Freescale Semiconductor Data Sheet: Product Preview K51 Sub-Family Data Sheet Document Number: K51P100M100SF2 Rev. 4, 3/2011 K51P100M100SF2 Supports the following: MK51X256CLL100, MK51N512CLL100 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 85°C • Performance – Up to 100 MHz ARM Cortex-M4 core with DSP instructions delivering 1.25 Dhrystone MIPS per MHz • Memories and memory interfaces – Up to 512 KB program flash memory on nonFlexMemory devices – Up to 256 KB program flash memory on FlexMemory devices – Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices – Up to 128 KB RAM – Serial programming interface (EzPort) • Clocks – 3 to 32 MHz crystal oscillator – 32 kHz crystal oscillator – Multi-purpose clock generator • System peripherals – 10 low-power modes to provide power optimization based on application requirements – Memory protection unit with multi-master protection – 16-channel DMA controller, supporting up to 64 request sources – External watchdog monitor – Software watchdog – Low-leakage wakeup unit • Security and integrity modules – Hardware CRC module to support fast cyclic redundancy checks – 128-bit unique identification (ID) number per chip • Human-machine interface – Segment LCD controller supporting up to 40 frontplanes and 8 backplanes, or 44 frontplanes and 4 backplanes – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – Two 16-bit SAR ADCs – Programmable gain amplifier (up to x64) integrated into each ADC – Two 12-bit DACs – Two operational amplifiers – Two transimpedance amplifiers – Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input – Voltage reference • Timers – Programmable delay block – Eight-channel motor control/general purpose/PWM timer – Two 2-channel quadrature decoder/general purpose timers – Periodic interrupt timers – 16-bit low-power timer – Carrier modulator transmitter – Real-time clock • Communication interfaces – USB full-/low-speed On-the-Go controller with onchip transceiver – Three SPI modules – Two I2C modules – Five UART modules – Secure Digital host controller (SDHC) – I2S module This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice. © 2010–2011 Freescale Semiconductor, Inc. Preliminary Table of Contents 1 Ordering parts...........................................................................4 6.1 Core modules....................................................................21 1.1 Determining valid orderable parts......................................4 6.1.1 Debug trace timing specifications.........................21 2 Part identification......................................................................4 6.1.2 JTAG electricals....................................................21 2.1 Description.........................................................................4 6.2 System modules................................................................25 2.2 Format...............................................................................4 6.3 Clock modules...................................................................25 2.3 Fields.................................................................................4 6.3.1 MCG specifications...............................................25 2.4 Example............................................................................5 6.3.2 Oscillator electrical specifications.........................27 3 Terminology and guidelines......................................................5 6.3.3 32kHz Oscillator Electrical Characteristics............29 3.1 Definition: Operating requirement......................................5 6.4 Memories and memory interfaces.....................................30 3.2 Definition: Operating behavior...........................................6 6.4.1 Flash (FTFL) electrical specifications....................30 3.3 Definition: Attribute............................................................6 6.4.2 EzPort Switching Specifications............................34 3.4 Definition: Rating...............................................................7 6.5 Security and integrity modules..........................................35 3.5 Result of exceeding a rating..............................................7 6.6 Analog...............................................................................35 3.6 Relationship between ratings and operating 6.6.1 ADC electrical specifications.................................36 requirements......................................................................7 6.6.2 CMP and 6-bit DAC electrical specifications.........43 3.7 Guidelines for ratings and operating requirements............8 6.6.3 12-bit DAC electrical characteristics.....................46 3.8 Definition: Typical value.....................................................8 6.6.4 Op-amp electrical specifications...........................49 3.9 Typical value conditions....................................................9 6.6.5 Transimpedance amplifier electrical 4 Ratings......................................................................................9 specifications — full range....................................50 4.1 Thermal handling ratings...................................................10 6.6.6 4.2 Moisture handling ratings..................................................10 Transimpedance amplifier electrical specifications — limited range..............................51 4.3 ESD handling ratings.........................................................10 6.6.7 Voltage reference electrical specifications............52 4.4 Voltage and current operating ratings...............................10 6.7 Timers................................................................................53 5 General.....................................................................................11 6.8 Communication interfaces.................................................54 5.1 Nonswitching electrical specifications...............................11 6.8.1 USB electrical specifications.................................54 5.1.1 Voltage and current operating requirements.........11 6.8.2 USB DCD electrical specifications........................54 5.1.2 LVD and POR operating requirements.................12 6.8.3 USB VREG electrical specifications......................54 5.1.3 Voltage and current operating behaviors..............13 6.8.4 DSPI switching specifications (low-speed mode)..55 5.1.4 Power mode transition operating behaviors..........13 6.8.5 DSPI switching specifications (high-speed mode) 56 5.1.5 Power consumption operating behaviors..............14 6.8.6 I2C switching specifications..................................58 5.1.6 EMC radiated emissions operating behaviors.......17 6.8.7 UART switching specifications..............................58 5.1.7 Designing with radiated emissions in mind...........18 6.8.8 SDHC specifications.............................................58 5.1.8 Capacitance attributes..........................................18 6.8.9 I2S switching specifications..................................59 5.2 Switching specifications.....................................................18 6.9 Human-machine interfaces (HMI)......................................61 5.2.1 Device clock specifications...................................18 6.9.1 TSI electrical specifications...................................61 5.2.2 General switching specifications...........................19 6.9.2 LCD electrical characteristics................................62 5.3 Thermal specifications.......................................................20 7 Dimensions...............................................................................63 5.3.1 Thermal operating requirements...........................20 7.1 Obtaining package dimensions.........................................63 5.3.2 Thermal attributes.................................................20 8 Pinout........................................................................................64 6 Peripheral operating requirements and behaviors....................20 8.1 K51 Signal Multiplexing and Pin Assignments..................64 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 2 Preliminary Freescale Semiconductor, Inc. 8.2 K51 Pinouts.......................................................................68 9 Revision History........................................................................69 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 3 Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to http://www.freescale.com and perform a part number search for the following device numbers: PK51 and MK51. 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q K## M FFF T PP CCC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification K## Kinetis family • K51 M Flash memory type • N = Program flash only • X = Program flash and FlexMemory Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 4 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines Field Description Values FFF Program flash memory size • • • • • • 32 = 32 KB 64 = 64 KB 128 = 128 KB 256 = 256 KB 512 = 512 KB 1M0 = 1 MB T Temperature range (°C) • V = –40 to 105 • C = –40 to 85 PP Package identifier • • • • • • • • • • • • • FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LF = 48 LQFP (7 mm x 7 mm) EX = 64 QFN (9 mm x 9 mm) LH = 64 LQFP (10 mm x 10 mm) LK = 80 LQFP (12 mm x 12 mm) MB = 81 MAPBGA (8 mm x 8 mm) LL = 100 LQFP (14 mm x 14 mm) MC = 121 MAPBGA (8 mm x 8 mm) LQ = 144 LQFP (20 mm x 20 mm) MD = 144 MAPBGA (13 mm x 13 mm) MF = 196 MAPBGA (15 mm x 15 mm) MJ = 256 MAPBGA (17 mm x 17 mm) CCC Maximum CPU frequency (MHz) • • • • • 50 = 50 MHz 72 = 72 MHz 100 = 100 MHz 120 = 120 MHz 150 = 150 MHz N Packaging type • R = Tape and reel • (Blank) = Trays 2.4 Example This is an example part number: MK51N512VMD100 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 5 Terminology and guidelines 3.1.1 Example This is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. 