boot software should disable the internal pull-up resistor by setting the XBOOT bit of the SIM_PUDR; see Part 6.5.6. Note: This pin is internally tied low (to VSS). EMI_MODE Internal Ground Schmitt Input Input External Memory Mode — This device will boot from internal Flash memory under normal operation. This function is also affected by EXTBOOT and the Flash security mode; see Table 4-4 for details. Note: When this pin is tied low, the customer boot software should disable the internal pull-up resistor by setting the EMI_MODE bit of the SIM_PUDR; see Part 6.5.6. Note: This pin is internally tied low (to VSS). 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 31 Part 3 On-Chip Clock Synthesis (OCCS) 3.1 Introduction Refer to the OCCS chapter of the 56F8300 Peripheral User Manual for a full description of the OCCS. The material contained here identifies the specific features of the OCCS design. Figure 3-1 shows the specific OCCS block diagram to reference in the OCCS chapter of the 56F8300 Peripheral User Manual. CLKMODE XTAL ZSRC MUX Crystal OSC PLLCID PLLCOD PLL FOUT x (1 to 128) MSTR_OSC FEEDBACK FREF PLLDB Prescaler ÷ (1,2,4,8) MUX Prescaler CLK EXTAL ÷2 FOUT/2 Postscaler ÷ (1,2,4,8) Postscaler CLK Bus Interface & Control Bus Interface LCK Lock Detector Loss of Reference Clock Detector SYS_CLK2 Source to SIM Loss of Reference Clock Interrupt Figure 3-1 OCCS Block Diagram 3.2 External Clock Operation The system clock can be derived from an external crystal, ceramic resonator, or an external system clock signal. To generate a reference frequency using the internal oscillator, a reference crystal or ceramic resonator must be connected between the EXTAL and XTAL pins. 3.2.1 Crystal Oscillator The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency range specified for the external crystal in Table 10-15. A recommended crystal oscillator circuit is shown in Figure 3-2. Follow the crystal supplier’s recommendations when selecting a crystal, since crystal parameters determine the component values required to provide maximum stability and reliable start-up. The crystal and associated components should be mounted as near as possible to the EXTAL and XTAL pins to minimize output distortion and start-up stabilization time. 56F8335 Technical Data, Rev. 1 32 Freescale Semiconductor Preliminary External Clock Operation Crystal Frequency = 4 - 8MHz (optimized for 8MHz) EXTAL XTAL EXTAL RZ XTAL Sample External Crystal Parameters: Rz = 750 KΩ RZ Note: If the operating temperature range is limited to below 85oC (105oC junction), then Rz = 10 Meg Ω CLKMODE = 0 CL1 CL2 Figure 3-2 Connecting to a Crystal Oscillator Note: The OCCS_COHL bit must be set to 1 when a crystal oscillator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the 56F8300 Peripheral User’s Manual. 3.2.2 Ceramic Resonator (Default) It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in Figure 3-3. Refer to the supplier’s recommendations when selecting a ceramic resonator and associated components. The resonator and components should be mounted as near as possible to the EXTAL and XTAL pins. Resonator Frequency = 4 - 8MHz (optimized for 8MHz) 3 Terminal 2 Terminal EXTAL XTAL Rz CL1 CL2 EXTAL XTAL Rz Sample External Ceramic Resonator Parameters: Rz = 750 KΩ CLKMODE = 0 C1 C2 Figure 3-3 Connecting a Ceramic Resonator Note: The OCCS_COHL bit must be set to 0 when a ceramic resonator is used. The reset condition on the OCCS_COHL bit is 0. Please see the COHL bit in the Oscillator Control (OSCTL) register, discussed in the 56F8300 Peripheral User’s Manual. 3.2.3 External Clock Source The recommended method of connecting an external clock is illustrated in Figure 3-4. The external clock source is connected to XTAL and the EXTAL pin is grounded. Set OCCS_COHL bit high when using an external clock source as well. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 33 XTAL EXTAL External Clock VSS Note: When using an external clocking source with this configuration, the input “CLKMODE” should be high and COHL bit in the OSCTL register should be set to 1. Figure 3-4 Connecting an External Clock Signal Register 3.3 Registers When referring to the register definitions for the OCCS in the 56F8300 Peripheral User Manual, use the register definitions without the internal Relaxation Oscillator, since the 56F8335/56F8135 devices do NOT contain this oscillator. Part 4 Memory Map 4.1 Introduction The 56F8335 and 56F8135 devices are 16-bit motor-control chips based on the 56800E core. These parts use a Harvard-style architecture with two independent memory spaces for Data and Program. On-chip RAM and Flash memories are used in both spaces. This section provides memory maps for: • • Program Address Space, including the Interrupt Vector Table Data Address Space, including the EOnCE Memory and Peripheral Memory Maps On-chip memory sizes for each device are summarized in Table 4-1. Flash memories’ restrictions are identified in the “Use Restrictions” column of Table 4-1. Note: Data Flash and Program RAM are NOT available on the 56F8135 device. Table 4-1 Chip Memory Configurations On-Chip Memory 56F8335 56F8135 Use Restrictions Program Flash 64KB 64KB Erase / Program via Flash interface unit and word writes to CDBW Data Flash 8KB — Erase / Program via Flash interface unit and word writes to CDBW. Data Flash can be read via either CDBR or XDB2, but not by both simultaneously Program RAM 4KB — None Data RAM 8KB 8KB None Program Boot Flash 8KB 8KB Erase / Program via Flash Interface unit and word writes to CDBW 56F8335 Technical Data, Rev. 1 34 Freescale Semiconductor Preliminary Program Map 4.2 Program Map The Program memory map is located in Table 4-4. The operating mode control bits (MA and MB) in the Operating Mode Register (OMR) control the Program memory map. At reset, these bits are set as indicated in Table 4-2. EXT_BOOT = EMI_MODE = 0 and cannot be changed in the 56F8335 or 56F8135. Table 4-2 OMR MB/MA Value at Reset1 OMR MB = Flash Secured State2,3 OMR MA = EXTBOOT Pin 0 0 Mode 0 – Internal Boot; EMI is configured to use 16 address lines; Flash Memory is secured; external P-space is not allowed; the EOnCE is disabled 0 1 Not valid; cannot boot externally if the Flash is secured and will actually configure to 00 state 1 0 Mode 0 – Internal Boot; EMI is configured to use 16 address lines 1 1 Mode 1 – External Boot; Flash Memory is not secured; EMI configuration is determined by the state of the EMI_MODE pin Chip Operating Mode 1. Information in shaded areas not applicable to 56F8335/56F8135. 2. This bit is only configured at reset. If the Flash secured state changes, this will not be reflected in MB until the next reset. 3. Changing MB in software will not affect Flash memory security. After reset, the OMR MA bit can be changed and will have an effect on the P-space memory map, as shown in Table 4-3. Changing the OMR MB bit will have no effect. Table 4-3 Changing OMR MA Value During Normal Operation OMR MA Chip Operating Mode 0 Use internal P-space memory map configuration 11 Use external P-space memory map configuration – If MB = 0 at reset, changing this bit has no effect. 1. Setting this bit can cause unpredictable results and is not recommended, since the EMI is not functional in this package. Table 4-4 shows the memory map options of the 56F8335/56F8135. The two right columns cannot be used, since the EMI pins are not provided in the package; therefore, only the Mode 0 column is relevant. Note: Program RAM is NOT available on the 56F8135 device. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 35 Table 4-4 Program Memory Map at Reset Begin/End Address Mode 0 (MA = 0) Mode 11 (MA = 1) Internal Boot External Boot Internal Boot 16-Bit External Address Bus P:$1F FFFF P:$10 0000 External Program Memory5 EMI_MODE = 02, 3 16-Bit External Address Bus External Program Memory5 P:$0F FFFF P:$03 0000 P:$02 FFFF P:$02 F800 On-Chip Program RAM 4KB On-Chip Program RAM 4KB P:$02 F7FF P:$02 1000 EMI_MODE = 14 20-Bit External Address Bus External Program Memory5 External Program RAM5 COP Reset Address = 02 0002 Boot Location = 02 0000 Reserved 116KB P:$02 0FFF P:$02 0000 Boot Flash 8KB COP Reset Address = 02 0002 Boot Location = 02 0000 Boot Flash 8KB (Not Used for Boot in this Mode) P:$01 FFFF P:$01 0000 External Program RAM5 Internal Program Flash 64KB P:$00 FFFF P:$00 0000 Internal Program Flash 64KB External Program RAM5 COP Reset Address = 00 0002 Boot Location = 00 0000 1. Cannot be used since MA = EXTBOOT = 0 and the EMI is not available; information in shaded areas not applicable to 56F8335/56F8135. 2. This mode provides maximum compatibility with 56F80x parts while operating externally. 3. “EMI_MODE = 0”, EMI_MODE pin is tied to ground at boot up. 4. “EMI_MODE = 1”, EMI_MODE pin is tied to VDD at boot up. 5. Not accessible in this part, since the EMI is not fully pinned out in this package; information in shaded areas not applicable to 56F8335/56F8135. 4.3 Interrupt Vector Table Table 4-5 provides the reset and interrupt priority structure, including on-chip peripherals. The table is organized with higher-priority vectors at the top and lower-priority interrupts lower in the table. The priority of an interrupt can be assigned to different levels, as indicated, allowing some control over interrupt priorities. All level 3 interrupts will be serviced before level 2, and so on. For a selected priority level, the lowest vector number has the highest priority. The location of the vector table is determined by the Vector Base Address (VBA) register. Please see Part 5.6.11 for the reset value of the VBA. In some configurations, the reset address and COP reset address will correspond to vector 0 and 1 of the interrupt vector table. In these instances, the first two locations in the vector table must contain branch or JMP instructions. All other entries must contain JSR instructions. 56F8335 Technical Data, Rev. 1 36 Freescale Semiconductor Preliminary Interrupt Vector Table Note: PWMA, FlexCAN, Quadrature Decoder 1, and Quad Timers B and D are NOT available on the 56F8135 device. Table 4-5 Interrupt Vector Table Contents1 Peripheral Vector Number Priority Level Vector Base Address + Interrupt Function Reserved for Reset Overlay2 Reserved for COP Reset Overlay2 core 2 3 P:$04 Illegal Instruction core 3 3 P:$06 SW Interrupt 3 core 4 3 P:$08 HW Stack Overflow core 5 3 P:$0A Misaligned Long Word Access core 6 1-3 P:$0C OnCE Step Counter core 7 1-3 P:$0E OnCE Breakpoint Unit 0 Reserved core 9 1-3 P:$12 OnCE Trace Buffer core 10 1-3 P:$14 OnCE Transmit Register Empty core 11 1-3 P:$16 OnCE Receive Register Full Reserved core 14 2 P:$1C SW Interrupt 2 core 15 1 P:$1E SW Interrupt 1 core 16 0 P:$20 SW Interrupt 0 core 17 0-2 P:$22 IRQA core 18 0-2 P:$24 IRQB Reserved LVI 20 0-2 P:$28 Low Voltage Detector (power sense) PLL 21 0-2 P:$2A PLL FM 22 0-2 P:$2C FM Access Error Interrupt FM 23 0-2 P:$2E FM Command Complete FM 24 0-2 P:$30 FM Command, data and address Buffers Empty Reserved FLEXCAN 26 0-2 P:$34 FLEXCAN Bus Off FLEXCAN 27 0-2 P:$36 FLEXCAN Error FLEXCAN 28 0-2 P:$38 FLEXCAN Wake Up FLEXCAN 29 0-2 P:$3A FLEXCAN Message Buffer Interrupt 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 37 Table 4-5 Interrupt Vector Table Contents1 (Continued) Peripheral Vector Number Priority Level Vector Base Address + Interrupt Function GPIOF 30 0-2 P:$3C GPIO F GPIOE 31 0-2 P:$3E GPIO E GPIOD 32 0-2 P:$40 GPIO D GPIOC 33 0-2 P:$42 GPIO C GPIOB 34 0-2 P:$44 GPIO B GPIOA 35 0-2 P:$46 GPIO A Reserved SPI1 38 0-2 P:$4C SPI 1 Receiver Full SPI1 39 0-2 P:$4E SPI 1 Transmitter Empty SPI0 40 0-2 P:$50 SPI 0 Receiver Full SPI0 41 0-2 P:$52 SPI 0 Transmitter Empty SCI1 42 0-2 P:$54 SCI 1 Transmitter Empty SCI1 43 0-2 P:$56 SCI 1 Transmitter Idle Reserved SCI1 45 0-2 P:$5A SCI 1 Receiver Error SCI1 46 0-2 P:$5C SCI 1 Receiver Full DEC1 47 0-2 P:$5E Quadrature Decoder #1 Home Switch or Watchdog DEC1 48 0-2 P:$60 Quadrature Decoder #1 INDEX Pulse DEC0 49 0-2 P:$62 Quadrature Decoder #0 Home Switch or Watchdog DEC0 50 0-2 P:$64 Quadrature Decoder #0 INDEX Pulse Reserved TMRD 52 0-2 P:$68 Timer D, Channel 0 TMRD 53 0-2 P:$6A Timer D, Channel 1 TMRD 54 0-2 P:$6C Timer D, Channel 2 TMRD 55 0-2 P:$6E Timer D, Channel 3 TMRC 56 0-2 P:$70 Timer C, Channel 0 TMRC 57 0-2 P:$72 Timer C, Channel 1 TMRC 58 0-2 P:$74 Timer C, Channel 2 TMRC 59 0-2 P:$76 Timer C, Channel 3 TMRB 60 0-2 P:$78 Timer B, Channel 0 TMRB 61 0-2 P:$7A Timer B, Channel 1 TMRB 62 0-2 P:$7C Timer B, Channel 2 TMRB 63 0-2 P:$7E Timer B, Channel 3 56F8335 Technical Data, Rev. 1 38 Freescale Semiconductor Preliminary Interrupt Vector Table Table 4-5 Interrupt Vector Table Contents1 (Continued) Peripheral Vector Number Priority Level Vector Base Address + Interrupt Function TMRA 64 0-2 P:$80 Timer A, Channel 0 TMRA 65 0-2 P:$82 Timer A, Channel 1 TMRA 66 0-2 P:$84 Timer A,Channel 2 TMRA 67 0-2 P:$86 Timer A, Channel 3 SCI0 68 0-2 P:$88 SCI 0 Transmitter Empty SCI0 69 0-2 P:$8A SCI 0 Transmitter Idle Reserved SCI0 71 0-2 P:$8E SCI 0 Receiver Error SCI0 72 0-2 P:$90 SCI 0 Receiver Full ADCB 73 0-2 P:$92 ADC B Conversion Compete / End of Scan ADCA 74 0-2 P:$94 ADC A Conversion Complete / End of Scan ADCB 75 0-2 P:$96 ADC B Zero Crossing or Limit Error ADCA 76 0-2 P:$98 ADC A Zero Crossing or Limit Error PWMB 77 0-2 P:$9A Reload PWM B PWMA 78 0-2 P:$9C Reload PWM A PWMB 79 0-2 P:$9E PWM B Fault PWMA 80 0-2 P:$A0 PWM A Fault core 81 -1 P:$A2 SW Interrupt LP 1. Two words are allocated for each entry in the vector table. This does not allow the full address range to be referenced from the vector table, providing only 19 bits of address. 2. If the VBA is set to $0200 (or VBA = 0000 for Mode 1, EMI_MODE = 0), the first two locations of the vector table are the chip reset addresses; therefore, these locations are not interrupt vectors. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 39 4.4 Data Map Note: Data Flash is NOT available on the 56F8135 device. Table 4-6 Data Memory Map1, 2 EX = 03 Begin/End Address EX = 14 X:$FF FFFF X:$FF FF00 EOnCE 256 locations allocated EOnCE 256 locations allocated X:$FF FEFF X:$01 0000 External Memory External Memory X:$00 FFFF X:$00 F000 On-Chip Peripherals 4096 locations allocated On-Chip Peripherals 4096 locations allocated X:$00 EFFF X:$00 2000 External Memory External Memory X:$00 1FFF X:$00 1000 On-Chip Data Flash 8KB X:$00 0FFF X:$00 0000 On-Chip Data RAM 8KB5 1. Information in shaded areas not applicable to 56F8335/56F8135. 2. All addresses are 16-bit Word addresses, not byte addresses. 3. In the Operation Mode Register. 4. Setting EX = 1 is not recommended in the 56F8335/56F8135, since the EMI is not functional in this package. 5. The Data RAM is organized as a 2K x 32-bit memory to allow single-cycle, long-word operations. 4.5 Flash Memory Map Figure 4-1 illustrates the Flash Memory (FM) map on the system bus. The Flash Memory is divided into three functional blocks. The Program and boot memories reside on the Program Memory buses. They are controlled by one set of banked registers. Data Memory Flash resides on the Data Memory buses and is controlled separately by its own set of banked registers. The top nine words of the Program Memory Flash are treated as special memory locations. The content of these words is used to control the operation of the Flash Controller. Because these words are part of the Flash Memory content, their state is maintained during power-down and reset. During chip initialization, the content of these memory locations is loaded into Flash Memory control registers, detailed in the Flash Memory chapter of the 56F8300 Peripheral User Manual. These configuration parameters are located between $00_FFF7 and $00_FFFF. 56F8335 Technical Data, Rev. 1 40 Freescale Semiconductor Preliminary Flash Memory Map Data Memory Program Memory BOOT_FLASH_START + $1FFF FM_BASE + $14 8KB Boot BOOT_FLASH_START = $02_0000 FM_BASE + $00 Reserved Banked Registers Unbanked Registers DATA_FLASH_START + $0FFF 8KB DATA_FLASH_START + $0000 Configure Field FM_PROG_MEM_TOP = $00_FFFF Block 0 Odd Block 0 Even Note: Data Flash is NOT available in the 56F8135 device. ... PROG_FLASH_START + $00_FFFF PROG_FLASH_START + $00_FFF7 PROG_FLASH_START + $00_FFF6 64KB BLOCK 0 Odd (2 Bytes) $00_0003 BLOCK 0 Even (2 Bytes) $00_0002 BLOCK 0 Odd (2 Bytes) $00_0001 BLOCK 0 Even (2 Bytes) $00_0000 PROG_FLASH_START = $00_0000 Figure 4-1 Flash Array Memory Maps Table 4-7 shows the page and sector sizes used within each Flash memory block on the chip. Note: Data Flash is NOT available on the 56F8135 device. Table 4-7. Flash Memory Partitions Flash Size Sectors Sector Size Page Size Program Flash 64KB 16 2K x 16 bits 512 x 16 bits Data Flash Data Flash 8KB 16 256 x 16 bits 256 x 16 bits Boot Flash 8KB 4 1K x 16 bits 256 x 16 bits Please see the 56F8300 Peripheral User Manual for additional Flash information. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 41 4.6 EOnCE Memory Map Table 4-8 EOnCE Memory Map Address Register Acronym Register Name Reserved X:$FF FF8A OESCR External Signal Control Register Reserved X:$FF FF8E OBCNTR Breakpoint Unit [0] Counter Reserved X:$FF FF90 OBMSK (32 bits) Breakpoint 1 Unit [0] Mask Register X:$FF FF91 — Breakpoint 1 Unit [0] Mask Register X:$FF FF92 OBAR2 (32 bits) Breakpoint 2 Unit [0] Address Register X:$FF FF93 — Breakpoint 2 Unit [0] Address Register X:$FF FF94 OBAR1 (24 bits) Breakpoint 1 Unit [0] Address Register X:$FF FF95 — Breakpoint 1 Unit [0] Address Register X:$FF FF96 OBCR (24 bits) Breakpoint Unit [0] Control Register X:$FF FF97 — Breakpoint Unit [0] Control Register X:$FF FF98 OTB (21-24 bits/stage) Trace Buffer Register Stages X:$FF FF99 — Trace Buffer Register Stages X:$FF FF9A OTBPR (8 bits) Trace Buffer Pointer Register X:$FF FF9B OTBCR Trace Buffer Control Register X:$FF FF9C OBASE (8 bits) Peripheral Base Address Register X:$FF FF9D OSR Status Register X:$FF FF9E OSCNTR (24 bits) Instruction Step Counter X:$FF FF9F — Instruction Step Counter X:$FF FFA0 OCR (bits) Control Register Reserved X:$FF FFFC OCLSR (8 bits) Core Lock / Unlock Status Register X:$FF FFFD OTXRXSR (8 bits) Transmit and Receive Status and Control Register X:$FF FFFE OTX / ORX (32 bits) Transmit Register / Receive Register X:$FF FFFF OTX1 / ORX1 Transmit Register Upper Word Receive Register Upper Word 56F8335 Technical Data, Rev. 1 42 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers 4.7 Peripheral Memory Mapped Registers On-chip peripheral registers are part of the data memory map on the 56800E series. These locations may be accessed with the same addressing modes used for ordinary Data memory, except all peripheral registers should be read/written using word accesses only. Table 4-9 summarizes base addresses for the set of peripherals on the 56F8335 and 56F8135 devices. Peripherals are listed in order of the base address. The following tables list all of the peripheral registers required to control or access the peripherals. Note: Features in italics are NOT available in the 56F8135 device. Table 4-9 Data Memory Peripheral Base Address Map Summary Peripheral Prefix Base Address Table Number External Memory Interface EMI X:$00 F020 4-10 Timer A TMRA X:$00 F040 4-11 Timer B TMRB X:$00 F080 4-12 Timer C TMRC X:$00 F0C0 4-13 Timer D TMRD X:$00 F100 4-14 PWM A PWMA X:$00 F140 4-15 PWM B PWMB X:$00 F160 4-16 Quadrature Decoder 0 DEC0 X:$00 F180 4-17 Quadrature Decoder 1 DEC1 X:$00 F190 4-18 ITCN ITCN X:$00 F1A0 4-19 ADC A ADCA X:$00 F200 4-20 ADC B ADCB X:$00 F240 4-21 Temperature Sensor TSENSOR X:$00 F270 4-22 SCI #0 SCI0 X:$00 F280 4-23 SCI #1 SCI1 X:$00 F290 4-24 SPI #0 SPI0 X:$00 F2A0 4-25 SPI #1 SPI1 X:$00 F2B0 4-26 COP COP X:$00 F2C0 4-27 PLL, OSC CLKGEN X:$00 F2D0 4-28 GPIO Port A GPIOA X:$00 F2E0 4-29 GPIO Port B GPIOB X:$00 F300 4-30 GPIO Port C GPIOC X:$00 F310 4-31 GPIO Port D GPIOD X:$00 F320 4-32 GPIO Port E GPIOE X:$00 F330 4-33 GPIO Port F GPIOF X:$00 F340 4-34 SIM SIM X:$00 F350 4-35 Power Supervisor LVI X:$00 F360 4-36 FM FM X:$00 F400 4-37 FlexCAN FC X:$00 F800 4-38 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 43 Table 4-10 External Memory Integration Registers Address Map (EMI_BASE = $00 F020) Address Offset Register Description Reset Values CSBAR 0 $0 Chip Select Base Address Register 0 0 x 0004 = 64K since EXTBOOT = EMI_MODE = 0 CSBAR 1 $1 Chip Select Base Address Register 1 0 x 0004 = 64K since EMI_MODE = 0 CSBAR 2 $2 Chip Select Base Address Register 2 CSBAR 3 $3 Chip Select Base Address Register 3 CSBAR 4 $4 Chip Select Base Address Register 4 CSBAR 5 $5 Chip Select Base Address Register 5 CSBAR 6 $6 Chip Select Base Address Register 6 CSBAR 7 $7 Chip Select Base Address Register 7 CSOR 0 $8 Chip Select Option Register 0 CSOR 1 $9 Chip Select Option Register 1 CSOR 2 $A Chip Select Option Register 2 CSOR 3 $B Chip Select Option Register 3 CSOR 4 $C Chip Select Option Register 4 CSOR 5 $D Chip Select Option Register 5 CSOR 6 $E Chip Select Option Register 6 CSOR 7 $F Chip Select Option Register 7 CSTC 0 $10 Chip Select Timing Control Register 0 CSTC 1 $11 Chip Select Timing Control Register 1 CSTC 2 $12 Chip Select Timing Control Register 2 CSTC 3 $13 Chip Select Timing Control Register 3 CSTC 4 $14 Chip Select Timing Control Register 4 CSTC 5 $15 Chip Select Timing Control Register 5 CSTC 6 $16 Chip Select