1.1 Unit V 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. 3.2.1 Example This is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 6 Preliminary Freescale Semiconductor, Inc. Terminology and guidelines 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. 1.2 Unit V 3.5 Result of exceeding a rating Failures in time (ppm) 40 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 7 Terminology and guidelines 3.6 Relationship between ratings and operating requirements era Op go tin a rh lin nd g in rat n.) mi g( tin era Op e gr em ir qu n. mi t( en ) Op tin e gr era em ir qu x ma t( en .) x.) ma g( g lin nd ha tin era Op r go in rat Fatal range Limited operating range Normal operating range Limited operating range Fatal range - Probable permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation - Probable permanent failure Handling range - No permanent failure ∞ –∞ 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 8 Preliminary Freescale Semiconductor, Inc. Ratings Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.90 0.95 1.00 1.05 1.10 VDD (V) 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 9 Ratings 4.1 Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 Solder temperature, leaded — 245 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.3 ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model -2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model -500 +500 V 2 Latch-up current at ambient temperature of 85°C -100 +100 mA ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 4.4 Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 185 mA –0.3 5.5 V VDIO Digital input voltage (except RESET, EXTAL, and XTAL) Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 10 Preliminary Freescale Semiconductor, Inc. General Symbol VAIO ID Description Min. Max. Unit Analog, RESET, EXTAL, and XTAL input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V VREGIN USB regulator input –0.3 6.0 V RTC battery supply voltage –0.3 3.8 V VBAT 5 General 5.1 Nonswitching electrical specifications 5.1.1 Voltage and current operating requirements Table 1. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V 1.71 3.6 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V VBAT VIH VIL VHYS RTC battery supply voltage Notes Input high voltage Input low voltage Input hysteresis Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 11 General Table 1. Voltage and current operating requirements (continued) Symbol IIC Description Min. Notes 1 0 DC injection current — total MCU limit, includes sum of all stressed pins • VIN < VSS VRFVBAT Unit DC injection current — single pin • VIN < VSS VRAM Max. –0.2 mA 1 VDD voltage required to retain RAM VBAT voltage required to retain the VBAT register file 0 –5 mA 1.2 — V TBD — V 1. All functional non-supply pins are internally clamped to VSS, and induce an injection current when VIN is less than VSS. The IIC maximum operating requirement should not be exceeded. If this requirement cannot be met, the input must be current limited to the value specified. 5.1.2 LVD and POR operating requirements Table 2. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit VPOR Falling VDD POR detect voltage TBD 1.1 TBD V VLVDH Falling low-voltage detect threshold — high range (LVDV=01) TBD 2.56 TBD V Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV=00) TBD 2.70 TBD V VLVW2H • Level 2 falling (LVWV=01) TBD 2.80 TBD V VLVW3H • Level 3 falling (LVWV=10) TBD 2.90 TBD V VLVW4H • Level 4 falling (LVWV=11) TBD 3.00 TBD V VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) 60 TBD 1.60 mV TBD V Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV=00) TBD 1.80 TBD V VLVW2L • Level 2 falling (LVWV=01) TBD 1.90 TBD V VLVW3L • Level 3 falling (LVWV=10) TBD 2.00 TBD V VLVW4L • Level 4 falling (LVWV=11) TBD 2.10 TBD V VHYSL Notes Low-voltage inhibit reset/recover hysteresis — low range 40 mV VBG Bandgap voltage reference TBD 1.00 TBD V tLPO Internal low power oscillator period TBD 1000 TBD μs factory trimmed K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 12 Preliminary Freescale Semiconductor, Inc. General 1. Rising thresholds are falling threshold + hysteresis voltage Table 3. VBAT power operating requirements Symbol Description VPOR_VBAT Falling VBAT supply POR detect voltage Min. Typ. Max. Unit TBD 1.1 TBD V Notes 5.1.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors Symbol Min. Max. Unit • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA VDD – 0.5 — V • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA VDD – 0.5 — V • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA VDD – 0.5 — V — 100 mA • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA — 0.5 V • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA — 0.5 V Output low current total for all ports — 100 mA Input leakage current (per pin) except TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP — 1 μA 1 Input leakage current (per pin) for TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP — 1 nA 1 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 30 50 kΩ 2 RPD Internal pulldown resistors 30 50 kΩ 3 VOH Description Notes Output high voltage — high drive strength Output high voltage — low drive strength IOHT Output high current total for all ports VOL Output low voltage — high drive strength Output low voltage — low drive strength IOLT IIN IILKG_A 1. Measured at VDD=3.6V 2. Measured at VDD supply voltage = VDD min and Vinput = VSS 3. Measured at VDD supply voltage = VDD min and Vinput = VDD K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 13 General 5.1.4 Power mode transition operating behaviors All specifications except tPOR, and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 100 MHz • Bus clock = 50 MHz • Flash clock = 25 MHz Table 5. Power mode transition operating behaviors Symbol tPOR Description Min. Max. Unit Notes — 300 μs 1 • RUN → VLLS1 — 4.1 μs • VLLS1 → RUN — 123.8 μs • RUN → VLLS2 — 4.1 μs • VLLS2 → RUN — 49.3 μs • RUN → VLLS3 — 4.1 μs • VLLS3 → RUN — 49.2 μs • RUN → LLS — 4.1 μs • LLS → RUN — 5.9 μs • RUN → STOP — 4.1 μs • STOP → RUN — 4.2 μs • RUN → VLPS — 4.1 μs • VLPS → RUN — 5.8 μs After a POR event, amount of time from the point VDD reaches 1.8V to execution of the first instruction across the operating temperature range of the chip. RUN → VLLS1 → RUN RUN → VLLS2 → RUN RUN → VLLS3 → RUN RUN → LLS → RUN RUN → STOP → RUN RUN → VLPS → RUN 1. Normal boot (FTFL_OPT[LPBOOT]=1) K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 14 Preliminary Freescale Semiconductor, Inc. General 5.1.5 Power consumption operating behaviors Table 6. Power consumption operating behaviors Symbol IDDA IDD_RUN Description Analog supply current Typ. Max. Unit Notes — — TBD mA 1 Run mode current — all peripheral clocks disabled, code executing from flash 2 • @ 1.8V • @ 3.0V IDD_RUN Min. — 40 TBD mA — 42 TBD mA Run mode current — all peripheral clocks enabled, code executing from flash 3 • @ 1.8V • @ 3.0V IDD_RUN_M Run mode current — all peripheral clocks enabled and peripherals active, code executing AX from flash • @ 1.8V • @ 3.0V — 55 TBD mA — 56 TBD mA 4 — 85 TBD mA — 85 TBD mA IDD_WAIT Wait mode high frequency current at 3.0 V — all peripheral clocks disabled — 35 TBD mA 2 IDD_WAIT Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled — 15 TBD mA 5 IDD_STOP Stop mode current at 3.0 V — 0.4 TBD mA IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks disabled — 1.25 TBD mA 6 IDD_VLPR Very-low-power run mode current at 3.0 V — all peripheral clocks enabled — TBD TBD mA 7 IDD_VLPW Very-low-power wait mode current at 3.0 V — 1.05 TBD mA 8 IDD_VLPS Very-low-power stop mode current at 3.0 V — 50 TBD μA IDD_LLS Low leakage stop mode current at 3.0 V — 12 TBD μA — 6 TBD μA IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V • 64KB RAM devices IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V — 4 TBD μA IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V — 2 TBD μA IDD_VBAT Average current when CPU is not accessing RTC registers at 3.0 V — 550 TBD nA 9 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock . MCG configured for FEI mode. All peripheral clocks disabled. 3. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, but peripherals are not in active operation. 4. 100MHz core and system clock, 50MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode. All peripheral clocks enabled, and peripherals are in active operation. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 15 General 5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz flash clock. MCG configured for FEI mode. 6. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. Code executing from flash. 7. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash. 8. 2 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral clocks disabled. 9. Includes 32kHz oscillator current and RTC operation. 5.1.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks disabled except FTFL LVD disabled, USB regulator disabled No GPIOs toggled Code execution from flash Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled The following data was measured under these conditions: K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 16 Preliminary Freescale Semiconductor, Inc. General • • • • • MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE) All peripheral clocks enabled but peripherals are not in active operation LVD disabled, USB regulator disabled No GPIOs toggled Code execution from flash Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 17 General 5.1.