Timing Control Register 6 CSTC 7 $17 Chip Select Timing Control Register 7 BCR $18 Bus Control Register This table added to provide complete information, but this peripheral is not functional in the 56F8335/56F8135 package Register Acronym Table 4-11 Quad Timer A Registers Address Map (TMRA_BASE = $00 F040) Register Acronym Address Offset Register Description TMRA0_CMP1 $0 Compare Register 1 TMRA0_CMP2 $1 Compare Register 2 TMRA0_CAP $2 Capture Register TMRA0_LOAD $3 Load Register 56F8335 Technical Data, Rev. 1 44 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-11 Quad Timer A Registers Address Map (Continued) (TMRA_BASE = $00 F040) Register Acronym Address Offset Register Description TMRA0_HOLD $4 Hold Register TMRA0_CNTR $5 Counter Register TMRA0_CTRL $6 Control Register TMRA0_SCR $7 Status and Control Register TMRA0_CMPLD1 $8 Comparator Load Register 1 TMRA0_CMPLD2 $9 Comparator Load Register 2 TMRA0_COMSCR $A Comparator Status and Control Register Reserved TMRA1_CMP1 $10 Compare Register 1 TMRA1_CMP2 $11 Compare Register 2 TMRA1_CAP $12 Capture Register TMRA1_LOAD $13 Load Register TMRA1_HOLD $14 Hold Register TMRA1_CNTR $15 Counter Register TMRA1_CTRL $16 Control Register TMRA1_SCR $17 Status and Control Register TMRA1_CMPLD1 $18 Comparator Load Register 1 TMRA1_CMPLD2 $19 Comparator Load Register 2 TMRA1_COMSCR $1A Comparator Status and Control Register Reserved TMRA2_CMP1 $20 Compare Register 1 TMRA2_CMP2 $21 Compare Register 2 TMRA2_CAP $22 Capture Register TMRA2_LOAD $23 Load Register TMRA2_HOLD $24 Hold Register TMRA2_CNTR $25 Counter Register TMRA2_CTRL $26 Control Register TMRA2_SCR $27 Status and Control Register TMRA2_CMPLD1 $28 Comparator Load Register 1 TMRA2_CMPLD2 $29 Comparator Load Register 2 TMRA2_COMSCR $2A Comparator Status and Control Register Reserved TMRA3_CMP1 $30 Compare Register 1 TMRA3_CMP2 $31 Compare Register 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 45 Table 4-11 Quad Timer A Registers Address Map (Continued) (TMRA_BASE = $00 F040) Register Acronym Address Offset Register Description TMRA3_CAP $32 Capture Register TMRA3_LOAD $33 Load Register TMRA3_HOLD $34 Hold Register TMRA3_CNTR $35 Counter Register TMRA3_CTRL $36 Control Register TMRA3_SCR $37 Status and Control Register TMRA3_CMPLD1 $38 Comparator Load Register 1 TMRA3_CMPLD2 $39 Comparator Load Register 2 TMRA3_COMSCR $3A Comparator Status and Control Register Table 4-12 Quad Timer B Registers Address Map (TMRB_BASE = $00 F080) Quad Timer B is NOT available in the 56F8135 device Register Acronym Address Offset Register Description TMRB0_CMP1 $0 Compare Register 1 TMRB0_CMP2 $1 Compare Register 2 TMRB0_CAP $2 Capture Register TMRB0_LOAD $3 Load Register TMRB0_HOLD $4 Hold Register TMRB0_CNTR $5 Counter Register TMRB0_CTRL $6 Control Register TMRB0_SCR $7 Status and Control Register TMRB0_CMPLD1 $8 Comparator Load Register 1 TMRB0_CMPLD2 $9 Comparator Load Register 2 TMRB0_COMSCR $A Comparator Status and Control Register Reserved TMRB1_CMP1 $10 Compare Register 1 TMRB1_CMP2 $11 Compare Register 2 TMRB1_CAP $12 Capture Register TMRB1_LOAD $13 Load Register TMRB1_HOLD $14 Hold Register TMRB1_CNTR $15 Counter Register TMRB1_CTRL $16 Control Register TMRB1_SCR $17 Status and Control Register 56F8335 Technical Data, Rev. 1 46 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-12 Quad Timer B Registers Address Map (Continued) (TMRB_BASE = $00 F080) Quad Timer B is NOT available in the 56F8135 device Register Acronym Address Offset Register Description TMRB1_CMPLD1 $18 Comparator Load Register 1 TMRB1_CMPLD2 $19 Comparator Load Register 2 TMRB1_COMSCR $1A Comparator Status and Control Register Reserved TMRB2_CMP1 $20 Compare Register 1 TMRB2_CMP2 $21 Compare Register 2 TMRB2_CAP $22 Capture Register TMRB2_LOAD $23 Load Register TMRB2_HOLD $24 Hold Register TMRB2_CNTR $25 Counter Register TMRB2_CTRL $26 Control Register TMRB2_SCR $27 Status and Control Register TMRB2_CMPLD1 $28 Comparator Load Register 1 TMRB2_CMPLD2 $29 Comparator Load Register 2 TMRB2_COMSCR $2A Comparator Status and Control Register Reserved TMRB3_CMP1 $30 Compare Register 1 TMRB3_CMP2 $31 Compare Register 2 TMRB3_CAP $32 Capture Register TMRB3_LOAD $33 Load Register TMRB3_HOLD $34 Hold Register TMRB3_CNTR $35 Counter Register TMRB3_CTRL $36 Control Register TMRB3_SCR $37 Status and Control Register TMRB3_CMPLD1 $38 Comparator Load Register 1 TMRB3_CMPLD2 $39 Comparator Load Register 2 TMRB3_COMSCR $3A Comparator Status and Control Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 47 Table 4-13 Quad Timer C Registers Address Map (TMRC_BASE = $00 F0C0) Register Acronym Address Offset Register Description TMRC0_CMP1 $0 Compare Register 1 TMRC0_CMP2 $1 Compare Register 2 TMRC0_CAP $2 Capture Register TMRC0_LOAD $3 Load Register TMRC0_HOLD $4 Hold Register TMRC0_CNTR $5 Counter Register TMRC0_CTRL $6 Control Register TMRC0_SCR $7 Status and Control Register TMRC0_CMPLD1 $8 Comparator Load Register 1 TMRC0_CMPLD2 $9 Comparator Load Register 2 TMRC0_COMSCR $A Comparator Status and Control Register Reserved TMRC1_CMP1 $10 Compare Register 1 TMRC1_CMP2 $11 Compare Register 2 TMRC1_CAP $12 Capture Register TMRC1_LOAD $13 Load Register TMRC1_HOLD $14 Hold Register TMRC1_CNTR $15 Counter Register TMRC1_CTRL $16 Control Register TMRC1_SCR $17 Status and Control Register TMRC1_CMPLD1 $18 Comparator Load Register 1 TMRC1_CMPLD2 $19 Comparator Load Register 2 TMRC1_COMSCR $1A Comparator Status and Control Register Reserved TMRC2_CMP1 $20 Compare Register 1 TMRC2_CMP2 $21 Compare Register 2 TMRC2_CAP $22 Capture Register TMRC2_LOAD $23 Load Register TMRC2_HOLD $24 Hold Register TMRC2_CNTR $25 Counter Register TMRC2_CTRL $26 Control Register TMRC2_SCR $27 Status and Control Register TMRC2_CMPLD1 $28 Comparator Load Register 1 56F8335 Technical Data, Rev. 1 48 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-13 Quad Timer C Registers Address Map (Continued) (TMRC_BASE = $00 F0C0) Register Acronym Address Offset Register Description TMRC2_CMPLD2 $29 Comparator Load Register 2 TMRC2_COMSCR $2A Comparator Status and Control Register Reserved TMRC3_CMP1 $30 Compare Register 1 TMRC3_CMP2 $31 Compare Register 2 TMRC3_CAP $32 Capture Register TMRC3_LOAD $33 Load Register TMRC3_HOLD $34 Hold Register TMRC3_CNTR $35 Counter Register TMRC3_CTRL $36 Control Register TMRC3_SCR $37 Status and Control Register TMRC3_CMPLD1 $38 Comparator Load Register 1 TMRC3_CMPLD2 $39 Comparator Load Register 2 TMRC3_COMSCR $3A Comparator Status and Control Register Table 4-14 Quad Timer D Registers Address Map (TMRD_BASE = $00 F100) Quad Timer D is NOT available in the 56F8135 device Register Acronym Address Offset Register Description TMRD0_CMP1 $0 Compare Register 1 TMRD0_CMP2 $1 Compare Register 2 TMRD0_CAP $2 Capture Register TMRD0_LOAD $3 Load Register TMRD0_HOLD $4 Hold Register TMRD0_CNTR $5 Counter Register TMRD0_CTRL $6 Control Register TMRD0_SCR $7 Status and Control Register TMRD0_CMPLD1 $8 Comparator Load Register 1 TMRD0_CMPLD2 $9 Comparator Load Register 2 TMRD0_COMSCR $A Comparator Status and Control Register Reserved TMRD1_CMP1 $10 Compare Register 1 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 49 Table 4-14 Quad Timer D Registers Address Map (Continued) (TMRD_BASE = $00 F100) Quad Timer D is NOT available in the 56F8135 device Register Acronym Address Offset Register Description TMRD1_CMP2 $11 Compare Register 2 TMRD1_CAP $12 Capture Register TMRD1_LOAD $13 Load Register TMRD1_HOLD $14 Hold Register TMRD1_CNTR $15 Counter Register TMRD1_CTRL $16 Control Register TMRD1_SCR $17 Status and Control Register TMRD1_CMPLD1 $18 Comparator Load Register 1 TMRD1_CMPLD2 $19 Comparator Load Register 2 TMRD1_COMSCR $1A Comparator Status and Control Register Reserved TMRD2_CMP1 $20 Compare Register 1 TMRD2_CMP2 $21 Compare Register 2 TMRD2_CAP $22 Capture Register TMRD2_LOAD $23 Load Register TMRD2_HOLD $24 Hold Register TMRD2_CNTR $25 Counter Register TMRD2_CTRL $26 Control Register TMRD2_SCR $27 Status and Control Register TMRD2_CMPLD1 $28 Comparator Load Register 1 TMRD2_CMPLD2 $29 Comparator Load Register 2 TMRD2_COMSCR $2A Comparator Status and Control Register Reserved TMRD3_CMP1 $30 Compare Register 1 TMRD3_CMP2 $31 Compare Register 2 TMRD3_CAP $32 Capture Register TMRD3_LOAD $33 Load Register TMRD3_HOLD $34 Hold Register TMRD3_CNTR $35 Counter Register TMRD3_CTRL $36 Control Register TMRD3_SCR $37 Status and Control Register TMRD3_CMPLD1 $38 Comparator Load Register 1 TMRD3_CMPLD2 $39 Comparator Load Register 2 TMRD3_COMSCR $3A Comparator Status and Control Register 56F8335 Technical Data, Rev. 1 50 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-15 Pulse Width Modulator A Registers Address Map (PWMA_BASE = $00 F140) PWMA is NOT available in the 56F8135 device Register Acronym Address Offset Register Description PWMA_PMCTL $0 Control Register PWMA_PMFCTL $1 Fault Control Register PWMA_PMFSA $2 Fault Status Acknowledge Register PWMA_PMOUT $3 Output Control Register PWMA_PMCNT $4 Counter Register PWMA_PWMCM $5 Counter Modulo Register PWMA_PWMVAL0 $6 Value Register 0 PWMA_PWMVAL1 $7 Value Register 1 PWMA_PWMVAL2 $8 Value Register 2 PWMA_PWMVAL3 $9 Value Register 3 PWMA_PWMVAL4 $A Value Register 4 PWMA_PWMVAL5 $B Value Register 5 PWMA_PMDEADTM $C Dead Time Register PWMA_PMDISMAP1 $D Disable Mapping Register 1 PWMA_PMDISMAP2 $E Disable Mapping Register 2 PWMA_PMCFG $F Configure Register PWMA_PMCCR $10 Channel Control Register PWMA_PMPORT $11 Port Register PWMA_PMICCR $12 PWM Internal Correction Control Register Table 4-16 Pulse Width Modulator B Registers Address Map (PWMB_BASE = $00 F160) Register Acronym Address Offset Register Description PWMB_PMCTL $0 Control Register PWMB_PMFCTL $1 Fault Control Register PWMB_PMFSA $2 Fault Status Acknowledge Register PWMB_PMOUT $3 Output Control Register PWMB_PMCNT $4 Counter Register PWMB_PWMCM $5 Counter Modulo Register PWMB_PWMVAL0 $6 Value Register 0 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 51 Table 4-16 Pulse Width Modulator B Registers Address Map (Continued) (PWMB_BASE = $00 F160) Register Acronym Address Offset Register Description PWMB_PWMVAL1 $7 Value Register 1 PWMB_PWMVAL2 $8 Value Register 2 PWMB_PWMVAL3 $9 Value Register 3 PWMB_PWMVAL4 $A Value Register 4 PWMB_PWMVAL5 $B Value Register 5 PWMB_PMDEADTM $C Dead Time Register PWMB_PMDISMAP1 $D Disable Mapping Register 1 PWMB_PMDISMAP2 $E Disable Mapping Register 2 PWMB_PMCFG $F Configure Register PWMB_PMCCR $10 Channel Control Register PWMB_PMPORT $11 Port Register PWMB_PMICCR $12 PWM Internal Correction Control Register Table 4-17 Quadrature Decoder 0 Registers Address Map (DEC0_BASE = $00 F180) Register Acronym Address Offset Register Description DEC0_DECCR $0 Decoder Control Register DEC0_FIR $1 Filter Interval Register DEC0_WTR $2 Watchdog Time-out Register DEC0_POSD $3 Position Difference Counter Register DEC0_POSDH $4 Position Difference Counter Hold Register DEC0_REV $5 Revolution Counter Register DEC0_REVH $6 Revolution Hold Register DEC0_UPOS $7 Upper Position Counter Register DEC0_LPOS $8 Lower Position Counter Register DEC0_UPOSH $9 Upper Position Hold Register DEC0_LPOSH $A Lower Position Hold Register DEC0_UIR $B Upper Initialization Register DEC0_LIR $C Lower Initialization Register DEC0_IMR $D Input Monitor Register 56F8335 Technical Data, Rev. 1 52 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-18 Quadrature Decoder 1 Registers Address Map (DEC1_BASE = $00 F190) Quadrature Decoder 1 is NOT available in the 56F8135 device Register Acronym Address Offset Register Description DEC1_DECCR $0 Decoder Control Register DEC1_FIR $1 Filter Interval Register DEC1_WTR $2 Watchdog Time-out Register DEC1_POSD $3 Position Difference Counter Register DEC1_POSDH $4 Position Difference Counter Hold Register DEC1_REV $5 Revolution Counter Register DEC1_REVH $6 Revolution Hold Register DEC1_UPOS $7 Upper Position Counter Register DEC1_LPOS $8 Lower Position Counter Register DEC1_UPOSH $9 Upper Position Hold Register DEC1_LPOSH $A Lower Position Hold Register DEC1_UIR $B Upper Initialization Register DEC1_LIR $C Lower Initialization Register DEC1_IMR $D Input Monitor Register Table 4-19 Interrupt Control Registers Address Map (ITCN_BASE = $00 F1A0) Register Acronym Address Offset Register Description IPR 0 $0 Interrupt Priority Register 0 IPR 1 $1 Interrupt Priority Register 1 IPR 2 $2 Interrupt Priority Register 2 IPR 3 $3 Interrupt Priority Register 3 IPR 4 $4 Interrupt Priority Register 4 IPR 5 $5 Interrupt Priority Register 5 IPR 6 $6 Interrupt Priority Register 6 IPR 7 $7 Interrupt Priority Register 7 IPR 8 $8 Interrupt Priority Register 8 IPR 9 $9 Interrupt Priority Register 9 VBA $A Vector Base Address Register FIM0 $B Fast Interrupt Match Register 0 FIVAL0 $C Fast Interrupt Vector Address Low 0 Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 53 Table 4-19 Interrupt Control Registers Address Map (Continued) (ITCN_BASE = $00 F1A0) Register Acronym Address Offset Register Description FIVAH0 $D Fast Interrupt Vector Address High 0 Register FIM1 $E Fast Interrupt Match Register 1 FIVAL1 $F Fast Interrupt Vector Address Low 1 Register FIVAH1 $10 Fast Interrupt Vector Address High 1 Register IRQP 0 $11 IRQ Pending Register 0 IRQP 1 $12 IRQ Pending Register 1 IRQP 2 $13 IRQ Pending Register 2 IRQP 3 $14 IRQ Pending Register 3 IRQP 4 $15 IRQ Pending Register 4 IRQP 5 $16 IRQ Pending Register 5 Reserved ICTL $1D Interrupt Control Register Table 4-20 Analog-to-Digital Converter Registers Address Map (ADCA_BASE = $00 F200) Register Acronym Address Offset Register Description ADCA_CR1 $0 Control Register 1 ADCA_CR2 $1 Control Register 2 ADCA_ZCC $2 Zero Crossing Control Register ADCA_LST 1 $3 Channel List Register 1 ADCA_LST 2 $4 Channel List Register 2 ADCA_SDIS $5 Sample Disable Register ADCA_STAT $6 Status Register ADCA_LSTAT $7 Limit Status Register ADCA_ZCSTAT $8 Zero Crossing Status Register ADCA_RSLT 0 $9 Result Register 0 ADCA_RSLT 1 $A Result Register 1 ADCA_RSLT 2 $B Result Register 2 ADCA_RSLT 3 $C Result Register 3 ADCA_RSLT 4 $D Result Register 4 ADCA_RSLT 5 $E Result Register 5 ADCA_RSLT 6 $F Result Register 6 56F8335 Technical Data, Rev. 1 54 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-20 Analog-to-Digital Converter Registers Address Map (Continued) (ADCA_BASE = $00 F200) Register Acronym Address Offset Register Description ADCA_RSLT 7 $10 Result Register 7 ADCA_LLMT 0 $11 Low Limit Register 0 ADCA_LLMT 1 $12 Low Limit Register 1 ADCA_LLMT 2 $13 Low Limit Register 2 ADCA_LLMT 3 $14 Low Limit Register 3 ADCA_LLMT 4 $15 Low Limit Register 4 ADCA_LLMT 5 $16 Low Limit Register 5 ADCA_LLMT 6 $17 Low Limit Register 6 ADCA_LLMT 7 $18 Low Limit Register 7 ADCA_HLMT 0 $19 High Limit Register 0 ADCA_HLMT 1 $1A High Limit Register 1 ADCA_HLMT 2 $1B High Limit Register 2 ADCA_HLMT 3 $1C High Limit Register 3 ADCA_HLMT 4 $1D High Limit Register 4 ADCA_HLMT 5 $1E High Limit Register 5 ADCA_HLMT 6 $1F High Limit Register 6 ADCA_HLMT 7 $20 High Limit Register 7 ADCA_OFS 0 $21 Offset Register 0 ADCA_OFS 1 $22 Offset Register 1 ADCA_OFS 2 $23 Offset Register 2 ADCA_OFS 3 $24 Offset Register 3 ADCA_OFS 4 $25 Offset Register 4 ADCA_OFS 5 $26 Offset Register 5 ADCA_OFS 6 $27 Offset Register 6 ADCA_OFS 7 $28 Offset Register 7 ADCA_POWER $29 Power Control Register ADCA_CAL $2A ADC Calibration Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 55 Table 4-21 Analog-to-Digital Converter Registers Address Map (ADCB_BASE = $00 F240) Register Acronym Address Offset Register Description ADCB_CR1 $0 Control Register 1 ADCB_CR2 $1 Control Register 2 ADCB_ZCC $2 Zero Crossing Control Register ADCB_LST 1 $3 Channel List Register 1 ADCB_LST 2 $4 Channel List Register 2 ADCB_SDIS $5 Sample Disable Register ADCB_STAT $6 Status Register ADCB_LSTAT $7 Limit Status Register ADCB_ZCSTAT $8 Zero Crossing Status Register ADCB_RSLT 0 $9 Result Register 0 ADCB_RSLT 1 $A Result Register 1 ADCB_RSLT 2 $B Result Register 2 ADCB_RSLT 3 $C Result Register 3 ADCB_RSLT 4 $D Result Register 4 ADCB_RSLT 5 $E Result Register 5 ADCB_RSLT 6 $F Result Register 6 ADCB_RSLT 7 $10 Result Register 7 ADCB_LLMT 0 $11 Low Limit Register 0 ADCB_LLMT 1 $12 Low Limit Register 1 ADCB_LLMT 2 $13 Low Limit Register 2 ADCB_LLMT 3 $14 Low Limit Register 3 ADCB_LLMT 4 $15 Low Limit Register 4 ADCB_LLMT 5 $16 Low Limit Register 5 ADCB_LLMT 6 $17 Low Limit Register 6 ADCB_LLMT 7 $18 Low Limit Register 7 ADCB_HLMT 0 $19 High Limit Register 0 ADCB_HLMT 1 $1A High Limit Register 1 ADCB_HLMT 2 $1B High Limit Register 2 ADCB_HLMT 3 $1C High Limit Register 3 ADCB_HLMT 4 $1D High Limit Register 4 ADCB_HLMT 5 $1E High Limit Register 5 ADCB_HLMT 6 $1F High Limit Register 6 ADCB_HLMT 7 $20 High Limit Register 7 56F8335 Technical Data, Rev. 1 56 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-21 Analog-to-Digital Converter Registers Address Map (Continued) (ADCB_BASE = $00 F240) Register Acronym Address Offset Register Description ADCB_OFS 0 $21 Offset Register 0 ADCB_OFS 1 $22 Offset Register 1 ADCB_OFS 2 $23 Offset Register 2 ADCB_OFS 3 $24 Offset Register 3 ADCB_OFS 4 $25 Offset Register 4 ADCB_OFS 5 $26 Offset Register 5 ADCB_OFS 6 $27 Offset Register 6 ADCB_OFS 7 $28 Offset Register 7 ADCB_POWER $29 Power Control Register ADCB_CAL $2A ADC Calibration Register Table 4-22 Temperature Sensor Register Address Map (TSENSOR_BASE = $00 F270) Temperature Sensor is NOT available in the 56F8135 device Register Acronym TSENSOR_CNTL Address Offset $0 Register Description Control Register Table 4-23 Serial Communication Interface 0 Registers Address Map (SCI0_BASE = $00 F280) Register Acronym Address Offset Register Description SCI0_SCIBR $0 Baud Rate Register SCI0_SCICR $1 Control Register Reserved SCI0_SCISR $3 Status Register SCI0_SCIDR $4 Data Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 57 Table 4-24 Serial Communication Interface 1 Registers Address Map (SCI1_BASE = $00 F290) Register Acronym Address Offset Register Description SCI1_SCIBR $0 Baud Rate Register SCI1_SCICR $1 Control Register Reserved SCI1_SCISR $3 Status Register SCI1_SCIDR $4 Data Register Table 4-25 Serial Peripheral Interface 0 Registers Address Map (SPI0_BASE = $00 F2A0) Register Acronym Address Offset Register Description SPI0_SPSCR $0 Status and Control Register SPI0_SPDSR $1 Data Size Register SPI0_SPDRR $2 Data Receive Register SPI0_SPDTR $3 Data Transmitter Register Table 4-26 Serial Peripheral Interface 1 Registers Address Map (SPI1_BASE = $00 F2B0) Register Acronym Address Offset Register Description SPI1_SPSCR $0 Status and Control Register SPI1_SPDSR $1 Data Size Register SPI1_SPDRR $2 Data Receive Register SPI1_SPDTR $3 Data Transmitter Register Table 4-27 Computer Operating Properly Registers Address Map (COP_BASE = $00 F2C0) Register Acronym Address Offset Register Description COPCTL $0 Control Register COPTO $1 Time-Out Register COPCTR $2 Counter Register 56F8335 Technical Data, Rev. 1 58 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-28 Clock Generation Module Registers Address Map (CLKGEN_BASE = $00 F2D0) Register Acronym Address Offset Register Description PLLCR $0 Control Register PLLDB $1 Divide-By Register PLLSR $2 Status Register Reserved SHUTDOWN $4 Shutdown Register OSCTL $5 Oscillator Control Register Table 4-29 GPIOA Registers Address Map (GPIOA_BASE = $00 F2E0) Register Acronym Address Offset Register Description Reset Value GPIOA_PUR $0 Pull-up Enable Register 0 x 3FFF GPIOA_DR $1 Data Register 0 x 0000 GPIOA_DDR $2 Data Direction Register 0 x 0000 GPIOA_PER $3 Peripheral Enable Register 0 x 3FFF GPIOA_IAR $4 Interrupt Assert Register 0 x 0000 GPIOA_IENR $5 Interrupt Enable Register 0 x 0000 GPIOA_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOA_IPR $7 Interrupt Pending Register 0 x 0000 GPIOA_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOA_PPMODE $9 Push-Pull Mode Register 0 x 3FFF GPIOA_RAWDATA $A Raw Data Input Register — 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 59 Table 4-30 GPIOB Registers Address Map (GPIOB_BASE = $00 F300) Register Acronym Address Offset Register Description Reset Value GPIOB_PUR $0 Pull-up Enable Register 0 x 00FF GPIOB_DR $1 Data Register 0 x 0000 GPIOB_DDR $2 Data Direction Register 0 x 0000 GPIOB_PER $3 Peripheral Enable Register 0 x 0000 GPIOB_IAR $4 Interrupt Assert Register 0 x 0000 GPIOB_IENR $5 Interrupt Enable Register 0 x 0000 GPIOB_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOB_IPR $7 Interrupt Pending Register 0 x 0000 GPIOB_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOB_PPMODE $9 Push-Pull Mode Register 0 x 00FF GPIOB_RAWDATA $A Raw Data Input Register — Table 4-31 GPIOC Registers Address Map (GPIOC_BASE = $00 F310) Register Acronym Address Offset Register Description Reset Value GPIOC_PUR $0 Pull-up Enable Register 0 x 07FF GPIOC_DR $1 Data Register 0 x 0000 GPIOC_DDR $2 Data Direction Register 0 x 0000 GPIOC_PER $3 Peripheral Enable Register 0 x 07FF GPIOC_IAR $4 Interrupt Assert Register 0 x 0000 GPIOC_IENR $5 Interrupt Enable Register 0 x 0000 GPIOC_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOC_IPR $7 Interrupt Pending Register 0 x 0000 GPIOC_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOC_PPMODE $9 Push-Pull Mode Register 0 x 07FF GPIOC_RAWDATA $A Raw Data Input Register — 56F8335 Technical Data, Rev. 1 60 