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes dBμV 1, 2 — 2, 3 VRE1 Radiated emissions voltage, band 1 0.15–50 TBD VRE2 Radiated emissions voltage, band 2 50–150 TBD VRE3 Radiated emissions voltage, band 3 150–500 TBD VRE4 Radiated emissions voltage, band 4 500–1000 TBD 0.15–1000 TBD VRE_IEC_SAE IEC and SAE level 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/ Wideband TEM (GTEM) Cell Method. 2. VDD = 3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/Wideband TEM (GTEM) Cell Method. 5.1.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to http://www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.1.8 Capacitance attributes Table 8. Capacitance attributes Symbol Description Min. Max. Unit CIN_A Input capacitance: analog pins — 7 pF CIN_D Input capacitance: digital pins — 7 pF 5.2 Switching specifications K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 18 Preliminary Freescale Semiconductor, Inc. General 5.2.1 Device clock specifications Symbol Description Min. Max. Unit System and core clock — 100 MHz System and core clock when USB in operation 20 — MHz Bus clock — 50 MHz Flash clock — 25 MHz Notes Normal run mode fSYS fSYS_USB fBUS fFLASH VLPR mode fSYS System and core clock — 2 MHz fBUS Bus clock — 2 MHz Flash clock — 1 MHz fFLASH 5.2.2 General switching specifications These general purpose specifications apply to all signals configured for GPIO, UART, CMT, and I2C signals. Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path 16 — ns 2 External reset pulse width (digital glitch filter disabled) TBD — 2 — Mode select (EZP_CS) hold time after reset deassertion Bus clock cycles Port rise and fall time (high drive strength) 3 • Slew disabled — 12 ns • Slew enabled — 36 ns Port rise and fall time (low drive strength) 1. 2. 3. 4. 4 • Slew disabled — 32 ns • Slew enabled — 36 ns The greater synchronous and asynchronous timing must be met. This is the shortest pulse that is guaranteed to be recognized. 75pF load 15pF load K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 19 Peripheral operating requirements and behaviors 5.3 Thermal specifications 5.3.1 Thermal operating requirements Table 9. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 85 °C 5.3.2 Thermal attributes Board type Description 100 LQFP Unit Notes Single-layer RθJA (1s) Thermal resistance, junction to ambient (natural convection) TBD °C/W 1 Four-layer (2s2p) Thermal resistance, junction to ambient (natural convection) TBD °C/W 1 Single-layer RθJMA (1s) Thermal resistance, junction to ambient (200 ft./min. air speed) TBD °C/W 1 Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) TBD °C/W 1 — RθJB Thermal resistance, junction to board TBD °C/W 2 — RθJC Thermal resistance, junction to case TBD °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) TBD °C/W 4 1. Symbol RθJA Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 6 Peripheral operating requirements and behaviors All digital I/O switching characteristics assume: 1. output pins • have CL=30pF loads, • are configured for fast slew rate (PORTx_PCRn[SRE]=0), and • are configured for high drive strength (PORTx_PCRn[DSE]=1) 2. input pins K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 20 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors • have their passive filter disabled (PORTx_PCRn[PFE]=0) 6.1 Core modules 6.1.1 Debug trace timing specifications Table 10. Debug trace operating behaviors Symbol Description Min. Max. Unit Tcyc Clock period Frequency dependent MHz Twl Low pulse width 2 — ns Twh High pulse width 2 — ns Tr Clock and data rise time — 3 ns Tf Clock and data fall time — 3 ns Ts Data setup 3 — ns Th Data hold 2 — ns Figure 3. TRACE_CLKOUT specifications TRACE_CLKOUT Ts Th Ts Th TRACE_D[3:0] Figure 4. Trace data specifications K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 21 Peripheral operating requirements and behaviors 6.1.2 JTAG electricals Table 11. JTAG limited voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 2.7 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 25 • Serial Wire Debug 0 50 1/J1 — J2 TCLK cycle period J3 TCLK clock pulse width ns ns • Boundary Scan 50 — • JTAG and CJTAG 20 — • Serial Wire Debug 10 J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1 — ns J11 TCLK low to TDO data valid — 17 ns J12 TCLK low to TDO high-Z — 17 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns Table 12. JTAG full voltage range electricals Symbol J1 J2 Description Min. Max. Unit Operating voltage 1.71 3.6 V TCLK frequency of operation MHz • Boundary Scan 0 10 • JTAG and CJTAG 0 20 • Serial Wire Debug 0 40 1/J1 — TCLK cycle period ns Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 22 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 12. JTAG full voltage range electricals (continued) Symbol J3 Description Min. Max. TCLK clock pulse width Unit ns • Boundary Scan 50 — • JTAG and CJTAG 25 — • Serial Wire Debug 12.5 J4 TCLK rise and fall times — 3 ns J5 Boundary scan input data setup time to TCLK rise 20 — ns J6 Boundary scan input data hold time after TCLK rise 0 — ns J7 TCLK low to boundary scan output data valid — 25 ns J8 TCLK low to boundary scan output high-Z — 25 ns J9 TMS, TDI input data setup time to TCLK rise 8 — ns J10 TMS, TDI input data hold time after TCLK rise 1.4 — ns J11 TCLK low to TDO data valid — 22.1 ns J12 TCLK low to TDO high-Z — 22.1 ns J13 TRST assert time 100 — ns J14 TRST setup time (negation) to TCLK high 8 — ns J2 J3 J3 TCLK (input) J4 J4 Figure 5. Test clock input timing K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 23 Peripheral operating requirements and behaviors TCLK J5 Data inputs J6 Input data valid J7 Data outputs Output data valid J8 Data outputs J7 Data outputs Output data valid Figure 6. Boundary scan (JTAG) timing TCLK J9 TDI/TMS J10 Input data valid J11 TDO Output data valid J12 TDO J11 TDO Output data valid Figure 7. Test Access Port timing K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 24 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors TCLK J14 J13 TRST Figure 8. TRST timing 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 13. MCG specifications Symbol Description Min. Typ. Max. Unit — 32.768 — kHz 31.25 — 39.0625 kHz Internal reference (slow clock) current — TBD — µA Internal reference (slow clock) startup time — TBD 4 µs Δfdco_res_t Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM — ± 0.1 ± 0.3 %fdco 1 Δfdco_res_t Resolution of trimmed DCO output frequency at fixed voltage and temperature — using SCTRIM only — ± 0.2 ± 0.5 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — + 0.5 ± 3.5 %fdco 1 Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C — ± 0.5 ± TBD %fdco 1 fintf_ft Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C 3.4 — 4 MHz fintf_t Internal reference frequency (fast clock) — user trimmed 3 — 5 MHz fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25°C fints_t Internal reference frequency (slow clock) — user trimmed Iints tirefsts Δfdco_t Notes - 1.0 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 25 Peripheral operating requirements and behaviors Table 13. MCG specifications (continued) Symbol Iintf tirefstf Description Min. Typ. Max. Unit Internal reference (fast clock) current — TBD — µA Internal reference startup time (fast clock) — TBD TBD µs floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 50 MHz 60 62.91 75 MHz 80 83.89 100 MHz — 23.99 — MHz — 47.97 — MHz — 71.99 — MHz — 95.98 — MHz Notes FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS=00) 2, 3 640 × ffll_ref Mid range (DRS=01) 1280 × ffll_ref Mid-high range (DRS=10) 1920 × ffll_ref High range (DRS=11) 2560 × ffll_ref fdco_t_DMX3 DCO output frequency 2 Low range (DRS=00) 4, 5 732 × ffll_ref Mid range (DRS=01) 1464 × ffll_ref Mid-high range (DRS=10) 2197 × ffll_ref High range (DRS=11) 2929 × ffll_ref Jcyc_fll FLL period jitter — TBD TBD ps 6 Jacc_fll FLL accumulated jitter of DCO output over a 1µs time window — TBD TBD ps 6 FLL target frequency acquisition time — — 1 ms 7 48.0 — 100 MHz — 950 — µA tfll_acquire PLL fvco VCO operating frequency Ipll PLL operating current • PLL @ 96 MHz (fosc_hi_1=8MHz, fpll_ref=2MHz, VDIV multiplier=48) 8 fpll_ref PLL reference frequency range 2.0 — 4.0 MHz Jcyc_pll PLL period jitter — 400 — ps 9, 10 Jacc_pll PLL accumulated jitter over 1µs window — TBD — ps 9, 10 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 26 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 13. MCG specifications (continued) Symbol Description Min. Typ. Max. Unit Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 0.15 + 1075(1/ fpll_ref) ms Notes 11 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0. 3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature should be considered. 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1. 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 6. This specification was obtained at TBD frequency. 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 8. Excludes any oscillator currents that are also consuming power while PLL is in operation. 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 10. This specification was obtained at internal frequency of TBD. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications This section provides the electrical characteristics of the module. 6.3.2.1 Symbol VDD IDDOSC Oscillator DC electrical specifications Table 14. Oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz — 300 — μA • 16 MHz — 700 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 27 Peripheral operating requirements and behaviors Table 14. Oscillator DC electrical specifications (continued) Symbol Description Min. IDDOSC Supply current — high gain mode (HGO=1) Typ. Max. Unit Notes 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz — 800 — μA • 16 MHz — 1.