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-32 GPIOD Registers Address Map (GPIOD_BASE = $00 F320) Register Acronym Address Offset Register Description Reset Value GPIOD_PUR $0 Pull-up Enable Register 0 x 1FFF GPIOD_DR $1 Data Register 0 x 0000 GPIOD_DDR $2 Data Direction Register 0 x 0000 GPIOD_PER $3 Peripheral Enable Register 0 x 1FC0 GPIOD_IAR $4 Interrupt Assert Register 0 x 0000 GPIOD_IENR $5 Interrupt Enable Register 0 x 0000 GPIOD_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOD_IPR $7 Interrupt Pending Register 0 x 0000 GPIOD_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOD_PPMODE $9 Push-Pull Mode Register 0 x 1FFF GPIOD_RAWDATA $A Raw Data Input Register — Table 4-33 GPIOE Registers Address Map (GPIOE_BASE = $00 F330) Register Acronym Address Offset Register Description Reset Value GPIOE_PUR $0 Pull-up Enable Register 0 x 3FFF GPIOE_DR $1 Data Register 0 x 0000 GPIOE_DDR $2 Data Direction Register 0 x 0000 GPIOE_PER $3 Peripheral Enable Register 0 x 3FFF GPIOE_IAR $4 Interrupt Assert Register 0 x 0000 GPIOE_IENR $5 Interrupt Enable Register 0 x 0000 GPIOE_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOE_IPR $7 Interrupt Pending Register 0 x 0000 GPIOE_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOE_PPMODE $9 Push-Pull Mode Register 0 x 3FFF GPIOE_RAWDATA $A Raw Data Input Register — 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 61 Table 4-34 GPIOF Registers Address Map (GPIOF_BASE = $00 F340) Register Acronym Address Offset Register Description Reset Value GPIOF_PUR $0 Pull-up Enable Register 0 x FFFF GPIOF_DR $1 Data Register 0 x 0000 GPIOF_DDR $2 Data Direction Register 0 x 0000 GPIOF_PER $3 Peripheral Enable Register 0 x FFFF GPIOF_IAR $4 Interrupt Assert Register 0 x 0000 GPIOF_IENR $5 Interrupt Enable Register 0 x 0000 GPIOF_IPOLR $6 Interrupt Polarity Register 0 x 0000 GPIOF_IPR $7 Interrupt Pending Register 0 x 0000 GPIOF_IESR $8 Interrupt Edge-Sensitive Register 0 x 0000 GPIOF_PPMODE $9 Push-Pull Mode Register 0 x FFFF GPIOF_RAWDATA $A Raw Data Input Register — Table 4-35 System Integration Module Registers Address Map (SIM_BASE = $00 F350) Register Acronym Address Offset Register Description SIM_CONTROL $0 Control Register SIM_RSTSTS $1 Reset Status Register SIM_SCR0 $2 Software Control Register 0 SIM_SCR1 $3 Software Control Register 1 SIM_SCR2 $4 Software Control Register 2 SIM_SCR3 $5 Software Control Register 3 SIM_MSH_ID $6 Most Significant Half JTAG ID SIM_LSH_ID $7 Least Significant Half JTAG ID SIM_PUDR $8 Pull-up Disable Register Reserved SIM_CLKOSR $A Clock Out Select Register SIM_GPS $B Quad Decoder 1 / Timer B / SPI 1 Select Register SIM_PCE $C Peripheral Clock Enable Register SIM_ISALH $D I/O Short Address Location High Register SIM_ISALL $E I/O Short Address Location Low Register 56F8335 Technical Data, Rev. 1 62 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-36 Power Supervisor Registers Address Map (LVI_BASE = $00 F360) Register Acronym Address Offset Register Description LVI_CONTROL $0 Control Register LVI_STATUS $1 Status Register Table 4-37 Flash Module Registers Address Map (FM_BASE = $00 F400) Register Acronym Address Offset Register Description FMCLKD $0 Clock Divider Register FMMCR $1 Module Control Register Reserved FMSECH $3 Security High Half Register FMSECL $4 Security Low Half Register Reserved Reserved FMPROT $10 Protection Register (Banked) FMPROTB $11 Protection Boot Register (Banked) Reserved FMUSTAT $13 User Status Register (Banked) FMCMD $14 Command Register (Banked) Reserved Reserved FMOPT 0 $1A 16-Bit Information Option Register 0 Hot temperature ADC reading of Temperature Sensor; value set during factory test FMOPT 1 $1B 16-Bit Information Option Register 1 Not used FMOPT 2 $1C 16-Bit Information Option Register 2 Room temperature ADC reading of Temperature Sensor; value set during factory test 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 63 Table 4-38 FlexCAN Registers Address Map (FC_BASE = $00 F800) FlexCAN is NOT available in the 56F8135 device Register Acronym FCMCR Address Offset $0 Register Description Module Configuration Register Reserved FCCTL0 $3 Control Register 0 Register FCCTL1 $4 Control Register 1 Register FCTMR $5 Free-Running Timer Register FCMAXMB $6 Maximum Message Buffer Configuration Register Reserved FCRXGMASK_H $8 Receive Global Mask High Register FCRXGMASK_L $9 Receive Global Mask Low Register FCRX14MASK_H $A Receive Buffer 14 Mask High Register FCRX14MASK_L $B Receive Buffer 14 Mask Low Register FCRX15MASK_H $C Receive Buffer 15 Mask High Register FCRX15MASK_L $D Receive Buffer 15 Mask Low Register Reserved FCSTATUS $10 Error and Status Register FCIMASK1 $11 Interrupt Masks 1 Register FCIFLAG1 $12 Interrupt Flags 1 Register FCR/T_ERROR_CNTRS $13 Receive and Transmit Error Counters Register Reserved Reserved Reserved FCMB0_CONTROL $40 Message Buffer 0 Control / Status Register FCMB0_ID_HIGH $41 Message Buffer 0 ID High Register FCMB0_ID_LOW $42 Message Buffer 0 ID Low Register FCMB0_DATA $43 Message Buffer 0 Data Register FCMB0_DATA $44 Message Buffer 0 Data Register FCMB0_DATA $45 Message Buffer 0 Data Register FCMB0_DATA $46 Message Buffer 0 Data Register Reserved FCMSB1_CONTROL $48 Message Buffer 1 Control / Status Register FCMSB1_ID_HIGH $49 Message Buffer 1 ID High Register 56F8335 Technical Data, Rev. 1 64 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = $00 F800) FlexCAN is NOT available in the 56F8135 device Register Acronym Address Offset Register Description FCMSB1_ID_LOW $4A Message Buffer 1 ID Low Register FCMB1_DATA $4B Message Buffer 1 Data Register FCMB1_DATA $4C Message Buffer 1 Data Register FCMB1_DATA $4D Message Buffer 1 Data Register FCMB1_DATA $4E Message Buffer 1 Data Register Reserved FCMB2_CONTROL $50 Message Buffer 2 Control / Status Register FCMB2_ID_HIGH $51 Message Buffer 2 ID High Register FCMB2_ID_LOW $52 Message Buffer 2 ID Low Register FCMB2_DATA $53 Message Buffer 2 Data Register FCMB2_DATA $54 Message Buffer 2 Data Register FCMB2_DATA $55 Message Buffer 2 Data Register FCMB2_DATA $56 Message Buffer 2 Data Register Reserved FCMB3_CONTROL $58 Message Buffer 3 Control / Status Register FCMB3_ID_HIGH $59 Message Buffer 3 ID High Register FCMB3_ID_LOW $5A Message Buffer 3 ID Low Register FCMB3_DATA $5B Message Buffer 3 Data Register FCMB3_DATA $5C Message Buffer 3 Data Register FCMB3_DATA $5D Message Buffer 3 Data Register FCMB3_DATA $5E Message Buffer 3 Data Register Reserved FCMB4_CONTROL $60 Message Buffer 4 Control / Status Register FCMB4_ID_HIGH $61 Message Buffer 4 ID High Register FCMB4_ID_LOW $62 Message Buffer 4 ID Low Register FCMB4_DATA $63 Message Buffer 4 Data Register FCMB4_DATA $64 Message Buffer 4 Data Register FCMB4_DATA $65 Message Buffer 4 Data Register FCMB4_DATA $66 Message Buffer 4 Data Register Reserved FCMB5_CONTROL $68 Message Buffer 5 Control / Status Register FCMB5_ID_HIGH $69 Message Buffer 5 ID High Register FCMB5_ID_LOW $6A Message Buffer 5 ID Low Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 65 Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = $00 F800) FlexCAN is NOT available in the 56F8135 device Register Acronym Address Offset Register Description FCMB5_DATA $6B Message Buffer 5 Data Register FCMB5_DATA $6C Message Buffer 5 Data Register FCMB5_DATA $6D Message Buffer 5 Data Register FCMB5_DATA $6E Message Buffer 5 Data Register Reserved FCMB6_CONTROL $70 Message Buffer 6 Control / Status Register FCMB6_ID_HIGH $71 Message Buffer 6 ID High Register FCMB6_ID_LOW $72 Message Buffer 6 ID Low Register FCMB6_DATA $73 Message Buffer 6 Data Register FCMB6_DATA $74 Message Buffer 6 Data Register FCMB6_DATA $75 Message Buffer 6 Data Register FCMB6_DATA $76 Message Buffer 6 Data Register Reserved FCMB7_CONTROL $78 Message Buffer 7 Control / Status Register FCMB7_ID_HIGH $79 Message Buffer 7 ID High Register FCMB7_ID_LOW $7A Message Buffer 7 ID Low Register FCMB7_DATA $7B Message Buffer 7 Data Register FCMB7_DATA $7C Message Buffer 7 Data Register FCMB7_DATA $7D Message Buffer 7 Data Register FCMB7_DATA $7E Message Buffer 7 Data Register Reserved FCMB8_CONTROL $80 Message Buffer 8 Control / Status Register FCMB8_ID_HIGH $81 Message Buffer 8 ID High Register FCMB8_ID_LOW $82 Message Buffer 8 ID Low Register FCMB8_DATA $83 Message Buffer 8 Data Register FCMB8_DATA $84 Message Buffer 8 Data Register FCMB8_DATA $85 Message Buffer 8 Data Register FCMB8_DATA $86 Message Buffer 8 Data Register Reserved FCMB9_CONTROL $88 Message Buffer 9 Control / Status Register FCMB9_ID_HIGH $89 Message Buffer 9 ID High Register FCMB9_ID_LOW $8A Message Buffer 9 ID Low Register FCMB9_DATA $8B Message Buffer 9 Data Register 56F8335 Technical Data, Rev. 1 66 Freescale Semiconductor Preliminary Peripheral Memory Mapped Registers Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = $00 F800) FlexCAN is NOT available in the 56F8135 device Register Acronym Address Offset Register Description FCMB9_DATA $8C Message Buffer 9 Data Register FCMB9_DATA $8D Message Buffer 9 Data Register FCMB9_DATA $8E Message Buffer 9 Data Register Reserved FCMB10_CONTROL $90 Message Buffer 10 Control / Status Register FCMB10_ID_HIGH $91 Message Buffer 10 ID High Register FCMB10_ID_LOW $92 Message Buffer 10 ID Low Register FCMB10_DATA $93 Message Buffer 10 Data Register FCMB10_DATA $94 Message Buffer 10 Data Register FCMB10_DATA $95 Message Buffer 10 Data Register FCMB10_DATA $96 Message Buffer 10 Data Register Reserved FCMB11_CONTROL $98 Message Buffer 11 Control / Status Register FCMB11_ID_HIGH $99 Message Buffer 11 ID High Register FCMB11_ID_LOW $9A Message Buffer 11 ID Low Register FCMB11_DATA $9B Message Buffer 11 Data Register FCMB11_DATA $9C Message Buffer 11 Data Register FCMB11_DATA $9D Message Buffer 11 Data Register FCMB11_DATA $9E Message Buffer 11 Data Register Reserved FCMB12_CONTROL $A0 Message Buffer 12 Control / Status Register FCMB12_ID_HIGH $A1 Message Buffer 12 ID High Register FCMB12_ID_LOW $A2 Message Buffer 12 ID Low Register FCMB12_DATA $A3 Message Buffer 12 Data Register FCMB12_DATA $A4 Message Buffer 12 Data Register FCMB12_DATA $A5 Message Buffer 12 Data Register FCMB12_DATA $A6 Message Buffer 12 Data Register Reserved FCMB13_CONTROL $A8 Message Buffer 13 Control / Status Register FCMB13_ID_HIGH $A9 Message Buffer 13 ID High Register FCMB13_ID_LOW $AA Message Buffer 13 ID Low Register FCMB13_DATA $AB Message Buffer 13 Data Register 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 67 Table 4-38 FlexCAN Registers Address Map (Continued) (FC_BASE = $00 F800) FlexCAN is NOT available in the 56F8135 device Register Acronym Address Offset Register Description FCMB13_DATA $AC Message Buffer 13 Data Register FCMB13_DATA $AD Message Buffer 13 Data Register FCMB13_DATA $AE Message Buffer 13 Data Register Reserved FCMB14_CONTROL $B0 Message Buffer 14 Control / Status Register FCMB14_ID_HIGH $B1 Message Buffer 14 ID High Register FCMB14_ID_LOW $B2 Message Buffer 14 ID Low Register FCMB14_DATA $B3 Message Buffer 14 Data Register FCMB14_DATA $B4 Message Buffer 14 Data Register FCMB14_DATA $B5 Message Buffer 14 Data Register FCMB14_DATA $B6 Message Buffer 14 Data Register Reserved FCMB15_CONTROL $B8 Message Buffer 15 Control / Status Register FCMB15_ID_HIGH $B9 Message Buffer 15 ID High Register FCMB15_ID_LOW $BA Message Buffer 15 ID Low Register FCMB15_DATA $BB Message Buffer 15 Data Register FCMB15_DATA $BC Message Buffer 15 Data Register FCMB15_DATA $BD Message Buffer 15 Data Register FCMB15_DATA $BE Message Buffer 15 Data Register Reserved 4.8 Factory Programmed Memory The Boot Flash memory block is programmed during manufacturing with a default Serial Bootloader program. The Serial Bootloader application can be used to load a user application into the Program and Data Flash(NOT available in the 56F8135) memories of the device. The 56F83xx SCI/CAN Bootloader User Manual (MC56F83xxBLUM) provides detailed information on this firmware. An application note, Production Flash Programming (AN1973), details how the Serial Bootloader program can be used to perform production Flash programming of the on-board Flash memories as well as other potential methods. Like all the Flash memory blocks, the Boot Flash can be erased and programmed by the user. The Serial Bootloader application is programmed as an aid to the end user, but is not required to be used or maintained in the Boot Flash memory. 56F8335 Technical Data, Rev. 1 68 Freescale Semiconductor Preliminary Introduction Part 5 Interrupt Controller (ITCN) 5.1 Introduction The Interrupt Controller (ITCN) module is used to arbitrate between various interrupt requests (IRQs), to signal to the 56800E core when an interrupt of sufficient priority exists, and to what address to jump in order to service this interrupt. 5.2 Features The ITCN module design includes these distinctive features: • • • • Programmable priority levels for each IRQ Two programmable Fast Interrupts Notification to SIM module to restart clocks out of Wait and Stop modes Drives initial address on the address bus after reset For further information, see Table 4-5, Interrupt Vector Table Contents. 5.3 Functional Description The Interrupt Controller is a slave on the IPBus. It contains registers allowing each of the 82 interrupt sources to be set to one of four priority levels, excluding certain interrupts of fixed priority. Next, all of the interrupt requests of a given level are priority encoded to determine the lowest numerical value of the active interrupt requests for that level. Within a given priority level, 0 is the highest priority, while number 81 is the lowest. 5.3.1 Normal Interrupt Handling Once the ITCN has determined that an interrupt is to be serviced and which interrupt has the highest priority, an interrupt vector address is generated. Normal interrupt handling concatenates the VBA and the vector number to determine the vector address. In this way, an offset is generated into the vector table for each interrupt. 5.3.2 Interrupt Nesting Interrupt exceptions may be nested to allow an IRQ of higher priority than the current exception to be serviced. The following tables define the nesting requirements for each priority level. Table 5-1 Interrupt Mask Bit Definition SR[9]1 SR[8]1 0 0 Priorities 0, 1, 2, 3 None 0 1 Priorities 1, 2, 3 Priority 0 1 0 Priorities 2, 3 Priorities 0, 1 1 1 Priority 3 Priorities 0, 1, 2 Permitted Exceptions Masked Exceptions 1. Core status register bits indicating current interrupt mask within the core. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 69 Table 5-2. Interrupt Priority Encoding IPIC_LEVEL[1:0]1 Current Interrupt Priority Level Required Nested Exception Priority 00 No Interrupt or SWILP Priorities 0, 1, 2, 3 01 Priority 0 Priorities 1, 2, 3 10 Priority 1 Priorities 2, 3 11 Priorities 2 or 3 Priority 3 1. See IPIC field definition in Part 5.6.30.2 5.3.3 Fast Interrupt Handling Fast interrupts are described in the DSP56F800E Reference Manual. The interrupt controller recognizes fast interrupts before the core does. A fast interrupt is defined (to the ITCN) by: 1. Setting the priority of the interrupt as level 2, with the appropriate field in the IPR registers 2. Setting the FIMn register to the appropriate vector number 3. Setting the FIVALn and FIVAHn registers with the address of the code for the fast interrupt When an interrupt occurs, its vector number is compared with the FIM0 and FIM1 register values. If a match occurs, and it is a level 2 interrupt, the ITCN handles it as a fast interrupt. The ITCN takes the vector address from the appropriate FIVALn and FIVAHn registers, instead of generating an address that is an offset from the VBA. The core then fetches the instruction from the indicated vector adddress and if it is not a JSR, the core starts its fast interrupt handling. 56F8335 Technical Data, Rev. 1 70 Freescale Semiconductor Preliminary Block Diagram 5.4 Block Diagram any0 Priority Level INT1 2 -> 4 Decode Level 0 82 -> 7 Priority Encoder 7 INT VAB CONTROL any3 Level 3 Priority Level INT82 IPIC IACK SR[9:8] 82 -> 7 Priority Encoder 7 PIC_EN 2 -> 4 Decode Figure 5-1 Interrupt Controller Block Diagram 5.5 Operating Modes The ITCN module design contains two major modes of operation: • • Functional Mode The ITCN is in this mode by default. Wait and Stop Modes During Wait and Stop modes, the system clocks and the 56800E core are turned off. The ITCN will signal a pending IRQ to the System Integration Module (SIM) to restart the clocks and service the IRQ. An IRQ can only wake up the core if the IRQ is enabled prior to entering the Wait or Stop mode. Also, the IRQA and IRQB signals automatically become low-level sensitive in these modes, even if the control register bits are set to make them falling-edge sensitive. This is because there is no clock available to detect the falling edge. A peripheral which requires a clock to generate interrupts will not be able to generate interrupts during Stop mode. The FlexCAN module can wake the device from Stop mode, and a reset will do just that, or IRQA and IRQB can wake it up. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 71 5.6 Register Descriptions A register address is the sum of a base address and an address offset. The base address is defined at the system level and the address offset is defined at the module level. The ITCN peripheral has 24 registers. Table 5-3 ITCN Register Summary (ITCN_BASE = $00F1A0) Register Acronym Base Address + Register Name Section Location IPR0 $0 Interrupt Priority Register 0 5.6.1 IPR1 $1 Interrupt Priority Register 1 5.6.2 IPR2 $2 Interrupt Priority Register 2 5.6.3 IPR3 $3 Interrupt Priority Register 3 5.6.4 IPR4 $4 Interrupt Priority Register 4 5.6.5 IPR5 $5 Interrupt Priority Register 5 5.6.6 IPR6 $6 Interrupt Priority Register 6 5.6.7 IPR7 $7 Interrupt Priority Register 7 5.6.8 IPR8 $8 Interrupt Priority Register 8 5.6.9 IPR9 $9 Interrupt Priority Register 9 5.6.10 VBA $A Vector Base Address Register 5.6.11 FIM0 $B Fast Interrupt 0 Match Register 5.6.12 FIVAL0 $C Fast Interrupt 0 Vector Address Low Register 5.6.13 FIVAH0 $D Fast Interrupt 0 Vector Address High Register 5.6.14 FIM1 $E Fast Interrupt 1 Match Register 5.6.15 FIVAL1 $F Fast Interrupt 1 Vector Address Low Register 5.6.16 FIVAH1 $10 Fast Interrupt 1 Vector Address High Register 5.6.17 IRQP0 $11 IRQ Pending Register 0 5.6.18 IRQP1 $12 IRQ Pending Register 1 5.6.19 IRQP2 $13 IRQ Pending Register 2 5.6.20 IRQP3 $14 IRQ Pending Register 3 5.6.21 IRQP4 $15 IRQ Pending Register 4 5.6.22 IRQP5 $16 IRQ Pending Register 5 5.6.23 Reserved ICTL $1D Interrupt Control Register 5.6.30 56F8335 Technical Data, Rev. 1 72 Freescale Semiconductor Preliminary Register Descriptions Add. Register Offset Name $0 IPR0 $1 IPR1 $2 IPR2 $3 IPR3 $4 IPR4 $5 IPR5 $6 IPR6 $7 IPR7 $8 IPR8 $9 IPR9 $A VBA $B FIM0 $C FIVAL0 $D FIVAH0 $E FIM1 R FIVAL1 $10 FIVAH1 $11 IRQP0 $12 IRQP1 $13 IRQP2 $14 IRQP3 $15 IRQP4 $16 IRQP5 14 0 0 0 0 13 R 12 BKPT_U0 IPL W 0 0 11 10 STPCNT IPL 0 0 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 W R W FMCBE IPL R R W R W R W R R W R W R FMCC IPL FMERR IPL GPIOD IPL GPIOE IPL GPIOF IPL SPI0_RCV IPL SPI1_XMIT IPL SPI1_RCV IPL W W $F 15 DEC1_XIRQ IPL DEC1_HIRQ IPL LOCK IPL FCMSGBUF IPL 0 0 SCI1_RCV IPL SCI1_RERR IPL RX_REG IPL 0 LVI IPL FCWKUP IPL 0 0 0 0 0 TX_REG IPL IRQB IPL TRBUF IPL IRQA IPL 0 0 FCERR IPL FCBOFF IPL GPIOA IPL GPIOB IPL GPIOC IPL SCI1_TIDL IPL SCI1_XMIT IPL SPI0_XMIT IPL DEC0_XIRQ IPL DEC0_HIRQ IPL 0 0 TMRC0 IPL TMRD3 IPL TMRD2 IPL TMRD1 IPL TMRD0 IPL TMRA0 IPL TMRB3 IPL TMRB2 IPL TMRB1 IPL TMRB0 IPL TMRC3 IPL TMRC2 IPL TMRC1 IPL SCI0_RCV IPL SCI0_RERR IPL SCI0_TIDL IPL SCI0_XMIT IPL TMRA3 IPL TMRA2 IPL TMRA1 IPL PWMA_F IPL PWMB_F IPL PWMB_RL IPL ADCA_ZC IPL ABCB_ZC IPL ADCA_CC IPL ADCB_CC IPL 0 0 0 0 0 0 0 0 PWMA_RL IPL VECTOR BASE ADDRESS W R 0 0 0 0 0 0 FAST INTERRUPT 0 W R FAST INTERRUPT 0 VECTOR ADDRESS LOW W R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FAST INTERRUPT 0 VECTOR ADDRESS HIGH W R FAST INTERRUPT 1 W R FAST INTERRUPT 1 VECTOR ADDRESS LOW W R 0 0 0 0 0 0 0 0 0 0 0 W 0 0 0 0 0 0 0 0 0 0 0 R FAST INTERRUPT 1 VECTOR ADDRESS HIGH PENDING [16:2] 1 W R PENDING [32:17] W R PENDING [48:33] W R PENDING [64:49] W R PENDING [80:65] W R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PENDING [81] W Reserved $1D ICTL R INT IPIC VAB INT_DIS W 1 IRQA IRQB STATE STATE IRQB EDG IRQA EDG = Reserved Figure 5-2 ITCN Register Map Summary 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 73 5.6.1 Interrupt Priority Register 0 (IPR0) Base + $0 15 14 Read 0 0 13 12 BKPT_U0IPL 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 STPCNT IPL Write RESET 0 0 0 0 0 0 Figure 5-3 Interrupt Priority Register 0 (IPR0) 5.6.1.1 Reserved—Bits 15–14 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.1.2 EOnCE Breakpoint Unit 0 Interrupt Priority Level (BKPT_U0 IPL)— Bits13–12 This field is used to set the interrupt priority levels for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 1 10 = IRQ is priority level 2 11 = IRQ is priority level 3 5.6.1.3 EOnCE Step Counter Interrupt Priority Level (STPCNT IPL)— Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 1 10 = IRQ is priority level 2 11 = IRQ is priority level 3 5.6.1.4 Reserved—Bits 9–0 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.2 Interrupt Priority Register 1 (IPR1) Base + $1 15 14 13 12 11 10 9 8 7 6 Read 0 0 0 0 0 0 0 0 0 0 5 4 RX_REG IPL 3 2 TX_REG IPL 1 0 TRBUF IPL Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 5-4 Interrupt Priority Register 1 (IPR1) 56F8335 Technical Data, Rev. 1 74 Freescale Semiconductor Preliminary Register Descriptions 5.6.2.1 Reserved—Bits 15–6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.2.2 EOnCE Receive Register Full Interrupt Priority Level (RX_REG IPL)—Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 1 10 = IRQ is priority level 2 11 = IRQ is priority level 3 5.6.2.3 EOnCE Transmit Register Empty Interrupt Priority Level (TX_REG IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 1 10 = IRQ is priority level 2 11 = IRQ is priority level 3 5.6.2.4 EOnCE Trace Buffer Interrupt Priority Level (TRBUF IPL)— Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 1 through 3. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 1 10 = IRQ is priority level 2 11 = IRQ is priority level 3 5.6.3 Interrupt Priority Register 2 (IPR2) Base + $2 15 14 13 12 11 10 9 8 7 6 Read FMCBE IPL FMCC IPL FMERR IPL LOCK IPL 5 4 0 0 LVI IPL 3 2 1 0 IRQB IPL IRQA IPL 0 0 Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 5-5 Interrupt Priority Register 2 (IPR2) 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 75 5.6.3.1 Flash Memory Command, Data, Address Buffers Empty Interrupt Priority Level (FMCBE IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.3.2 Flash Memory Command Complete Priority Level (FMCC IPL)— Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.3.3 Flash Memory Error Interrupt Priority Level (FMERR IPL)—Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.3.4 PLL Loss of Lock Interrupt Priority Level (LOCK IPL)—Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.3.5 Low Voltage Detector Interrupt Priority Level (LVI IPL)—Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 76 Freescale Semiconductor Preliminary Register Descriptions 5.6.3.6 Reserved—Bits 5–4 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.3.7 External IRQ B Interrupt Priority Level (IRQB IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.3.8 External IRQ A Interrupt Priority Level (IRQA IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. It is disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4 Interrupt Priority Register 3 (IPR3) Base + $3 Read Write RESET 15 14 13 12 11 10 GPIOD IPL GPIOE IPL GPIOF IPL 0 0 0 0 0 0 9 8 FCMSGBUF IPL 0 0 7 6 FCWKUP IPL 0 0 5 4 FCERR IPL 0 0 3 2 1 0 0 0 0 0 FCBOFF IPL 0 0 Figure 5-6 Interrupt Priority Register 3 (IPR3) 5.6.4.1 GPIOD Interrupt Priority Level (GPIOD IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 77 5.6.4.2 GPIOE Interrupt Priority Level (GPIOE IPL)—Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4.3 GPIOF Interrupt Priority Level (GPIOF IPL)—Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4.4 FlexCAN Message Buffer Interrupt Priority Level (FCMSGBUF IPL)— Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4.5 FlexCAN Wake Up Interrupt Priority Level (FCWKUP IPL)—Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4.6 FlexCAN Error Interrupt Priority Level (FCERR IPL)—Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 78 Freescale Semiconductor Preliminary Register Descriptions 5.6.4.7 FlexCAN Bus Off Interrupt Priority Level (FCBOFF IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.4.8 Reserved—Bits 1–0 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.5 Interrupt Priority Register 4 (IPR4) Base + $4 Read 15 14 SPI0_RCV IPL Write RESET 0 0 13 12 SPI1_XMIT IPL 0 0 11 10 9 8 7 6 SPI1_RCV IPL 0 0 0 0 0 0 0 0 0 0 5 4 GPIOA IPL 0 0 3 2 GPIOB IPL 0 0 1 0 GPIOC IPL 0 0 Figure 5-7 Interrupt Priority Register 4 (IPR4) 5.6.5.1 SPI 0 Receiver Full Interrupt Priority Level (SPI0_RCV IPL)— Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.5.2 SPI 1 Transmit Empty Interrupt Priority Level (SPI1_XMIT IPL)— Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 79 5.6.5.3 SPI 1 Receiver Full Interrupt Priority Level (SPI1_RCV IPL)— Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.5.4 Reserved—Bits 9–6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.5.5 GPIOA Interrupt Priority Level (GPIOA IPL)—Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.5.6 GPIOB Interrupt Priority Level (GPIOB IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.5.7 GPIOC Interrupt Priority Level (GPIOC IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 80 Freescale Semiconductor Preliminary Register Descriptions 5.6.6 Interrupt Priority Register 5 (IPR5) Base + $5 Read 15 14 13 DEC1_XIRQ IPL Write RESET 0 0 12 DEC1_HIRQ IPL 0 0 11 10 SCI1_RCV IPL 0 0 9 8 SCI1_RERR IPL 0 0 7 6 0 0 0 0 5 4 SCI1_TIDL IPL 0 0 3 2 SCI1_XMIT IPL 0 0 1 0 SPI0_XMIT IPL 0 0 Figure 5-8 Interrupt Priority Register 5 (IPR5) 5.6.6.1 Quadrature Decoder 1 INDEX Pulse Interrupt Priority Level (DEC1_XIRQ IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.6.2 Quadrature Decoder 1 HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC1_HIRQ IPL)—Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.6.3 SCI 1 Receiver Full Interrupt Priority Level (SCI1_RCV IPL)— Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 81 5.6.6.4 SCI 1 Receiver Error Interrupt Priority Level (SCI1_RERR IPL)— Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.6.5 Reserved—Bits 7–6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.6.6 SCI 1 Transmitter Idle Interrupt Priority Level (SCI1_TIDL IPL)— Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.6.7 SCI 1 Transmitter Empty Interrupt Priority Level (SCI1_XMIT IPL)— Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.6.8 SPI 0 Transmitter Empty Interrupt Priority Level (SPI0_XMIT IPL)— Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 82 Freescale Semiconductor Preliminary Register Descriptions 5.6.7 Interrupt Priority Register 6 (IPR6) Base + $6 Read 15 14 TMRC0 IPL Write RESET 0 0 13 12 TMRD3 IPL 0 0 11 10 TMRD2 IPL 0 0 9 8 TMRD1 IPL 0 0 7 6 TMRD0 IPL 0 0 5 4 0 0 0 0 3 2 DEC0_XIRQ IPL 0 0 1 0 DEC0_HIRQ IPL 0 0 Figure 5-9 Interrupt Priority Register 6 (IPR6) 5.6.7.1 Timer C, Channel 0 Interrupt Priority Level (TMRC0 IPL)— Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.7.2 Timer D, Channel 3 Interrupt Priority Level (TMRD3 IPL)— Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.7.3 Timer D, Channel 2 Interrupt Priority Level (TMRD2 IPL)— Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 83 5.6.7.4 Timer D, Channel 1 Interrupt Priority Level (TMRD1 IPL)— Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.7.5 Timer D, Channel 0 Interrupt Priority Level (TMRD0 IPL)— Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.7.6 Reserved—Bits 5–4 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.7.7 Quadrature Decoder 0, INDEX Pulse Interrupt Priority Level (DEC0_XIRQ IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.7.8 Quadrature Decoder 0, HOME Signal Transition or Watchdog Timer Interrupt Priority Level (DEC0_HIRQ IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 84 Freescale Semiconductor Preliminary Register Descriptions 5.6.8 Interrupt Priority Register 7 (IPR7) Base + $7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Read TMRA0 IPL TMRB3 IPL TMRB2 IPL TMRB1 IPL TMRB0 IPL TMRC3 IPL TMRC2 IPL TMRC1 IPL Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 5-10 Interrupt Priority Register (IPR7) 5.6.8.1 Timer A, Channel 0 Interrupt Priority Level (TMRA0 IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.2 Timer B, Channel 3 Interrupt Priority Level (TMRB3 IPL)—Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.3 Timer B, Channel 2 Interrupt Priority Level (TMRB2 IPL)—Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.4 Timer B, Channel 1 Interrupt Priority Level (TMRB1 IPL)—Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 85 5.6.8.5 Timer B, Channel 0 Interrupt Priority Level (TMRB0 IPL)—Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.6 Timer C, Channel 3 Interrupt Priority Level (TMRC3 IPL)—Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.7 Timer C, Channel 2 Interrupt Priority Level (TMRC2 IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.8.8 Timer C, Channel 1 Interrupt Priority Level (TMRC1 IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9 Interrupt Priority Register 8 (IPR8) Base + $8 Read Write RESET 15 14 SCI0_RCV IPL 0 0 13 12 SCI0_RERR IPL 0 0 11 10 0 0 0 0 9 8 SCI0_TIDL IPL 0 0 7 6 SCI0_XMIT IPL 0 0 5 4 TMRA3 IPL 0 0 3 2 TMRA2 IPL 0 0 1 0 TMRA1 IPL 0 0 Figure 5-11 Interrupt Priority Register 8 (IPR8) 56F8335 Technical Data, Rev. 1 86 Freescale Semiconductor Preliminary Register Descriptions 5.6.9.1 SCI0 Receiver Full Interrupt Priority Level (SCI0_RCV IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9.2 SCI0 Receiver Error Interrupt Priority Level (SCI0_RERR IPL)— Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9.3 Reserved—Bits 11–10 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.9.4 SCI0 Transmitter Idle Interrupt Priority Level (SCI0_TIDL IPL)— Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9.5 SCI0 Transmitter Empty Interrupt Priority Level (SCI0_XMIT IPL)— Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 87 5.6.9.6 Timer A, Channel 3 Interrupt Priority Level (TMRA3 IPL)—Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9.7 Timer A, Channel 2 Interrupt Priority Level (TMRA2 IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.9.8 Timer A, Channel 1 Interrupt Priority Level (TMRA1 IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10 Interrupt Priority Register 9 (IPR9) Base + $9 15 14 13 12 Read PWMA_F IPL PWMB_F IPL Write RESET 0 0 0 0 11 10 PWMA_RL IPL 0 0 9 8 PWMB_RL IPL 0 0 7 6 5 4 ADCA_ZC IPL ABCB_ZC IPL 0 0 0 0 3 2 ADCA_CC IPL 0 0 1 0 ADCB_CC IPL 0 0 Figure 5-12 Interrupt Priority Register 9 (IPR9) 5.6.10.1 PWM A Fault Interrupt Priority Level (PWMA_F IPL)—Bits 15–14 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 88 Freescale Semiconductor Preliminary Register Descriptions 5.6.10.2 PWM B Fault Interrupt Priority Level (PWMB_F IPL)—Bits 13–12 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10.3 Reload PWM A Interrupt Priority Level (PWMA_RL IPL)—Bits 11–10 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10.4 Reload PWM B Interrupt Priority Level (PWMB_RL IPL)—Bits 9–8 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10.5 ADC A Zero Crossing or Limit Error Interrupt Priority Level (ADCA_ZC IPL)—Bits 7–6 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 89 5.6.10.6 ADC B Zero Crossing Interrupt Priority Level (ADCB_ZC IPL)— Bits 5–4 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10.7 ADC A Conversion Complete Interrupt Priority Level (ADCA_CC IPL)—Bits 3–2 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.10.8 ADC B Conversion Complete Interrupt Priority Level (ADCB_CC IPL)—Bits 1–0 This field is used to set the interrupt priority level for IRQs. This IRQ is limited to priorities 0 through 2. They are disabled by default. • • • • 00 = IRQ disabled (default) 01 = IRQ is priority level 0 10 = IRQ is priority level 1 11 = IRQ is priority level 2 5.6.11 Vector Base Address Register (VBA) Base + $A 15 14 13 Read 0 0 0 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 VECTOR BASE ADDRESS Write RESET 0 0 0 0 0 0 0 0 0 0 0 Figure 5-13 Vector Base Address Register (VBA) 5.6.11.1 Reserved—Bits 15–13 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 56F8335 Technical Data, Rev. 1 90 Freescale Semiconductor Preliminary Register Descriptions 5.6.11.2 Interrupt Vector Base Address (VECTOR BASE ADDRESS)— Bits 12–0 The contents of this register determine the location of the Vector Address Table. The value in this register is used as the upper 13 bits of the interrupt Vector Address Bus (VAB[20:0]). The lower eight bits are determined based upon the highest-priority interrupt. They are then appended onto VBA before presenting the full interrupt address to the 56800E core; see Part 5.3.1 for details. 5.6.12 Fast Interrupt 0 Match Register (FIM0) Base + $B 15 14 13 12 11 10 9 8 7 Read 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 0 0 0 FAST INTERRUPT 0 Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 5-14 Fast Interrupt 0 Match Register (FIM0) 5.6.12.1 Reserved—Bits 15–7 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.12.2 Fast Interrupt 0 Vector Number (FAST INTERRUPT 0)—Bits 6–0 This value determines which IRQ will be a Fast Interrupt 0. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5. 5.6.13 Fast Interrupt 0 Vector Address Low Register (FIVAL0) Base + $C 15 14 13 12 11 10 Read 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 FAST INTERRUPT 0 VECTOR ADDRESS LOW Write RESET 0 0 0 0 0 0 0 0 0 0 Figure 5-15 Fast Interrupt 0 Vector Address Low Register (FIVAL0) 5.6.13.1 Fast Interrupt 0 Vector Address Low (FIVAL0)—Bits 15–0 The lower 16 bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAH0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 91 5.6.14 Fast Interrupt 0 Vector Address High Register (FIVAH0) Base + $D 15 14 13 12 11 10 9 8 7 6 5 Read 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 1 0 FAST INTERRUPT 0 VECTOR ADDRESS HIGH Write RESET 3 0 0 0 0 0 Figure 5-16 Fast Interrupt 0 Vector Address High Register (FIVAH0) 5.6.14.1 Reserved—Bits 15–5 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.14.2 Fast Interrupt 0 Vector Address High (FIVAH0)—Bits 4–0 The upper five bits of the vector address used for Fast Interrupt 0. This register is combined with FIVAL0 to form the 21-bit vector address for Fast Interrupt 0 defined in the FIM0 register. 5.6.15 Fast Interrupt 1 Match Register (FIM1) Base + $E 15 14 13 12 11 10 9 8 7 Read 0 0 0 0 0 0 0 0 0 6 5 4 3 2 1 0 0 0 FAST INTERRUPT 1 Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Figure 5-17 Fast Interrupt 1 Match Register (FIM1) 5.6.15.1 Reserved—Bits 15–7 This bit field is reserved or not implemented. It is read as 0, but cannot be modified by writing. 5.6.15.2 Fast Interrupt 1 Vector Number (FAST INTERRUPT 1)—Bits 6–0 This value determines which IRQ will be a Fast Interrupt 1. Fast interrupts vector directly to a service routine based on values in the Fast Interrupt Vector Address registers without having to go to a jump table first; see Part 5.3.3. IRQs used as fast interrupts must be set to priority level 2. Unexpected results will occur if a fast interrupt vector is set to any other priority. Fast interrupts automatically become the highest-priority level 2 interrupt, regardless of their location in the interrupt table, prior to being declared as fast interrupt. Fast Interrupt 0 has priority over Fast Interrupt 1. To determine the vector number of each IRQ, refer to Table 4-5. 56F8335 Technical Data, Rev. 1 92 Freescale Semiconductor Preliminary Register Descriptions 5.6.16 Fast Interrupt 1 Vector Address Low Register (FIVAL1) Base + $F 15 14 13 12 11 10 Read 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 FAST INTERRUPT 1 VECTOR ADDRESS LOW Write RESET 0 0 0 0 0 0 0 0 0 0 Figure 5-18 Fast Interrupt 1 Vector Address Low Register (FIVAL1) 5.6.16.1 Fast Interrupt 1 Vector Address Low (FIVAL1)—Bits 15–0 The lower 16 bits of the vector address are used for Fast Interrupt 1. This register is combined with FIVAH1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register. 5.6.17 Fast Interrupt 1 Vector Address High Register (FIVAH1) Base + $10 15 14 13 12 11 10 9 8 7 6 5 Read 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 2 1 0 FAST INTERRUPT 1 VECTOR ADDRESS HIGH Write RESET 3 0 0 0 0 0 Figure 5-19 Fast Interrupt 1 Vector Address High Register (FIVAH1) 5.6.17.1 Reserved—Bits 15–5 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 5.6.17.2 Fast Interrupt 1 Vector Address High (FIVAH1)—Bits 4–0 The upper five bits of the vector address are used for Fast Interrupt 1. This register is combined with FIVAL1 to form the 21-bit vector address for Fast Interrupt 1 defined in the FIM1 register. 5.6.18 IRQ Pending 0 Register (IRQP0) Base + $11 15 14 13 12 11 10 Read 9 8 7 6 5 4 3 2 1 PENDING [16:2] 0 1 Write RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Figure 5-20 IRQ Pending 0 Register (IRQP0) 5.6.18.1 IRQ Pending (PENDING)—Bits 16–2 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 5.6.18.2 Reserved—Bit 0 This bit is reserved or not implemented. It is read as 1 and cannot be modified by writing. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 93 5.6.19 IRQ Pending 1 Register (IRQP1) $Base + $12 15 14 13 12 11 10 9 Read 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 PENDING [32:17] Write RESET 1 1 1 1 1 1 1 1 1 Figure 5-21 IRQ Pending 1 Register (IRQP1) 5.6.19.1 IRQ Pending (PENDING)—Bits 32–17 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 5.6.20 IRQ Pending 2 Register (IRQP2) Base + $13 15 14 13 12 11 10 9 Read 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 PENDING [48:33] Write RESET 1 1 1 1 1 1 1 1 1 Figure 5-22 IRQ Pending 2 Register (IRQP2) 5.6.20.1 IRQ Pending (PENDING)—Bits 48–33 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 5.6.21 IRQ Pending 3 Register (IRQP3) Base + $14 15 14 13 12 11 10 9 Read 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 PENDING [64:49] Write RESET 1 1 1 1 1 1 1 1 1 Figure 5-23 IRQ Pending 3 Register (IRQP3) 5.6.21.1 IRQ Pending (PENDING)—Bits 64–49 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 56F8335 Technical Data, Rev. 1 94 Freescale Semiconductor Preliminary Register Descriptions 5.6.22 IRQ Pending 4 Register (IRQP4) Base + $15 15 14 13 12 11 10 9 Read 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 PENDING [80:65] Write RESET 1 1 1 1 1 1 1 1 1 Figure 5-24 IRQ Pending 4 Register (IRQP4) 5.6.22.1 IRQ Pending (PENDING)—Bits 80–65 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 5.6.23 IRQ Pending 5 Register (IRQP5) Base + $16 Read 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 PENDING [81] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Write RESET Figure 5-25 IRQ Pending Register 5 (IRQP5) 5.6.23.1 Reserved—Bits 96–82 This bit field is reserved or not implemented. The bits are read as 1 and cannot be modified by writing. 5.6.23.2 IRQ Pending (PENDING)—Bit 81 This register combines with the other five to represent the pending IRQs for interrupt vector numbers 2 through 81. • • 0 = IRQ pending for this vector number 1 = No IRQ pending for this vector number 5.6.24 Reserved—Base + 17 5.6.25 Reserved—Base + 18 5.6.26 Reserved—Base + 19 5.6.27 Reserved—Base + 1A 5.6.28 Reserved—Base + 1B 5.6.29 Reserved—Base + 1C 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 95 5.6.30 ITCN Control Register (ICTL) Base + $1D 15 Read INT 14 13 12 11 10 IPIC 9 8 7 6 5 VAB 4 3 2 1 0 1 IRQB STATE IRQA STATE IRQB EDG IRQA EDG 1 1 1 0 0 INT_DIS Write RESET 0 0 0 1 0 0 0 0 0 0 0 Figure 5-26 ITCN Control Register (ICTL) 5.6.30.1 Interrupt (INT)—Bit 15 This read-only bit reflects the state of the interrupt to the 56800E core. • • 0 = No interrupt is being sent to the 56800E core 1 = An interrupt is being sent to the 56800E core 5.6.30.2 Interrupt Priority Level (IPIC)—Bits 14–13 These read-only bits reflect the state of the new interrupt priority level bits being presented to the 56800E core at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine. Note: • • • • Nested interrupts may cause this field to be updated before the original interrupt service routine can read it. 00 = Required nested exception priority levels are 0, 1, 2, or 3 01 = Required nested exception priority levels are 1, 2, or 3 10 = Required nested exception priority levels are 2 or 3 11 = Required nested exception priority level is 3 5.6.30.3 Vector Number - Vector Address Bus (VAB)—Bits 12–6 This read-only field shows the vector number (VAB[7:1]) used at the time the last IRQ was taken. This field is only updated when the 56800E core jumps to a new interrupt service routine. Note: Nested interrupts may cause this field to be updated before the original interrupt service routine can read it. 5.6.30.4 Interrupt Disable (INT_DIS)—Bit 5 This bit allows all interrupts to be disabled. • • 0 = Normal operation (default) 1 = All interrupts disabled 5.6.30.5 Reserved—Bit 4 This bit field is reserved or not implemented. It is read as 1 and cannot be modified by writing. 5.6.30.6 IRQB State Pin (IRQB STATE)—Bit 3 This read-only bit reflects the state of the external IRQB pin. 56F8335 Technical Data, Rev. 1 96 Freescale Semiconductor Preliminary Resets 5.6.30.7 IRQA State Pin (IRQA STATE)—Bit 2 This read-only bit reflects the state of the external IRQA pin. 5.6.30.8 IRQB Edge Pin (IRQB Edg)—Bit 1 This bit controls whether the external IRQB interrupt is edge- or level-sensitive. During Stop and Wait modes, it is automatically level-sensitive. • • 0 = IRQB interrupt is a low-level sensitive (default) 1 = IRQB interrupt is falling-edge sensitive. 5.6.30.9 IRQA Edge Pin (IRQA Edg)—Bit 0 This bit controls whether the external IRQA interrupt is edge- or level-sensitive. During Stop and Wait modes, it is automatically level-sensitive. • • 0 = IRQA interrupt is a low-level sensitive (default) 1 = IRQA interrupt is falling-edge sensitive. 5.7 Resets 5.7.1 Reset Handshake Timing The ITCN provides the 56800E core with a reset vector address whenever RESET is asserted. The reset vector will be presented until the second rising clock edge after RESET is released. 5.7.2 ITCN After Reset After reset, all of the ITCN registers are in their default states. This means all interrupts are disabled except the core IRQs with fixed priorities: • • • • • • • • Illegal Instruction SW Interrupt 3 HW Stack Overflow Misaligned Long Word Access SW Interrupt 2 SW Interrupt 1 SW Interrupt 0 SW Interrupt LP These interrupts are enabled at their fixed priority levels. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 97 Part 6 System Integration Module (SIM) 6.1 Introduction The SIM module is a system catchall for the glue logic that ties together the system-on-chip. It controls distribution of resets and clocks and provides a number of control features. The system integration module is responsible for the following functions: • • • • • • • Reset sequencing Clock generation & distribution Stop/Wait control Pull-up enables for selected peripherals System status registers Registers for software access to the JTAG ID of the chip Enforcing Flash security These are discussed in more detail in the sections that follow. 6.2 Features The SIM has the following features: • • • Flash security feature prevents unauthorized access to code/data contained in on-chip Flash memory Power-saving clock gating for peripheral Three power modes (Run, Wait, Stop) to control power utilization — Stop mode shuts down the 56800E core, system clock, peripheral clock, and PLL operation — Stop mode entry can optionally disable PLL and Oscillator (low power vs. fast restart); must be done explicitly — Wait mode shuts down the 56800E core and unnecessary system clock operation — Run mode supports full part operation • • • • • • • Controls to enable/disable the 56800E core WAIT and STOP instructions Calculates base delay for reset extension based upon POR or RESET operations. Reset delay will be 3 x 32 clocks (phased release of reset) for reset, except for POR, which is 221 clock cycles. Controls reset sequencing after reset Software-initiated reset Four 16-bit registers reset only by a Power-On Reset usable for general-purpose software control System Control Register Registers for software access to the JTAG ID of the chip 56F8335 Technical Data, Rev. 1 98 Freescale Semiconductor Preliminary Operating Modes 6.3 Operating Modes Since the SIM is responsible for distributing clocks and resets across the chip, it must understand the various chip operating modes and take appropriate action. These are: • Reset Mode, which has two submodes: — POR and RESET operation The 56800E core and all peripherals are reset. This occurs when the internal POR is asserted or the RESET pin is asserted. — COP reset and software reset operation The 56800E core and all peripherals are reset. The MA bit within the OMR is not changed. This allows the software to determine the boot mode (internal or external boot) to be used on the next reset. • • • • Run Mode This is the primary mode of operation for this device. In this mode, the 56800E controls chip operation. Debug Mode The 56800E is controlled via JTAG/EOnCE when in debug mode. All peripherals, except the COP and PWMs, continue to run. COP is disabled and PWM outputs are optionally switched off to disable any motor from being driven; see the PWM chapter in the 56F8300 Peripheral User Manual for details. Wait Mode In Wait mode, the core clock and memory clocks are disabled. Optionally, the COP can be stopped. Similarly, it is an option to switch off PWM outputs to disable any motor from being driven. All other peripherals continue to run. Stop Mode When in Stop mode, the 56800E core, memory and most peripheral clocks are shut down. Optionally, the COP and CAN can be stopped. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. The CAN (along with any non-gated interrupt) is capable of waking the chip up from Stop mode, but is not fully functional in Stop mode. 6.4 Operating Mode Register Bit 15 NL CM XP SD R Type R/W R/W R/W R/W R/W RESET 0 0 0 0 0 0 0 14 0 13 0 12 0 11 0 10 0 9 0 8 7 6 5 4 3 2 SA EX 0 R/W R/W 0 1 0 MB MA R/W R/W X X Figure 6-1 OMR The reset state for MB and MA will depend on the Flash secured state. See Part 4.2 and Part 7 for detailed information on how the Operating Mode Register (OMR) MA and MB bits operate in this device. For additional information on the EX bit, see Part 4.4. For all other bits, see the DSP56F800E Reference Manual. Note: The OMR is not a Memory Map register; it is directly accessible in code through the acronym OMR. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 99 6.5 Register Descriptions Table 6-1 SIM Registers (SIM_BASE = $00 F350) Address Offset Address Acronym Register Name Section Location Base + $0 SIM_CONTROL Control Register 6.5.1 Base + $1 SIM_RSTSTS Reset Status Register 6.5.2 Base + $2 SIM_SCR0 Software Control Register 0 6.5.3 Base + $3 SIM_SCR1 Software Control Register 1 6.5.3 Base + $4 SIM_SCR2 Software Control Register 2 6.5.3 Base + $5 SIM_SCR3 Software Control Register 3 6.5.3 Base + $6 SIM_MSH_ID Most Significant Half of JTAG ID 6.5.4 Base + $7 SIM_LSH_ID Least Significant Half of JTAG ID 6.5.5 Base + $8 SIM_PUDR Pull-up Disable Register 6.5.6 Reserved Base + $A SIM_CLKOSR CLKO Select Register 6.5.7 Base + $B SIM_GPS GPIO Peripheral Select Register 6.5.8 Base + $C SIM_PCE Peripheral Clock Enable Register 6.5.9 Base + $D SIM_ISALH I/O Short Address Location High Register 6.5.10 Base + $E SIM_ISALL I/O Short Address Location Low Register 6.5.10 56F8335 Technical Data, Rev. 1 100 Freescale Semiconductor Preliminary Register Descriptions Add. Offset Register Name $0 SIM_ CONTROL W $1 SIM_ RSTSTS W $2 SIM_SCR0 $3 SIM_SCR1 $4 SIM_SCR2 $5 SIM_SCR3 $6 SIM_MSH_ ID $7 SIM_LSH_ID $8 SIM_PUDR R R 15 14 13 12 11 10 9 8 7 6 5 4 0 0 0 0 0 0 0 0 0 0 ONCE EBL0 SW RST 0 0 0 0 0 0 0 0 0 0 SWR COPR EXTR POR R 2 1 STOP_ DISABLE 0 WAIT_ DISABLE 0 0 FIELD W R FIELD W R FIELD W R FIELD W R 3 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 PWMA1 CAN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C1 C0 EMI ADCB ADCA CAN 1 1 1 1 W R W R 0 W EMI_ RESET MODE IRQ 0 XBOOT PWMB PWMA0 0 CTRL JTAG Reserved $A SIM_ CLKOSR $B SIM_GPS $C SIM_PCE $D SIM_ISALH $E SIM_ISALL R A23 A22 A21 A20 CLKDIS 0 0 0 0 0 0 0 DEC1 DEC 0 TMRD TMRC TMRB TMRA SCI1 1 1 1 1 1 1 1 W R CLKOSEL C3 C2 SCI0 SPI1 SPI0 1 1 1 W R W R W R PWMB PWMA ISAL[23:22] ISAL[21:6] W = Reserved Figure 6-2 SIM Register Map Summary 6.5.1 SIM Control Register (SIM_CONTROL) Base + $0 15 14 13 12 11 10 9 8 7 6 5 4 Read 0 0 0 0 0 0 0 0 0 0 ONCE EBL SW RST 0 0 0 0 0 0 0 0 0 0 0 0 Write RESET 3 2 1 0 STOP_ DISABLE WAIT_ DISABLE 0 0 0 0 Figure 6-3 SIM Control Register (SIM_CONTROL) 6.5.1.1 Reserved—Bits 15–6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.1.2 • • OnCE Enable (OnCE EBL)—Bit 5 0 = OnCE clock to 56800E core enabled when core TAP is enabled 1 = OnCE clock to 56800E core is always enabled 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 101 6.5.1.3 Software Reset (SW RST)—Bit 4 This bit is always read as 0. Writing 1 to this field will cause the part to reset. 6.5.1.4 • • Stop Disable (STOP_DISABLE)—Bits 3–2 00 = Stop mode will be entered when the 56800E core executes a STOP instruction 01 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can be reprogrammed in the future 10 = The 56800E STOP instruction will not cause entry into Stop mode; STOP_DISABLE can then only be changed by resetting the device 11 = Same operation as 10 • • 6.5.1.5 • • Wait Disable (WAIT_DISABLE)—Bits 1–0 00 = Wait mode will be entered when the 56800E core executes a WAIT instruction 01 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can be reprogrammed in the future 10 = The 56800E WAIT instruction will not cause entry into Wait mode; WAIT_DISABLE can then only be changed by resetting the device 11 = Same operation as 10 • • 6.5.2 SIM Reset Status Register (SIM_RSTSTS) Bits in this register are set upon any system reset and are initialized only by a Power-On Reset (POR). A reset (other than POR) will only set bits in the register; bits are not cleared. Only software should clear this register. Base + $1 15 14 13 12 11 10 9 8 7 6 Read 0 0 0 0 0 0 0 0 0 0 5 SWR 4 COPR 3 EXTR 2 1 0 0 0 0 0 POR Write RESET 0 0 0 0 0 0 0 0 0 0 Figure 6-4 SIM Reset Status Register (SIM_RSTSTS) 6.5.2.1 Reserved—Bits 15–6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.2.2 Software Reset (SWR)—Bit 5 When 1, this bit indicates that the previous reset occurred as a result of a software reset (write to SW RST bit in the SIM_CONTROL register). This bit will be cleared by any hardware reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it. 6.5.2.3 COP Reset (COPR)—Bit 4 When 1, the COPR bit indicates the Computer Operating Properly (COP) timer-generated reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit will clear it. 56F8335 Technical Data, Rev. 1 102 Freescale Semiconductor Preliminary Register Descriptions 6.5.2.4 External Reset (EXTR)—Bit 3 If 1, the EXTR bit indicates an external system reset has occurred. This bit will be cleared by a Power-On Reset or by software. Writing a 0 to this bit position will set the bit, while writing a 1 to the bit position will clear it. Basically, when the EXTR bit is 1, the previous system reset was caused by the external RESET pin being asserted low. 6.5.2.5 Power-On Reset (POR)—Bit 2 When 1, the POR bit indicates a Power-On Reset occurred some time in the past. This bit can be cleared only by software or by another type of reset. Writing a 0 to this bit will set the bit, while writing a 1 to the bit position will clear the bit. In summary, if the bit is 1, the previous system reset was due to a Power-On Reset. 6.5.2.6 Reserved—Bits 1–0 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.3 SIM Software Control Registers (SIM_SCR0, SIM_SCR1, SIM_SCR2, and SIM_SCR3) Only SIM_SCR0 is shown in this section. SIM_SCR1, SIM_SCR2, and SIM_SCR3 are identical in functionality. Base + $2 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0 Read FIELD Write POR 0 0 0 0 0 0 0 0 Figure 6-5 SIM Software Control Register 0 (SIM_SCR0) 6.5.3.1 Software Control Data 1 (FIELD)—Bits 15–0 This register is reset only by the Power-On Reset (POR). It has no part-specific functionality and is intended for use by a software developer to contain data that will be unaffected by the other reset sources (RESET pin, software reset, and COP reset). 6.5.4 Most Significant Half of JTAG ID (SIM_MSH_ID) This read-only register displays the most significant half of the JTAG ID for the chip. This register reads $01F4. Base + $6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Read 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 Write RESET Figure 6-6 Most Significant Half of JTAG ID (SIM_MSH_ID) 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 103 6.5.5 Least Significant Half of JTAG ID (SIM_LSH_ID) This read-only register displays the least significant half of the JTAG ID for the chip. This register reads $401D. Base + $7 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Read 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 Write RESET Figure 6-7 Least Significant Half of JTAG ID (SIM_LSH_ID) 6.5.6 SIM Pull-up Disable Register (SIM_PUDR) Most of the pins on the chip have on-chip pull-up resistors. Pins which can operate as GPIO can have these resistors disabled via the GPIO function. Non-GPIO pins can have their pull-ups disabled by setting the appropriate bit in this register. Disabling pull-ups is done on a peripheral-by-peripheral basis (for pins not muxed with GPIO). Each bit in the register (see Figure 6-8) corresponds to a functional group of pins. See Table 2-2 to identify which pins can deactivate the internal pull-up resistor. Base + $8 15 Read 0 14 13 0 11 10 9 8 7 6 5 0 PWMA1 CAN EMI_ MODE RESET IRQ XBOOT 0 0 0 0 0 0 Write RESET 12 0 0 3 0 CTRL PWMB PWMA0 0 4 0 2 1 0 0 0 0 0 0 0 JTAG 0 0 Figure 6-8 SIM Pull-up Disable Register (SIM_PUDR) 6.5.6.1 Reserved—Bit 15 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.6.2 PWMA1—Bit 14 This bit controls the pull-up resistors on the FAULTA3 pin. 6.5.6.3 CAN—Bit 13 This bit controls the pull-up resistors on the CAN_RX pin. 6.5.6.4 EMI_MODE—Bit 12 This bit controls the pull-up resistors on the EMI_MODE pin. Note: 6.5.6.5 In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be changed to a 1 in order to reduce power consumption. RESET—Bit 11 This bit controls the pull-up resistors on the RESET pin. 56F8335 Technical Data, Rev. 1 104 Freescale Semiconductor Preliminary Register Descriptions 6.5.6.6 IRQ—Bit 10 This bit controls the pull-up resistors on the IRQA and IRQB pins. 6.5.6.7 XBOOT—Bit 9 This bit controls the pull-up resistors on the EXTBOOT pin. Note: 6.5.6.8 In this package, this input pin is double-bonded with the adjacent VSS pin and this bit should be changed to a 1 in order to reduce power consumption. PWMB—Bit 8 This bit controls the pull-up resistors on the FAULTB0, FAULTB1, FAULTB2, and FAULTB3 pins. 6.5.6.9 PWMA0—Bit 7 This bit controls the pull-up resistors on the FAULTA0, FAULTA1, and FAULTA2 pins. 6.5.6.10 Reserved—Bit 6 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.6.11 CTRL—Bit 5 This bit controls the pull-up resistors on the WR and RD pins. 6.5.6.12 Reserved—Bit 4 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.6.13 JTAG—Bit 3 This bit controls the pull-up resistors on the TRST, TMS and TDI pins. 6.5.6.14 Reserved—Bit 2–0 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.7 CLKO Select Register (SIM_CLKOSR) The CLKO select register can be used to multiplex out any one of the clocks generated inside the clock generation and SIM modules. The default value is SYS_CLK. This path has been optimized in order to minimize any delay and clock duty cycle distortion. All other clocks primarily muxed out are for test purposes only, and are subject to significant phase shift at high frequencies. The upper four bits of the GPIOB register can function as GPIO, [A23:A20], or as additional clock output signals. GPIO has priority and is enabled/disabled via the GPIOB_PER. If GPIOB[7:4] are programmed to operate as peripheral outputs, then the choice between [A23:A20] and additional clock outputs is done here in the CLKOSR. The default state is for the peripheral function of GPIOB[7:4] to be programmed as [A23:A20]. This can be changed by altering [A23:A20], as shown in Figure 6-9. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 105 Base + $A 15 14 13 12 11 10 Read 0 0 0 0 0 0 9 8 7 6 5 A23 A22 A21 A20 CLK DIS 0 0 0 0 1 Write RESET 0 0 0 0 0 0 4 3 2 1 0 0 0 CLKOSEL 0 0 0 Figure 6-9 CLKO Select Register (SIM_CLKOSR) 6.5.7.1 Reserved—Bits 15–10 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.7.2 • • 0 = Peripheral output function of GPIOB[7] is defined to be A[23] 1 = Peripheral output function of GPIOB[7] is defined to be the oscillator clock (MSTR_OSC, see Figure 3-4) 6.5.7.3 • • Alternate GPIO_B Peripheral Function for A20 (A20)—Bit 6 0 = Peripheral output function of GPIOB[4] is defined to be A[20] 1 = Peripheral output function of GPIOB[4] is defined to be the prescaler clock (FREF, see Figure 3-4) 6.5.7.6 • • Alternate GPIO_B Peripheral Function for A21 (A21)—Bit 7 0 = Peripheral output function of GPIOB[5] is defined to be A[21] 1 = Peripheral output function of GPIOB[5] is defined to be SYS_CLK 6.5.7.5 • • Alternate GPIO_B Peripheral Function for A22 (A22)—Bit 8 0 = Peripheral output function of GPIOB[6] is defined to be A[22] 1 = Peripheral output function of GPIOB[6] is defined to be SYS_CLK2 6.5.7.4 • • Alternate GPIO_B Peripheral Function for A23 (A23)—Bit 9 Clockout Disable (CLKDIS)—Bit 5 0 = CLKOUT output is enabled and will output the signal indicated by CLKOSEL 1 = CLKOUT is tri-stated 6.5.7.7 CLockout Select (CLKOSEL)—Bits 4–0 Selects clock to be muxed out on the CLKO pin. • • • • • • • 00000 = SYS_CLK (from OCCS - DEFAULT) 00001 = Reserved for factory test—56800E clock 00010 = Reserved for factory test—XRAM clock 00011 = Reserved for factory test—PFLASH odd clock 00100 = Reserved for factory test—PFLASH even clock 00101 = Reserved for factory test—BFLASH clock 00110 = Reserved for factory test—DFLASH clock 56F8335 Technical Data, Rev. 1 106 Freescale Semiconductor Preliminary Register Descriptions • • 00111 = Oscillator output 01000 = Fout (from OCCS) • • • • • • • • • 01001 = Reserved for factory test—IPB clock 01010 = Reserved for factory test—Feedback (from OCCS, this is path to PLL) 01011 = Reserved for factory test—Prescaler clock (from OCCS) 01100 = Reserved for factory test—Postscaler clock (from OCCS) 01101 = Reserved for factory test—SYS_CLK2 (from OCCS) 01110 = Reserved for factory test—SYS_CLK_DIV2 01111 = Reserved for factory test—SYS_CLK_D 10000 = ADCA clock 10001 = ADCB clock 6.5.8 GPIO Peripheral Select Register (SIM_GPS) The GPIO Peripheral Select Register can be used to multiplex out any one of the three alternate peripherals for GPIOC. The default peripheral is Quad Decoder 1 and Quad Timer B (NOT available in the 56F8135 device); these peripherals work together. The four I/O pins associated with GPIOC can function as GPIO, Quad Decoder 1/Quad Timer B, or as SPI 1 signals. GPIO is not the default and is enabled/disabled via the GPIOC_PER, as shown in Figure 6-10 and Table 6-2. When GPIOC[3:0] are programmed to operate as peripheral I/O, then the choice between decoder/timer and SPI inputs/outputs is made in the SIM_GPS and in conjunction with the Quad Timer Status and Control Registers (SCR). The default state is for the peripheral function of GPIOC[3:0] to be programmed as decoder functions. This can be changed by altering the appropriate controls in the indicated registers. GPIOC_PER Register GPIO Controlled 0 I/O Pad Control 1 SIM_ GPS Register Quad Timer Controlled SPI Controlled 0 1 Figure 6-10 Overall Control of Pads Using SIM_GPS Control 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 107 Table 6-2 Control of Pads Using SIM_GPS Control 1 GPIOC_PER GPIOC_DTR SIM_GPS Quad Timer SCR Register OEN bits Control Registers GPIO Input 0 0 — — GPIO Output 0 1 — — Quad Timer Input / Quad Decoder Input 2 1 — 0 0 Quad Timer Output / Quad Decoder Input 3 1 — 0 1 SPI input 1 — 1 — SPI output 1 — 1 — Pin Function Comments See the “Switch Matrix for Inputs to the Timer” table in the 56F8300 Peripheral User Manual for the definition of timer inputs based on the Quad Decoder mode configuration. See SPI controls for determining the direction of each of the SPI pins. 1. This applies to the four pins that serve as Quad Decoder / Quad Timer / SPI / GPIOC functions. A separate set of control bits is used for each pin. 2. Reset configuration 3. Quad Decoder pins are always inputs and function in conjunction with the Quad Timer pins. Base + $B 15 14 13 12 11 10 9 8 7 6 5 4 Read 0 0 0 0 0 0 0 0 0 0 0 0 3 2 1 0 C3 C2 C1 C0 0 0 0 0 Write RESET 0 0 0 0 0 0 0 0 0 0 0 0 Figure 6-11 GPIO Peripheral Select Register (SIM_GPS) 6.5.8.1 Reserved—Bits 15–4 This bit field is reserved or not implemented. It is read as 0 and cannot be modified by writing. 6.5.8.2 GPIOC3 (C3)—Bit 3 This bit selects the alternate function for GPIOC3. • • 0 = HOME1/TB3 (default - see “Switch Matrix Mode” bits of the Quad Decoder DECCR register in the 56F8300 Peripheral User’s Manual) 1 = SS1 56F8335 Technical Data, Rev. 1 108 Freescale Semiconductor Preliminary Register Descriptions 6.5.8.3 GPIOC2 (C2)—Bit 2 This bit selects the alternate function for GPIOC2. • • 0 = INDEX1/TB2 (default) 1 = MISO1 6.5.8.4 GPIOC1 (C1)—Bit 1 This bit selects the alternate function for GPIOC1. • • 0 = PHASEB1/TB1 (default) 1 = MOSI1 6.5.8.5 GPIOC0 (C0)—Bit 0 This bit selects the alternate function for GPIOC0. • • 0 = PHASEA1/TB0 (default) 1 = SCLK1 6.5.9 Peripheral Clock Enable Register (SIM_PCE) The Peripheral Clock Enable register is used to enable or disable clocks to the peripherals as a power savings feature. The clocks can be individually controlled for each peripheral on the chip. Base + $C 15 14 13 12 11 10 9 8 TMRD TMRC 1 1 7 6 5 4 3 2 SCI1 SCI0 SPI1 SPI0 1 1 1 1 1 0 Read EMI ADCB ADCA CAN DEC1 DEC0 TMRB TMRA PWMB PWMA Write RESET 1 1 1 1 1 1 1 1 1 1 Figure 6-12 Peripheral Clock Enable Register (SIM_PCE) 6.5.9.1 External Memory Interface Enable (EMI)—Bit 15 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.2 Analog-to-Digital Converter B Enable (ADCB)—Bit 14 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.3 Analog-to-Digital Converter A Enable (ADCA)—Bit 13 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 109 6.5.9.4 FlexCAN Enable (CAN)—Bit 12 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.5 Decoder 1 Enable (DEC1)—Bit 11 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.6 Decoder 0 Enable (DEC0)—Bit 10 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.7 Quad Timer D Enable (TMRD)—Bit 9 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.8 Quad Timer C Enable (TMRC)—Bit 8 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.9 Quad Timer B Enable (TMRB)—Bit 7 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.10 Quad Timer A Enable (TMRA)—Bit 6 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.11 Serial Communications Interface 1 Enable (SCI1)—Bit 5 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 56F8335 Technical Data, Rev. 1 110 Freescale Semiconductor Preliminary Register Descriptions 6.5.9.12 Serial Communications Interface 0 Enable (SCI0)—Bit 4 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.13 Serial Peripheral Interface 1 Enable (SPI1)—Bit 3 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.14 Serial Peripheral Interface 0 Enable (SPI0)—Bit 2 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.15 Pulse Width Modulator B Enable (PWMB)—Bit 1 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.9.16 Pulse Width Modulator A Enable (PWMA)—Bit 0 Each bit controls clocks to the indicated peripheral. • • 1 = Clocks are enabled 0 = The clock is not provided to the peripheral (the peripheral is disabled) 6.5.10 I/O Short Address Location Register (SIM_ISALH and SIM_ISALL) The I/O Short Address Location registers are used to specify the memory referenced via the I/O short address mode. The I/O short address mode allows the instruction to specify the lower six bits of address; the upper address bits are not directly controllable. This register set allows limited control of the full address, as shown in Figure 6-13. Note: If this register is set to something other than the top of memory (EOnCE register space) and the EX bit in the OMR is set to 1, the JTAG port cannot access the on-chip EOnCE registers, and debug functions will be affected. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 111 Instruction Portion “Hard Coded” Address Portion 6 Bits from I/O Short Address Mode Instruction 16 Bits from SIM_ISALL Register 2 Bits from SIM_ISALH Register Full 24-Bit for Short I/O Address Figure 6-13 I/O Short Address Determination With this register set, an interrupt driver can set the SIM_ISALL register pair to point to its peripheral registers and then use the I/O Short addressing mode to reference them. The ISR should restore this register to its previous contents prior to returning from interrupt. Note: The default value of this register set points to the EOnCE registers. Note: The pipeline delay between setting this register set and using short I/O addressing with the new value is three cycles. Base + $D 15 14 13 12 11 10 9 8 7 6 5 4 3 2 Read 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 ISAL[23:22] Write 1 RESET 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Figure 6-14 I/O Short Address Location High Register (SIM_ISALH) 6.5.10.1 Input/Output Short Address Low (ISAL[23:22])—Bit 1–0 This field represents the upper two address bits of the “hard coded” I/O short address. Base + $E 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 1 1 1 1 1 1 Read ISAL[21:6] Write RESET 1 1 1 1 1 1 1 1 1 Figure 6-15 I/O Short Address Location Low Register (SIM_ISAL) 56F8335 Technical Data, Rev. 1 112 Freescale Semiconductor Preliminary Clock Generation Overview 6.5.10.2 Input/Output Short Address Low (ISAL[21:6])—Bit 15–0 This field represents the lower 16 address bits of the “hard coded” I/O short address. 6.6 Clock Generation Overview The SIM uses an internal master clock from the OCCS (CLKGEN) module to produce the peripheral and system (core and memory) clocks. The maximum master clock frequency is 120MHz. Peripheral and system clocks are generated at half the master clock frequency and therefore at a maximum 60MHz. The SIM provides power modes (Stop, Wait) and clock enables (SIM_PCE register, CLK_DIS, ONCE_EBL) to control which clocks are in operation. The OCCS, power modes, and clock enables provide a flexible means to manage power consumption. Power utilization can be minimized in several ways. In the OCCS, crystal oscillator, and PLL may be shut down when not in use. When the PLL is in use, its prescaler and postscaler can be used to limit PLL and master clock frequency. Power modes permit system and/or peripheral clocks to be disabled when unused. Clock enables provide the means to disable individual clocks. Some peripherals provide further controls to disable unused subfunctions. Refer to Part 3 On-Chip Clock Synthesis (OCCS), and the 56F8300 Peripheral User Manual for further details. 6.7 Power-Down Modes Overview The 56F8335/56F8135 operate in one of three power-down modes, as shown in Table 6-3. Table 6-3 Clock Operation in Power-Down Modes Mode Core Clocks Peripheral Clocks Description Run Active Active Device is fully functional Wait Core and memory clocks disabled Active Peripherals are active and can produce interrupts if they have not been masked off. Interrupts will cause the core to come out of its suspended state and resume normal operation. Typically used for power-conscious applications. Stop System clocks continue to be generated in the SIM, but most are gated prior to reaching memory, core and peripherals. The only possible recoveries from Stop mode are: 1. CAN traffic (1st message will be lost) 2. Non-clocked interrupts 3. COP reset 4. External reset 5. Power-on reset All peripherals, except the COP/watchdog timer, run off the IPBus clock frequency, which is the same as the main processor frequency in this architecture. The maximum frequency of operation is SYS_CLK = 60MHz. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 113 6.8 Stop and Wait Mode Disable Function Permanent Disable D Q D-FLOP C Reprogrammable Disable 56800E STOP_DIS D Q D-FLOP Clock Select C R Reset Note: Wait disable circuit is similar Figure 6-16 Internal Stop Disable Circuit The 56800E core contains both STOP and WAIT instructions. Both put the CPU to sleep. For lowest power consumption in Stop mode, the PLL can be shut down. This must be done explicitly before entering Stop mode, since there is no automatic mechanism for this. When the PLL is shut down, the 56800E system clock must be set equal to the oscillator output. Some applications require the 56800E STOP and WAIT instructions to be disabled. To disable those instructions, write to the SIM control register (SIM_CONTROL), described in Part 6.5.1. This procedure can be on either a permanent or temporary basis. Permanently assigned applications last only until their next reset. 6.9 Resets The SIM supports four sources of reset. The two asynchronous sources are the external RESET pin and the Power-On Reset (POR). The two synchronous sources are the software reset, which is generated within the SIM itself by writing to the SIM_CONTROL register, and the COP reset. Reset begins with the assertion of any of the reset sources. Release of reset to various blocks is sequenced to permit proper operation of the device. A POR reset is first extended for 221 clock cycles to permit stabilization of the clock source, followed by a 32 clock window in which SIM clocking is initiated. It is then followed by a 32 clock window in which peripherals are released to implement Flash security, and, finally, followed by a 32 clock window in which the core is initialized. After completion of the described reset sequence, application code will begin execution. Resets may be asserted asynchronously, but are always released internally on a rising edge of the system clock. 56F8335 Technical Data, Rev. 1 114 Freescale Semiconductor Preliminary Operation with Security Enabled Part 7 Security Features The 56F8335/56F8135 offer security features intended to prevent unauthorized users from reading the contents of the Flash Memory (FM) array. The Flash security consists of several hardware interlocks that block the means by which an unauthorized user could gain access to the Flash array. However, part of the security must lie with the user’s code. An extreme example would be user’s code that dumps the contents of the internal program, as this code would defeat the purpose of security. At the same time, the user may also wish to put a “backdoor” in his program. As an example, the user downloads a security key through the SCI, allowing access to a programming routine that updates parameters stored in another section of the Flash. 7.1 Operation with Security Enabled Once the user has programmed the Flash with his application code, the device can be secured by programming the security bytes located in the FM configuration field, which occupies a portion of the FM array. These non-volatile bytes will keep the part secured through reset and through power-down of the device. Only two bytes within this field are used to enable or disable security. Refer to the Flash Memory section in the 56F8300 Peripheral User Manual for the state of the security bytes and the resulting state of security. When Flash security mode is enabled in accordance with the method described in the Flash Memory module specification, the device will disable the core EOnCE debug capabilities. Normal program execution is otherwise unaffected. 7.2 Flash Access Blocking Mechanisms The 56F8335/56F8135 have several operating functional and test modes. Effective Flash security must address operating mode selection and anticipate modes in which the on-chip Flash can be compromised and read without explicit user permission. Methods to block these are outlined in the next subsections. 7.2.1 Forced Operating Mode Selection At boot time, the SIM determines in which functional modes the device will operate. These are: • • Unsecured Mode Secure Mode (EOnCE disabled) When Flash security is enabled as described in the Flash Memory module specification, the device will disable the EOnCE debug interface. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 115 7.2.2 Disabling EOnCE Access On-chip Flash can be read by issuing commands across the EOnCE port, which is the debug interface for the 56800E core. The TRST, TCLK, TMS, TDO, and TDI pins comprise a JTAG interface onto which the EOnCE port functionality is mapped. When the device boots, the chip-level JTAG TAP (Test Access Port) is active and provides the chip’s boundary scan capability and access to the ID register. Proper implementation of Flash security requires that no access to the EOnCE port is provided when security is enabled. The 56800E core has an input which disables reading of internal memory via the JTAG/EOnCE. The FM sets this input at reset to a value determined by the contents of the FM security bytes. 7.2.3 Flash Lockout Recovery If a user inadvertently enables Flash security on the device, a built-in lockout recovery mechanism can be used to reenable access to the device. This mechanism completely reases all on-chip Flash, thus disabling Flash security. Access to this recovery mechanism is built into CodeWarrior via an instruction in memory configuration (.cfg) files. Add, or uncomment the following configuration command: unlock_flash_on_connect 1 For more information, please see CodeWarrior MC56F83xx/DSP5685x Family Targeting Manual. The LOCKOUT_RECOVERY instruction has an associated 7-bit Data Register (DR) that is used to control the clock divider circuit within the FM module. This divider, FM_CLKDIV[6:0], is used to control the period of the clock used for timed events in the FM erase algorithm. This register must be set with appropriate values before the lockout sequence can begin. Refer to the JTAG section of the 56F8300 Peripheral User Manual for more details on setting this register value. The value of the JTAG FM_CLKDIV[6:0] will replace the value of the FM register FMCLKD that divides down the system clock for timed events, as illustrated in Figure 7-1. FM_CLKDIV[6] will map to the PRDIV8 bit, and FM_CLKDIV[5:0] will map to the DIV[5:0] bits. The combination of PRDIV8 and DIV must divide the FM input clock down to a frequency of 150kHz-200kHz. The “Writing the FMCLKD Register” section in the Flash Memory chapter of the 56F8300 Peripheral User Manual gives specific equations for calculating the correct values. 56F8335 Technical Data, Rev. 1 116 Freescale Semiconductor Preliminary Flash Access Blocking Mechanisms Flash Memory SYS_CLK input 2 clock DIVIDER 7 FMCLKD 7 7 FM_CLKDIV JTAG FM_ERASE Figure 7-1 JTAG to FM Connection for Lockout Recovery Two examples of FM_CLKDIV calculations follow. EXAMPLE 1: If the system clock is the 8MHz crystal frequency because the PLL has not been set up, the input clock will be below 12.8MHz, so PRDIV8 = FM_CLKDIV[6] = 0. Using the following equation yields a DIV value of 19 for a clock of 200kHz, and a DIV value of 20 for a clock of 190kHz. This translates into an FM_CLKDIV[6:0] value of $13 or $14, respectively. 150[kHz] ( < SYS_CLK (2) (DIV + 1) )< 200[kHz] EXAMPLE 2: In this example, the system clock has been set up with a value of 32MHz, making the FM input clock 16MHz. Because that is greater than 12.8MHz, PRDIV8 = FM_CLKDIV[6] = 1. Using the following equation yields a DIV value of 9 for a clock of 200kHz, and a DIV value of 10 for a clock of 181kHz. This translates to an FM_CLKDIV[6:0] value of $49 or $4A, respectively. 150[kHz] < ( SYS_CLK (2) (DIV + 1) ) < 200[kHz] Once the LOCKOUT_RECOVERY instruction has been shifted into the instruction register, the clock divider value must be shifted into the corresponding 7-bit data register. After the data register has been updated, the user must transition the TAP controller into the RUN-TEST/IDLE state for the lockout sequence to commence. The controller must remain in this state until the erase sequence has completed. For details, see the JTAG Section in the 56F8300 Peripheral User Manual. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 117 Note: When the lockout recovery sequence has completed, the user must reset both the JTAG TAP controller (by asserting TRST) and the device (by asserting external chip reset) to return to normal unsecured operation. 7.2.4 Product Analysis The recommended method of unsecuring a programmed device for product analysis of field failures is via the backdoor key access. The customer would need to supply Technical Support with the backdoor key and the protocol to access the backdoor routine in the Flash. Additionally, the KEYEN bit that allows backdoor key access must be set. An alternative method for performing analysis on a secured hybrid controller would be to mass-erase and reprogram the Flash with the original code, but to modify the security bytes. To insure that a customer does not inadvertently lock himself out of the device during programming, it is recommended that he program the backdoor access key first, his application code second, and the security bytes within the FM configuration field last. Part 8 General Purpose Input/Output (GPIO) 8.1 Introduction This section is intended to supplement the GPIO information found in the 56F8300 Peripheral User Manual and contains only chip-specific information. This information supercedes the generic information in the 56F8300 Peripheral User Manual. 8.2 Memory Maps The width of the GPIO port defines how many bits are implemented in each of the GPIO registers. Based on this and the default function of each of the GPIO pins, the reset values of the GPIOx_PUR and GPIOx_PER registers change from port to port. Tables 4-29 through 4-34 define the actual reset values of these registers. 8.3 Configuration There are six GPIO ports defined on the 56F8335/56F8135. The width of each port and the associated peripheral function is shown in Table 8-1 and Table 8-2. The specific mapping of GPIO port pins is shown in Table 8-3. 56F8335 Technical Data, Rev. 1 118 Freescale Semiconductor Preliminary Configuration Table 8-1 56F8335 GPIO Ports Configuration GPIO Port Port Width Available Pins in Peripheral Function Reset Function 56F8335 A 14 6 6 pins - EMI Address pins - Can only be used as GPIO 8 pins - EMI Address pins - Not available in this package EMI Address N/A B 8 5 5 pins - EMI Address pins - Can only be used as GPIO 3 pins - EMI Address pins - Not available in this package GPIO N/A C 11 11 4 pins - DEC1 / TMRB / SPI1 4 pins - DEC0 / TMRA 3 pins - PWMA current sense DEC1 / TMRB DEC0 / TMRA PWMA current sense D 13 11 2 pins - EMI CSn 4 pins - EMI CSn - Can only be used as GPIO 2 pins - SCI1 2 pins - EMI CSn - Not available in this package 3 pins - PWMB current sense EMI Chip Selects EMI Chip Selects SCI1 N/A PWMB current sense E 14 12 2 pins - SCI0 2 pins - EMI Address pins - Not available in this package 4 pins - SPI0 2 pins - TMRC 4 pins - TMRD SCI0 N/A SPI0 TMRC TMRD F 16 4 4 pins - EMI Data - Can only be used as GPIO 12 pins - EMI Data - Not available in this package EMI Data N/A Table 8-2 56F8135 GPIO Ports Configuration GPIO Port Port Width Available Pins in 56F8135 A 14 6 6 pins - EMI Address pins - Can only be used as GPIO 8 pins - EMI Address pins - Not available in this package EMI Address N/A B 8 5 5 pins - EMI Address pins - Can only be used as GPIO 3 pins - EMI Address pins - Not available in this package GPIO N/A C 11 11 4 pins - SPI1 4 pins - DEC0 / TMRA 3 pins - Dedicated GPIO DEC1 / TMRB DEC0 / TMRA GPIO D 13 11 6 pins - EMI CSn - Can only be used as GPIO 2 pins - SCI1 2 pins - EMI CSn - Not available in this package 3 pins - PWMB current sense EMI Chip Selects SCI1 N/A PWMB current sense Peripheral Function Reset Function 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 119 Table 8-2 56F8135 GPIO Ports Configuration (Continued) GPIO Port Port Width Available Pins in 56F8135 E 14 12 2 pins - SCI0 2 pins - EMI Address pins - Not available in this package 4 pins - SPI0 2 pins - TMRC 4 pins - Dedicated GPIO SCI0 N/A SPI0 TMRC GPIO F 16 4 4 pins - EMI Data - Can only be used as GPIO 12 pins - EMI Data - Not available in this package EMI Data N/A Peripheral Function Reset Function Table 8-3 GPIO External Signals Map Pins in shaded rows are not available in 56F8335 / 56F8135 Pins in italics are NOT available in the 56F8135 device GPIO Port GPIOA GPIO Bit Reset Function Functional Signal Package Pin # 0 Peripheral A81 15 1 Peripheral A91 16 2 Peripheral A101 17 3 Peripheral A111 18 4 Peripheral A121 19 5 Peripheral A131 20 6 N/A 7 N/A 8 N/A 9 N/A 10 N/A 11 N/A 12 N/A 13 N/A 56F8335 Technical Data, Rev. 1 120 Freescale Semiconductor Preliminary Configuration Table 8-3 GPIO External Signals Map (Continued) Pins in shaded rows are not available in 56F8335 / 56F8135 Pins in italics are NOT available in the 56F8135 device GPIO Port GPIOB GPIO Bit Reset Function Functional Signal Package Pin # 0 GPIO A161 27 1 GPIO A171 28 2 GPIO A181 29 3 GPIO A191 30 4 GPIO A20 / Prescaler_clock 31 5 N/A 6 N/A 7 N/A 0 Peripheral PHASEA1 / TB0 / SCLK12 9 1 Peripheral PHASEB1 / TB1 / PHASEB1 / TB1 / MOSI12 10 2 Peripheral INDEX1 / TB2 / MISO12 11 3 Peripheral HOME1 / TB3 /SS12 12 4 Peripheral PHASEA0 / TA0 127 5 Peripheral PHASEB0 / TA1 128 6 Peripheral INDEX0 / TA2 1 7 Peripheral HOME0 / TA3 2 8 Peripheral ISA0 104 9 Peripheral ISA1 105 10 Peripheral ISA2 106 GPIOC 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 121 Table 8-3 GPIO External Signals Map (Continued) Pins in shaded rows are not available in 56F8335 / 56F8135 Pins in italics are NOT available in the 56F8135 device GPIO Port GPIOD GPIO Bit Reset Function Functional Signal Package Pin # 0 GPIO CS21 42 1 GPIO CS31 43 2 GPIO CS41 44 3 GPIO CS51 45 4 GPIO CS61 46 5 GPIO CS71 47 6 Peripheral TXD1 40 7 Peripheral RXD1 41 8 N/A 9 N/A 10 Peripheral ISB0 48 11 Peripheral ISB1 50 12 Peripheral ISB2 51 0 Peripheral TXD0 7 1 Peripheral RXD0 8 2 N/A 3 N/A 4 Peripheral SCLK0 124 5 Peripheral MOSI0 126 6 Peripheral MISO0 125 7 Peripheral SS0 123 8 Peripheral TC0 111 9 Peripheral TC1 113 10 Peripheral TD0 107 11 Peripheral TD1 108 12 Peripheral TD2 109 13 Peripheral TD3 110 GPIOE 56F8335 Technical Data, Rev. 1 122 Freescale Semiconductor Preliminary JTAG Information Table 8-3 GPIO External Signals Map (Continued) Pins in shaded rows are not available in 56F8335 / 56F8135 Pins in italics are NOT available in the 56F8135 device GPIO Port GPIOF GPIO Bit Reset Function Functional Signal Package Pin # 0 Peripheral D71 22 1 Peripheral D81 23 2 Peripheral D91 24 3 Peripheral D101 26 4 N/A 5 N/A 6 N/A 7 N/A 8 N/A 9 N/A 10 N/A 11 N/A 12 N/A 13 N/A 14 N/A 15 N/A 1. Not useful in reset configuration in this package - reconfigure as GPIO 2. See Part 6.5.8 to determine how to select peripherals from this set; DEC1 is the selected peripheral at reset Part 9 Joint Test Action Group (JTAG) 9.1 JTAG Information Please contact your Freescale marketing device/package-specific BSDL information. representative or authorized distributor for 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 123 Part 10 Specifications 10.1 General Characteristics The 56F8335/56F8135 are fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term “5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and 5V-compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during normal operation without causing damage). This 5V-tolerant capability therefore offers the power savings of 3.3V I/O levels combined with the ability to receive 5V levels without damage. Absolute maximum ratings in Table 10-1 are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent damage to the device. Note: All specifications meet both Automotive and Industrial requirements unless individual specifications are listed. Note: The 56F8135 device is guaranteed to 40MHz and specified to meet Industrial requirements only. CAUTION This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level. Note: The 56F8135 device is specified to meet Industrial requirements only; CAN is NOT available on the 56F8135 device. 