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Vpp5 1. 2. 3. 4. VDD=3.3 V, Temperature =25 °C See crystal or resonator manufacturer's recommendation Cx,Cy can be provided by using either the integrated capacitors or by using external components. When low power mode is selected, RF is integrated and must not be attached externally. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 28 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Symbol Oscillator frequency specifications Table 15. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — low frequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — high frequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 50 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — TBD — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 800 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 4 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 3 — ms tcst Notes 1 2, 3 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL 2. Proper PC board layout procedures must be followed to achieve specifications. 3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.3.3 32kHz Oscillator Electrical Characteristics This section describes the module electrical characteristics. 6.3.3.1 Symbol VBAT RF Cpara 32kHz oscillator DC electrical specifications Table 16. 32kHz oscillator DC electrical specifications Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V Internal feedback resistor — 100 — MΩ Parasitical capacitance of EXTAL32 and XTAL32 — 2.5 — pF Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 29 Peripheral operating requirements and behaviors Table 16. 32kHz oscillator DC electrical specifications (continued) Symbol Cload Vpp 6.3.3.2 Symbol fosc_lo tstart Description Min. Typ. Max. Unit Internal load capacitance (programmable) — 15 — pF Peak-to-peak amplitude of oscillation — 0.6 — V Notes 32kHz oscillator frequency specifications Table 17. 32kHz oscillator frequency specifications Description Min. Typ. Max. Unit Oscillator crystal — 32 — kHz Crystal start-up time — 1000 — ms 1 1. Proper PC board layout procedures must be followed to achieve specifications. 6.4 Memories and memory interfaces 6.4.1 Flash (FTFL) electrical specifications This section describes the electrical characteristics of the FTFL module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 18. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm4 thversscr Longword Program high-voltage time — 20 TBD μs Sector Erase high-voltage time — 20 100 ms 1 — 160 800 ms 1 thversblk256k Erase Block high-voltage time for 256 KB Notes 1. Maximum time based on expectations at cycling end-of-life. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 30 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.1.2 Symbol Flash timing specifications — commands Table 19. Flash command timing specifications Description Min. Typ. Max. Unit — — 1.4 ms Notes Read 1s Block execution time trd1blk256k • 256 KB data flash trd1sec2k Read 1s Section execution time (flash sector) — — 40 μs 1 tpgmchk Program Check execution time — — 35 μs 1 trdrsrc Read Resource execution time — — 35 μs 1 tpgm4 Program Longword execution time — 50 TBD μs Erase Flash Block execution time tersblk256k tersscr 2 • 256 KB data flash Erase Flash Sector execution time — 160 800 ms — 20 100 ms 2 Program Section execution time tpgmsec512 • 512 B flash — TBD TBD ms tpgmsec1k • 1 KB flash — TBD TBD ms tpgmsec2k • 2 KB flash — TBD TBD ms trd1all Read 1s All Blocks execution time — — 2.8 ms trdonce Read Once execution time — — 35 μs Program Once execution time — 50 TBD μs tersall Erase All Blocks execution time — 320 1600 ms 2 tvfykey Verify Backdoor Access Key execution time — — 35 μs 1 — 175 TBD ms tpgmonce 1 Program Partition for EEPROM execution time tpgmpart256k • 256 KB FlexNVM Set FlexRAM Function execution time: tsetram32k • 32 KB EEPROM backup — TBD TBD ms tsetram256k • 256 KB EEPROM backup — TBD TBD ms Byte-write to FlexRAM for EEPROM operation teewr8bers Byte-write to erased FlexRAM location execution time — 100 TBD μs 3 Byte-write to FlexRAM execution time: teewr8b32k • 32 KB EEPROM backup — TBD TBD ms teewr8b64k • 64 KB EEPROM backup — TBD 1.5 ms teewr8b128k • 128 KB EEPROM backup — TBD TBD ms teewr8b256k • 256 KB EEPROM backup — TBD 2.5 ms Word-write to FlexRAM for EEPROM operation Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 31 Peripheral operating requirements and behaviors Table 19. Flash command timing specifications (continued) Symbol teewr16bers Description Word-write to erased FlexRAM location execution time Min. Typ. Max. Unit — 100 TBD μs Notes Word-write to FlexRAM execution time: teewr16b32k • 32 KB EEPROM backup — TBD TBD ms teewr16b64k • 64 KB EEPROM backup — TBD 1.5 ms teewr16b128k • 128 KB EEPROM backup — TBD TBD ms teewr16b256k • 256 KB EEPROM backup — TBD 2.5 ms Longword-write to FlexRAM for EEPROM operation teewr32bers Longword-write to erased FlexRAM location execution time — 200 TBD μs Longword-write to FlexRAM execution time: teewr32b32k • 32 KB EEPROM backup — TBD TBD ms teewr32b64k • 64 KB EEPROM backup — TBD 2.7 ms teewr32b128k • 128 KB EEPROM backup — TBD TBD ms teewr32b256k • 256 KB EEPROM backup — TBD 3.7 ms 1. Assumes 25MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. 3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased. 6.4.1.3 Flash (FTFL) current and power specfications Table 20. Flash (FTFL) current and power specfications Symbol Description IDD_PGM Worst case programming current in program flash 6.4.1.4 Symbol Typ. Unit 10 mA Reliability specifications Table 21. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 TBD — years 2 tnvmretp1k Data retention after up to 1 K cycles 10 TBD — years 2 tnvmretp100 Data retention after up to 100 cycles 15 TBD — years 2 10 K TBD — cycles 3 TBD — years 2 nnvmcycp Cycling endurance Data Flash tnvmretd10k Data retention after up to 10 K cycles 5 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 32 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 21. NVM reliability specifications (continued) Symbol Description tnvmretd1k tnvmretd100 nnvmcycd Min. Typ.1 Max. Unit Notes Data retention after up to 1 K cycles 10 TBD — years 2 Data retention after up to 100 cycles 15 TBD — years 2 10 K TBD — cycles 3 Cycling endurance FlexRAM as EEPROM tnvmretee100 Data retention up to 100% of write endurance 5 TBD — years 2 tnvmretee10 Data retention up to 10% of write endurance 10 TBD — years 2 tnvmretee1 Data retention up to 1% of write endurance 15 TBD — years 2 Write endurance 4 nnvmwree16 • EEPROM backup to FlexRAM ratio = 16 35 K TBD — writes nnvmwree128 • EEPROM backup to FlexRAM ratio = 128 315 K TBD — writes nnvmwree512 • EEPROM backup to FlexRAM ratio = 512 1.27 M TBD — writes nnvmwree4k • EEPROM backup to FlexRAM ratio = 4096 10 M TBD — writes nnvmwree32k • EEPROM backup to FlexRAM ratio = 32,768 80 M TBD — writes 1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to 25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin EB618. 2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application). 3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C. 4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value assumes all byte-writes to FlexRAM. 6.4.1.5 Write endurance to FlexRAM for EEPROM When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values. The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space. While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used. Writes_subsystem = EEPROM – 2 × EEESPLIT × EEESIZE EEESPLIT × EEESIZE × Write_efficiency × nnvmcycd K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 33 Peripheral operating requirements and behaviors where • Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance) • EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART; entered with Program Partition command • EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command • EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition command • Write_efficiency — • 0.25 for 8-bit writes to FlexRAM • 0.50 for 16-bit or 32-bit writes to FlexRAM • nnvmcycd — data flash cycling endurance Figure 9. EEPROM backup writes to FlexRAM K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 34 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.2 EzPort Switching Specifications Table 22. EzPort switching specifications Num Description Min. Max. Unit Operating voltage 2.7 3.6 V EP1 EZP_CK frequency of operation (all commands except READ) — fSYS/2 MHz EP1a EZP_CK frequency of operation (READ command) — fSYS/8 MHz EP2 EZP_CS negation to next EZP_CS assertion 2 x tEZP_CK — ns EP3 EZP_CS input valid to EZP_CK high (setup) 5 — ns EP4 EZP_CK high to EZP_CS input invalid (hold) 5 — ns EP5 EZP_D input valid to EZP_CK high (setup) 2 — ns EP6 EZP_CK high to EZP_D input invalid (hold) 5 — ns EP7 EZP_CK low to EZP_Q output valid (setup) — 12 ns EP8 EZP_CK low to EZP_Q output invalid (hold) 0 — ns EP9 EZP_CS negation to EZP_Q tri-state — 12 ns EZP_CK EP3 EP2 EP4 EZP_CS EP9 EP7 EP8 EZP_Q (output) EP5 EP6 EZP_D (input) Figure 10. EzPort Timing Diagram 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 35 Peripheral operating requirements and behaviors 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 23 and Table 24 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DP3. The ADCx_DP2 and ADCx_DM2 ADC inputs are used as the PGA inputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 25 and Table 26. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. 