56F8335 Technical Data, Rev. 1 124 Freescale Semiconductor Preliminary General Characteristics Table 10-1 Absolute Maximum Ratings (VSS = VSSA_ADC = 0) Characteristic Supply voltage ADC Supply Voltage Oscillator / PLL Supply Voltage Internal Logic Core Supply Voltage Symbol Notes VDD_IO VDDA_ADC, VREFH VREFH must be less than or equal to VDDA_ADC VDDA_OSC_PLL Min Max Unit - 0.3 4.0 V - 0.3 4.0 V - 0.3 4.0 V VDD_CORE OCR_DIS is High - 0.3 3.0 V Input Voltage (digital) VIN Pin Groups 1, 2, 5, 6, 9, 10 -0.3 6.0 V Input Voltage (analog) VINA Pin Groups 11, 12, 13 -0.3 4.0 V Output Voltage VOUT Pin Groups 1, 2, 3, 4, 5, 6, 7, 8 -0.3 4.0 6.01 V Output Voltage (open drain) VOD Pin Group 4 -0.3 6.0 V Ambient Temperature (Automotive) TA -40 125 °C Ambient Temperature (Industrial) TA -40 105 °C Junction Temperature (Automotive) TJ -40 150 °C Junction Temperature (Industrial) TJ -40 125 °C Storage Temperature (Automotive) TSTG -55 150 °C Storage Temperature (Industrial) TSTG -55 150 °C 1. If corresponding GPIO pin is configured as open drain. Note: Pins in italics are NOT available in the 56F8135 device. Pin Group 1: TXD0-1, RXD0-1, SS0, MISO0, MOSI0 Pin Group 2: PHASEA0, PHASEA1, PHASEB0, PHASEB1, INDEX0, INDEX1, HOME0, HOME1, ISB0-2, ISA0-2, TD2-3, TC0-1, TDO, SCLK0 Pin Group 3: RSTO, TDO Pin Group 4: CAN_TX Pin Group 5: D0-15, GPIOD0-5 Pin Group 6: A8-15, GPIOB0-4, TD0-1 Pin Group 7: CLKO Pin Group 8: PWMA0-5, PWMB0-5 Pin Group 9: IRQA, IRQB, RESET, EXTBOOT, TRST,TMS, TDI, CAN_RX, EMI_MODE, FAULTA0-3, FAULTB0-3 Pin Group 10: TCK Pin Group 11: XTAL, EXTAL Pin Group 12: ANA0-7, ANB0-7 Pin Group 13: OCR_DIS, CLKMODE 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 125 Table 10-2 ElectroStatic Discharge (ESD) Protection Characteristic Min Typ Max Unit ESD for Human Body Model (HBM) 2000 — — V ESD for Machine Model (MM) 200 — — V ESD for Charge Device Model (CDM) 500 — — V Table 10-3 Thermal Characteristics6 Value Characteristic Comments Symbol Unit Notes 128-pin LQFP Junction to ambient Natural convection Junction to ambient (@1m/sec) RθJA 50.8 °C/W 2 RθJMA 46.5 °C/W 2 Junction to ambient Natural convection Four layer board (2s2p) RθJMA (2s2p) 43.9 °C/W 1,2 Junction to ambient (@1m/sec) Four layer board (2s2p) RθJMA 41.7 °C/W 1,2 Junction to case RθJC 13.9 °C/W 3 Junction to center of case ΨJT 1.2 °C/W 4, 5 I/O pin power dissipation P I/O User-determined W Power dissipation PD P D = (IDD x VDD + P I/O) W PDMAX (TJ - TA) / RθJA7 W Maximum allowed PD 1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application. Determined on 2s2p thermal test board. 2. Junction to ambient thermal resistance, Theta-JA (RθJA) was simulated to be equivalent to the JEDEC specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on a thermal test board with two internal planes (2s2p, where “s” is the number of signal layers and “p” is the number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with the non-single layer boards is Theta-JMA. 3. Junction to case thermal resistance, Theta-JC (RθJC ), was simulated to be equivalent to the measured values using the cold plate technique with the cold plate temperature used as the "case" temperature. The basic cold plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal metric to use to calculate thermal performance when the package is being used with a heat sink. 4. Thermal Characterization Parameter, Psi-JT (ΨJT ), is the "resistance" from junction to reference point thermocouple on top center of case as defined in JESD51-2. ΨJT is a useful value to use to estimate junction temperature in steady-state customer environments. 5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance. 6. See Part 12.1 for more details on thermal design considerations. 7. TJ = Junction Temperature TA = Ambient Temperature 56F8335 Technical Data, Rev. 1 126 Freescale Semiconductor Preliminary General Characteristics Note: The 56F8135 device is guaranteed to 40MHz and specified to meet Industrial requirements only; CAN is NOT available on the 56F8135 device. Table 10-4 Operating Conditions (VREFLO = 0V, VSS = VSSA_ADC = 0V, VDDA = VDDA_ADC = VDDA_OSC_PLL ) Characteristic Supply voltage ADC Supply Voltage Oscillator / PLL Supply Voltage Symbol Notes VDD_IO VDDA_ADC, VREFH VREFH must be less Min Typ Max Unit 3 3.3 3.6 V 3 3.3 3.6 V 3 3.3 3.6 V 2.25 2.5 2.75 V 0 — 60 MHz than or equal to VDDA_ADC VDDA_OSC _PLL Internal Logic Core Supply Voltage VDD_CORE Device Clock Frequency FSYSCLK OCR_DIS is High Input High Voltage (digital) VIN Pin Groups 1, 2, 5, 6, 9, 10 2 — 5.5 V Input High Voltage (analog) VIHA Pin Group 13 2 — VDDA+0.3 V Input High Voltage (XTAL/EXTAL, VIHC Pin Group 11 VDDA-0.8 — VDDA+0.3 V VIHC Pin Group 11 2 — VDDA+0.3 V Input Low Voltage VIL Pin Groups 1, 2, 5, 6, 9, 10, 11, 13 -0.3 — .8 V Output High Source Current VOH = 2.4V (VOH min.) IOH Pin Groups 1, 2, 3 — — -4 mA Pin Groups 5, 6, 7 — — -8 Pin Groups 8 — — -12 Pin Groups 1, 2, 3, 4 — — 4 Pin Groups 5, 6, 7 — — 8 Pin Group 8 — — 12 XTAL is not driven by an external clock) Input high voltage (XTAL/EXTAL, XTAL is driven by an external clock) Output Low Sink Current VOL = 0.4V (VOL max) IOL mA Ambient Operating Temperature (Automotive) TA -40 — 125 °C Ambient Operating Temperature (Industrial) TA -40 — 105 °C Flash Endurance (Automotive) (Program Erase Cycles) NF TA = -40°C to 125°C 10,000 — — Cycles Flash Endurance (Industrial) (Program Erase Cycles) NF TA = -40°C to 105°C 10,000 — — Cycles Flash Data Retention (Automotive) TR TJ <= 85°C avg 15 — — Years Note: Total chip source or sink current cannot exceed 200mA See Pin Groups listed in Table 10-1 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 127 10.2 DC Electrical Characteristics Note: The 56F8135 device is specified to meet Industrial requirements only; CAN is NOT available on the 56F8135 device. Table 10-5 DC Electrical Characteristics At Recommended Operating Conditions; see Table 10-4 Characteristic Symbol Notes Min Typ Max Unit Test Conditions Output High Voltage VOH 2.4 — — V IOH = IOHmax Output Low Voltage VOL — — 0.4 V IOL = IOLmax IIH Pin Groups 1, 2, 5, 6, 9 — 0 +/- 2.5 µA VIN = 3.0V to 5.5V IIH Pin Group 10 40 80 160 µA VIN = 3.0V to 5.5V IIHA Pin Group 13 — 0 +/- 2.5 µA VIN = VDDA ADC Input Current High IIHADC Pin Group 12 — 0 +/- 3.5 µA VIN = VDDA Digital Input Current Low IIL Pin Groups 1, 2, 5, 6, 9 -200 -100 -50 µA VIN = 0V IIL Pin Groups 1, 2, 5, 6, 9 — 0 +/- 2.5 µA VIN = 0V IIL Pin Group 10 — 0 +/- 2.5 µA VIN = 0V IILA Pin Group 13 — 0 +/- 2.5 µA VIN = 0V ADC Input Current Low IILADC Pin Group 12 — 0 +/- 3.5 µA VIN = 0V EXTAL Input Current Low IEXTAL — 0 +/- 2.5 µA VIN = VDD or 0V CLKMODE = High — 0 +/- 2.5 µA VIN = VDDA or 0V CLKMODE = Low — — 200 µA VIN = VDDA or 0V IOZ Pin Groups 1, 2, 3, 4, 5, 6, 7, 8 — 0 +/- 2.5 µA VOUT = 3.0V to 5.5V or 0V Schmitt Trigger Input Hysteresis VHYS Pin Groups 2, 6, 9,10 — 0.3 — V — Input Capacitance (EXTAL/XTAL) CINC — 4.5 — pF — COUTC — 5.5 — pF — CIN — 6 — pF — COUT — 6 — pF — Digital Input Current High pull-up enabled or disabled Digital Input Current High with pull-down Analog Input Current High pull-up enabled Digital Input Current Low pull-up disabled Digital Input Current Low with pull-down Analog Input Current Low clock input XTAL Input Current Low IXTAL clock input Output Current High Impedance State Output Capacitance (EXTAL/XTAL) Input Capacitance Output Capacitance See Pin Groups listed in Table 10-1 56F8335 Technical Data, Rev. 1 128 Freescale Semiconductor Preliminary DC Electrical Characteristics Table 10-6 Power-On Reset Low Voltage Parameters Characteristic Symbol Min Typ Max Units POR Trip Point POR 1.75 1.8 1.9 V LVI, 2.5 volt Supply, trip point1 VEI2.5 — 2.14 — V LVI, 3.3 volt supply, trip point2 VEI3.3 — 2.7 — V Bias Current I bias — 110 130 µA 1. When VDD_CORE drops below VEI2.5, an interrupt is generated. 2. When VDD_CORE drops below VEI3.3, an interrupt is generated. Table 10-7 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Enabled (OCR_DIS = Low) Mode RUN1_MAC IDD_IO1 IDD_ADC IDD_OSC_PLL 155mA 50mA 2.5mA Test Conditions • 60MHz Device Clock • All peripheral clocks are enabled • All peripherals running • Continuous MAC instructions with fetches from Data RAM • ADC powered on and clocked Wait3 91mA 65µA 2.5mA • 60MHz Device Clock • All peripheral clocks are enabled • ADC powered off Stop1 5.8mA 0µA 155µA • 8MHz Device Clock • All peripheral clocks are off • ADC powered off • PLL powered off Stop2 5.1mA 0µA 145µA • External Clock is off • All peripheral clocks are off • ADC powered off • PLL powered off 1. No Output Switching 2. Includes Processor Core current supplied by internal voltage regulator 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 129 Table 10-8 Current Consumption per Power Supply Pin (Typical) On-Chip Regulator Disabled (OCR_DIS = High) Mode RUN1_MAC IDD_Core IDD_IO1 IDD_ADC IDD_OSC_PLL 150mA 13µA 50mA 2.5mA Test Conditions • 60MHz Device Clock • All peripheral clocks are enabled • All peripherals running • Continuous MAC instructions with fetches from Data RAM • ADC powered on and clocked Wait3 86mA 13µA 65µA 2.5mA • 60MHz Device Clock • All peripheral clocks are enabled • All peripherals running • ADC powered off Stop1 800µA 13µA 0µA 155µA • 8MHz Device Clock • All peripheral clocks are off • ADC powered off • PLL powered off Stop2 100µA 13µA 0µA 145µA • External Clock is off • All peripheral clocks are off • ADC powered off • PLL powered off 1. No Output Switching Table 10-9. Regulator Parameters Characteristic Symbol Min Typical Max Unit Unloaded Output Voltage (0mA Load) VRNL 2.25 — 2.75 V Loaded Output Voltage (200mA load) VRL 2.25 — 2.75 V Line Regulation @ 250mA load (VDD33 ranges from 3.0V to 3.6V) VR 2.25 — 2.75 V Short Circuit Current (output shorted to ground) Iss — — 700 mA I bias — 5.8 7 mA Ipd — 0 2 µA TRSC — — 30 minutes Bias Current Power-down Current Short-Circuit Tolerance (output shorted to ground) 56F8335 Technical Data, Rev. 1 130 Freescale Semiconductor Preliminary DC Electrical Characteristics Table 10-10. PLL Parameters Characteristics Symbol Min Typical Max Unit PLL Start-up time TPS 0.3 0.5 10 ms Resonator Start-up time TRS 0.1 0.18 1 ms Min-Max Period Variation TPV 120 — 200 ps Peak-to-Peak Jitter TPJ — — 175 ps Bias Current IBIAS — 1.5 2 mA IPD — 100 150 µA Quiescent Current, power-down mode 10.2.1 Temperature Sense Note: Temperature Sensor is NOT available in the 56F8135 device. Table 10-11 Temperature Sense Parametrics Characteristics Symbol Min Typical Max Unit m — 7.762 — mV/°C Room Trim Temp. 1, 2 TRT 24 26 28 °C Hot Trim Temp. (Industrial)1,2 THT 122 125 128 °C Hot Trim Temp. (Automotive)1,2 THT 147 150 153 °C Output Voltage @ VDDA_ADC = 3.3V, TJ =0°C1 VTS0 — 1.370 — V VDDA_ADC 3.0 3.3 3.6 V Supply Current - OFF IDD-OFF — — 10 µA Supply Current - ON IDD-ON — — 250 µA Accuracy3,1 from -40°C to 150°C Using VTS = mT + VTS0 TACC -6.7 0 6.7 °C Resolution4, 5,1 RES — 0.104 — °C / bit Slope (Gain)1 Supply Voltage 1. Includes the ADC conversion of the analog Temperature Sense voltage. 2. The ADC is not calibrated for the conversion of the Temperature Sensor trim value stored in the Flash Memory at FMOPT0 and FMOPT1. 3. See Application Note, AN1980, for methods to increase accuracy. 4. Assuming a 12-bit range from 0V to 3.3V. 5. Typical resolution calculated using equation, RES = (VREFH - VREFLO) X 1 212 m 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 131 10.3 AC Electrical Characteristics Tests are conducted using the input levels specified in Table 10-5. Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured between the 10% and 90% points, as shown in Figure 10-1. Low VIH Input Signal High 90% 50% 10% Midpoint1 VIL Fall Time Rise Time Note: The midpoint is VIL + (VIH – VIL)/2. Figure 10-1 Input Signal Measurement References Figure 10-2 shows the definitions of the following signal states: • • • Active state, when a bus or signal is driven, and enters a low impedance state Tri-stated, when a bus or signal is placed in a high impedance state Data Valid state, when a signal level has reached VOL or VOH • Data Invalid state, when a signal level is in transition between VOL and VOH Data2 Valid Data1 Valid Data3 Valid Data2 Data1 Data3 Data Tri-stated Data Invalid State Data Active Data Active Figure 10-2 Signal States 10.4 Flash Memory Characteristics Table 10-12 Flash Timing Parameters Characteristic Symbol Min Typ Max Unit Program time1 Tprog 20 — — µs Erase time2 Terase 20 — — ms Tme 100 — — ms Mass erase time 1. There is additional overhead which is part of the programming sequence. See the 56F8300 Peripheral User Manual for details. Program time is per 16-bit word in Flash memory. Two words at a time can be programmed within the Program Flash module, as it contains two interleaved memories. 2. Specifies page erase time. There are 512 bytes per page in the Data and Boot Flash memories. The Program Flash module uses two interleaved Flash memories, increasing the effective page size to 1024 bytes. 56F8335 Technical Data, Rev. 1 132 Freescale Semiconductor Preliminary External Clock Operation Timing 10.5 External Clock Operation Timing Table 10-13 External Clock Operation Timing Requirements1 Characteristic Symbol Min Typ Max Unit Frequency of operation (external clock driver)2 fosc 0 — 120 MHz Clock Pulse Width3 tPW 3.0 — — ns External clock input rise time4 trise — — 10 ns External clock input fall time5 tfall — — 10 ns 1. Parameters listed are guaranteed by design. 2. See Figure 10-3 for details on using the recommended connection of an external clock driver. 3. The high or low pulse width must be no smaller than 8.0ns or the chip will not function. 4. External clock input rise time is measured from 10% to 90%. 5. External clock input fall time is measured from 90% to 10%. VIH External Clock 90% 50% 10% 90% 50% 10% tfall tPW tPW trise VIL Note: The midpoint is VIL + (VIH – VIL)/2. Figure 10-3 External Clock Timing 10.6 Phase Locked Loop Timing Table 10-14 PLL Timing Characteristic Symbol Min Typ Max Unit External reference crystal frequency for the PLL1 fosc 4 8 8 MHz PLL output frequency2 (fOUT) fop 160 — 260 MHz PLL stabilization time3 -40° to +125°C tplls — 1 10 ms 1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly. The PLL is optimized for 8MHz input crystal. 2. ZCLK may not exceed 60MHz. For additional information on ZCLK and (fOUT/2), please refer to the OCCS chapter in the 56F8300 Peripheral User Manual. 3. This is the minimum time required after the PLL set up is changed to ensure reliable operation. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 133 10.7 Crystal Oscillator Timing Table 10-15 Crystal Oscillator Parameters Characteristic Symbol Min Typ Max Unit Crystal Start-up time TCS 4 5 10 ms Resonator Start-up time TRS 0.1 0.18 1 ms RESR — — 120 ohms Crystal Peak-to-Peak Jitter TD 70 — 250 ps Crystal Min-Max Period Variation TPV 0.12 — 1.5 ns Resonator Peak-to-Peak Jitter TRJ — — 300 ps Resonator Min-Max Period Variation TRP — — 300 ps Bias Current, high-drive mode IBIASH — 250 290 µA Bias Current, low-drive mode IBIASL — 80 110 µA IPD — 0 1 µA Crystal ESR Quiescent Current, power-down mode 10.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing Table 10-16 Reset, Stop, Wait, Mode Select, and Interrupt Timing1,2 Symbol Typical Min Typical Max Unit See Figure Minimum RESET Assertion Duration tRA 16T — ns 10-4 Edge-sensitive Interrupt Request Width tIRW 1.5T — ns 10-5 tIG 18T — ns 10-6 tIG - FAST 14T — tIW 1.5T — ns 10-8 Characteristic IRQA, IRQB Assertion to General Purpose Output Valid, caused by first instruction execution in the interrupt service routine IRQA Width Assertion to Recover from Stop State3 1. In the formulas, T = clock cycle. For an operating frequency of 60MHz, T = 16.67ns. At 8MHz (used during Reset and Stop modes), T = 125ns. 2. Parameters listed are guaranteed by design. 3. The interrupt instruction fetch is visible on the pins only in Mode 3. 56F8335 Technical Data, Rev. 1 134 Freescale Semiconductor Preliminary Reset, Stop, Wait, Mode Select, and Interrupt Timing RESET tRA tRAZ tRDA A0–A15, D0–D15 First Fetch Figure 10-4 Asynchronous Reset Timing IRQA, IRQB tIRW Figure 10-5 External Interrupt Timing (Negative Edge-Sensitive) A0–A15 First Interrupt Instruction Execution tIDM IRQA, IRQB a) First Interrupt Instruction Execution General Purpose I/O Pin tIG IRQA, IRQB b) General Purpose I/O Figure 10-6 External Level-Sensitive Interrupt Timing IRQA, IRQB tIRI A0–A15 First Interrupt Vector Instruction Fetch Figure 10-7 Interrupt from Wait State Timing 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 135 tIW IRQA tIF A0–A15 First Instruction Fetch Not IRQA Interrupt Vector Figure 10-8 Recovery from Stop State Using Asynchronous Interrupt Timing 10.9 Serial Peripheral Interface (SPI) Timing Table 10-17 SPI Timing1 Characteristic Symbol Cycle time Master Slave Min Max Unit 50 50 — — ns ns — 25 — — ns ns — 100 — — ns ns 17.6 25 — — ns ns 24.1 25 — — ns ns 20 0 — — ns ns 0 2 — — ns ns 4.8 15 ns 3.7 15.2 ns — — 4.5 20.4 ns ns tC Enable lead time Master Slave tELD Enable lag time Master Slave tELG Clock (SCK) high time Master Slave tCH Clock (SCK) low time Master Slave tCL Data set up time required for inputs Master Slave tDS Data hold time required for inputs Master Slave tDH Access time (time to data active from high-impedance state) Slave tA Disable time (hold time to high-impedance state) Slave tD Data Valid for outputs Master Slave (after enable edge) tDV See Figure 10-9, 10-10, 10-11, 10-12 10-12 10-12 10-9, 10-10, 10-11, 10-12 10-12 10-9, 10-10, 10-11, 10-12 10-9, 10-10, 10-11, 10-12 10-12 10-12 10-9, 10-10, 10-11, 10-12 56F8335 Technical Data, Rev. 1 136 Freescale Semiconductor Preliminary Serial Peripheral Interface (SPI) Timing Table 10-17 SPI Timing1 (Continued) Characteristic Symbol Data invalid Master Slave tDI Rise time Master Slave tR Fall time Master Slave tF Min Max Unit 0 0 — — ns ns — — 11.5 10.0 ns ns — — 9.7 9.0 ns ns See Figure 10-9, 10-10, 10-11 10-9, 10-10, 10-11, 10-12 10-9, 10-10, 10-11, 10-12 1. Parameters listed are guaranteed by design. SS SS is held High on master (Input) tC tR tF tCL SCLK (CPOL = 0) (Output) tCH tF tR tCL SCLK (CPOL = 1) (Output) tDH tCH tDS MISO (Input) MSB in Bits 14–1 tDI MOSI (Output) Master MSB out tDV Bits 14–1 tF LSB in tDI(ref) Master LSB out tR Figure 10-9 SPI Master Timing (CPHA = 0) 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 137 SS (Input) SS is held High on master tC tF tR tCL SCLK (CPOL = 0) (Output) tCH tF tCL SCLK (CPOL = 1) (Output) tCH tDS tR MISO (Input) MSB in tDH Bits 14–1 tDI tDV(ref) MOSI (Output) LSB in tDV Master MSB out tDI(ref) Bits 14– 1 Master LSB out tF tR Figure 10-10 SPI Master Timing (CPHA = 1) SS (Input) tC tF tCL SCLK (CPOL = 0) (Input) tELG tR tCH tELD tCL SCLK (CPOL = 1) (Input) tCH tA MISO (Output) Slave MSB out Bits 14–1 tDS tDV tDH MOSI (Input) MSB in tF tR Bits 14–1 tD Slave LSB out tDI tDI LSB in Figure 10-11 SPI Slave Timing (CPHA = 0) 56F8335 Technical Data, Rev. 1 138 Freescale Semiconductor Preliminary Quad Timer Timing SS (Input) tF tC tR tCL SCLK (CPOL = 0) (Input) tCH tELG tELD tCL SCLK (CPOL = 1) (Input) tDV tCH tR tA MISO (Output) Slave MSB out Bits 14–1 tDS tDV MSB in Slave LSB out tDI tDH MOSI (Input) tD tF Bits 14–1 LSB in Figure 10-12 SPI Slave Timing (CPHA = 1) 10.10 Quad Timer Timing Table 10-18 Timer Timing1, 2 Characteristic Symbol Min Max Unit See Figure PIN 2T + 6 — ns 10-13 Timer input high / low period PINHL 1T + 3 — ns 10-13 Timer output period POUT 1T - 3 — ns 10-13 POUTHL 0.5T - 3 — ns 10-13 Timer input period Timer output high / low period 1. In the formulas listed, T = the clock cycle. For 60MHz operation, T = 16.67ns. 2. Parameters listed are guaranteed by design. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 139 Timer Inputs PIN PINHL PINHL POUT POUTHL POUTHL Timer Outputs Figure 10-13 Timer Timing 10.11 Quadrature Decoder Timing Table 10-19 Quadrature Decoder Timing1, 2 Characteristic Symbol Min Max Unit See Figure Quadrature input period PIN 4T + 12 — ns 10-14 Quadrature input high / low period PHL 2T + 6 — ns 10-14 Quadrature phase period PPH 1T + 3 — ns 10-14 1. In the formulas listed, T = the clock cycle. For 60MHz operation, T=16.67ns. 2. Parameters listed are guaranteed by design. PPH PPH PPH PPH Phase A (Input) PHL PIN PHL Phase B (Input) PHL PIN PHL Figure 10-14 Quadrature Decoder Timing 56F8335 Technical Data, Rev. 1 140 Freescale Semiconductor Preliminary Serial Communication Interface (SCI) Timing 10.12 Serial Communication Interface (SCI) Timing Table 10-20 SCI Timing1 Characteristic Symbol Min Max Unit See Figure BR — (fMAX/16) Mbps — RXD3 Pulse Width RXDPW 0.965/BR 1.04/BR ns 10-15 TXD4 Pulse Width TXDPW 0.965/BR 1.04/BR ns 10-16 Baud Rate2 1. Parameters listed are guaranteed by design. 2. fMAX is the frequency of operation of the system clock, ZCLK, in MHz, which is 60MHz for the 56F8335 device and 40MHz for the 56F8135 device. 3. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1. 4. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1. RXD SCI receive data pin (Input) RXDPW Figure 10-15 RXD Pulse Width TXD SCI receive data pin (Input) TXDPW Figure 10-16 TXD Pulse Width 10.13 Controller Area Network (CAN) Timing Note: CAN is NOT available in the 56F8135 device. Table 10-21 CAN Timing1 Characteristic Baud Rate Bus Wake Up detection Symbol Min Max Unit See Figure BRCAN — 1 Mbps — T WAKEUP 5 — µs 10-17 1. Parameters listed are guaranteed by design 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 141 CAN_RX CAN receive data pin (Input) T WAKEUP Figure 10-17 Bus Wake Up Detection 10.14 JTAG Timing Table 10-22 JTAG Timing Characteristic Symbol Min Max Unit See Figure TCK frequency of operation using EOnCE1 fOP DC SYS_CLK/8 MHz 10-18 TCK frequency of operation not using EOnCE1 fOP DC SYS_CLK/4 MHz 10-18 TCK clock pulse width tPW 50 — ns 10-18 TMS, TDI data set-up time tDS 5 — ns 10-19 TMS, TDI data hold time tDH 5 — ns 10-19 TCK low to TDO data valid tDV — 30 ns 10-19 TCK low to TDO tri-state tTS — 30 ns 10-19 tTRST 2T2 — ns 10-20 TRST assertion time 1. TCK frequency of operation must be less than 1/8 the processor rate. 2. T = processor clock period (nominally 1/60MHz) 1/fOP tPW tPW VM VM VIH TCK (Input) VM = VIL + (VIH – VIL)/2 VIL Figure 10-18 Test Clock Input Timing Diagram 56F8335 Technical Data, Rev. 1 142 Freescale Semiconductor Preliminary Analog-to-Digital Converter (ADC) Parameters TCK (Input) tDS TDI TMS (Input) tDH Input Data Valid tDV TDO (Output) Output Data Valid tTS TDO (Output) tDV TDO (Output) Output Data Valid Figure 10-19 Test Access Port Timing Diagram TRST (Input) tTRST Figure 10-20 TRST Timing Diagram 10.15 Analog-to-Digital Converter (ADC) Parameters Table 10-23 ADC Parameters Characteristic Symbol Min Typ Max Unit VADIN VREFL — VREFH V Resolution RES 12 — 12 Bits Integral Non-Linearity1 INL — +/- 2.4 +/- 3.2 LSB2 Differential Non-Linearity DNL — +/- 0.7 < +1 LSB2 Input voltages Monotonicity GUARANTEED ADC internal clock fADIC 0.5 — 5 MHz Conversion range RAD VREFL — VREFH V ADC channel power-up time tADPU 5 6 16 tAIC cycles3 ADC reference circuit power-up time4 tVREF — — 25 ms 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 143 Table 10-23 ADC Parameters (Continued) Characteristic Symbol Min Typ Max Unit Conversion time tADC — 6 — tAIC cycles3 Sample time tADS — 1 — tAIC cycles3 Input capacitance CADI — 5 — pF Input injection current5, per pin IADI — — 3 mA Input injection current, total IADIT — — 20 mA VREFH current IVREFH — 1.2 3 mA ADC A current IADCA — 25 — mA ADC B current IADCB — 25 — mA Quiescent current IADCQ — 0 10 µA Uncalibrated Gain Error (ideal = 1) EGAIN — +/- .004 +/- .01 — Uncalibrated Offset Voltage VOFFSET — +/- 18 +/- 46 mV Calibrated Absolute Error6 AECAL — See Figure 10-21 — LSBs Calibration Factor 17 CF1 — -0.003141 — — Calibration Factor 27 CF2 — -17.6 — — — — -60 — dB Vcommon — (VREFH - VREFLO) / 2 — V SNR — 64.6 — db SINAD — 59.1 — db THD — 60.6 — db Spurious Free Dynamic Range SFDR — 61.1 — db Effective Number Of Bits8 ENOB — 9.6 — Bits Crosstalk between channels Common Mode Voltage Signal-to-noise ratio Signal-to-noise plus distortion ratio Total Harmonic Distortion 1. INL measured from Vin = .1VREFH to Vin = .9VREFH 10% to 90% Input Signal Range 2. LSB = Least Significant Bit 3. ADC clock cycles 4. Assumes each voltage reference pin is bypassed with 0.1µF ceramic capacitors to ground 5. The current that can be injected or sourced from an unselected ADC signal input without impacting the performance of the ADC. This allows the ADC to operate in noisy industrial environments where inductive flyback is possible. 6. Absolute error includes the effects of both gain error and offset error. 7. Please see the 56F8300 Peripheral User’s Manual for additional information on ADC calibration. 8. ENOB = (SINAD - 1.76)/6.02 56F8335 Technical Data, Rev. 1 144 Freescale Semiconductor Preliminary Analog-to-Digital Converter (ADC) Parameters Figure 10-21 ADC Absolute Error Over Processing and Temperature Extremes Before and After Calibration for VDCin = 0.60V and 2.70V Note: The absolute error data shown in the graphs above reflects the effects of both gain error and offset error. The data was taken on 15 parts: three each from four processing corner lots as well as three from one nominally processed lot, each at three temperatures: -40°C, 27°C, and 150°C (giving the 45 data points shown above), for two input DC voltages: 0.60V and 2.70V. The data indicates that for the given population of parts, calibration significantly reduced (by as much as 39%) the collective variation (spread) of the absolute error of the population. It also significantly reduced (by as much as 80%) the mean (average) of the absolute error and thereby brought it significantly closer to the ideal value of zero. Although not guaranteed, it is believed that calibration will produce results similar to those shown above for any population of parts including those which represent processing and temperature extremes. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 145 10.16 Equivalent Circuit for ADC Inputs Figure 10-22 illustrates the ADC input circuit during sample and hold. S1 and S2 are always open/closed at the same time that S3 is closed/open. When S1/S2 are closed & S3 is open, one input of the sample and hold circuit moves to VREFH - VREFH / 2, while the other charges to the analog input voltage. When the switches are flipped, the charge on C1 and C2 are averaged via S3, with the result that a single-ended analog input is switched to a differential voltage centered about VREFH - VREFH / 2. The switches switch on every cycle of the ADC clock (open one-half ADC clock, closed one-half ADC clock). Note that there are additional capacitances associated with the analog input pad, routing, etc., but these do not filter into the S/H output voltage, as S1 provides isolation during the charge-sharing phase. One aspect of this circuit is that there is an on-going input current, which is a function of the analog input voltage, VREF and the ADC clock frequency. 3 Analog Input 4 S1 (VREFH - VREFLO) / 2 1 1. 2. 3. 4. C1 S2 2 S/H S3 C2 C1 = C2 = 1pF Parasitic capacitance due to package, pin-to-pin and pin-to-package base coupling; 1.8pf Parasitic capacitance due to the chip bond pad, ESD protection devices and signal routing; 2.04pf Equivalent resistance for the ESD isolation resistor and the channel select mux; 500 ohms Sampling capacitor at the sample and hold circuit. Capacitor C1 is normally disconnected from the input and is only connected to it at sampling time; 1pf Figure 10-22 Equivalent Circuit for A/D Loading 10.17 Power Consumption This section provides additional detail which can be used to optimize power consumption for a given application. Power consumption is given by the following equation: Total power = A: internal [static component] +B: internal [state-dependent component] +C: internal [dynamic component] +D: external [dynamic component] +E: external [static] A, the internal [static component], is comprised of the DC bias currents for the oscillator, leakage current, PLL, and voltage references. These sources operate independently of processor state or operating frequency. B, the internal [state-dependent component], reflects the supply current required by certain on-chip resources only when those resources are in use. These include RAM, Flash memory and the ADCs. 56F8335 Technical Data, Rev. 1 146 Freescale Semiconductor Preliminary Power Consumption C, the internal [dynamic component], is classic C*V2*F CMOS power dissipation corresponding to the 56800E core and standard cell logic. D, the external [dynamic component], reflects power dissipated on-chip as a result of capacitive loading on the external pins of the chip. This is also commonly described as C*V2*F, although simulations on two of the IO cell types used on the device reveal that the power-versus-load curve does have a non-zero Y-intercept. Table 10-24 IO Loading Coefficients at 10MHz Intercept Slope PDU08DGZ_ME 1.3 0.11mW / pF PDU04DGZ_ME 1.15mW 0.11mW / pF Power due to capacitive loading on output pins is (first order) a function of the capacitive load and frequency at which the outputs change. Table 10-24 provides coefficients for calculating power dissipated in the IO cells as a function of capacitive load. In these cases: Total Power = Σ((Intercept +Slope*Cload)*frequency/10MHz) where: • • • Summation is performed over all output pins with capacitive loads Total Power is expressed in mW Cload is expressed in pF Because of the low duty cycle on most device pins, power dissipation due to capacitive loads was found to be fairly low when averaged over a period of time. E, the external [static component], reflects the effects of placing resistive loads on the outputs of the device. Sum the total of all V2/R or IV to arrive at the resistive load contribution to power. Assume V = 0.5 for the purposes of these rough calculations. For instance, if there is a total of eight PWM outputs driving 10mA into LEDs, then P = 8*.5*.01 = 40mW. In previous discussions, power consumption due to parasitics associated with pure input pins is ignored, as it is assumed to be negligible. 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 147 Part 11 Packaging 11.1 56F8335 Package and Pin-Out Information PHASEB0 PHASEA0 MOSI0 MISO0 SCLK0 SS0 VCAP2 CAN_RX CAN_TX VPP1 TDO TDI TMS TCK TRST TC1 VDD_IO TC0 TD3 TD2 TD1 TD0 ISA2 ISA1 ISA0 ANB7 This section contains package and pin-out information for the 56F8335. This device comes in a 128-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1. shows the package outline for the 128-pin LQFP, Figure 11-3 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the 128-pin LQFP. INDEX0 HOME0 VSS VDD_IO Orientation Mark PIN 1 103 VPP2 CLKO TXD0 RXD0 PHASEA1 PHASEB1 INDEX1 HOME1 VCAP4 VDD_IO GPIOA0 GPIOA1 GPIOA2 GPIOA3 GPIOA4 GPIOA5 VSS GPIOF0 GPIOF1 GPIOF2 VDD_IO 65 39 PWMB5 TXD1 RXD1 GPIOD0 GPIOD1 GPIOD2 GPIOD3 GPIOD4 GPIOD5 ISB0 VCAP1 ISB1 ISB2 IRQA IRQB FAULTB0 FAULTB1 FAULTB2 FAULTB3 PWMA0 VSS PWMA1 PWMA2 VDD_IO PWMA3 PWMA4 GPIOF3 GPIOB0 GPIOB1 GPIOB2 GPIOB3 GPIOB4 PWMB0 PWMB1 PWMB2 VSS VDD_IO PWMB3 PWMB4 ANB6 ANB5 ANB4 ANB3 ANB2 ANB1 ANB0 VSSA_ADC VDDA_ADC VREFH VREFP VREFMID VREFN VREFLO TEMP_SENSE ANA7 ANA6 ANA5 ANA4 ANA3 ANA2 ANA1 ANA0 CLKMODE RESET RSTO VDD_IO VCAP3 EXTAL XTAL VDDA_OSC_PLL OCR_DIS FAULTA3 FAULTA2 FAULTA1 FAULTA0 PWMA5 VSS Figure 11-1 Top View, 56F8335 128-pin LQFP Package 56F8335 Technical Data, Rev. 1 148 Freescale Semiconductor Preliminary 56F8335 Package and Pin-Out Information Table 11-1 56F8335 128-Pin LQFP Package Identification by Pin Number Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name 1 INDEX0 33 PWMB1 65 VSS 97 ANB1 2 HOME0 34 PWMB2 66 PWMA5 98 ANB2 3 VSS 35 VSS 67 FAULTA0 99 ANB3 4 VDD_IO 36 VDD_IO 68 FAULTA1 100 ANB4 5 VPP2 37 PWMB3 69 FAULTA2 101 ANB5 6 CLKO 38 PWMB4 70 FAULTA3 102 ANB6 7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 VDDA_OSC_PLL 104 ISA0 9 PHASEA1 41 RXD1 73 XTAL 105 ISA1 10 PHASEB1 42 GPIOD0 74 EXTAL 106 ISA2 11 INDEX1 43 GPIOD1 75 VCAP3 107 TD0 12 HOME1 44 GPIOD2 76 VDD_IO 108 TD1 13 VCAP4 45 GPIOD3 77 RSTO 109 TD2 14 VDD_IO 46 GPIOD4 78 RESET 110 TD3 15 GPIOA01 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA0 112 VDD_IO 17 GPIOA21 49 VCAP1 81 ANA1 113 TC1 18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 VSS 53 IRQB 85 ANA5 117 TDI 20 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF11 55 FAULTB1 87 ANA7 119 VPP1 24 GPIOF21 56 FAULTB2 88 TEMP_SENSE 120 CAN_TX 25 VDD_IO 57 FAULTB3 89 VREFLO 121 CAN_RX 1. Primary function is not available in this package configuration; GPIO function must be used instead 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 149 Table 11-1 56F8335 128-Pin LQFP Package Identification by Pin Number (Continued) Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name 26 GPIOF31 58 PWMA0 90 VREFN 122 VCAP2 27 GPIOB0 59 VSS 91 VREFMID 123 SS0 28 GPIOB1 60 PWMA1 92 VREFP 124 SCLK0 29 GPIOB2 61 PWMA2 93 VREFH 125 MISO0 30 GPIOB3 62 VDD_IO 94 VDDA_ADC 126 MOSI0 31 GPIOB4 63 PWMA3 95 VSSA_ADC 127 PHASEA0 32 PWMB0 64 PWMA4 96 ANB0 128 PHASEB0 56F8335 Technical Data, Rev. 1 150 Freescale Semiconductor Preliminary 56F8135 Package and Pin-Out Information 11.2 56F8135 Package and Pin-Out Information PHASEB0 PHASEA0 MOSI0 MISO0 SCLK0 SS0 VCAP2 NC NC VPP1 TDO TDI TMS TCK TRST TC1 VDD_IO TC0 GPIOE13 GPIOE12 GPIOE11 GPIOE10 GPIOC10 GPIOC9 GPIOC8 ANB7 This section contains package and pin-out information for the 56F8135. This device comes in a 128-pin Low-profile Quad Flat Pack (LQFP). Figure 11-1. shows the package outline for the 128-pin LQFP, Figure 11-3 shows the mechanical parameters for this package, and Table 11-1 lists the pin-out for the 128-pin LQFP. INDEX0 HOME0 VSS VDD_IO Orientation Mark PIN 1 103 VPP2 CLKO TXD0 RXD0 SCLK1 MOSI1 MISO1 SS1 VCAP4 VDD_IO GPIOA0 GPIOA1 GPIOA2 GPIOA3 GPIOA4 GPIOA5 VSS GPIOF0 GPIOF1 GPIOF2 VDD_IO 65 39 PWMB5 TXD1 RXD1 GPIOD0 GPIOD1 GPIOD2 GPIOD3 GPIOD4 GPIOD5 ISB0 VCAP1 ISB1 ISB2 IRQA IRQB FAULTB0 FAULTB1 FAULTB2 FAULTB3 NC VSS NC NC VDD_IO NC NC GPIOF3 GPIOB0 GPIOB1 GPIOB2 GPIOB3 GPIOB4 PWMB0 PWMB1 PWMB2 VSS VDD_IO PWMB3 PWMB4 ANB6 ANB5 ANB4 ANB3 ANB2 ANB1 ANB0 VSSA_ADC VDDA_ADC VREFH VREFP VREFMID VREFN VREFLO NC ANA7 ANA6 ANA5 ANA4 ANA3 ANA2 ANA1 ANA0 CLKMODE RESET RSTO VDD_IO VCAP3 EXTAL XTAL VDDA_OSC_PLL OCR_DIS NC NC NC NC NC VSS Figure 11-2 Top View, 56F8135 128-pin LQFP Package 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 151 Table 11-2 56F8135 128-Pin LQFP Package Identification by Pin Number Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name 1 INDEX0 33 PWMB1 65 VSS 97 ANB1 2 HOME0 34 PWMB2 66 NC 98 ANB2 3 VSS 35 VSS 67 NC 99 ANB3 4 VDD_IO 36 VDD_IO 68 NC 100 ANB4 5 VPP2 37 PWMB3 69 NC 101 ANB5 6 CLKO 38 PWMB4 70 NC 102 ANB6 7 TXD0 39 PWMB5 71 OCR_DIS 103 ANB7 8 RXD0 40 TXD1 72 VDDA_OSC_PLL 104 GPIOC8 9 SCLK1 41 RXD1 73 XTAL 105 GPIOC9 10 MOSI1 42 GPIOD0 74 EXTAL 106 GPIOC10 11 MISO1 43 GPIOD1 75 VCAP3 107 GPIOE10 12 SS1 44 GPIOD2 76 VDD_IO 108 GPIOE11 13 VCAP4 45 GPIOD3 77 RSTO 109 GPIOE12 14 VDD_IO 46 GPIOD4 78 RESET 110 GPIOE13 15 GPIOA01 47 GPIOD5 79 CLKMODE 111 TC0 16 GPIOA11 48 ISB0 80 ANA0 112 VDD_IO 17 GPIOA21 49 VCAP1 81 ANA1 113 TC1 18 GPIOA31 50 ISB1 82 ANA2 114 TRST 19 GPIOA41 51 ISB2 83 ANA3 115 TCK 20 GPIOA51 52 IRQA 84 ANA4 116 TMS 21 VSS 53 IRQB 85 ANA5 117 TDI 22 GPIOF01 54 FAULTB0 86 ANA6 118 TDO 23 GPIOF11 55 FAULTB1 87 ANA7 119 VPP1 24 GPIOF21 56 FAULTB2 88 NC 120 NC 25 VDD_IO 57 FAULTB3 89 VREFLO 121 NC 1. Primary function is not available in this package configuration; GPIO function must be used instead 56F8335 Technical Data, Rev. 1 152 Freescale Semiconductor Preliminary 56F8135 Package and Pin-Out Information Table 11-2 56F8135 128-Pin LQFP Package Identification by Pin Number (Continued) Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name Pin No. Signal Name 26 GPIOF31 58 NC 90 VREFN 122 VCAP2 27 GPIOB0 59 VSS 91 VREFMID 123 SS0 28 GPIOB1 60 NC 92 VREFP 124 SCLK0 29 GPIOB2 61 NC 93 VREFH 125 MISO0 30 GPIOB3 62 VDD_IO 94 VDDA_ADC 126 MOSI0 31 GPIOB4 63 NC 95 VSSA_ADC 127 PHASEA0 32 PWMB0 64 NC 96 ANB0 128 PHASEB0 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 153 DIM NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE H. 5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING PLANE C. 6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE. DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H. 7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE b DIMENSION TO EXCEED 0.35. A A1 A2 b b1 c c1 D D1 e E E1 L L1 L2 S R1 R2 0 MILLIMETERS MIN MAX --1.60 0.05 0.15 1.35 1.45 0.17 0.27 0.17 0.23 0.09 0.20 0.09 0.16 22.00 BSC 20.00BSC 0.50 BSC 16.00 BSC 14.00 BSC 0.45 0.75 1.00 REF 0.50 REF 0.20 --0.08 --0.08 0.20 0o 01 0 7o --- 02 11o 13o o Figure 11-3 128-pin LQFP Mechanical Information Please see www.freescale.com for the most current case outline. 56F8335 Technical Data, Rev. 1 154 Freescale Semiconductor Preliminary Thermal Design Considerations Part 12 Design Considerations 12.1 Thermal Design Considerations An estimation of the chip junction temperature, TJ, can be obtained from the equation: TJ = TA + (RθJΑ x PD) where: TA = Ambient temperature for the package (oC) RθJΑ = Junction-to-ambient thermal resistance (oC/W) PD = Power dissipation in the package (W) The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low-power dissipation and the components are well separated. When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance: RθJA = RθJC + RθCA where: RθJA = Package junction-to-ambient thermal resistance °C/W RθJC = Package junction-to-case thermal resistance °C/W RθCA = Package case-to-ambient thermal resistance °C/W RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, RθCA . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device. To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation: TJ = TT + (ΨJT x PD) where: TT ΨJT PD = Thermocouple temperature on top of package (oC) = Thermal characterization parameter (oC)/W = Power dissipation in package (W) 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 155 The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire. When heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance is important to minimize the change in thermal performance caused by removing part of the thermal interface to the heat sink. Because of the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back-calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance. 12.2 Electrical Design Considerations CAUTION This device contains protective circuitry to guard against damage due to high static voltage or electrical fields. However, normal precautions are advised to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate voltage level. Use the following list of considerations to assure correct operation of the 56F8335/56F8135: • Provide a low-impedance path from the board power supply to each VDD pin on the device, and from the board ground to each VSS (GND) pin • The minimum bypass requirement is to place six 0.01–0.1µF capacitors positioned as close as possible to the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the VDD/VSS pairs, including VDDA/VSSA. Ceramic and tantalum capacitors tend to provide better performance tolerances. Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND) pins are less than 0.5 inch per capacitor lead Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and VSS • • • Bypass the VDD and VSS layers of the PCB with approximately 100µF, preferably with a high-grade capacitor such as a tantalum capacitor 56F8335 Technical Data, Rev. 1 156 Freescale Semiconductor Preliminary Power Distribution and I/O Ring Implementation • • Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance. This is especially critical in systems with higher capacitive loads that could create higher transient currents in the VDD and VSS circuits. • Take special care to minimize noise levels on the VREF, VDDA and VSSA pins • Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means to assert TRST independently of RESET. Designs that do not require debugging functionality, such as consumer products, should tie these pins together. Because the Flash memory is programmed through the JTAG/OnCE port, the designer should provide an interface to this port to allow in-circuit Flash programming • 12.3 Power Distribution and I/O Ring Implementation Figure 12-1 illustrates the general power control incorporated in the 56F8335/56F8135. This chip contains two internal power regulators. One of them is powered from the VDDA_OSC_PLL pin and cannot be turned off. This regulator controls power to the internal clock generation circuitry. The other regulator is powered from the VDD_IO pins and provides power to all of the internal digital logic of the core, all peripherals and the internal memories. This regulator can be turned off, if an external VDD_CORE voltage is externally applied to the VCAP pins. In summary, the entire chip can be supplied from a single 3.3 volt supply if the large core regulator is enabled. If the regulator is not enabled, a dual supply 3.3V/2.5V configuration can also be used. Notes: • • Flash, RAM and internal logic are powered from the core regulator output VPP1 and VPP2 are not connected in the customer system • All circuitry, analog and digital, shares a common VSS bus VDDA_OSC_PLL VDDA_ADC VDD REG VCAP REG I/O ADC CORE OSC VSS VREFH VREFP VREFMID VREFN VREFLO VSSA_ADC Figure 12-1 Power Management 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 157 Part 13 Ordering Information Table 13-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor sales office or authorized distributor to determine availability and to order parts. Table 13-1 Ordering Information Part Supply Voltage Package Type Pin Count Frequency (MHz) MC56F8335 3.0–3.6 V Low-Profile Quad Flat Pack (LQFP) 128 MC56F8335 3.0–3.6 V Low-Profile Quad Flat Pack (LQFP) MC56F8135 3.0–3.6 V Low-Profile Quad Flat Pack (LQFP) Ambient Temperature Range Order Number 60 -40° to + 105° C MC56F8335VFGE* 128 60 -40° to + 125° C MC56F8335MFGE* 128 40 -40° to + 105° C MC56F8135VFGE* *This package is RoHS compliant. 56F8335 Technical Data, Rev. 1 158 Freescale Semiconductor Preliminary Power Distribution and I/O Ring Implementation 56F8335 Technical Data, Rev. 1 Freescale Semiconductor Preliminary 159 How to Reach Us: Home Page: www.freescale.com E-mail: [email protected] USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp. Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. This product incorporates SuperFlash® technology licensed from SST. © Freescale Semiconductor, Inc. 2005. All rights reserved. MC56F8335 Rev. 1 12/2005