6.6.1.1 16-bit ADC operating conditions Table 23. 16-bit ADC operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDDVDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSSVSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V VREFL Reference voltage low VSSA VSSA VSSA V VADIN Input voltage VREFL — VREFH V CADIN Input capacitance • 16 bit modes — 8 10 pF • 8/10/12 bit modes — 4 5 — 2 5 Symbol RADIN RAS fADCK fADCK Input resistance Analog source resistance 13/12 bit modes ADC conversion clock frequency ≤13 bit modes ADC conversion clock frequency 16 bit modes fADCK < 4MHz Notes kΩ 3 — — 5 kΩ 4 1.0 — 18.0 MHz 5 2.0 — 12.0 MHz Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 36 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 23. 16-bit ADC operating conditions (continued) Symbol Crate Description Conditions ADC conversion rate ≤13 bit modes Min. Typ.1 Max. Unit Notes 6 18.484 — 818.330 Ksps No ADC hardware averaging Continuous conversions enabled Peripheral clock = 50MHz Crate ADC conversion rate 16 bit modes No ADC hardware averaging 7 37.037 — 361.402 Ksps Continuous conversions enabled Peripheral clock = 50MHz 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. DC potential difference. 3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS/ CAS time constant should be kept to <1ns. 4. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear. 5. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear. 6. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http:// cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 7. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http:// cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 37 Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 11. ADC input impedance equivalency diagram 6.6.1.2 Symbol IDDA fADACK 16-bit ADC electrical characteristics Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Description Conditions1 Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC=1, ADHSC=0 — 2.4 — MHz • ADLPC=1, ADHSC=1 — 4.0 — MHz tADACK = 1/ fADACK • ADLPC=0, ADHSC=0 — 5.2 — MHz • ADLPC=0, ADHSC=1 — 6.2 — MHz Supply current ADC asynchronous clock source Sample Time See Reference Manual chapter for sample times Conversion Time The ADC calculator tool can be used to determine ADC conversion times for different ADC configurations: http://cache.freescale.com/files/soft_dev_tools/software/app_software/ converters/ADC_CALCULATOR_CNV.zip?fpsp=1 TUE Total unadjusted error • ≤13 bit modes ±0.8 ±TBD • <12 bit modes ±0.5 ±1 LSB4 ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11) Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 38 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol DNL INL EFS EQ ENOB Description Conditions1 Min. Typ.2 Max. Unit Notes LSB4 ADC conversion clock <12MHz, Max hardware averaging (AVGE = %1, AVGS = %11) LSB4 Max averaging LSB4 VADIN = VDDA Differential nonlinearity • ≤13 bit modes ±0.7 ±TBD • <12 bit modes ±0.2 ±0.5 Integral nonlinearity • ≤13 bit modes — ±1.0 ±TBD • <12 bit modes — ±0.5 ±TBD Full-scale error • ≤13 bit modes — ±0.4 ±TBD • <12 bit modes — ±1.0 ±TBD • 16 bit modes — -1 to 0 — • ≤13 bit modes — — ±0.5 Quantization error Effective number 16 bit differential mode of bits • Avg=32 LSB4 5 • Avg=1 TBD 13.6 TBD bits TBD 13.2 TBD bits TBD TBD TBD bits TBD TBD TBD bits 16 bit single-ended mode • Avg=32 • Avg=1 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16 bit differential mode 6.02 × ENOB + 1.76 dB 5 • Avg=32 — -94 TBD dB — TBD TBD dB 16 bit single-ended mode • Avg=32 SFDR Spurious free dynamic range 16 bit differential mode 5 • Avg=32 TBD 95 — dB TBD TBD — dB 16 bit single-ended mode • Avg=32 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 39 Peripheral operating requirements and behaviors Table 24. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description EIL Input leakage error Conditions1 Typ.2 Min. Max. IIn × RAS Unit Notes mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) Temp sensor slope VTEMP25 Temp sensor voltage • –40°C to 25°C — TBD — mV/°C • 25°C to 105°C — TBD — mV/°C — TBD — mV 25°C 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N 5. Input data is 1 kHz sine wave. FIGURE TBD Figure 12. Typical TUE vs. ADC conversion rate 12-bit single-ended mode FIGURE TBD Figure 13. Typical ENOB vs. Averaging for 16-bit differential and 16-bit single-ended modes 6.6.1.3 16-bit ADC with PGA operating conditions Table 25. 16-bit ADC with PGA operating conditions Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V VREFPGA PGA ref voltage Symbol VADIN VCM VREFOUT VREFOUT VREFOUT V Input voltage VSSA — VDDA V Input Common Mode range VSSA — VDDA V Notes 2, 3 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 40 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 25. 16-bit ADC with PGA operating conditions (continued) Min. Typ.1 Max. Unit Notes Gain = 1, 2, 4, 8 — 128 — kΩ IN+ to IN-4 Gain = 16, 32 — 64 — Gain = 64 — 32 — Symbol Description Conditions RPGAD Differntial input impedance RAS Analog source resistance — 100 — Ω 5 TS ADC sampling time 1.25 — — µs 6 1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 2. ADC must be configured to use the internal voltage reference (VREFOUT) 3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output of the VREF module, the VREF module must be disabled. 4. For single ended configurations the input impedence of the driven input is 1/2. 5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop in PGA gain without affecting other performances. This is not dependent on ADC clock frequency. 6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at 8 MHz ADC clock. 6.6.1.4 16-bit ADC with PGA characteristics Table 26. 16-bit ADC with PGA characteristics Symbol Description IDDA_PGA Supply current IDC_PGA Input DC current IILKG G BW PSRR Input Leakage current Gain4 Input signal bandwidth Power supply rejection ration Conditions Min. Typ.1 Max. Unit — 590 TBD μA PGA disabled A 2 μA 3 — TBD TBD • PGAG=0 TBD 0.98 TBD • PGAG=1 TBD 1.99 TBD • PGAG=2 TBD 3.97 TBD • PGAG=3 TBD 7.95 TBD • PGAG=4 TBD 15.8 TBD • PGAG=5 TBD 31.4 TBD • PGAG=6 TBD 61.2 TBD — — 4 kHz — — 40 kHz TBD TBD — dB • 16-bit modes • < 16-bit modes Gain=1 Notes RAS < 100Ω VDDA= 3V ±100mV, fVDDA= 50Hz, 60Hz Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 41 Peripheral operating requirements and behaviors Table 26. 16-bit ADC with PGA characteristics (continued) Symbol Description CMRR Common mode rejection ratio Min. Typ.1 Max. Unit Notes • Gain=1 TBD TBD — dB • Gain=64 TBD TBD — dB VCM= 500mVpp, fVCM= 50Hz, 100Hz Conditions VOFS Input offset voltage — 0.2 TBD mV Gain=1, ADC Averaging=32 TGSW Gain switching settling time — — 10 µs 5 dG/dT Gain drift over temperature — TBD TBD ppm/°C 0 to 50°C — TBD TBD ppm/°C — TBD TBD ppm/°C 0 to 50°C, ADC Averaging=32 — TBD TBD %/V — TBD TBD %/V VDDA from 1.71 to 3.6V dVOFS/dT Offset drift over temperature dG/dVDDA Gain drift over supply voltage EIL Input leakage error • Gain=1 • Gain=64 Gain=1 • Gain=1 • Gain=64 All modes IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) VPP,DIFF SNR THD SFDR Maximum differential input signal swing V 6 16-bit differential mode, Average=32 where VX = VREFPGA × 0.583 Signal-to-noise ratio • Gain=1 • Gain=64 TBD 83.0 — dB TBD 57.5 — dB Total harmonic distortion • Gain=1 • Gain=64 TBD 89.4 — dB TBD 90.0 — dB Spurious free dynamic range • Gain=1 • Gain=64 TBD 90.9 — dB TBD 77.0 — dB 16-bit differential mode, Average=32, fin=500Hz 16-bit differential mode, Average=32, fin=500Hz Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 42 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 26. 16-bit ADC with PGA characteristics (continued) Symbol Description ENOB Effective number of bits SINAD Signal-to-noise plus distortion ratio Min. Typ.1 Max. Unit Notes • Gain=1, Average=4 TBD 12.3 — bits • Gain=1, Average=8 TBD 12.7 — bits • Gain=64, Average=4 TBD 8.4 — bits 16-bit differential mode, fin=500Hz • Gain=64, Average=8 TBD 8.7 — bits • Gain=1, Average=32 TBD 13.3 — bits • Gain=2, Average=32 TBD 13.1 — bits • Gain=4, Average=32 TBD 12.5 — bits • Gain=8, Average=32 TBD 11.8 — bits • Gain=16, Average=32 TBD 11.1 — bits • Gain=32, Average=32 TBD 10.2 — bits • Gain=64, Average=32 TBD 9.3 — bits Conditions See ENOB 6.02 × ENOB + 1.76 dB 1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated. 2. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function if input common mode voltage (VCM) and the PGA gain. 3. This is the input leakage current of the module in addition to the PAD leakage current. 4. Gain = 2PGAG 5. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC sampling rate and time of the switching). 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting. 6.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications Symbol VDD Description Min. Typ. Max. Unit Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 43 Peripheral operating requirements and behaviors Table 27. Comparator and 6-bit DAC electrical specifications (continued) Symbol VH Description Min. Typ. Max. Unit • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 120 250 600 ns Analog comparator initialization delay2 — — TBD ns 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN, VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 44 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.08 0.07 0.06 HYSTCTR Setting CM P Hystereris (V) 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 14. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0) K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 45 Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP P Hystereris (V) 0.12 HYSTCTR Setting 0.1 00 01 0 08 0.08 10 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 Vin level (V) 1.9 2.2 2.5 2.8 3.1 Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 28. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1 2 1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO) 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 46 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors Description Min. Typ. Max. Unit IDDA_DACLP Supply current — low-power mode — — 150 μA IDDA_DACH Supply current — high-speed mode — — 700 μA Notes P tDACLP Full-scale settling time (0x080 to 0xF7F) — lowpower mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — highpower mode — 15 30 μs 1 tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode — — 5 μs 1 tCCDACHP Code-to-code settling time (0xBF8 to 0xC08) — high-speed mode 1 TBD — μs 1 Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 — 100 TBD mV Vdacouth DAC output voltage range high — high-speed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREFO (1.15 V) — — ±1 LSB 4 VOFFSET Offset error ±0.4 — ±0.8 %FSR 5 EG Gain error ±0.1 — ±0.6 %FSR 5 90 dB PSRR 1. 2. 3. 4. Power supply rejection ratio, VDDA > = 2.4 V 60 TCO Temperature coefficient offset voltage — TBD — μV/C TGE Temperature coefficient gain error — TBD — ppm of FSR/C AC Offset aging coefficient — — TBD μV/yr Rop Output resistance load = 3 kΩ — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — — — -80 CT Channel to channel cross talk BW 3dB bandwidth dB kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0+100mV to VDACR−100 mV The DNL is measured for 0+100 mV to VDACR−100 mV The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 47 Peripheral operating requirements and behaviors 5. Calculated by a best fit curve from VSS+100 mV to VREF−100 mV Figure 16. Typical INL error vs. digital code K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 48 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 17. Offset at half scale vs. temperature 6.6.4 Op-amp electrical specifications Table 30. Op-amp electrical specifications Symbol VDD Description Min. Typ. Max. Unit Operating voltage 1.71 — 3.6 V ISUPPLY Supply current (IOUT=0mA, CL=0), low-power mode — 70 TBD μA ISUPPLY Supply current (IOUT=0mA, CL=0), high-speed mode — 500 TBD μA VOS Input offset voltage — ±3 TBD mV αVOS Input offset voltage temperature coefficient — 10 — μV/C IOS Input offset current (0~50°C) — ±300 — pA IOS Input offset current (-40~105°C) — TBD — pA Input bias current (0~50°C) — ±300 — pA IBIAS Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 49 Peripheral operating requirements and behaviors Table 30. Op-amp electrical specifications (continued) Symbol Description Min. Typ. Max. Unit IBIAS Input bias current (0~105°C) — TBD — pA VCML Input common mode voltage low 0 — — V VCMH Input common mode voltage high — — VDD V 500 — — MΩ RIN Input resistance CIN Input capacitance — — TBD pF |XIN| AC input impedance (fIN=100kHz) — 50 — MΩ CMRR Input common mode rejection ratio 60 — — dB PSRR Power supply rejection ratio 60 — — dB SR Slew rate (ΔVIN=100mV), low-power mode 0.1 — — V/μs SR Slew rate (ΔVIN=100mV), high-speed mode 1 — — V/μs GBW Unity gain bandwidth, low-power mode 0.15 — — MHz GBW Unity gain bandwidth, high-speed mode 1 — — MHz DC open-loop voltage gain 80 90 — dB Load capacitance driving capability — — TBD pF ROUT Output resistance — — TBD Ω VOUT Output voltage range 0.1 — TBD V IOUT Output load current — ±0.5 — mA GM Gain margin — 20 — dB PM Phase margin 45 56 — deg Tsettle Settling time (Buffer mode, low-power mode) (To<0.1%, Vin=2Vp-p, CL=25pF, RL=100k) — TBD — μs Tsettle Settling time (Buffer mode, high-speed mode) (To<0.1%, Vin=2Vp-p, CL=25pF, RL=100k) — TBD — μs Vn Voltage noise density (noise floor) 1kHz — 350 TBD nV/√Hz Vn Voltage noise density (noise floor) 10kHz — 90 TBD nV/√Hz AV CL(max) 6.6.5 Transimpedance amplifier electrical specifications — full range Table 31. TRIAMP full range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VIN Input voltage range -0.2 VDDA-1.4 V CL Output load capacitance 100 pf ROUT Output resistance 1500 Ω Notes K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 50 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 32. TRIAMP full range operating behaviors Symbol Description Min. ISUPPLY Supply current (IOUT=0mA, CL=0) — Low-power mode ISUPPLY — Typ. Max. Unit 60 — μA Supply current (IOUT=0mA, CL=0) — High-speed — mode 280 — μA VOS Input offset voltage — ±3 TBD mV αVOS Input offset voltage temperature coefficient — 10 TBD μV/C IOS Input offset current — ±200 TBD pA IBIAS Input bias current — ±300 TBD pA RIN Input resistance 500 — — MΩ CIN Input capacitance — 17 — pF |XIN| AC input impedance (fIN=100kHz) — TBD — MΩ CMRR Input common mode rejection ratio 60 — — dB PSRR Power supply rejection ratio 60 — — dB SR Slew rate (ΔVIN=100mV) — Low-power mode 0.1 — — V/μs SR Slew rate (ΔVIN=100mV) — High speed mode 1 — — V/μs GBW Unity gain bandwidth — Low-power mode 50pF 0.15 — — MHz GBW Unity gain bandwidth — High speed mode 50pF 1 — — MHz AV DC open-loop voltage gain 80 — — dB VOUT Output voltage range 0.15 — VDD-0.15 V IOUT Output load current — ±0.5 — mA GM Gain margin — 20 — dB PM Phase margin 50 60 — deg Vn Voltage noise density (noise floor) 1kHz — 280 — nV/√Hz Vn Voltage noise density (noise floor) 10kHz — 100 — nV/√Hz Notes Figure 18. Typical Open Loop Gain vs. Frequency [TBD] Figure 19. Typical Phase vs. Frequency [TBD] K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 51 Peripheral operating requirements and behaviors 6.6.6 Transimpedance amplifier electrical specifications — limited range Table 33. TRIAMP limited range operating requirements Symbol Description Min. Max. Unit VDDA Supply voltage 2.4 3.3 V VIN Input voltage range 0.1 VDDA-1.4 V TA Temperature 0 50 C CL Output load capacitance 100 pf ROUT Output resistance 1500 Ω Notes Table 34. TRIAMP limited range operating behaviors Symbol Description Min. Typ. Max. Unit VOS Input offset voltage — ±3 TBD mV αVOS Input offset voltage temperature coefficient — 4 TBD μV/C IOS Input offset current — ±300 TBD pA IBIAS Input bias current — ±300 TBD pA |XIN| AC input impedance (fIN=100kHz) 500 — — MΩ CMRR Input common mode rejection ratio — 70 — dB PSRR Power supply rejection ratio — 70 — dB SR Slew rate (ΔVIN=100mV) — Low-power mode 0.1 — — V/μs SR Slew rate (ΔVIN=100mV) — High speed mode 1 — — V/μs GBW Unity gain bandwidth — Low-power mode 50pF 0.15 — — MHz GBW Unity gain bandwidth — High speed mode 50pF 1 — — MHz AV DC open-loop voltage gain 80 — — dB GM Gain margin 30 — — dB PM Phase margin 60 69 — deg Notes 6.6.7 Voltage reference electrical specifications Table 35. VREF full-range operating requirements Symbol Description Min. Max. Unit Supply voltage 1.71 3.6 V TA Temperature −40 105 °C CL Output load capacitance — 100 nF VDDA Notes K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 52 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 36. VREF full-range operating behaviors Symbol Description Min. Typ. Max. Unit Vout Voltage reference output with factory trim at nominal VDDA and temperature=25C TBD 1.2 TBD V Vout Voltage reference output with factory trim TBD — TBD V Vout Voltage reference output user trim 1.198 — 1.202 V Vstep Voltage reference trim step — 0.5 — mV Vdrift Temperature drift (Vmax -Vmin across the full temperature range) — — 20 mV Ac Aging coefficient — — TBD ppm/year Ibg Bandgap only (MODE_LV = 00) current — — TBD µA Itr Tight-regulation buffer (MODE_LV =10) current — — 1.1 mA Load regulation (MODE_LV = 10) current = ±1.0mA — — TBD V Tstup Buffer startup time — — 100 µs DC Line regulation (power supply rejection) — — TBD mV –60 — TBD dB Notes See Figure 20 Table 37. VREF limited-range operating requirements Symbol Description Min. Max. Unit TA Temperature 0 50 °C Notes Table 38. VREF limited-range operating behaviors Symbol Vout Description Min. Max. Unit Voltage reference output with factory trim TBD TBD V Notes TBD Figure 20. Typical output vs.temperature TBD Figure 21. Typical output vs. VDD 6.7 Timers See General switching specifications. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 53 Peripheral operating requirements and behaviors 6.8 Communication interfaces 6.8.1 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit http://www.usb.org. 6.8.2 USB DCD electrical specifications Table 39. USB DCD electrical specifications Symbol Description Min. Typ. Max. Unit VDP_SRC USB_DP source voltage (up to 250 μA) TBD TBD TBD V 0.8 — 2.0 V VLGC Threshold voltage for logic high IDP_SRC USB_DP source current 7 10 13 μA IDM_SINK USB_DM sink current 50 100 150 μA RDM_DWN D- pulldown resistance for data pin contact detect 14.25 — 24.8 kΩ VDAT_REF Data detect voltage 0.25 TBD 0.4 V 6.8.3 USB VREG electrical specifications Table 40. USB VREG electrical specifications Symbol Description Min. Typ. Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 120 TBD μA IDDstby Quiescent current — Standby mode, load current equal zero — 1 TBD μA IDDoff Quiescent current — Shutdown mode — 500 — nA — — TBD μA • VREGIN = 5.0 V and temperature=25C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA Notes Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 54 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 40. USB VREG electrical specifications (continued) Symbol Description Min. Typ. Max. Unit VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V 2.5 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.3 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Current limitation threshold 185 290 395 mA • Run mode • Standby mode VReg33out Notes 1 1. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 6.8.4 DSPI switching specifications (low-speed mode) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 41. Master mode DSPI timing (low-speed mode) Num Description Operating voltage Frequency of operation Min. Max. Unit Notes 1.71 3.6 V 1 — 12.5 MHz 4 x tBCLK — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) - 4 (tSCK/2) + 4 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tSCK/2) - 4 — ns DS4 DSPI_SCK to DSPI_PCSn output hold (tSCK/2) - 4 — ns DS5 DSPI_SCK to DSPI_SOUT valid — 10 ns DS6 DSPI_SCK to DSPI_SOUT invalid -2 — ns DS7 DSPI_SIN to DSPI_SCK input setup 15 — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns 1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 55 Peripheral operating requirements and behaviors DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT DS6 First data Data Last data Figure 22. DSPI classic SPI timing — master mode Table 42. Slave mode DSPI timing (low-speed mode) Num Description Operating voltage Frequency of operation Min. Max. Unit 1.71 3.6 V — 6.25 MHz 8 x tBCLK — ns (tSCK/2) - 4 (tSCK/2) + 4 ns DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time DS11 DSPI_SCK to DSPI_SOUT valid — 20 ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 5 — ns DS14 DSPI_SCK to DSIP_SIN input hold 15 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 15 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 15 ns DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DSPI_SOUT First data DS13 DSPI_SIN DS12 DS16 DS11 Data Last data DS14 First data Data Last data Figure 23. DSPI classic SPI timing — slave mode K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 56 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.5 DSPI switching specifications (high-speed mode) The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices. Table 43. Master mode DSPI timing (high-speed mode) Num Description Min. Max. Unit Operating voltage 2.7 3.6 V Frequency of operation — 25 MHz 2 x tBCLK — ns DS1 DSPI_SCK output cycle time DS2 DSPI_SCK output high/low time (tSCK/2) − 2 (tSCK/2) + 2 ns DS3 DSPI_PCSn to DSPI_SCK output valid (tSCK/2) − 2 — ns DS4 DSPI_SCK to DSPI_PCSn output hold (tSCK/2) − 2 — ns DS5 DSPI_SCK to DSPI_SOUT valid — 8.5 ns DS6 DSPI_SCK to DSPI_SOUT invalid −2 — ns DS7 DSPI_SIN to DSPI_SCK input setup TBD — ns DS8 DSPI_SCK to DSPI_SIN input hold 0 — ns Min. Max. Unit 2.7 3.6 V 12.5 MHz 4 x tBCLK — ns (tSCK/2) − 2 (tSCK/2 + 2 ns DSPI_PCSn DS3 DS1 DS2 DS4 DSPI_SCK DS8 DS7 (CPOL=0) DSPI_SIN Data First data Last data DS5 DSPI_SOUT First data DS6 Data Last data Figure 24. DSPI classic SPI timing — master mode Table 44. Slave mode DSPI timing (high-speed mode) Num Description Operating voltage Frequency of operation DS9 DSPI_SCK input cycle time DS10 DSPI_SCK input high/low time Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 57 Peripheral operating requirements and behaviors Table 44. Slave mode DSPI timing (high-speed mode) (continued) Num Description Min. Max. Unit DS11 DSPI_SCK to DSPI_SOUT valid — TBD ns DS12 DSPI_SCK to DSPI_SOUT invalid 0 — ns DS13 DSPI_SIN to DSPI_SCK input setup 2 — ns DS14 DSPI_SCK to DSIP_SIN input hold 7 — ns DS15 DSPI_SS active to DSPI_SOUT driven — 14 ns DS16 DSPI_SS inactive to DSPI_SOUT not driven — 14 ns DSPI_SS DS10 DS9 DSPI_SCK (CPOL=0) DS15 DSPI_SOUT First data DS13 DSPI_SIN DS12 DS16 DS11 Data Last data DS14 First data Data Last data Figure 25. DSPI classic SPI timing — slave mode 6.8.6 I2C switching specifications See General switching specifications. 6.8.7 UART switching specifications See General switching specifications. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 58 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.8.8 SDHC specifications The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive at timing specs/constraints for the physical interface. Table 45. SDHC switching specifications Num Symbol Description Min. Max. Unit Operating voltage 2.7 3.6 V Card input clock SD1 fpp Clock frequency (low speed) 0 400 kHz fpp Clock frequency (SD\SDIO full speed) 0 25 MHz fpp Clock frequency (MMC full speed) 0 20 MHz fOD Clock frequency (identification mode) 0 400 kHz SD2 tWL Clock low time 7 — ns SD3 tWH Clock high time 7 — ns SD4 tTLH Clock rise time — 3 ns SD5 tTHL Clock fall time — 3 ns SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD6 tOD SDHC output delay (output valid) -5 6.5 ns SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK) SD7 tTHL SDHC input setup time 5 — ns SD8 tTHL SDHC input hold time 0 — ns SD3 SD2 SD1 SDHC_CLK SD6 Output SDHC_CMD Output SDHC_DAT[3:0] SD7 SD8 Input SDHC_CMD Input SDHC_DAT[3:0] Figure 26. SDHC timing K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 59 Peripheral operating requirements and behaviors 6.8.9 I2S switching specifications This section provides the AC timings for the I2S in master (clocks driven) and slave modes (clocks input). All timings are given for non-inverted serial clock polarity (TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0, RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync (I2S_FS) shown in the figures below. Table 46. I2S master mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V S1 I2S_MCLK cycle time 2 x tSYS S2 I2S_MCLK pulse width high/low S3 I2S_BCLK cycle time S4 I2S_BCLK pulse width high/low S5 I2S_BCLK to I2S_FS output valid S6 I2S_BCLK to I2S_FS output invalid S7 ns 45% 55% MCLK period 5 x tSYS — ns 45% 55% BCLK period — 15 ns -2.5 — ns I2S_BCLK to I2S_TXD valid — 15 ns S8 I2S_BCLK to I2S_TXD invalid -3 — ns S9 I2S_RXD/I2S_FS input setup before I2S_BCLK 20 — ns S10 I2S_RXD/I2S_FS input hold after I2S_BCLK 0 — ns S1 S2 S2 I2S_MCLK (output) S3 I2S_BCLK (output) S4 S4 S6 S5 I2S_FS (output) S10 S9 I2S_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 27. I2S timing — master mode K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 60 Preliminary Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 47. I2S slave mode timing Num Description Min. Max. Unit Operating voltage 2.7 3.6 V 8 x tSYS — ns S11 I2S_BCLK cycle time (input) S12 I2S_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_FS input setup before I2S_BCLK 10 — ns S14 I2S_FS input hold after I2S_BCLK 3 — ns S15 I2S_BCLK to I2S_TXD/I2S_FS output valid — 20 ns S16 I2S_BCLK to I2S_TXD/I2S_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_BCLK 10 — ns S18 I2S_RXD hold after I2S_BCLK 2 — ns S11 S12 I2S_BCLK (input) S12 S15 S16 I2S_FS (output) S13 S14 I2S_FS (input) S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 28. I2S timing — slave modes 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 48. TSI electrical specifications Symbol Description Min. Typ. Max. Unit VDDTSI Operating voltage 1.71 — 3.6 V Target electrode capacitance range 1 20 500 pF fREFmax Reference oscillator frequency — 5.5 TBD MHz fELEmax Electrode oscillator frequency — 0.5 TBD MHz CELE Notes 1 Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 61 Peripheral operating requirements and behaviors Table 48. TSI electrical specifications (continued) Symbol Description Min. Typ. Max. Unit Internal reference capacitor TBD 1 TBD pF Oscillator delta voltage TBD 600 TBD mV IREF Reference oscillator current source base current TBD 1 TBD μA 2 IELE Electrode oscillator current source base current TBD 1 TBD μA 2 Pres5 Electrode capacitance measurement precision — TBD TBD % 3 Pres20 Electrode capacitance measurement precision — TBD TBD % 4 Pres100 Electrode capacitance measurement precision — TBD TBD % 5 MaxSens2 Maximum sensitivity @ 20 pF electrode 0 0.003 0.25 — fF/count 6 MaxSens 0.003 — — fF/count 7 Resolution — — 16 bits Response time @ 20 pF 8 15 25 μs Current added in run mode — TBD — μA Low power mode current adder — 1 TBD μA CREF VDELTA Res TCon20 ITSI_RUN ITSI_LP Maximum sensitivity Notes 8 1. 2. 3. 4. 5. 6. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16. Measured with a 20 pF electrode, reference oscillator frequency of ~5 MHz (IREF = 5 μA, REFCHRG = 4), PS = 128, NSCN = 2; Iext = 16 (EXTCHRG = 15). 7. Typical value depends on the configuration used. 8. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, DELVOL = 2, EXTCHRG = 15. 6.9.2 LCD electrical characteristics Table 49. LCD electricals Symbol Description Min. Typ. Max. Unit Notes fFrame LCD frame frequency 28 30 58 Hz CLCD LCD charge pump capacitance — nominal value — 100 — nF 1 CBYLCD LCD bypass capacitance — nominal value — 100 — nF 1 CGlass LCD glass capacitance — 2000 8000 pF VIREG VIREG — HREFSEL = 0 ΔRTRIM 2 • HREFSEL = 0 0.89 1.00 1.15 V • HREFSEL = 1 1.49 1.67 1.85 V 3.0 — — % VIREG VIREG TRIM resolution Table continues on the next page... K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 62 Preliminary Freescale Semiconductor, Inc. Dimensions Table 49. LCD electricals (continued) Symbol Description Min. Typ. Max. Unit — VIREG ripple • HREFSEL = 0 — — 30 mV • HREFSEL = 1 — — 50 mV — 1 — µA IVIREG VIREG current adder — RVEN = 1 IRBIAS RBIAS current adder RRBIAS • HREFSEL = 0 — 10 — µA • HREFSEL = 1 — 1 — µA — 0.28 — MΩ — 2.98 — MΩ • HREFSEL = 0 2.0 − 5% 2.0 — V • HREFSEL = 1 3.3 − 5% 3.3 — V • HREFSEL = 0 3.0 − 5% 3.0 — V • HREFSEL = 1 5 − 5% 5 — V RBIAS resistor values • LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) VLL3 3 3 • LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) VLL2 Notes VLL2 voltage VLL3 voltage 1. The actual value used could vary with tolerance. 2. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V 3. 2000 pF load LCD, 32 Hz frame frequency 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. To find a package drawing, go to http://www.freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package 100-pin LQFP Then use this document number 98ASS23308W K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 63 Pinout 8 Pinout 8.1 K51 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 100 LQF P Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 1 PTE0 ADC1_SE4a ADC1_SE4a PTE0 SPI1_PCS1 UART1_TX SDHC0_D1 I2C1_SDA 2 PTE1 ADC1_SE5a ADC1_SE5a PTE1 SPI1_SOUT UART1_RX SDHC0_D0 I2C1_SCL 3 PTE2 ADC1_SE6a ADC1_SE6a PTE2 SPI1_SCK UART1_CTS SDHC0_DCL _b K 4 PTE3 ADC1_SE7a ADC1_SE7a PTE3 SPI1_SIN UART1_RTS SDHC0_CM _b D 5 PTE4 DISABLED PTE4 SPI1_PCS0 UART3_TX SDHC0_D3 6 PTE5 DISABLED PTE5 SPI1_PCS2 UART3_RX SDHC0_D2 7 VDD VDD VDD 8 VSS VSS VSS 9 USB0_DP USB0_DP USB0_DP 10 USB0_DM USB0_DM USB0_DM 11 VOUT33 VOUT33 VOUT33 12 VREGIN VREGIN VREGIN 13 ADC0_DP1/ OP0_DP0 ADC0_DP1/ OP0_DP0 ADC0_DP1/ OP0_DP0 14 ADC0_DM1/ ADC0_DM1/ ADC0_DM1/ OP0_DM0 OP0_DM0 OP0_DM0 15 ADC1_DP1/ OP1_DP0/ OP1_DM1 16 ADC1_DM1/ ADC1_DM1/ ADC1_DM1/ OP1_DM0 OP1_DM0 OP1_DM0 17 PGA0_DP/ ADC0_DP0/ ADC1_DP3 18 PGA0_DM/ PGA0_DM/ PGA0_DM/ ADC0_DM0/ ADC0_DM0/ ADC0_DM0/ ADC1_DM3 ADC1_DM3 ADC1_DM3 19 PGA1_DP/ ADC1_DP0/ ADC0_DP3 ADC1_DP1/ OP1_DP0/ OP1_DM1 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 ALT7 EzPort ADC1_DP1/ OP1_DP0/ OP1_DM1 PGA0_DP/ ADC0_DP0/ ADC1_DP3 PGA1_DP/ ADC1_DP0/ ADC0_DP3 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 64 Preliminary Freescale Semiconductor, Inc. Pinout 100 LQF P Pin Name Default ALT0 20 PGA1_DM/ PGA1_DM/ PGA1_DM/ ADC1_DM0/ ADC1_DM0/ ADC1_DM0/ ADC0_DM3 ADC0_DM3 ADC0_DM3 21 VDDA VDDA VDDA 22 VREFH VREFH VREFH 23 VREFL VREFL VREFL 24 VSSA VSSA VSSA 25 ADC1_SE16/ OP1_OUT/ CMP2_IN2/ ADC0_SE22/ OP0_DP2/ OP1_DP2 ADC1_SE16/ OP1_OUT/ CMP2_IN2/ ADC0_SE22/ OP0_DP2/ OP1_DP2 ADC1_SE16/ OP1_OUT/ CMP2_IN2/ ADC0_SE22/ OP0_DP2/ OP1_DP2 26 ADC0_SE16/ OP0_OUT/ CMP1_IN2/ ADC0_SE21/ OP0_DP1/ OP1_DP1 ADC0_SE16/ OP0_OUT/ CMP1_IN2/ ADC0_SE21/ OP0_DP1/ OP1_DP1 ADC0_SE16/ OP0_OUT/ CMP1_IN2/ ADC0_SE21/ OP0_DP1/ OP1_DP1 27 VREF_OUT/ VREF_OUT CMP1_IN5/ CMP0_IN5/ ADC1_SE18 VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18 28 TRI0_OUT/ OP1_DM2 TRI0_OUT/ OP1_DM2 TRI0_OUT/ OP1_DM2 29 TRI0_DM TRI0_DM TRI0_DM 30 TRI0_DP TRI0_DP TRI0_DP 31 TRI1_DM TRI1_DM TRI1_DM 32 TRI1_DP TRI1_DP TRI1_DP 33 TRI1_OUT/ TRI1_OUT CMP2_IN5/ ADC1_SE22 TRI1_OUT/ CMP2_IN5/ ADC1_SE22 34 DAC0_OUT/ DAC0_OUT CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4 DAC0_OUT/ CMP1_IN3/ ADC0_SE23/ OP0_DP4/ OP1_DP4 35 DAC1_OUT/ DAC1_OUT CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5 DAC1_OUT/ CMP2_IN3/ ADC1_SE23/ OP0_DP5/ OP1_DP5 36 XTAL32 XTAL32 XTAL32 37 EXTAL32 EXTAL32 EXTAL32 38 VBAT VBAT VBAT 39 PTA0 JTAG_TCLK/ TSI0_CH1 SWD_CLK/ EZP_CLK ALT1 PTA0 ALT2 ALT3 ALT4 ALT5 UART0_CTS FTM0_CH5 _b ALT6 ALT7 EzPort JTAG_TCLK/ EZP_CLK SWD_CLK K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 65 Pinout 100 LQF P Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 EzPort 40 PTA1 JTAG_TDI/ EZP_DI TSI0_CH2 PTA1 UART0_RX FTM0_CH6 JTAG_TDI EZP_DI 41 PTA2 JTAG_TDO/ TRACE_SW O/EZP_DO TSI0_CH3 PTA2 UART0_TX FTM0_CH7 JTAG_TDO/ TRACE_SW O EZP_DO 42 PTA3 JTAG_TMS/ SWD_DIO TSI0_CH4 PTA3 UART0_RTS FTM0_CH0 _b JTAG_TMS/ SWD_DIO 43 PTA4 NMI_b/ EZP_CS_b TSI0_CH5 PTA4 FTM0_CH1 44 PTA12 CMP2_IN0 CMP2_IN0 PTA12 FTM1_CH0 I2S0_TXD 45 PTA13 CMP2_IN1 CMP2_IN1 PTA13 FTM1_CH1 I2S0_TX_FS FTM1_QD_P HB 46 PTA14 DISABLED PTA14 SPI0_PCS0 UART0_TX I2S0_TX_BC LK 47 PTA15 DISABLED PTA15 SPI0_SCK UART0_RX I2S0_RXD 48 VDD VDD VDD 49 VSS VSS VSS 50 PTA18 EXTAL EXTAL PTA18 FTM0_FLT2 FTM_CLKIN 0 51 PTA19 XTAL XTAL PTA19 FTM1_FLT0 FTM_CLKIN 1 52 RESET_b RESET_b RESET_b 53 PTB0 LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0 LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0 PTB0 I2C0_SCL FTM1_CH0 FTM1_QD_P LCD_P0 HA 54 PTB1 LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6 LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6 PTB1 I2C0_SDA FTM1_CH1 FTM1_QD_P LCD_P1 HB 55 PTB2 LCD_P2/ LCD_P2/ PTB2 ADC0_SE12/ ADC0_SE12/ TSI0_CH7 TSI0_CH7 I2C0_SCL UART0_RTS _b FTM0_FLT3 LCD_P2 56 PTB3 LCD_P3/ LCD_P3/ PTB3 ADC0_SE13/ ADC0_SE13/ TSI0_CH8 TSI0_CH8 I2C0_SDA UART0_CTS _b FTM0_FLT0 LCD_P3 57 PTB7 LCD_P7/ LCD_P7/ PTB7 ADC1_SE13 ADC1_SE13 58 PTB8 LCD_P8 LCD_P8 PTB8 59 PTB9 LCD_P9 LCD_P9 PTB9 60 PTB10 61 PTB11 NMI_b EZP_CS_b FTM1_QD_P HA LPT0_ALT1 LCD_P7 UART3_RTS _b LCD_P8 SPI1_PCS1 UART3_CTS _b LCD_P9 LCD_P10/ LCD_P10/ PTB10 ADC1_SE14 ADC1_SE14 SPI1_PCS0 UART3_RX FTM0_FLT1 LCD_P10 LCD_P11/ LCD_P11/ PTB11 ADC1_SE15 ADC1_SE15 SPI1_SCK UART3_TX FTM0_FLT2 LCD_P11 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 66 Preliminary Freescale Semiconductor, Inc. Pinout 100 LQF P Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 LCD_P12 62 PTB16 LCD_P12/ TSI0_CH9 LCD_P12/ TSI0_CH9 PTB16 SPI1_SOUT UART0_RX EWM_IN 63 PTB17 LCD_P13/ TSI0_CH10 LCD_P13/ TSI0_CH10 PTB17 SPI1_SIN UART0_TX EWM_OUT_ LCD_P13 b 64 PTB18 LCD_P14/ TSI0_CH11 LCD_P14/ TSI0_CH11 PTB18 FTM2_CH0 I2S0_TX_BC LK FTM2_QD_P LCD_P14 HA 65 PTB19 LCD_P15/ TSI0_CH12 LCD_P15/ TSI0_CH12 PTB19 FTM2_CH1 I2S0_TX_FS FTM2_QD_P LCD_P15 HB 66 PTB20 LCD_P16 LCD_P16 PTB20 SPI2_PCS0 CMP0_OUT LCD_P16 67 PTB21 LCD_P17 LCD_P17 PTB21 SPI2_SCK CMP1_OUT LCD_P17 68 PTB22 LCD_P18 LCD_P18 PTB22 SPI2_SOUT CMP2_OUT LCD_P18 69 PTB23 LCD_P19 LCD_P19 PTB23 SPI2_SIN SPI0_PCS5 LCD_P19 70 PTC0 LCD_P20/ LCD_P20/ PTC0 ADC0_SE14/ ADC0_SE14/ TSI0_CH13 TSI0_CH13 SPI0_PCS4 PDB0_EXTR I2S0_TXD G LCD_P20 71 PTC1 LCD_P21/ LCD_P21/ PTC1 ADC0_SE15/ ADC0_SE15/ TSI0_CH14 TSI0_CH14 SPI0_PCS3 UART1_RTS FTM0_CH0 _b LCD_P21 72 PTC2 LCD_P22/ ADC0_SE4b/ CMP1_IN0/ TSI0_CH15 LCD_P22/ PTC2 ADC0_SE4b/ CMP1_IN0/ TSI0_CH15 SPI0_PCS2 UART1_CTS FTM0_CH1 _b LCD_P22 73 PTC3 LCD_P23/ CMP1_IN1 LCD_P23/ CMP1_IN1 PTC3 SPI0_PCS1 UART1_RX FTM0_CH2 LCD_P23 74 VSS VSS VSS 75 VLL3 VLL3 VLL3 76 VLL2 VLL2 VLL2 77 VLL1 VLL1 VLL1 78 VCAP2 VCAP2 VCAP2 79 VCAP1 VCAP1 VCAP1 80 PTC4 LCD_P24 LCD_P24 PTC4 SPI0_PCS0 UART1_TX FTM0_CH3 CMP1_OUT LCD_P24 81 PTC5 LCD_P25 LCD_P25 PTC5 SPI0_SCK LPT0_ALT2 CMP0_OUT LCD_P25 82 PTC6 LCD_P26/ CMP0_IN0 LCD_P26/ CMP0_IN0 PTC6 SPI0_SOUT 83 PTC7 LCD_P27/ CMP0_IN1 LCD_P27/ CMP0_IN1 PTC7 SPI0_SIN 84 PTC8 LCD_P28/ LCD_P28/ PTC8 ADC1_SE4b/ ADC1_SE4b/ CMP0_IN2 CMP0_IN2 85 PTC9 LCD_P29/ LCD_P29/ PTC9 ADC1_SE5b/ ADC1_SE5b/ CMP0_IN3 CMP0_IN3 86 PTC10 LCD_P30/ LCD_P30/ PTC10 ADC1_SE6b/ ADC1_SE6b/ CMP0_IN4 CMP0_IN4 PDB0_EXTR G EzPort LCD_P26 LCD_P27 I2S0_MCLK I2S0_CLKIN I2S0_RX_BC LK I2C1_SCL LCD_P28 FTM2_FLT0 I2S0_RX_FS LCD_P29 LCD_P30 K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 67 Pinout 100 LQF P Pin Name Default ALT0 ALT1 ALT2 ALT3 ALT5 ALT6 PTC11 LCD_P31/ LCD_P31/ PTC11 ADC1_SE7b ADC1_SE7b 88 VSS VSS VSS 89 VDD VDD VDD 90 PTC16 LCD_P36 LCD_P36 PTC16 UART3_RX LCD_P36 91 PTC17 LCD_P37 LCD_P37 PTC17 UART3_TX LCD_P37 92 PTC18 LCD_P38 LCD_P38 PTC18 UART3_RTS _b LCD_P38 93 PTD0 LCD_P40 LCD_P40 PTD0 SPI0_PCS0 UART2_RTS _b LCD_P40 94 PTD1 LCD_P41/ LCD_P41/ PTD1 ADC0_SE5b ADC0_SE5b SPI0_SCK UART2_CTS _b LCD_P41 95 PTD2 LCD_P42 LCD_P42 PTD2 SPI0_SOUT UART2_RX LCD_P42 96 PTD3 LCD_P43 LCD_P43 PTD3 SPI0_SIN UART2_TX LCD_P43 97 PTD4 LCD_P44 LCD_P44 PTD4 SPI0_PCS1 UART0_RTS FTM0_CH4 _b EWM_IN 98 PTD5 LCD_P45/ LCD_P45/ PTD5 ADC0_SE6b ADC0_SE6b SPI0_PCS2 UART0_CTS FTM0_CH5 _b EWM_OUT_ LCD_P45 b 99 PTD6 LCD_P46/ LCD_P46/ PTD6 ADC0_SE7b ADC0_SE7b SPI0_PCS3 UART0_RX FTM0_CH6 FTM0_FLT0 LCD_P46 LCD_P47 CMT_IRO UART0_TX FTM0_CH7 FTM0_FLT1 LCD_P47 LCD_P47 PTD7 I2S0_RXD ALT7 87 100 PTD7 I2C1_SDA ALT4 EzPort LCD_P31 LCD_P44 8.2 K51 Pinouts The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 68 Preliminary Freescale Semiconductor, Inc. PTC18 PTC17 PTC16 VDD VSS PTC11 PTC10 PTC9 PTC8 PTC7 PTC6 PTC5 PTC4 92 91 90 89 88 87 86 85 84 83 82 81 80 VLL2 PTD0 93 VLL1 PTD1 94 76 PTD2 95 77 PTD3 96 VCAP1 PTD4 97 VCAP2 PTD5 98 78 PTD6 99 79 PTD7 100 Revision History PTE0 1 75 VLL3 PTE1 2 74 VSS PTE2 3 73 PTC3 PTE3 4 72 PTC2 PTE4 5 71 PTC1 PTE5 6 70 PTC0 VDD 7 69 PTB23 VSS 8 68 PTB22 USB0_DP 9 67 PTB21 USB0_DM 10 66 PTB20 VOUT33 11 65 PTB19 VREGIN 12 64 PTB18 ADC0_DP1/OP0_DP0 13 63 PTB17 ADC0_DM1/OP0_DM0 14 62 PTB16 ADC1_DP1/OP1_DP0/OP1_DM1 15 61 PTB11 PTB10 43 44 45 46 47 48 49 50 PTA13 PTA14 PTA15 VDD VSS PTA18 PTA3 PTA4 42 PTA12 41 DAC0_OUT/CMP1_IN3/ ADC0_SE23/OP0_DP4/OP1_DP4 TRI1_OUT/CMP2_IN5/ADC1_SE22 ADC0_SE16/OP0_OUT/CMP1_IN2/ ADC0_SE21/OP0_DP1/OP1_DP1 PTA2 PTA19 40 51 39 25 PTA1 RESET_b ADC1_SE16/OP1_OUT/CMP2_IN2/ ADC0_SE22/OP0_DP2/OP1_DP2 PTA0 PTB0 52 38 53 24 VBAT 23 VSSA 37 VREFL 36 PTB1 XTAL32 VREFH 54 EXTAL32 PTB2 22 35 55 DAC1_OUT/CMP2_IN3/ ADC1_SE23/OP0_DP5/OP1_DP5 21 34 PTB3 VDDA 33 56 32 20 TRI1_DP PTB7 PGA1_DM/ADC1_DM0/ADC0_DM3 31 57 30 19 TRI0_DP PGA1_DP/ADC1_DP0/ADC0_DP3 TRI1_DM PTB8 29 58 TRI0_DM 18 28 PTB9 PGA0_DM/ADC0_DM0/ADC1_DM3 27 59 TRI0_OUT/OP1_DM2 60 VREF_OUT/CMP1_IN5/CMP0_IN5/ADC1_SE18 16 17 26 ADC1_DM1/OP1_DM0 PGA0_DP/ADC0_DP0/ADC1_DP3 Figure 29. K51 100 LQFP Pinout Diagram 9 Revision History The following table provides a revision history for this document. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. Freescale Semiconductor, Inc. Preliminary 69 Revision History Table 50. Revision History Rev. No. Date Substantial Changes 2 3/2011 Initial public revision 3 3/2011 Added sections that were inadvertently removed in previous revision 4 3/2011 Reworded IIC footnote in "Voltage and Current Operating Requirements" table. Added paragraph to "Peripheral operating requirements and behaviors" section. Added "JTAG full voltage range electricals" table to the "JTAG electricals" section. K51 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011. 70 Preliminary Freescale Semiconductor, Inc. How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 [email protected] Document Number: K51P100M100SF2 Rev. 4, 3/2011 Preliminary Information in this document is provided solely to enable system and sofware implementers to use Freescale Semiconductors products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claims alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © 2010–2011 Freescale Semiconductor, Inc.